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Abstract
In this paper, we consider a high-dimensional statistical estimation problem in which
the number of parameters is comparable or larger than the sample size. We present a
unified analysis of the performance guarantees of exponential weighted aggregation
and penalized estimatorswith a general class of data losses and priorswhich encourage
objects which conform to some notion of simplicity/complexity. More precisely, we
show that these two estimators satisfy sharp oracle inequalities for prediction ensuring
their good theoretical performances. We also highlight the differences between them.
When the noise is random, we provide oracle inequalities in probability using concen-
tration inequalities. These results are then applied to several instances including the
Lasso, the group Lasso, their analysis-type counterparts, the �∞ and the nuclear norm
penalties. All our estimators can be efficiently implemented using proximal splitting
algorithms.

Keywords High-dimensional estimation · Exponential weighted aggregation ·
Penalized estimation · Oracle inequality · Low-complexity models

1 Introduction

1.1 Problem statement

Our statistical context is the following. Let y = ( y1, y2, . . . , yn) be n observations
with commonmarginal distribution, and X ∈ R

n×p a deterministic designmatrix. The
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goal to estimate a parameter vector θ ∈ R
p of the observations marginal distribution

based on the data y and X .
Let F : Rn × R

n → R be a loss function supposed to be smooth and convex that
assigns to each θ ∈ R

p a cost F(Xθ , y). Let θ0 ∈ Argminθ∈Rp E
[
F(Xθ , y)

]
be

any minimizer of the population risk. We regard θ0 as the true parameter. A usual
instance of this statistical setting is the standard linear regression model based on
n pairs ( yi , X i ) of response–covariate that are linked linearly y = Xθ0 + ξ , and

F(u, y) = 1
2

∥∥ y − u
∥∥2
2.

Our goal is to provide general oracle inequalities in prediction for two estimators
of θ0: the penalized estimator and exponential weighted aggregation. In the setting
where “p larger than n (possibly much larger), the estimation problem is ill-posed
since the rectangular matrix X has a kernel of dimension at least p−n. To circumvent
this difficulty, we will exploit the prior that θ0 has some low-complexity structure
(amongwhich sparsity and low-rank are themost popular). That is, even if the ambient
dimension p of θ0 is very large, its intrinsic dimension ismuch smaller than the sample
size n. This makes it possible to build estimates X θ̂ with good provable performance
guarantees under appropriate conditions. There has been a flurry of research on the
use of low-complexity regularization in ill-posed recovery problems in various areas
including statistics and machine learning.

1.2 Penalized estimators

Regularization is now a central theme in many fields including statistics, machine
learning and inverse problems. It allows one to impose on the set of candidate solutions
some prior structure on the object to be estimated. This regularization ranges from
squared Euclidean or Hilbertian norms to non-Hilbertian norms (e.g., �1 norm for
sparse objects, or nuclear norm for low-rank matrices) that have sparked considerable
interest in the recent years. In this paper, we consider the class of estimators obtained
by solving the convex optimization problem

θ̂
PEN
n ∈ Argminθ∈Rp

{
Vn(θ)

def= 1
n F(Xθ , y) + λn J (θ)

}
, (1)

where the regularizing penalty J is a proper closed convex function that promotes
some specific notion of simplicity/low-complexity, and λn > 0 is the regularization
parameter.

To avoid trivialities, the set of minimizers is assumed non-empty, which holds for
instance if J is also coercive. A prominent member covered by (1) is the Lasso (Chen
et al. 1999; Tibshirani 1996; Osborne et al. 2000; Donoho 2006; Candès and Plan
2009; Bickel et al. 2009; Bühlmann and van de Geer 2011; Koltchinskii 2008) and
its variants such the analysis/fused Lasso (Rudin et al. 1992; Tibshirani et al. 2005),
SLOPE (Bogdan et al. 2014; Su and Candès 2015) or group Lasso (Bakin 1999; Yuan
and Lin 2006; Bach 2008; Wei and Huang 2010). Another example is the nuclear
norm minimization for low-rank matrix recovery motivated by various applications
including robust PCA, phase retrieval, control and computer vision (Recht et al. 2010;
Candès and Recht 2009; Fazel et al. 2001; Candès et al. 2013). See Negahban et al.
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(2012), Bühlmann and van deGeer (2011), van deGeer (2014) andVaiter et al. (2015b)
for generalizations and comprehensive reviews.

1.3 Exponential weighted aggregation (EWA)

An alternative to the penalized estimator (1) is the aggregation by exponential weight-
ing, which consists in substituting averaging for minimization. The aggregators are
defined via the probability density function

μn(θ) = exp (−Vn(θ)/β)
∫
Θ
exp (−Vn(ω)/β)dω

, (2)

where β > 0 is called temperature parameter. If all θ are candidates to estimate the
true vector θ0, then Θ = R

p. The aggregate is thus defined by

θ̂
EWA
n =

∫

Rp
θμn(θ)dθ . (3)

Aggregation by exponential weighting has been widely considered in the statistical
and machine learning literature, see e.g., Dalalyan and Tsybakov (2007, 2008, 2009,
2012), Nemirovski (2000), Yang (2004), Rigollet and Tsybakov (2007), Lecué (2007),
Guedj and Alquier (2013) and Duy Luu et al. (2016) to name a few. The technique
used in these papers were initiated by Leung and Barron (2006) (use of Stein’s identity
to study an early version of EWA) and Catoni (2003, 2007) (PAC-Bayesian theory).

θ̂
EWA
n can also be interpreted as the posterior conditional mean in the Bayesian sense

if F/(nβ) is the negative-loglikelihood associated to the noise ξ with the prior density
π(θ) ∝ exp (−λn J (θ)/β).

1.4 Oracle inequalities

Oracle inequalities, which are at the heart of our work, quantify the quality of an
estimator compared to the best possible one among a family of estimators. These
inequalities are well adapted in the scenario where the prior penalty promotes some
notion of low-complexity (e.g., sparsity, low rank, etc.). Given two vectors θ1 and θ2,
let Rn(θ1, θ2) be a nonnegative error measure between their predictions, respectively,
Xθ1 and Xθ2. A popular example is the averaged prediction squared error 1

n

∥∥Xθ1 −
Xθ2
∥∥2
2, where

∥∥ · ∥∥2 is the �2 norm. Rn will serve as a measure of the performance of

the estimators θ̂
EWA
n and θ̂

PEN
n . More precisely, we aim to prove that θ̂

EWA
n and θ̂

PEN
n

mimic as much as possible the best possible model. This idea is materialized in the
following type of inequalities (stated here for EWA)

Rn
(̂
θ
EWA
n , θ0

) ≤ C inf
θ∈Rp

(
Rn(θ , θ0) + Δn,p,λn ,β(θ)

)
, (4)
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where C ≥ 1 is the leading constant of the oracle inequality and the remainder term
Δn,λn ,β(θ) depends on the performance of the estimator, the complexity of θ , the
sample size n, the dimension p, and the regularization and temperature parameters
(λn, β). An estimator with good oracle properties would correspond to C close to 1
(ideally, C = 1, in which case the inequality is said “sharp”), and Δn,p,λn ,β(θ) is
small and decreases rapidly to 0 as n → +∞.

1.5 Contributions

We provide a unified analysis where we capture the essential ingredients behind the
low-complexity priors promoted by J , relying on sophisticated arguments fromconvex
analysis and our previous work (Fadili et al. 2013; Vaiter et al. 2015a, 2018, 2015b,
2017). Our main contributions are summarized as follows:

• We show that the EWA estimator θ̂
EWA
n in (2) and the penalized estimator θ̂

PEN
n

in (1) satisfy (deterministic) sharp oracle inequalities for prediction with optimal
remainder term, for general data losses F beyond the usual quadratic one, and J is
a proper finite-valued sublinear function (i.e., J is finite-valued convex and posi-
tively homogeneous).We also highlight the differences between the two estimators
in terms of the corresponding bounds.

• When the observations are random, we prove oracle inequalities in probability.
The theory is non-asymptotic in nature, as it yields explicit bounds that hold with
high probability for finite sample sizes, and reveals the dependence on dimension
and other structural parameters of the model.

• For the standard linearmodelwithGaussian or sub-Gaussian noise, and a quadratic
loss, we deliver refined versions of these oracle inequalities in probability. We
underscore the role of the Gaussian width, a concept that captures important geo-
metric characteristics of sets in Rn .

• These results yield naturally a large number of corollaries when specialized to
penalties routinely used in the literature, among which the Lasso, the group Lasso,
their analysis-type counterparts (fused (group) Lasso), the �∞ and the nuclear
norms. Some of these corollaries are known and others novel.

The estimators θ̂
EWA
n and θ̂

PEN
n can be easily implemented thanks to the framework

of proximal splitting methods, and more precisely forward-backward type splitting.
While the latter is well-known to solve (1) (Vaiter et al. 2015b), its application within a

proximal LangevinMonte Carlo algorithm to compute θ̂
EWA
n with provable guarantees

has been recently developed by Duy Luu et al. (2016) to sample from log-prox regular
densities, see also Durmus et al. (2016) for log-concave densities.

1.6 Relation to previous work

Our oracle inequality for θ̂
EWA
n extends the work of Dalalyan et al. (2018) with an

unprecedented level of generality, far beyond the Lasso and the nuclear norm. Our

prediction sharp oracle inequality for θ̂
PEN
n specializes to that of Sun and Zhang (2012)

in the case of the Lasso [see also the discussion in Dalalyan et al. (2017) and references
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therein] and that of Koltchinskii et al. (2011) for the case of the nuclear norm. Our
work also goes much beyond that in van de Geer (2014) on weakly decomposable
priors, where we show in particular that there is no need to impose decomposability
on the regularizer, since it is rather an intrinsic property of it.

1.7 Paper organization

Section 2 states our main assumptions on the data loss and the prior penalty. All the
concepts and notions are exemplified on some penalties some of which are popular
in the literature. In Sect. 3, we prove our main oracle inequalities, and their versions
in probability. We then tackle the case of linear regression with quadratic data loss in
Sect. 4. Concepts from convex analysis that are essential to this work are gathered in
Sect. A. A key intermediate result in the proof of our main results is established in
Sect. B with an elegant argument relying on Moreau–Yosida regularization.

1.8 Notations

Vectors and matrices For a d-dimensional Euclidean space R
d , we endow it with

its usual inner product 〈·, ·〉 and associated norm ‖·‖2. Idd is the identity matrix on
R
d . For p ≥ 1, ‖·‖p will denote the �p norm of a vector with the usual adaptation for

p = +∞.
In the following, if T is a vector space, PT denotes the orthogonal projector on T ,

and

θT = PT θ and XT = X PT .

For a finite set C, we denote
∣∣C∣∣ its cardinality. For I ⊂ {1, . . . , p}, we denote by

I c its complement. θ I is the subvector whose entries are those of θ restricted to the
indices in I , and X I the submatrix whose columns are those of X indexed by I . For
any matrix X , X� denotes its transpose and X+ its Moore–Penrose pseudo-inverse.
For a linear operator A, A∗ is its adjoint.

Sets For a non-empty set C ∈ R
p, we denote conv (C) the closure of its convex hull,

and ιC its indicator function, i.e., ιC(θ) = 0 if θ ∈ C and +∞ otherwise. For a non-
empty convex set C, its affine hull aff(C) is the smallest affine manifold containing it.
It is a translate of its parallel subspace par(C), i.e., par(C) = aff(C) − θ = R(C − C);
for any θ ∈ C. The relative interior ri(C) of a convex set C is the interior of C for the
topology relative to its affine full.

Functions A function f : Rp → R ∪ {+∞} is closed (or lower semicontinuous
(lsc)) if so is its epigraph. It is coercive if lim‖θ‖2→+∞ f (θ) = +∞, and strongly
coercive if lim‖θ‖2→+∞ f (θ)/ ‖x‖2 = +∞. The effective domain of f is dom( f ) ={
θ ∈ R

p : f (θ) < +∞} and f is proper if dom( f ) �= ∅ as is the case when it is
finite-valued. A function is said sublinear if it is convex and positively homogeneous.
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TheLegendre–Fenchel conjugate of f is f ∗(z) = supθ∈Rp 〈z, θ〉− f (θ). For f proper,
the functions ( f , f ∗) obey the Fenchel–Young inequality

f (θ) + f ∗(z) ≥ 〈z, θ〉, ∀(θ , z) ∈ R
p × R

p. (5)

When f is a proper lower semicontinuous and convex function, ( f , f ∗) is actually
the best pair for which this inequality cannot be tightened. For a function g onR+, the
function g+ : a ∈ R+ �→ g+(a) = supt≥0 at − g(t) is called the monotone conjugate
of g. The pair (g, g+) obviously obeys (5) on R+ × R+.

For a C1-smooth function f , ∇ f (θ) is its (Euclidean) gradient. For a bivariate
function g : (η, y) ∈ R

n × R
n → R that is C2 with respect to the first variable η, for

any y, we will denote ∇g(η, y) the gradient of g at η with respect to the first variable.
The subdifferential ∂ f (θ) of a convex function f at θ is the set

∂ f (θ) = {η ∈ R
p : f (θ ′) ≥ f (θ) + 〈η, θ ′ − θ〉, ∀θ ′ ∈ dom( f )

}
.

An element of ∂ f (θ) is a subgradient. If the convex function f is differentiable at θ ,
then its only subgradient is its gradient, i.e., ∂ f (θ) = {∇ f (θ)}.

The Bregman divergence associated to a convex function f at θ with respect to
η ∈ ∂ f (θ) �= ∅ is

Dη
f

(
θ , θ
)

= f (θ) − f (θ) − 〈η, θ − θ〉.

The Bregman divergence is in general nonsymmetric. It is also nonnegative by con-

vexity. When f is differentiable at θ , we simply write D f

(
θ, θ
)
(which is, in this

case, also known as the Taylor distance).

2 Estimation with low-complexity penalties

The estimators θ̂
PEN
n and θ̂

EWA
n in (1) and (3) require two essential ingredients: the

data loss term F and the prior penalty J . We here specify the class of such functions
covered in our work and provide illustrating examples.

2.1 Data loss

The class of loss functions F that we consider obey the following assumptions:

(H.1) F(·, y) : Rn → R is C1(Rn) and uniformly convex for all y of modulus ϕ,
i.e.,

F(v, y) ≥ F(u, y) + 〈∇F(u, y), v − u〉 + ϕ(‖v − u‖2),

where ϕ : R+ → R+ is a convex non-decreasing function that vanishes only
at 0.
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(H.2) For any θ ∈ R
p and y ∈ R

n ,
∫
Rp exp (−F(Xθ , y)/(nβ))

∣∣〈∇F(Xθ , y), X(θ −
θ)〉∣∣dθ < +∞.

Recall that by Lemma 2, the monotone conjugate ϕ+ of ϕ is a proper, closed, convex,
strongly coercive and non-decreasing function on R+ that vanishes at 0. Moreover,
ϕ++ = ϕ. The function ϕ+ is finite-valued on R+ if ϕ is strongly coercive, and it
vanishes only at 0 under, e.g., Lemma 2(iii).

The class of data loss functions in (H.1) is fairly general. It is reminiscent of the neg-
ative loglikelihood in the regular exponential family. For themoment assumption (H.2)
to be satisfied, it is sufficient that

∫

Rp
exp
(−ϕ
(∥∥Xθ

∥∥
2

)
/(nβ)

)∥∥∇F(Xθ + u�, y)
∥∥
2

∥∥Xθ + (u� − Xθ)
∥∥
2dθ < +∞,

where u� be a minimizer of F(·, y), which is unique by uniform convexity. We here
provide an example.

Example 1 Consider the case where ϕ(t) = tq/q, q ∈]1,+∞[, or equivalently
ϕ+(t) = tq∗/q∗ where 1/q + 1/q∗ = 1. For q = q∗ = 2, (H.1) amounts to say-
ing that F(·, y) is strongly convex for all y. In particular, Bauschke and Combettes
(2011, Proposition 10.13) shows that F(u, y) = ∥∥u− y

∥∥q
2/q is uniformly convex for

q ∈ [2,+∞[ with modulus ϕ(t) = Cqtq/q, where Cq > 0 is a constant that depends
solely on q.

For (H.2) to be verified, it is sufficient that

∫

Rp
exp
(−∥∥Xθ

∥∥q
2/(qnβ)

)∥∥∇F(Xθ + u�, y)
∥∥
2

∥∥(Xθ + u�) − Xθ
∥∥
2dθ < +∞.

In particular, taking F(u, y) = ∥∥u − y
∥
∥q
2/q, q ∈ [2,+∞[, we have ∥∥∇F(u, y)

∥
∥
2 =

∥∥u − y
∥∥q−1
2 , and thus (H.2) holds since

∫

Rp
exp
(−∥∥Xθ

∥∥q
2/(qnβ)

)∥∥ y − (Xθ + u�)
∥∥q−1
2

∥∥Xθ − (Xθ + u�)
∥∥
2dθ < +∞.

2.2 Prior penalty

Recall the main definitions and results from convex analysis that are collected in
Sect. A. Our main assumption on J is the following.

(H.3) J : Rp → R is the gauge of a non-empty convex compact set containing the
origin as an interior point.

By Lemma 4, this assumption is equivalent to saying that J
def= γC is proper, convex,

positively homogeneous, finite-valued and coercive. In turn, J is locally Lipschitz
continuous on R

p. Observe also that by virtue of Lemma 5 and Lemma 3, the polar
gauge J ◦ def= γC◦ enjoys the same properties as J in (H.3).
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2.3 Decomposability of the prior penalty

We are now in position to provide an important characterization of the subdifferential
mapping of a function J satisfying (H.3). This characterization will play a pivotal role
in our proof of the oracle inequality.

We start by defining some essential geometrical objects that were introduced in
Vaiter et al. (2015a).

Definition 1 (Model Subspace) Let θ ∈ R
p. We denote by eθ as

eθ = Paff(∂ J (θ))(0).

We denote
Sθ = par(∂ J (θ)) and Tθ = S⊥

θ .

Tθ is coined the model subspace of θ associated to J .

It can be shown, see Vaiter et al. (2015a, Proposition 5), that θ ∈ Tθ , hence the name
model subspace. When J is differentiable at θ , we have eθ = ∇ J (θ) and Tθ = R

p.
When J is the �1-norm (Lasso), the vector eθ is nothing but the sign of θ . Thus, eθ can
be viewed as a generalization of the sign vector. Observe also that eθ = PTθ

(∂ J (θ)),
and thus eθ ∈ Tθ ∩ aff(∂ J (θ)). However, in general, eθ /∈ ∂ J (θ).

We now provide a fundamental equivalent description of the subdifferential of J at
θ in terms of eθ , Tθ , Sθ and the polar gauge J ◦.

Theorem 1 Let J satisfy (H.3). Let θ ∈ R
p and fθ ∈ ri(∂ J (θ)).

(i) The subdifferential of J at θ reads

∂ J (θ) = aff(∂ J (θ)) ∩ C◦

=
{
η ∈ R

n :

ηTθ
= eθ and inf

τ≥0
max
(
J ◦(τeθ + ηSθ

+ (τ − 1)PSθ
fθ
)
, τ
) ≤ 1

}
.

(ii) For any ω ∈ R
p, ∃η ∈ ∂ J (θ) such that

J (ωSθ
) = 〈ηSθ

,ωSθ
〉.

Proof (i) This follows by piecing together (Vaiter et al. 2015a, Theorem 1, Propo-
sitions 4 and 5(iii)).

(ii) From Vaiter et al. (2015a, Proposition 5(iv)), we have

σ∂ J (θ)− fθ (ω) = J (ωSθ
) − 〈PSθ

fθ ,ωSθ
〉.

Thus there exists a supporting point v ∈ ∂ J (θ) − fθ ⊂ Sθ with normal vector
ω (Bauschke and Combettes 2011, Corollary 7.6(iii)), i.e.,
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σ∂ J (θ)− fθ (ω) = 〈v,ωSθ
〉.

Taking η = v + fθ concludes the proof. ��
Remark 1 The coercivity assumption in (H.3) is not needed for Theorem 1 to hold.

The decomposability of described in Theorem 1(i) depends on the particular choice
of the mapping θ �→ fθ ∈ ri(∂ J (θ)). An interesting situation is encountered when
eθ ∈ ri(J (θ)), so that one can choose fθ = eθ . Strong gauges, see Vaiter et al. (2015a,
Definition 6), are precisely a class of gauges for which this situation occurs, and in
this case, Theorem 1(i) has the simpler form

∂ J (θ) = aff(∂ J (θ)) ∩ C◦ = {η ∈ R
n : ηTθ

= eθ and J ◦(ηSθ
) ≤ 1

}
. (6)

The Lasso, group Lasso and nuclear norms are typical examples of (symmetric)
strong gauges. However, analysis sparsity penalties (e.g., the fused Lasso) or the �∞-
penalty are not strong gauges, though they obviously satisfy (H.3). See the next section
for a detailed discussion.

2.4 Calculus with the prior family

The family of penalties complying with (H.3) forms a robust class enjoying important
calculus rules. In particular, it is closed under the sumand compositionwith an injective
linear operator as we now prove.

Lemma 1 The set of functions satisfying (H.3) is closed under addition (actually any
positive linear combination) and pre-composition by an injective linear operator.More
precisely, the following holds:

(i) Let J and G be two gauges satisfying (H.3). Then H
def= J +G also obeys (H.3).

Moreover,

(a) T H
θ = T J

θ ∩ T G
θ and eHθ = PT H

θ
(eJθ + eGθ ), where T J

θ and eJθ (resp. T G
θ and

eGθ ) are the model subspace and vector at θ associated to J (resp. G);
(b) H◦(ω) = maxρ∈[0,1] conv (inf (ρ J ◦(ω), (1 − ρ)G◦(ω))).

(ii) Let J be a gauge satisfying (H.3), and D : R
q → R

p be surjective. Then
H

def= J ◦ D� also fulfills (H.3). Moreover,

(a) T H
θ = Ker(D�

SJu
) and eHθ = PT H

θ
DeJu , where T J

u and eJu are the model

subspace and vector at u
def= D�θ associated to J ;

(b) H◦(ω) = J ◦(D+ω), where D+ = D�(DD�)−1
.

The outcome of Lemma 1 is naturally expected. For instance, assertion (i) states that
combining several penalties/priorswill promote objects living on the intersection of the
respective low-complexity models. Similarly, for (ii), one promotes low-complexity
in the image of the analysis operator D�. It then follows that one has not to deploy an
ad hoc analysis when linearly pre-composing or combining (or both) several penalties
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(e.g., �1+nuclear norms for recovering sparse and low-rank matrices) since our unified
analysis in Sect. 3 will apply to them just as well.

Proof (i) Convexity, positive homogeneity, coercivity and finite-valuedness are
straightforward.

(a) This is Vaiter et al. (2015a, Proposition 8(i)–(ii)).
(b) We have from Lemma 5 and calculus rules on support functions,

H◦(ω) = σJ (θ)+G(θ)≤1(ω) = sup
J (θ)+G(θ)≤1

〈ω, θ〉

= max
ρ∈[0,1] sup

J (θ)≤ρ,G(θ)≤1−ρ

〈ω, θ〉

= max
ρ∈[0,1] conv

(
inf
(
σJ (θ)≤ρ(ω), σG(θ)≤1−ρ(ω)

))

= max
ρ∈[0,1] conv

(
inf
(
ρσJ (θ)≤1(ω), (1 − ρ)σG(θ)≤1(ω)

))

= max
ρ∈[0,1] conv

(
inf
(
ρ J ◦(ω), (1 − ρ)G◦(ω)

))
,

where we used Hiriart-Urruty and Lemaréchal (2001, Theorem V.3.3.3) in
third row, positive homogeneity in the fourth, and Lemma 5 in the fifth.

(ii) Again, convexity, positive homogeneity and finite-valuedness are immediate.
Coercivity holds by injectivity of D�.

(a) This is Vaiter et al. (2015a, Proposition 10(i)–(ii)).
(b) Denote J = γC . We have

H◦(ω) = sup
D�θ∈C

〈ω, θ〉

(D� is injective) = sup
D�θ∈C

〈D+ω, D�θ〉

= sup
u∈C∩Span(D�)

〈D+ω, u〉

= conv
(
inf
(
J ◦(D+ω), ιKer(D)(D+ω)

))

= J ◦(D+ω).

where in the last equality, we used the fact that D+ω ∈ Span
(
D�) =

Ker(D)⊥, and thus ιKer(D)(D+ω) = +∞ unlessω = 0, and J ◦ is continuous
and convex by (H.3) and Lemma 5. In the fourth equality, we invokedHiriart-
Urruty and Lemaréchal (2001, Theorem V.3.3.3) and Lemma 5. ��
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2.5 Examples

2.5.1 Lasso

The Lasso regularization is used to promote the sparsity of the minimizers, see
Bühlmann and van de Geer (2011) for a comprehensive review. It corresponds to
choosing J as the �1-norm

J (θ) = ∥∥θ∥∥1 =
p∑

i=1

∣∣θ i
∣∣. (7)

It is also referred to as �1-synthesis in the signal processing community, in contrast to
the more general �1-analysis sparsity penalty detailed below.

We denote (ai )1≤i≤p the canonical basis of Rp and supp(θ)
def= {i ∈ {1, . . . , p} :

θ i �= 0
}
. Then,

Tθ = Span
{
(ai )i∈supp(θ)

}
, (eθ )i =

{
sign(θ i ) if i ∈ supp(θ)

0 otherwise
, and J ◦ = ∥∥ · ∥∥∞.

(8)

2.5.2 Group Lasso

The group Lasso has been advocated to promote sparsity by groups, i.e., it drives all
the coefficients in one group to zero together hence leading to group selection, see
Bakin (1999), Yuan and Lin (2006), Bach (2008) and Wei and Huang (2010) to cite a
few. The group Lasso penalty with L groups reads

J (θ) = ∥∥θ∥∥1,2
def=

L∑

i=1

∥∥θbi
∥∥
2, (9)

where
⋃L

i=1 bi = {1, . . . , p} , bi , b j ⊂ {1, . . . , p} , and bi ∩ b j = ∅ whenever i �= j .

Define the group support as suppB(θ)
def= {i ∈ {1, . . . , L} : θbi �= 0

}
. Thus, one has

Tθ = Span

{
(a j )
{
j : ∃i∈suppB(θ), j∈bi

}
}

,

(eθ )bi =
⎧
⎨

⎩

θbi∥
∥θbi
∥
∥
2

if i ∈ suppB(θ)

0 otherwise
, and J ◦(ω) = max

i∈{1,...,L}
∥
∥ωbi

∥
∥
2 .

(10)

2.5.3 Analysis (group) Lasso

One can push the structured sparsity idea one step further by promoting group/block
sparsity through a linear operator, i.e., analysis-type sparsity. Given a linear operator
D : Rq → R

p (seen as a matrix), the analysis group sparsity penalty is
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J (θ) = ∥∥D�θ
∥∥
1,2. (11)

This encompasses the 2-D isotropic total variation (Rudin et al. 1992). For when
all groups of cardinality one, we have the analysis-�1 penalty (a.k.a. general Lasso),
which encapsulates several important penalties including that of the 1-D total variation
(Rudin et al. 1992), and the fused Lasso (Tibshirani et al. 2005). The overlapping group
Lasso (Jacob et al. 2009) is also a special case of (9) by taking D� to be an operator
that extracts the blocks (Peyré et al. 2011; Chen et al. 2010) (in which case D has even
orthogonal rows).

Let Λθ = ⋃i∈suppB(D�θ) bi and Λc
θ its complement. From Lemma 1(ii) and (10),

we get

Tθ = Ker(D�
Λc

θ
), eθ = PTθ

De
‖‖1,2
D�θ

where
(
e
‖‖1,2
D�θ

)

bi
=

⎧
⎪⎨

⎪⎩

(
D�θ
)
bi∥

∥∥
(
D�θ
)
bi

∥
∥∥
2

if i ∈ suppB(D�θ)

0 otherwise.

(12)

If, in addition, D is surjective, then by virtue of Lemma 1(ii) we also have

J ◦(ω) = ∥∥D+ω
∥∥∞,2

def= max
i∈{1,...,L}

∥∥(D+ω)bi

∥∥
2 . (13)

2.5.4 Anti-sparsity

If the vector to be estimated is expected to be flat (anti-sparse), this can be captured
using the �∞ norm (a.k.a. Tchebychev norm) as prior

J (θ) = ∥∥θ∥∥∞ = max
i∈{1,...,p}

∣∣θ i
∣∣. (14)

The �∞ regularization has found applications in several fields (Jégou et al. 2012;
Lyubarskii and Vershynin 2010; Studer et al. 2012). Suppose that θ �= 0, and define
the saturation support of θ as I satθ

def= {i ∈ {1, . . . , p} : ∣∣θ i
∣
∣ = ‖θ‖∞

} �= ∅. From
Vaiter et al. (2015a, Proposition 14), we have

Tθ = {θ ∈ R
p : θ I sat

θ
∈ R sign(θ I sat

θ
)
}
,

(eθ )i =
{
sign(θ i )/|I satθ | if i ∈ I satθ

0 otherwise
, and J ◦ = ‖·‖1 .

(15)

2.5.5 Nuclear norm

The natural extension of low-complexity priors to matrices θ ∈ R
p1×p2 is to penalize

the singular values of the matrix. Let rank(θ) = r , and θ = U diag(λ(θ))V� be a
reduced rank-r SVDdecomposition,whereU ∈ R

p1×r andV ∈ R
p2×r have orthonor-

mal columns, andλ(θ) ∈ (R+\{0})r is the vector of singular values (λ1(θ), . . . , λr (θ))

in non-increasing order. The nuclear norm of θ is
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J (θ) = ∥∥θ∥∥∗ = ∥∥λ(θ)
∥∥
1. (16)

This penalty is the best convex surrogate to enforce a low-rank prior. It has beenwidely
used for various applications (Recht et al. 2010; Candès and Recht 2009; Candès et al.
2011; Candès et al. 2013; Fazel et al. 2001).

Following, e.g., Vaiter et al. (2017, Example 21), we have

Tθ = {UA� + BV� : A ∈ R
p2×r , B ∈ R

p1×r}, eθ = UV�

and J ◦(ω) = |||ω|||2→2 = ∥∥λ(ω)
∥∥∞.

(17)

3 Oracle inequalities for a general loss

Before delving into the details, in the sequel, we will need a bit of notations.
We recall Tθ and eθ themodel subspace and vector associated to θ (seeDefinition 1).

Denote Sθ = T⊥
θ . Given two coercive finite-valued gauges J1 = γC1 and J2 = γC2 ,

and a linear operator A, we define |||A|||J1→J2 the operator bound as

|||A|||J1→J2 = sup
θ∈C1

J2(Aθ).

Note that |||A|||J1→J2 is bounded (this follows from Lemma 4(v)). Furthermore, we
have from Lemma 5 that

|||A|||J1→J2 = sup
θ∈C1

sup
ω∈C◦

2

〈A�ω, θ〉 = sup
ω∈C◦

2

sup
θ∈C1

〈A�ω, θ〉 = sup
ω∈C◦

2

J ◦
1 (A�ω)

= ∣∣∣∣∣∣A�∣∣∣∣∣∣
J ◦
2 →J ◦

1
.

In the following, whenever it is clear from the context, to lighten notation when Ji is
a norm, we write the subscript of the norm instead of Ji (e.g., p for the �p norm, ∗ for
the nuclear norm).

Ourmain result will involve ameasure of well-conditionedness of the designmatrix
X when restricted to some subspace T . More precisely, for c > 0, we introduce the
coefficient

Υ (T , c) = inf{
ω∈Rp : J (ωS)<cJ (ωT )

}
|||PT |||2→J

∥∥Xω
∥∥
2

n1/2(J (ωT ) − J (ωS)/c)
. (18)

This generalizes the compatibility factor introduced in van de Geer and Buhlmann
(2009) for the Lasso (and used in Dalalyan et al. 2018). The experienced reader may
have recognized that this factor is reminescent of the null space property and restricted
injectivity that play a central role in the analysis of the performance guarantees of
penalized estimators (1); see Fadili et al. (2013) and Vaiter et al. (2015a, b, 2017,
2018). One can see in particular that Υ (T , c) is larger than the smallest singular value
of XT .
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The oracle inequalities will be provided in terms of the loss

Rn
(
θ, θ0
) = 1

n DF (Xθ , Xθ0).

3.1 Oracle inequality for̂�
EWA
n

We are now ready to establish our first main result: an oracle inequality for the EWA
estimator (3).

Theorem 2 Consider the EWA estimator θ̂
EWA
n in (3) with the density (2), where F

and J satisfy Assumptions (H.1)–(H.2) and (H.3). Then, for any τ > 1 such that
λn ≥ τ J ◦(−X�∇F(Xθ0, y)

)
/n, the following holds,

Rn
(̂
θ
EWA
n , θ0

) ≤ inf
θ∈Rp

⎛

⎝Rn
(
θ, θ0
)+ 1

n
ϕ+
⎛

⎝
λn

√
n
(
τ J ◦(eθ ) + 1

)∣∣∣∣∣∣PTθ

∣∣∣∣∣∣
2→J

τΥ
(
Tθ ,

τ J ◦(eθ )+1
τ−1

)

⎞

⎠

⎞

⎠

+ pβ.

(19)

Remark 2 1. It should be emphasized that Theorem 2 is actually a deterministic state-
ment for a fixed choice of λn . Probabilistic analysis will be requiredwhen the result
is applied to particular statistical models as we will see later. For this, we will use
concentration inequalities in order to provide bounds that hold with high proba-
bility over the data.

2. The oracle inequality is sharp. The remainder in it has two terms. The first one
encodes the complexity of themodel promoted by J . The second one, pβ, captures
the influence of the temperature parameter. In particular, takingβ sufficiently small
of the order O

(
(pn)−1

)
, this term becomes O(n−1).

3. When ϕ(t) = νt2/2, i.e., F(·, y) is ν-strongly convex, then ϕ+(t) = t2/(2ν), and
the reminder term becomes

λ2n
(
τ J ◦(eθ ) + 1

)2∣∣∣∣∣∣PTθ

∣∣∣∣∣∣2
2→J

2τ 2νΥ
(
Tθ ,

τ J ◦(eθ )+1
τ−1

)2 . (20)

If, moreover, ∇F is also κ-Lipschitz continuous, then it can be shown that
Rn
(
θ , θ0
)
is equivalent to a quadratic loss. This means that the oracle inequal-

ity in Theorem 2 can be stated in terms of the quadratic prediction error. However,
the inequality is not anymore sharp in this case as a constant factor equal to the
condition number κ/ν ≥ 1 naturally multiplies the right-hand side.

4. If J is such that eθ ∈ ∂ J (θ) ⊂ C◦ (typically for a strong gauge by (6)), then
J ◦(eθ ) ≤ 1 (in fact an equality if θ �= 0). Thus the term J ◦(eθ ) can be omitted in
(19).
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5. A close inspection of the proof of Theorem 2 reveals that the term pβ can be
improved to the smaller bound

pβ +
(
Vn
(
θ̂
EWA
n

)
− Eμn [Vn(θ)]

)
,

where the upper bound is a consequence of Jensen inequality.

Proof By convexity of J and assumption (H.1), we have for any η ∈ ∂Vn(θ) and any
θ ∈ R

p,

Dη
Vn

(
θ , θ
)

≥ 1

n
ϕ
(∥∥Xθ − Xθ

∥∥
2

)
.

Since ϕ is non-decreasing and convex, ϕ ◦ ‖·‖2 is a convex function. Thus, taking the
expectation w.r.t. to μn on both sides and using Jensen inequality, we get

Vn(θ) ≥ Eμn [Vn(θ)] + Eμn

[
〈η, θ − θ〉

]
+ 1

n
Eμn

[
ϕ
(∥∥Xθ − Xθ

∥∥
2

)]

≥ Vn
(
θ̂
EWA
n

)
+ Eμn

[
〈η, θ − θ〉

]
+ 1

n
ϕ
(∥∥Xθ − X θ̂

EWA
n

∥
∥
2

)
.

This holds for any η ∈ ∂Vn(θ), and in particular at the minimal selection
(
∂Vn(θ)

)0

(see Sect. B for details). It then follows from the pillar result in Proposition 5 that

Eμn

[
〈(∂Vn(θ)

)0
, θ − θ〉

]
= −pβ.

We thus deduce the inequality

Vn
(
θ̂
EWA
n

)
− Vn(θ) ≤ pβ − 1

n
ϕ
(∥∥X θ̂

EWA
n − Xθ

∥∥
2

)
, ∀θ ∈ R

p. (21)

By definition of the Bregman divergence, we have

Rn
(̂
θ
EWA
n , θ0

)− Rn
(
θ , θ0
)

= 1

n

(
F(X θ̂

EWA
n , y) − F(Xθ , y) + 〈−X�∇F(Xθ0, y)), θ̂

EWA
n − θ〉

)

=
(
Vn
(
θ̂
EWA
n

)
− Vn(θ)

)
+ 1

n
〈−X�∇F(Xθ0, y), θ̂

EWA
n − θ〉

− λn
(
J
(
θ̂
EWA
n

)
− J (θ)

)
.
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By virtue of the duality inequality (42), we have

Rn
(̂
θ
EWA
n , θ0

)− Rn
(
θ , θ0
)

≤
(
Vn
(
θ̂
EWA
n

)
− Vn(θ)

)
+ 1

n
J ◦(−X�∇F(Xθ0, y)

)
J
(
θ̂
EWA
n − θ

)

− λn
(
J
(
θ̂
EWA
n

)
− J (θ)

)

≤
(
Vn
(
θ̂
EWA
n

)
− Vn(θ)

)
+ λn

τ

(
J
(
θ̂
EWA
n − θ

)
− τ
(
J
(
θ̂
EWA
n

)
− J (θ)

))
.

Denote ω = θ̂
EWA
n − θ . By virtue of (H.3), Theorem 1 and (42), we obtain

J (ω) − τ
(
J
(
θ̂
EWA
n

)
− J (θ)

) ≤ J (ωTθ
) + J (ωSθ

) − τ 〈eθ ,ωTθ
〉 − τ J (ωSθ

)

≤ J (ωTθ
) + J (ωSθ

) + τ J ◦(eθ )J (ωTθ
) − τ J (ωSθ

)

= (τ J ◦(eθ ) + 1
)
J (ωTθ

) − (τ − 1)J (ωSθ
)

≤ (τ J ◦(eθ ) + 1
)(

J (ωTθ
) − τ−1

τ J ◦(eθ )+1 J (ωSθ
)
)
.

This inequality together with (21) (applied with θ = θ) and (18) yields

Rn
(̂
θ
EWA
n , θ0

)− Rn
(
θ , θ0
)

≤ pβ − 1

n
ϕ
(∥∥Xω

∥∥
2

)+ λn
(
τ J ◦(eθ ) + 1

)∣∣∣∣∣∣PTθ

∣∣∣∣∣∣
2→J

∥∥Xω
∥∥
2

n1/2τΥ
(
Tθ ,

τ J ◦(eθ )+1
τ−1

)

≤ pβ + 1

n
ϕ+
⎛

⎝
λn

√
n
(
τ J ◦(eθ ) + 1

)∣∣∣∣∣∣PTθ

∣∣∣∣∣∣
2→J

τΥ
(
Tθ ,

τ J ◦(eθ )+1
τ−1

)

⎞

⎠,

where we applied Fenchel–Young inequality (5) to get the last bound. Taking the
infimum over θ ∈ R

p yields the desired result. ��
In “Appendix”,weprovide a novel proof of Proposition 5basedon aMoreau–Yosida

regularization argument. In Dalalyan et al. (2018, Corollary 1 and 2), an alternative
proof is given using an absolute continuity argument since μn is locally Lipschitz,
hence a Sobolev function.

Stratifiable functions Theorem 2 has a nice instanciationwhenRp can be partitioned
into a collection of subsets {Mi }i that form a stratification of Rp. That is, Rp is a
finite disjoint union ∪iMi such that the partitioning sets Mi (called strata) must fit
nicely together and the stratification is endowed with a partial ordering for the closure
operation. For example, it is known that a polyhedral function has a polyhedral strati-
fication, and more generally, semialgebraic functions induce stratifications into finite
disjoint unions of manifolds, see e.g., Coste (2000). Another example is that of partly
smooth convex functions thoroughly studied in Vaiter et al. (2015a, b, 2017, 2018) for
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various statistical and inverse problems. These functions induce a stratification into
strata that are C2-smooth submanifolds of Rp. In turns out that all popular penalty
functions discussed in this paper are partly smooth (see Vaiter et al. 2015b, 2017).
Let’s denoteM the set of strata associated to J . With this notation at hand, the oracle
inequality (19) now reads

Rn
(̂
θ
EWA
n , θ0

) ≤ inf
M∈M
θ∈M

⎛

⎝Rn
(
θ, θ0
)+ 1

n
ϕ+
⎛

⎝
λn

√
n
(
τ J ◦(eθ ) + 1

)∣∣∣∣∣∣PTθ

∣∣∣∣∣∣
2→J

τΥ
(
Tθ ,

τ J ◦(eθ )+1
τ−1

)

⎞

⎠

⎞

⎠

+ pβ.

(22)

3.2 Oracle inequality for̂�
PEN
n

The next result establishes that θ̂
PEN
n satisfies a sharp prediction oracle inequality that

we will compare to (19).

Theorem 3 Consider the penalized estimator θ̂
PEN
n in (1), where F and J sat-

isfy Assumptions (H.1) and (H.3). Then, for any τ > 1 such that λn ≥
τ J ◦(−X�∇F(Xθ0, y)

)
/n, the following holds,

Rn
(̂
θ
PEN
n , θ0

) ≤ inf
θ∈Rp

⎛

⎝Rn
(
θ , θ0
)+ 1

n
ϕ+
⎛

⎝
λn

√
n
(
τ J ◦(eθ ) + 1

)∣∣
∣
∣
∣
∣PTθ

∣
∣
∣
∣
∣
∣
2→J

τΥ
(
Tθ ,

τ J ◦(eθ )+1
τ−1

)

⎞

⎠

⎞

⎠.

(23)

Proof The proof follows the same lines as that of Theorem 2 except that we use the

fact that θ̂
PEN
n is a global minimizer of Vn , i.e., 0 ∈ ∂Vn

(
θ̂
PEN
n

)
. Indeed, we have for

any θ ∈ R
p

Vn(θ) ≥ Vn
(
θ̂
PEN
n

)
+ 1

n
ϕ
(∥∥Xθ − X θ̂

PEN
n

∥
∥
2

)
. (24)

Continuing exactly as just after (21), replacing θ̂
EWA
n with θ̂

PEN
n and invoking (24)

instead of (21), we arrive at the claimed result. ��
Remark 3

1. Observe that the penalized estimator θ̂
PEN
n does not require the moment assump-

tion (H.2) for (23) to hold. The convexity assumption on ϕ in (H.1), which was
important to apply Jensen’s inequality in the proof of (19), is not needed either to
get (23).

2. As we remarked for Theorem 2, Theorem 3 is also a deterministic statement for
a fixed choice of λn that holds for any minimizer θ̂

PEN
n , which is not unique in

general. The condition on λn is similar to the one in Negahban et al. (2012) where

authors established different guarantees for θ̂
PEN
n .
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3.3 Discussion of̂�
EWA
n vŝ�

PEN
n

One clearly sees that the difference between the prediction performance of θ̂
EWA
n and

θ̂
PEN
n lies in the term pβ (or rather its lower bound in Remark 2-2). In particular,

for β = O
(
(pn)−1

)
, this term is on the order O(n−1). This choice can be refined

in most situations. In particular, for the case of quadratic loss, one can take β =
O
(
λ2n

∣
∣
∣
∣
∣
∣ PTθ0

∣
∣
∣
∣
∣
∣2
2→J

/p
)
, hence leading to remainder terms in (19) and (23) of the

same order.
In view of this discussion, one may wonder what are the actual benefits of using θ̂

EWA
n

instead of θ̂
PEN
n . Generalizing the arguments of Dalalyan et al. (2018), we will show

that θ̂
EWA
n enjoys onemain advantage compared to θ̂

PEN
n . To simplify the discussion,we

will focus on the case of linear regression (30) with Gaussian noise ξ ∼ N (0, σ 2Idn)
and F is the quadratic loss.

The chief advantage of θ̂
EWA
n is its stability as a function of the data and hyperparam-

eters. It has been shown that for a large class of penalties J , including those studied

here, the prediction X θ̂
PEN
n is a smooth function of y outside a set of Lebesgue mea-

sure zero; see Vaiter et al. (2017, Theorem 2). Those authors also provided in Vaiter
et al. (2017, Theorem 3) an expression of the Stein unbiased risk estimator (SURE).
For instance, when J is the gauge of a polytope, the SURE is given by

∥∥ y − X θ̂
PEN
n

∥∥2
2 + σ 2 dim

(
T̂

θ
PEN
n

)− nσ 2.

TheSUREwas advocated as an automatic and objectiveway to chooseλ. However, one
can see that dim

(
T̂

θ
PEN
n

)
is a non-smooth function of λ, which may lead to numerical

instabilities in practice. In contrast, the SURE of θ̂
EWA
n , whose closed-form is given in

Dalalyan et al. (2018, (10)), is such that X θ̂
EWA
n is a continuous function of (λ, β) ∈

]0,+∞[2 and y ∈ R
n . This better regularity suggests that it would be wiser to use the

SURE associated to θ̂
EWA
n for an automatic choice of λ.

3.4 Oracle inequalities in probability

It remains to check when the event E = {λn ≥ τ J ◦(−X�∇F(Xθ0, y)
)
/n
}
holds

with high probability when y is random. We will use concentration inequalities in
order to provide bounds that hold with high probability over the data. Toward this
goal, we will need the following assumption.

(H.4) y = ( y1, y2, . . . , yn) are independent random observations, and F(u, y) =∑n
i=1 fi (ui , yi ), fi : R × R → R. Moreover,

(i) E
[∣∣ fi ((Xθ0)i , yi )

∣∣] < +∞, ∀1 ≤ i ≤ n ;
(ii)
∣∣ f ′

i ((Xθ0)i , t)
∣∣ ≤ g(t), where E

[
g( yi )

]
< +∞, ∀1 ≤ i ≤ n;
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(iii) Bernstein moment condition: ∀1 ≤ i ≤ n and all integers m ≥ 2,
E
[∣∣ f ′

i ((Xθ0)i , yi )
∣∣m] ≤ m!κm−2σ 2

i /2 for some constants κ > 0, σi > 0
independent of n.

Let σ 2 = max1≤i≤n σ 2
i .

Observe that under (H.4), and by virtue of Lemma 5(iv) and Hiriart-Urruty and
Lemaréchal (2001, Proposition V.3.3.4), we have

J ◦(− X�∇F(Xθ0, y)
) = σC

(− X�∇F(Xθ0, y)
)

= sup
z∈X(C)

−
n∑

i=1

f ′
i ((Xθ0)i , yi )zi .

(25)

As X(C) is compact, it has a dense countable subset. Thus, checking the event E
amounts to establishing a deviation inequality for the supremum of an empirical pro-
cess above its mean under the weak Bernstein moment condition (H.4)(iii), which
essentially requires that the f ′

i ((Xθ0)i , yi ) have subexponential tails. We will first
tackle the case where C is the convex hull of a finite set (i.e., C is a polytope).

3.4.1 Polyhedral penalty

We here suppose that J is a finite-valued gauge of C = conv (V), where V is finite,
i.e., C is a polytope with vertices (Rockafellar 1996, Corollary 19.1.1). Our first oracle
inequality in probability is the following.

Proposition 1 Consider the estimators θ̂
EWA
n and θ̂

PEN
n , where F and J

def= γC satisfy
Assumptions (H.1), (H.2), (H.3) and (H.4), and C is a polytope with vertices V .
Suppose that rank(X) = n and let s(X) = maxv∈V

∥∥Xv
∥∥∞. Choose

λn ≥ τσ s(X)

√
2δ log(|V|)

n

(

1 + √
2κ/σ

√
δ log(|V|)

n

)

,

for some τ > 1and δ > 1. Then (19)and (23)holdwith probability at least1−2|V|1−δ .

Proof In view of Assumptions (H.1) and (H.4) , one can differentiate under the
expectation sign (Leibniz rule) to conclude that E

[
F(X ·, y)] is C1 at θ0 and

∇E
[
F(Xθ0, y)

] = X�
E
[∇F(Xθ0, y)

]
. As θ0 minimizes the population risk, one

has ∇E
[
F(Xθ0, y)

] = 0. Using the rank assumption on X , we deduce that

E
[
f ′
i ((Xθ0)i , yi )

] = 0, ∀1 ≤ i ≤ n.

Moreover, (25) specializes to

J ◦(− X�∇F(Xθ0, y)
) = sup

z∈X(V)

−
n∑

i=1

f ′
i ((Xθ0)i , yi )zi .
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Let t ′ = λnn/τ and t = t ′/s(X). By the union bound and (25), we have

P

(
J ◦(− X�∇F(Xθ0, y)

) ≥ t ′
)

≤ P

(

max
z∈X(V)

−
n∑

i=1

f ′
i ((Xθ0)i , yi )zi ≥ t ′

)

≤ |V| max
z∈X(V)

P

(
∣∣

n∑

i=1

f ′
i ((Xθ0)i , yi )zi

∣∣ ≥ t ′
)

≤ |V|P
(

s(X)
∣∣

n∑

i=1

f ′
i ((Xθ0)i , yi )

∣∣ ≥ t ′
)

= |V|P
(
∣∣

n∑

i=1

f ′
i ((Xθ0)i , yi )

∣∣ ≥ t

)

.

Owing to assumption (H.4)(iii), we are in position to apply the Bernstein inequality
to get

P

(
J ◦(− X�∇F(Xθ0, y)

) ≥ t
)

≤ 2|V| exp
(

− t2

2(κt + nσ 2)

)
.

Every t such that

t ≥ √δ log(|V|)
(

κ
√

δ log(|V|) +
√

κ2δ log(|V|) + 2nσ 2

)
,

satisfies t2 ≥ 2δ log(|V|)(κt + nσ 2). Applying the trivial inequality
√
a + b ≤ √

a +√
b to the bound on t , we conclude. ��

Remark 4 In the monograph (Bühlmann and van de Geer 2011, Lemma 14.12), the
authors derived an exponential deviation inequality for the supremum of an empirical
process with finite V and possibly unbounded empirical processes under a Bernstein
moment condition similar to ours (in fact ours implies theirs). The very last part of
our proof can be obtained by applying their result. We detailed it here for the sake of
completeness.

Lasso To lighten the notation, let Iθ = supp(θ). From (8), it is easy to see that

∣∣∣∣∣∣PTθ

∣∣∣∣∣∣
2→1 = √|Iθ | and J ◦(eθ ) = ∥∥sign(θ Iθ )

∥∥∞ ≤ 1,

where last bound holds as an equality whenever θ �= 0. Further the �1 norm is the
gauge of the cross-polytope (i.e., the unit �1 ball). Its vertex setV is the set of unit-norm
one-sparse vectors (±ai )1≤i≤p, where we recall (ai )1≤i≤p the canonical basis. Thus

|V| = 2p and s(X) = max
v∈V

‖Xv‖∞ = max
1≤i≤p

‖X i‖∞.

Inserting this into Proposition 1, we obtain the following corollary.
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Corollary 1 Consider the estimators θ̂
EWA
n and θ̂

PEN
n , where J is the Lasso penalty

and F satisfies Assumptions (H.1), (H.2) and (H.4). Suppose that rank(X) = n and
take

λn ≥ τσ s(X)

√
2δ log(2p)

n

(

1 + √
2κ/σ

√
δ log(2p)

n

)

,

for some τ > 1 and δ > 1. Then, with probability at least 1−2(2p)1−δ , the following
holds

Rn
(̂
θ
EWA
n , θ0

) ≤ inf
I⊂{1,...,p}

θ : supp(θ)=I

(

Rn
(
θ , θ0
)+ 1

nϕ+
(

λn
√
n(τ+1)

√|I |
τΥ
(
Span{ai }i∈I , τ+1

τ−1

)

))

+ pβ,

(26)

and

Rn
(̂
θ
PEN
n , θ0

) ≤ inf
I⊂{1,...,p}

θ : supp(θ)=I

(

Rn
(
θ , θ0
)+ 1

nϕ+
(

λn
√
n(τ+1)

√|I |
τΥ
(
Span{ai }i∈I , τ+1

τ−1

)

))

. (27)

For θ̂
PEN
n , we recover a similar scaling for λn and the oracle inequality as in van de

Geer (2008), though in the latter the oracle inequality is not sharp unlike ours. Note
that the above oracle inequality extends readily to the case of analysis/fused Lasso∥∥D� · ∥∥1 where D is surjective. We leave the details to the interested reader (see also
the analysis group Lasso example in Sect. 4).

Anti-sparsity From Sect. 2.5.4, recall the saturation support I satθ of θ . From (15), we
get

∣∣∣∣∣∣PTθ

∣∣∣∣∣∣
2→∞ = 1 and J ◦(eθ ) = ∥∥ sign(θ I sat

θ
)
∥∥
1/|I satθ | ≤ 1,

with equality whenever θ �= 0. In addition, the �∞ norm is the gauge of the hypercube
whose vertex set is V = {±1}p. Thus

|V| = 2p.

We have the following oracle inequalities.

Corollary 2 Consider the estimators θ̂
EWA
n and θ̂

PEN
n , where J is anti-sparsity penalty

(14), and F satisfies Assumptions (H.1), (H.2) and (H.4) . Suppose that rank(X) = n
and let s(X) = maxi, j |X i, j |. Choose

λn ≥ τσ s(X)
√
2δ log(2)

√
p

n

(
1 + 2κ/σ

√
δ log(2)

√
p

n

)
,
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for some τ > 1 and δ > 1. Then, with probability at least 1−2−p(δ−1)+1, the following
holds

Rn
(̂
θ
EWA
n , θ0

) ≤ inf
I⊂{1,...,p}
θ : I sat

θ
=I

(

Rn
(
θ , θ0
)+ 1

nϕ+
(

λn
√
n(τ+1)

τΥ
({

θ : θ I∈R sign(θ I )
}
,
τ+1
τ−1

)

))

+ pβ,

(28)
and

Rn
(̂
θ
PEN
n , θ0

) ≤ inf
I⊂{1,...,p}
θ : I sat

θ
=I

(

Rn
(
θ , θ0
)+ 1

nϕ+
(

λn
√
n(τ+1)

τΥ
({

θ : θ I∈R sign(θ I )
}
,
τ+1
τ−1

)

))

. (29)

We are not aware of any result of this kind in the literature. The bound imposed on X
is similar to what is generally assumed in the vector quantization literature (Lyubarskii
and Vershynin 2010; Studer et al. 2012).

3.4.2 General penalty

Extending the above reasoning to a general penalty requires a deviation inequality
for the supremum of an empirical process in (25) under the Bernstein moment con-
dition (H.4)(iii), but without the need of uniform boundedness. This can be achieved
via generic chaining along a tree using entropy with bracketing; see van de Geer and
Lederer (2013, Theorem 8). The resulting deviation bound will thus depend on the
entropies with bracketing. These quantities capture the complexity of the set X(C) but
are intricate to compute in general. This subject deserves further investigation that we
leave to a future work.

Remark 5 (Group Lasso) Using the union bound, we have

P

(
max

i∈{1,...,L}
∥∥X�

bi∇F(Xθ0, y)
∥∥
2 ≥ λnn/τ

)

≤ L max
i

P

(∥∥X�
bi ∇F(Xθ0, y)

∥∥
2 ≥ λnn/τ

)
.

This requires a concentration inequality for quadratic forms of independent random
variables satisfying the Bernstein moment assumption above. We are not aware of any
such result. But if our moment condition is strengthened to

E

[∣∣ f ′
i ((Xθ0)i , yi )

∣∣2m
]

≤ m!κ2(m−1)σ 2
i /2, ∀1 ≤ i ≤ n,∀m ≥ 1,
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then one can use (Bellec 2014, Theorem 3). Indeed, assuming maxi ‖X i‖2 ≤ √
n,

which is a natural normalization on the design, we have by independence that

E

[∥∥X�
bi ∇F(Xθ0, y)

∥∥
2

]
≤ E

[∥∥X�
bi ∇F(Xθ0, y)

∥∥2
2

]1/2

= σ

√
tr(X�

bi
Xbi )/2= σ

√∑

j∈bi

∥∥X j
∥∥2
2/2≤ σ

√
Kn/2.

It then follows that taking

λn ≥ τ
σ
√
K + 16κ

√
δ log(L)√

n
, δ > 1,

the oracle inequalities (34) and (35) hold for the group Lasso with probability at least
1− L1−δ . A similar result can be proved for the analysis group Lasso just as well (see
Sect. 4.3.3).

4 Oracle inequalities for low-complexity linear regression

In this section, we consider the classical linear regression problem where the n
response–covariate pairs ( yi , X i ) are linked as

y = Xθ0 + ξ , (30)

where ξ is a noise vector. The data loss will be set to F(u, y) = 1
2

∥∥ y − u
∥∥2
2. This in

turn entails that ϕ = ϕ+ = 1
2 (·)2 on R+ and Rn

(
θ , θ0
) = 1

2n

∥∥Xθ − Xθ0
∥∥2
2.

In this section, we assume that the noise ξ is a zero-mean sub-Gaussian vector in
R
n with parameter σ . That is, its one-dimensional marginals 〈ξ , z〉 are sub-Gaussian

random variables ∀z ∈ R
n , i.e., they satisfy

P
(∣∣〈ξ , z〉∣∣ ≥ t

) ≤ 2e−t2/(2‖z‖22σ 2), ∀z ∈ R
n . (31)

In this case, the bounds of Sect. 3.4 can be improved.

4.1 General penalty

As we will shortly show, the event E will depend on the Gaussian width, a summary
geometric quantity which, informally speaking, measures the size of the bulk of a set
in Rn .

Definition 2 The Gaussian width of a subset S ⊂ R
n is defined as

w(S)
def= E
[
σS(g)

]
, where g ∼ N (0, Idn).
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The concept of Gaussian width has appeared in the literature in different contexts.
In particular, it has been used to establish sample complexity bounds to ensure exact
recovery (noiseless case) and mean-square estimation stability (noisy case) for low-
complexity penalized estimators fromGaussian measurements, see e.g., Rudelson and
Vershynin (2008), Chandrasekaran et al. (2012), Tropp (2015a), Vershynin (2015) and
Vaiter et al. (2015b).

The Gaussian width has deep connections to convex geometry and it enjoys many
useful properties. It is well-known that it is positively homogeneous, monotonic w.r.t.
inclusion, and invariant under orthogonal transformations. Moreover, w(conv (S)) =
w(S). From Lemma 3(ii)–(iii), w(S) is a nonnegative finite quantity whenever the set
S is bounded and contains the origin.

We are now ready to state our oracle inequality in probability with sub-Gaussian
noise.

Proposition 2 Let the data generated by (30) where ξ is a zero-mean sub-Gaussian

random vector with parameter σ . Consider the estimators θ̂
EWA
n and θ̂

PEN
n , where

F and J
def= γC satisfy Assumptions (H.1)–(H.2) and (H.3) . Suppose that λn ≥

τσc1
√

2 log(c2/δ)w(X(C))

n , for some τ > 1 and 0 < δ < min(c2, 1), where c1 and c2 are
positive absolute constants. Then with probability at least 1 − δ, (19) and (23) hold
with the remainder term given by (20) with ν = 1.

The proof requires sophisticated ideas from the theory of generic chaining (Tala-
grand 2005), but we only apply these results. The constants c1 and c2 can be traced
back to the proof of these results as detailed in Talagrand (2005).

Proof First, from (31), we have the bound

P
(∣∣〈ξ , z − z′〉∣∣ ≥ t

) ≤ 2e−t2/(2‖z−z′‖2
2σ

2), ∀z, z′ ∈ R
n,

i.e., the increment condition (Talagrand 2005, (0.4)) is verified. Thus combining (25)
with the probability bound in Talagrand (2005, p. 11), the generic chaining theorem
(Talagrand 2005, Theorem 1.2.6) and the majorizing measure theorem (Talagrand
2005, Theorem 2.1.1), we have

P

(
J ◦(X�ξ) ≥ λnn/τ

)
≤ P

(

sup
z∈X(C)

〈ξ , z〉 ≥ σc1
√
2 log(c2/δ)w(X(C))

)

≤ c2 exp

(
−σ 22 log(c2/δ)

2σ 2

)
= δ.

��
If the noise is Gaussian, an enhanced version can be proved by invoking Gaussian

concentration of Lipschitz functions (Ledoux 2001).

Proposition 3 Let the data generated by (30) with noise ξ ∼ N (0, σ 2Idn). Consider
the estimators θ̂

EWA
n and θ̂

PEN
n , where F and J

def= γC satisfy Assumptions (H.1)–(H.2)

123



Sharp oracle inequalities for low-complexity priors 377

and (H.3) . Suppose that λn ≥ (1+δ)τσw(X(C))
n , for some τ > 1 and δ > 0. Then with

probability at least 1 − exp

(
− δ2w(X(C))2

2|||X|||2J→2

)
, (19) and (23) hold with the remainder

term given by (20) with ν = 1.

Proof Thanks to sublinearity (see Lemmas 4(i) and 5), the function ξ �→ J ◦(X�ξ)

is Lipschitz continuous with Lipschitz constant
∣∣∣∣∣∣X�∣∣∣∣∣∣

2→J ◦ = |||X|||J→2. From (25),
we also have

E

[
J ◦(X�ξ

)] = σw(X(C)).

Observe that X(C) is a convex compact set containing the origin. Setting ε = λnn/τ −
σw(X(C)) ≥ δσw(X(C)), it follows from (25) and the Gaussian concentration of
Lipschitz functions (Ledoux 2001) that

P

(
J ◦(X�ξ) ≥ λnn/τ

)
≤ P

(
J ◦(X�ξ) − E

[
J ◦(X�ξ)

]
≥ ε
)

≤ P

(
J ◦(X�ξ/σ) − w(X(C)) ≥ δw(X(C))

)

≤ exp

(

−δ2w(X(C))2

2|||X|||2J→2

)

.

��
Estimating theoretically the Gaussian width of a set (not to mention its image with a

linear operator as for X(C)) is a non-trivial problem that has been extensively studied in
the areas of probability in Banach spaces and stochastic processes. There are classical
bounds on the Gaussian width (Sudakov’s and Dudley’s inequalities), but they are
difficult to estimate in most cases and neither of these bounds is tight for all sets.
When the set is a convex cone (intersected with a sphere), tractable estimates based
on polarity arguments were proposed in, e.g., Chandrasekaran et al. (2012).

4.2 Polyhedral penalty

When C and is polytope, enhanced oracle inequalities can be obtained by invoking a
simple union bound argument.

Proposition 4 Let the data generated by (30) where ξ is a zero-mean sub-Gaussian

random vector with parameter σ . Consider the estimators θ̂
EWA
n and θ̂

PEN
n , where F

and J
def= γC satisfy Assumptions (H.1)–(H.2) and (H.3) , and moreover C is a polytope

with vertices V . Suppose that

λn ≥ τσ
(
maxv∈V‖Xv‖2

)√
2δ log(|V |)

n , for some τ > 1 and δ > 1. Then with proba-
bility at least 1 − 2|V|1−δ , (19) and (23) hold with the remainder term given by (20)
with ν = 1.

In particular, if maxv∈V ‖Xv‖2 = C
√
n, for a positive constant C, then one can

take λn ≥ Cτσ

√
2δ log(|V |)

n .
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Proof From (25) we have

J ◦(X�ξ
) = max

v∈C
〈Xv, ξ 〉 = max

v∈V
〈Xv, ξ 〉,

where in the last inequality, we used the fact that a convex function attains itsmaximum
on C at an extreme point V . Let ε = σ

(
maxv∈V ‖Xv‖2

)√
2δ log(|V|). By the union

bound, (31) and (25), we have

P

(
J ◦(X�ξ

) ≥ λnn/τ
)

≤ P

(
max
v∈V

〈Xv, ξ 〉 ≥ ε

)

≤ |V|max
v∈V

P (〈Xv, ξ 〉 ≥ ε)

≤ |V|max
v∈V

P
(∣∣〈Xv, ξ 〉∣∣ ≥ ε

)

≤ 2|V| exp (− ε2/
(
2σ 2 max

v∈V
‖Xv‖22

))

≤ 2|V|1−δ.

��

4.3 Applications

In this section, we exemplify our oracle inequalities for the penalties described in
Sect. 2.5.

4.3.1 Lasso

Recall the derivations for the Lasso in Sect. 3.4.1. We obtain the following corollary
of Proposition 4.

Corollary 3 Let the data generated by (30) where ξ is a zero-mean sub-Gaussian
random vector with parameter σ . Assume that X is such that maxi ‖X i‖2 ≤ √

n.

Consider the estimators θ̂
EWA
n and θ̂

PEN
n , where J is the Lasso penalty (7) and F

satisfies Assumptions (H.1)–(H.2). Suppose that λn ≥ τσ

√
2δ log(2p)

n , for some τ > 1

and δ > 1. Then, with probability at least 1 − 2(2p)1−δ , the following holds

1
n

∥∥X θ̂
EWA
n − Xθ0

∥∥2
2 ≤ inf

I⊂{1,...,p}
θ : supp(θ)=I

(
1
n

∥∥Xθ − Xθ0
∥∥2
2 + λ2n(τ+1)2|I |

τ 2Υ
(
Span{ai }i∈I , τ+1

τ−1

)2

)

+ 2pβ,

(32)
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and

1
n

∥∥X θ̂
PEN
n − Xθ0

∥∥2
2 ≤ inf

I⊂{1,...,p}
θ : supp(θ)=I

(
1
n

∥∥Xθ − Xθ0
∥∥2
2 + λ2n(τ+1)2|I |

τ 2Υ
(
Span{ai }i∈I , τ+1

τ−1

)2

)

.

(33)

The normalization on the design is natural. The remainder term grows as |I | log(p)
n .

The oracle inequality (33) recovers (Dalalyan et al. 2018, Theorem 1) in the exactly
sparse case, and (33) theone inSunandZhang (2012,Theorem4) (see alsoKoltchinskii
et al. 2011, Theorem 11; Dalalyan et al. 2017, Theorem 2). It is worth mentioning,
however, that Dalalyan et al. (2018, Theorem 1) handle the inexactly sparse case while
we do not. For the choice β = O

(
σ 2|I | log(2p)/(pn)

)
, the remainder terms in (32)

and (33) are of the same order. Observe that this choice of the temperature parameter is
optimal in view of the results of Castillo et al. (2015). These authors proved that for the
�1 penalty, orthonormal design, noise ξ ∼ N (0, σ 2Idn), and all choices of the form
λ = Cσ

√
log(n)/n, then the pseudo-posterior μn in (2) with temperature β = σ 2/n

puts asymptotically no mass on the ball centered at θ0 of radius ∼ √log(n)/n.

4.3.2 Group Lasso

Recall the notations in Sect. 2.5.2, and denote Iθ = suppB(θ) the set indexing active
blocks in θ . From (10), we have

∣
∣
∣
∣
∣
∣PTθ

∣
∣
∣
∣
∣
∣
2→J = √|Iθ | and J ◦(eθ ) = ‖eθ‖∞,2 ≤ 1,

where the last bound holds as an equality whenever θ �= 0.
We have the following oracle inequalities as corollaries of Proposition 2 and Propo-

sition 3.

Corollary 4 Let the data generated by (30). Consider the estimators θ̂
EWA
n and θ̂

PEN
n ,

where F satisfies Assumptions (H.1)–(H.2), and J is the group Lasso (9) with L

non-overlapping blocks of equal size K . Let s(X) =
√
maxi

∣∣
∣
∣∣
∣
∣∣
∣X�

bi
Xbi

∣∣
∣
∣∣
∣
∣∣
∣
2→2

/n.

(i) ξ is a zero-mean sub-Gaussian random vector with parameter σ : suppose that

λn ≥ 3τσ s(X)c1

√
2 log(c2/δ)

(√
K+√

2 log(L)
)

√
n

, for some τ > 1 and 0 < δ <

min(c2, 1), where c1 and c2 are the positive absolute constants in Proposition 2.
Then, with probability at least 1 − δ, the following holds

1
n

∥∥X θ̂
EWA
n − Xθ0

∥∥2
2 ≤ inf

I⊂{1,...,L}
θ : suppB(θ)=I

(
1
n

∥∥Xθ − Xθ0
∥∥2
2

+ λ2n(τ+1)2|I |
τ 2Υ
(
Span{a j} j∈bi ,i∈I ,

τ+1
τ−1

)2

)
+ 2pβ,

(34)
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and
1
n

∥∥X θ̂
PEN
n − Xθ0

∥∥2
2 ≤ inf

I⊂{1,...,L}
θ : suppB(θ)=I

(
1
n

∥∥Xθ − Xθ0
∥∥2
2

+ λ2n(τ+1)2|I |
τ 2Υ
(
Span{a j} j∈bi ,i∈I ,

τ+1
τ−1

)2

)
.

(35)

(ii) ξ ∼ N (0, σ 2Idn): suppose that λn ≥ τσ s(X)

√
K+√

2δ log(L)√
n

, for some τ > 1

and δ > 1. Then, with probability at least 1 − L1−δ , (34) and (35) hold.

When s(X) = O(1),1 the first remainder term is on the order
|I |
(√

K+√
2 log(L)

)2

n . This is similar to the scaling that has been provided in the lit-
erature for EWA with other group sparsity priors and noises (Rigollet and Tsybakov

2012; Duy Luu et al. 2016). Similar rates were given for θ̂
PEN
n with the group Lasso

in Negahban et al. (2012), Lounici et al. (2011) and van de Geer (2014).

Proof (i) This is a consequence of Proposition 2, for which we need to bound

w(X(C)) = E

[
max

i∈{1,...,L}
∥∥X�

bi g
∥∥
2

]
.

We first have, for any block bi

E

[∥∥X�
bi g
∥∥
2

]
≤ E

[∥∥X�
bi g
∥∥2
2

]1/2 ≤ s(X)
√
Kn.

Furthermore,
∥∥X�

bi
·∥∥2 is Lipschitz continuous with Lipschitz constant s(X)

√
n.

Thus the unionbound andGaussian concentrationofLipschitz functions (Ledoux
2001) yield, for any t > 0,

P

(
max

i∈{1,...,L}
∥
∥X�

bi g
∥
∥
2 ≥ s(X)

√
Kn + t

)

≤
L∑

i=1

P

(∥
∥X�

bi ξ
∥
∥
2 − E

[∥
∥X�

bi ξ
∥
∥
2

]
≥ t
)

≤ L exp

(
− t2

2s(X)2n

)
.

1 This is for instance the case if X is drawn from the standard Gaussian ensemble and K = O(n) (the
O(·) is in fact even o(·) as the remainder term is supposed to go to 0 as n → +∞). In this case, classical
concentration bounds of the largest eigenvalue of a Wishart matrix allow to conclude that s(X) = O(1 +√
K/n) = O(1) with high probability.
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Let κ = s(X)
(√

Kn +√2n log(L)
)
. w(X(C)) can be expressed as

w(X(C)) =
∫ ∞

0
P

(
max

i∈{1,...,L}
∥∥X�

bi g
∥∥
2 ≥ u

)
du

≤
∫ κ

0
du +

∫ ∞

κ

e− (u−s(X)
√
Kn)2−2s(X)2n log(L)

2n du

= κ + s(X)
√
n
∫ ∞

κ/(s(X)
√
n)

e− (s−√
K )2−2 log(L)

2 du

≤ κ + s(X)
√
n
∫ ∞

κ/(s(X)
√
n)

e− s−κ/(s(X)
√
n)

2 du = κ + 2s(X)
√
n ≤ 3κ.

(ii) The proof follows the lines of Proposition 3 where we additionally use the union
bound. Indeed,

P

(
max

i∈{1,...,L}
∥∥X�

bi ξ
∥∥
2 ≥ λnn/τ

)

≤
L∑

i=1

P

(∥∥X�
bi ξ
∥∥
2 − E

[∥∥X�
bi ξ
∥∥
2

]
≥ λnn/τ − E

[∥∥X�
bi ξ
∥∥
2

])

≤
L∑

i=1

P

(∥∥X�
bi ξ
∥∥
2 − E

[∥∥X�
bi ξ
∥∥
2

]
≥ λnn/τ − σ s(X)

√
Kn
)

≤
L∑

i=1

P

(∥∥X�
bi ξ
∥∥
2 − E

[∥∥X�
bi ξ
∥∥
2

]
≥ σ s(X)

√
2δn log(L)

)

≤ L exp (−δ log(L)) = L1−δ,

where used the Gaussian concentration of Lipschitz functions (Ledoux 2001) in
the last inequality. ��

We observe in passing that another way to prove the oracle inequalities in the
sub-Gaussian is to use Dudley’s inequality on the sphere in R

K after applying a
union bound on the L blocks. In addition, in the Gaussian case, the (similar) bound

λn ≥ 3δτσ s(X)

√
K+√

2 log(L)√
n

can be obtained by combining Proposition 3 and the

estimate w(X(C)) ≤ 3s(X)(
√
Kn+√2n log(L)) in the proof of (i). The correspond-

ing probability of success would be at least 1 − L−9(δ−1)2 .

4.3.3 Analysis group Lasso

We now turn to the prior penalty (11). Recall the notations in Sect. 2.5.3, and remind
Λθ =⋃i∈suppB(D�θ) bi .We assume that D is a frame ofRp , hence surjective,meaning
that there exist c, d > 0 such that for any ω ∈ R

p

d ‖ω‖22 ≤ ∥∥D�ω
∥∥2
2 ≤ c ‖ω‖22 .
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This together with (12)-(13) and Cauchy–Schwarz inequality entail

∣∣∣∣∣∣PTθ

∣∣∣∣∣∣
2→J = sup∥

∥∥ωTθ

∥
∥∥
2
≤1

∥∥D�ωTθ

∥∥
1,2 ≤ √

c sup∥
∥∥D�ωTθ

∥
∥∥
2
≤1

∥∥D�ωTθ

∥∥
1,2

= √
c sup∥
∥
∥D�

Λθ
ωTθ

∥
∥
∥
2
≤1

∥
∥D�

Λθ
ωTθ

∥
∥
1,2

= √
c
√

|suppB(D�θ)|.

Note, however, that from (12), we do not have in general

C(D, θ)
def=
∥∥
∥∥D

+ PKer(D�
Λc

θ
) De

‖‖1,2
D�θ

∥∥
∥∥∞,2

≤ 1.

With exactly the same arguments to those for proving Corollary 4, replacing X by
XD, we arrive at the following oracle inequalities.

Corollary 5 Let the data generated by (30). Consider the estimators θ̂
EWA
n and θ̂

PEN
n ,

where F satisfies Assumptions (H.1)–(H.2), and J is the analysis group Lasso
(11) with L blocks of equal size K . Assume that D is a frame, and le s(XD) =√
maxi

∣∣∣
∣∣∣
∣∣∣D�

bi
X�XDbi

∣∣∣
∣∣∣
∣∣∣
2→2

/n.

(i) ξ is a zero-mean sub-Gaussian random vector with parameter σ : suppose that

λn ≥ 3τσ s(XD)c1

√
log(c2/δ)

(√
K+√

2 log(L)
)

√
n

, for some τ > 1 and 0 < δ <

min(c2, 1), where c1 and c2 are the positive absolute constants in Proposition 2.
Then, with probability at least 1 − δ, the following holds

1
n

∥∥X θ̂
EWA
n − Xθ0

∥∥2
2 ≤ inf

I⊂{1,...,L}
θ : suppB(D�θ)=I

(
1
n

∥∥Xθ − Xθ0
∥∥2
2

+ cλ2n
(
τC(D,θ)+1

)2|I |

τ 2Υ

(
Ker(D�

Λc
θ
),

τC(D,θ)+1
τ−1

)2

)
+ 2pβ,

(36)

and

1
n

∥
∥X θ̂

PEN
n − Xθ0

∥
∥2
2 ≤ inf

I⊂{1,...,L}
θ : suppB(D�θ)=I

⎛

⎜⎜
⎜
⎝

1
n

∥
∥Xθ − Xθ0

∥
∥2
2

+ cλ2n
(
τC(D,θ)+1

)2|I |

τ 2Υ

(
Ker(D�

Λc
θ
),

τC(D,θ)+1
τ−1

)2

⎞

⎟⎟⎟
⎠

.

(37)
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(ii) ξ ∼ N (0, σ 2Idn): suppose that λn ≥ τσ s(XD)

√
K+√

2δ log(L)√
n

, for some τ > 1

and δ > 1. Then, with probability at least 1 − L1−δ , (36) and (37) hold.

To the best of our knowledge, this result is new to the literature. The scaling of the
remainder term is the same as in Duy Luu et al. (2016) and Rigollet and Tsybakov
(2012) with analysis sparsity priors different from ours (the authors in the latter also
assume that D is invertible).

4.3.4 Anti-sparsity

Recall the derivations for the �∞ norm example in Sect. 3.4.1. We have the following
oracle inequalities from Proposition 4.

Corollary 6 Let the data generated by (30) where ξ is a zero-mean sub-Gaussian ran-
dom vector with parameter σ . Assume that X is such that

maxi, j |X i, j | ≤ 1/p. Consider the estimators θ̂
EWA
n and θ̂

PEN
n , where F satis-

fies Assumptions (H.1)–(H.2), and J is the anti-sparsity penalty (14). Suppose that

λn ≥ τσ
√
2δ log(2)

√
p
n , for some τ > 1 and δ > 1. Then, with probability at least

1 − 2−p(δ−1)+1, the following holds

1
n

∥
∥X θ̂

EWA
n − Xθ0

∥
∥2
2 ≤ inf

I⊂{1,...,p}
θ : I sat

θ
=I

(
1
n

∥
∥Xθ − Xθ0

∥
∥2
2

+ λ2n(τ+1)2

τ 2Υ
({

θ : θ I∈R sign(θ I )
}
,
τ+1
τ−1

)2

)

+ 2pβ,

(38)

and

1
n

∥∥X θ̂
PEN
n − Xθ0

∥∥2
2 ≤ inf

I⊂{1,...,p}
θ : I sat

θ
=I

(
1
n

∥∥Xθ − Xθ0
∥∥2
2

+ λ2n(τ+1)2

τ 2Υ
({

θ : θ I∈R sign(θ I )
}
,
τ+1
τ−1

)2

)

.

(39)

The first remainder term scales as p
n which reflects that anti-sparsity regularization

requires an overdetermined regime to ensure good stability performance. This is in
agreement with Vaiter et al. (2015a, Theorem 7). This phenomenon was also observed
byDonoho and Tanner (2010) who studied sample complexity thresholds for noiseless
recovery from random projections of the hypercube.

4.3.5 Nuclear norm

We now turn to the nuclear norm case. Recall the notations of Sect. 2.5.5. For matrices
θ ∈ R

p1×p2 , a measurement map X takes the form of a linear operator whose i th
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component is given by the Frobenius scalar product

X(θ)i = tr((X i )�θ) = 〈X i , θ〉F,

where X i is a matrix in Rp1×p2 . We denote ‖·‖F the associated norm. From (17), it is
immediate to see that whenever θ �= 0,

J ◦(eθ ) = ∣∣∣∣∣∣UV�∣∣∣∣∣∣
2→2 = 1.

Moreover, from (17), we have

∣∣∣∣∣∣PTθ

∣∣∣∣∣∣
F→∗ = sup

θ ′∈Tθ

∥∥θ ′∥∥∗∥
∥θ ′∥∥

F

= sup
θ ′∈Tθ

∥∥λ(θ ′)
∥∥
1∥

∥λ(θ ′)
∥
∥
2

≤ sup
θ ′∈Tθ

√
rank(θ ′)

≤ √min(r , p1) + min(r , p2) ≤ √
2r .

To apply Proposition 2 and Proposition 3, we need to boundw(X(C)) (C is the nuclear
ball), or equivalently, to bound

E
[∣∣
∣
∣
∣
∣X∗(g)

∣
∣
∣
∣
∣
∣
2→2

] = E

[∣∣
∣∣∣

∣∣
∣∣∣

∣∣
∣∣∣

n∑

i=1

X i gi

∣∣
∣∣∣

∣∣
∣∣∣

∣∣
∣∣∣
2→2

]

, g ∼ N (0, σ 2Idn),

which is the expectation of the operator norm of a random series with matrix coeffi-
cients. Thus usingTropp (2015b, Theorem4.1.1(4.1.5)) to get this bound, and inserting
it into Proposition 2 and Proposition 3, we get the following oracle inequalities for the
nuclear norm. Define

s(X) =
√√
√√max

(∣∣∣∣
∣

∣∣∣∣
∣

∣∣∣∣
∣

n∑

i=1

X i (X i )�
∣∣∣∣
∣

∣∣∣∣
∣

∣∣∣∣
∣
2→2

,

∣∣∣∣
∣

∣∣∣∣
∣

∣∣∣∣
∣

n∑

i=1

(X i )�X i

∣∣∣∣
∣

∣∣∣∣
∣

∣∣∣∣
∣
2→2

)

/n.

Corollary 7 Let the data generated by (30) with a linear operator X : Rp1×p2 → R
n.

Consider the estimators θ̂
EWA
n and θ̂

PEN
n , where F satisfies Assumptions (H.1)–(H.2),

and J is the nuclear norm (16).

(i) ξ is a zero-mean sub-Gaussian random vector with parameter σ : suppose that

λn ≥ 2τσ s(X)c1
√

log(c2/δ) log(p1+p2)
n , for some τ > 1 and 0 < δ < min(c2, 1),

where c1 and c2 are the positive absolute constants in Proposition 2. Then, with
probability at least 1 − δ, the following holds

1
n

∥∥X θ̂
EWA
n − Xθ0

∥∥2
2 ≤ inf

r∈{1,...,min(p1,p2)}
θ : rank(θ)=r

(
1
n

∥∥Xθ − Xθ0
∥∥2
2

+ 2λ2n(τ+1)2r

τ 2Υ
(
Tθ ,

τ+1
τ−1

)2

)
+ 2p1 p2β,

(40)
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and

1
n

∥∥X θ̂
PEN
n − Xθ0

∥∥2
2 ≤ inf

r∈{1,...,min(p1,p2)}
θ : rank(θ)=r

(
1
n

∥∥Xθ − Xθ0
∥∥2
2

+ 2λ2n(τ+1)2r

τ 2Υ
(
Tθ ,

τ+1
τ−1

)2

)

.

(41)

(ii) ξ ∼ N (0, σ 2Idn): suppose that λn ≥ (1 + δ)τσ s(X)

√
2 log(p1+p2)

n , for some

τ > 1 and δ > 0. Then, with probability at least 1− (p1 + p2)−δ2 , (40) and (41)
hold.

The set over which the infimum is taken just reminds us that the nuclear norm is
partly smooth (see above) relative to the constant rankmanifold (which is aRiemannian
submanifold of Rp1×p2 ) (Daniilidis et al. 2014, Theorem 3.19). In the iid Gaussian
noise case, we recover the same rate as in Dalalyan et al. (2018, Theorem 3) for θ̂

EWA
n

and in Koltchinskii et al. (2011, Theorem 2) for θ̂
PEN
n . If s(X) = O(

√
p1 + p2), then

the first remainder term scales as r(p1+p2) log(p1+p2)
n . For low-rank matrix recovery,

the same rate was also independently proved in Mai and Alquier (2015) and Suzuki
(2015) for EWA and the posterior conditional mean, respectively, in the temperature
regime β = C/n, though with completely different priors, but without requiring
the compatibility factor assumption. The noise is iid Gaussian in Suzuki (2015) and
subexponential in Mai and Alquier (2015). The assumptions on the design are also
different.

The assumption s(X) = O(
√
p1 + p2) on the design is mild and verified in many

situations. Indeed, by Jensen’s inequality we have

s(X)2 ≤ n−1
n∑

i=1

max
(∣∣∣
∣∣∣
∣∣∣X i (X i )�

∣∣∣
∣∣∣
∣∣∣
2→2

,

∣∣∣
∣∣∣
∣∣∣(X i )�X i

∣∣∣
∣∣∣
∣∣∣
2→2

)
≤
∣∣∣
∣∣∣
∣∣∣X i
∣∣∣
∣∣∣
∣∣∣
2

2→2
.

If, for example, (X i )i are independent copies of a standard random Gaussian matrix,
then classical concentration bounds of the largest eigenvalue of a Wishart matrix
entail that

∣∣∣∣∣∣X i
∣∣∣∣∣∣
2→2 concentrates around its mean E

[∣∣∣∣∣∣X i
∣∣∣∣∣∣
2→2

] ≤ √
p1 + √

p2 ≤√
2(p1 + p2).

4.4 Discussion of minimax optimality

In this section, we discuss the optimality of the estimators θ̂
EWA
n and θ̂

PEN
n (we remind

the reader that the design X is fixed). Recall the discussion on stratification at the end
of Sect. 3.1. LetM0 ∈ M be the stratum active at θ0 ∈ M0. In this setting, choosing
β = C(1 + δ)2σ 2w(X(C))2

∣∣∣∣∣∣PTθ0

∣∣∣∣∣∣2
2→J

/(pn2) for some constant C > 0, (22) and
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Proposition 3 ensure that

1
n

∥∥X θ̂
EWA
n − Xθ0

∥∥2
2

≤ (1 + δ)2σ 2w(X(C))2
∣
∣
∣
∣
∣
∣PTθ0

∣
∣
∣
∣
∣
∣2
2→J

n2

⎛

⎜
⎝

(
τ J ◦(eθ0) + 1

)2

Υ
(
Tθ0 ,

τ J ◦(eθ0 )+1
τ−1

)2 + C

⎞

⎟
⎠

1
n

∥∥X θ̂
PEN
n − Xθ0

∥∥2
2

≤ (1 + δ)2σ 2w(X(C))2
∣∣∣∣∣∣PTθ0

∣∣∣∣∣∣2
2→J

n2

(
τ J ◦(eθ0) + 1

)2

Υ
(
Tθ0 ,

τ J ◦(eθ0 )+1
τ−1

)2 ,

with high probability. In particular, for a polyhedral gauge penalty, in which case
M0 = Tθ0 (see Vaiter et al. 2015a), and under the normalization maxvV ‖Xv‖2 ≤ √

n

and with the choice β = 2Cδσ 2
∣∣∣∣∣∣PM0

∣∣∣∣∣∣2
2→J log(|V|)/(pn), Proposition 4 entails

1
n

∥∥X θ̂
EWA
n − Xθ0

∥∥2
2 ≤ 2δσ 2

∣
∣
∣
∣
∣
∣PM0

∣
∣
∣
∣
∣
∣2
2→J log(|V|)

n

⎛

⎜
⎝

(
τ J ◦(eθ0) + 1

)2

Υ
(
M0,

τ J ◦(eθ0 )+1
τ−1

)2 + C

⎞

⎟
⎠

1
n

∥∥X θ̂
PEN
n − Xθ0

∥∥2
2 ≤ 2δσ 2

∣∣∣∣∣∣PM0

∣∣∣∣∣∣2
2→J log(|V|)

n

(
τ J ◦(eθ0) + 1

)2

Υ
(
M0,

τ J ◦(eθ0 )+1
τ−1

)2 ,

with high probability. Thus the risk bounds only depend on M0. A natural question
that arises is whether the above bounds are optimal, i.e., whether an estimator can

achieve a significantly better prediction risk than θ̂
EWA
n and θ̂

PEN
n uniformly on M0.

A classical way to answer this question is the minimax point of view. This amounts
to finding a lower bound on the minimax probabilities of the form

inf
θ̂

sup
θ∈M0

Pr
(
1
n

∥∥X θ̂ − Xθ
∥∥2
2 ≥ ψn

)
,

where ψn is the rate, which ideally, should be comparable to the risk bounds above.
A standard path to derive such a lower bound is to exhibit a subset of M0 of well-
separated points while controlling its diameter, see Tsybakov (2008, Chapter 2) or
Massart (2007, Section 4.3). This, however, must be worked out on a case-by-case
basis.

Example 2 (Lasso) In this case, M0 = Tθ0 is the subspace of vectors whose support
is contained in that of θ0. Let I = supp(θ0) and s = ‖θ0‖0. Define the set

B0 = {θ ∈ R
p : θ I ∈ {0, 1}s and θ I c = 0

}
.
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WehaveB0 ⊂ M0 and
∥∥θ − θ ′∥∥

0 ≤ 2s for all (θ , θ ′) ∈ B0.DefineF0
def= {rXθ : θ ∈

B0
}
, for r > 0 to be specified later. Due to the Varshamov–Gilbert lemma (Massart

2007, Lemma 4.7), given a ∈]0, 1[, there exists a subset B ⊂ B0 with cardinality
|B| ≥ 2ρs/2 such that for two distinct elements Xθ and Xθ ′ in F0

∥
∥X(θ − θ ′)

∥
∥2
2 ≥ κr2

∥
∥θ − θ ′∥∥2

2 ≥ 2(1 − a)κr2s,
∥∥X(θ − θ ′)

∥∥2
2 ≤ κr2

∥∥θ − θ ′∥∥2
2 ≤ 4κr2s,

where

κ = inf
θ∈M0

‖Xθ‖22
‖θ‖22

≤ κ = sup
θ∈M0

‖Xθ‖22
‖θ‖22

.

Standard results from random matrix theory, see Tropp (2015a), ensure that κ > 0 for
a Gaussian design with high probability as long as n ≥ s + C

√
s for some positive

absolute constant C .
Then choosing r2 = cρσ 2

4κ , where c ∈]0, 1/8[ and ρ = (1 + a) log(1 + a) + (1 −
a) log(1 − a), we get the bounds

∥∥X(θ − θ ′)
∥∥2
2 ≥ σ 2c(1 − a)ρκ

2κ
s,

∥∥X(θ − θ ′)
∥∥2
2 ≤ 2σ 2c log(|B|).

We are now in position to apply Tsybakov (2008, Theorem 2.5) to conclude that there
exists η ∈]0, 1[ (that depends on a) such that

inf
θ̂

sup
θ∈M0

Pr

(
1
n

∥∥X θ̂ − Xθ
∥∥2
2 ≥ σ 2c(1 − a)ρκ

4κ

s

n

)
≥ η.

This lower bound together with Corollary 3 shows that θ̂
EWA
n (with β =

O
(
σ 2s log(2p)/(pn)

)
) and θ̂

PEN
n are nearly minimax (up to a logarithmic factor)

over M0.
One can generalize this reasoning to get a minimax lower bound over the larger

class of s-sparse vectors, i.e.,
⋃{

V = Span
{
(a j )1≤ j≤p

} : dim(V ) = s
}
, which is

a finite union of subspaces that contains M0. Let (a, b) ∈]0, 1[2 such that 1 ≤ s ≤
abp and a(−1 + b − log(b)) ≥ log(2) (e.g., take b = 1/(1 + e a

√
2)), c ∈]0, 1/8[.

Then combining Tsybakov (2008, Theorem 2.5) and Massart (2007, Lemma 4.6 and

Lemma 4.10), we have for η
def= 1

1+(ab)ρs/2

(
1 − 2c −

√
2c

−ρ log(ab)

)
∈]0, 1[

inf
θ̂

sup
θ∈M0

Pr

(
1
n

∥
∥X θ̂ − Xθ

∥
∥2
2 ≥ σ 2cρ(1 − α)κ

2κ

s log(p/s)

n

)
≥ η,
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where ρ = −a(−1+b−log(b))/ log(ab), and κ and κ are now the restricted isometry
constants of X of degree 2s, i.e.,

κ = inf‖θ‖0≤2s

‖Xθ‖22
‖θ‖22

≤ κ = sup
‖θ‖0≤2s

‖Xθ‖22
‖θ‖22

.

For this lower bound to be meaningful, κ should be positive. From the compressed
sensing literature, many random designs are known to verify this condition for n large
enough compared to s, e.g., sub-Gaussian designs with n � s log(p).

One can see that the difference between this lower bound and the one on M0 lies
in the log(p/s) factor, which basically derives from the control over the union of
subspaces. The minimax prediction risk (in expectation) over the �0-ball was studied
in Rigollet and Tsybakov (2011), Raskutti et al. (2011), Verzelen (2012), Ye and Zhang
(2010) and Wang et al. (2014), where similar lower bounds were obtained.

Example 3 (Group Lasso) For the group Lasso with L groups of equal size K , M0
is the subspace group sparse vectors whose group support is included in that of θ0.
Let s be the number of nonzero (active) groups in θ0. Following exactly the same
reasoning as for the Lasso, one can show that the risk lower bound in probability

scales as Cσ 2sK/n, which together with Corollary 4 shows that θ̂
EWA
n (with β =

O
(
σ 2s
(√

K +√2 log(L)
)2

/(pn)
)
) and θ̂

PEN
n are nearly minimax (up again to a loga-

rithmic factor) overM0. One can also derive the lower boundCσ 2s(K + log(L/s))/n
over the set of s-block sparse vectors. Such minimax lower bound is comparable to
the one in Lounici et al. (2011).

Example 4 (Anti-sparsity) Denote the saturation support of θ0 as I sat and recall the
subspace Tθ0 form (15). Thus,M0 = Tθ0 is the subspace of vectorswhich are collinear
to sign(θ0) on I sat and free on its complement. Observe that dim(M0) = p − s + 1,
where s = |I sat|. Define the set

B0 = {θ ∈ R
p : θ I sat = sign(θ I sat ) and θ (I sat)c ∈ {0, 1}p−s)

}
.

By construction, B0 ⊂ M0, and
∥
∥θ − θ ′∥∥

0 ≤ 2(p − s) for all (θ , θ ′) ∈ B0. Thus
following the same arguments as for the Lasso example [using again Varshamov–
Gilbert lemma and Tsybakov (2008, Theorem 2.5)], we conclude that there exists
η ∈]0, 1[ (that depends on a) such that

inf
θ̂

sup
θ∈M0

Pr

(
1
n

∥∥X θ̂ − Xθ
∥∥2
2 ≥ σ 2c(1 − a)ρκ

4κ

p − s

n

)
≥ η,

where the restricted isometry constants are defined similarly to the Lasso but with
respect to the model subspace M0 of the �∞ norm. Again, for a Gaussian design,
κ > 0 with high probability as long as n ≥ (p − s + 1) + C

√
p − s + 1 (Tropp

2015a).
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The obtained minimax lower bound is consistent with the sample complexity
thresholds derived in Donoho and Tanner (2010) for noiseless recovery from ran-
dom projections of the hypercube. For a saturation support size s small compared to
p, the bound of Corollary 6 (with β = O

(
σ 2/n2

)
) comes close to the minimax lower

bound.

Example 5 (Nuclear norm) Let r = rank(θ0), where θ0 ∈ R
p1×p2 , and p =

max(p1, p2). For the nuclear norm, M0 is the manifold of rank-r matrices. Thus
arguing as in Koltchinskii et al. (2011, Theorem 5) [who use the Varshamov–Gilbert
lemma (Massart 2007), to find the covering set], one can show that the minimax risk

lower bound overM0 is Cσ 2r/n. In view of Corollary 7, we deduce that θ̂
EWA
n (with

β = O
(
σ 2r log(p1 + p2)/(p1 p2n)

)
) and θ̂

PEN
n are nearly minimax over the constant

rank manifolds.

Acknowledgements This work was supported by Conseil Régional de Basse-Normandie and partly by
Institut Universitaire de France.

A Prerequisites from convex analysis

We here collect some ingredients from convex analysis that are essential to our expo-
sition.

Monotone conjugate

Lemma 2 Let g be a non-decreasing function on R+ that vanishes at 0. Then the
following holds:

(i) g+ is a proper closed convex and non-decreasing function on R+ that vanishes
at 0.

(ii) If g is also closed and convex, then g++ = g.
(iii) Let f : t ∈ R �→ g(|t |) such that f is differentiable on R, where g is finite-

valued, strictly convex and strongly coercive. Then g+ is likewise finite-valued,
strictly convex, strongly coercive, and f ∗ = g+ ◦ | · | is differentiable on R. In
particular, both g and g+ are strictly increasing on R+.

Proof (i) By Bauschke and Combettes (2011, Proposition 13.11), g+ is a closed
convex function. We have inf t≥0 g(t) = − supt≥0 t · 0− g(t) = −g+(0). Since
g is non-decreasing and g(0) = 0, then g+(0) = − inf t≥0 g(t) = −g(0) = 0.
In addition, by (5), we have g+(a) ≥ a · 0 − g(0) = 0, ∀a ∈ R+. This shows
that g+ is nonnegative and dom(g+) �= ∅, and in turn, it is also proper.
Let a, b in R+ such that a < b. Then

g+(a) − g+(b) = (sup
t≥0

ta − g(t)) − (sup
t ′≥0

t ′b − g(t ′))

≤ sup
t≥0

(ta − g(t) − tb + g(t))

= sup
t≥0

t(a − b) = 0.
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That is, g+ is non-decreasing on R+.
(ii) This follows from Rockafellar (1996, Theorem 12.4).
(iii) By definition of f , f is a finite-valued function on R, strictly convex, differen-

tiable and strongly coercive. It then follows from Hiriart-Urruty and Lemaréchal
(2001, Corollary X.4.1.4) that f ∗ enjoys the same properties. In turn, using the
fact that both f and f ∗ are even, we have g+ is strongly coercive, and strict
convexity of f (resp. f ∗) is equivalent to that of g (resp. g+). Altogether, this
shows the first claim. We now prove that g vanishes only at 0 (and similarly for
g+). As g is non-decreasing and strictly convex, we have, for any ρ ∈]0, 1[ and
a, b in R+ such that a < b,

g(a) ≤ g(ρa + (1 − ρ)b) < ρg(a) + (1 − ρ)g(b)

≤ ρg(b) + (1 − ρ)g(b) = g(b).

��

Support function The support function of C ⊂ R
p is

σC(ω) = sup
θ∈C

〈ω, θ〉.

We recall the following properties whose proofs can be found in, e.g., Rockafellar
(1996) and Hiriart-Urruty and Lemaréchal (2001).

Lemma 3 Let C be a non-empty set.

(i) σC is proper lower semicontinuous (lsc) and sublinear.
(ii) σC is finite-valued if and only if C is bounded.
(iii) If 0 ∈ C, then σC is nonnegative.
(iv) If C is convex and compact with 0 ∈ int(C), then σC is finite-valued and coercive.

Gauges and polars

Definition 3 (Polar set) Let C be a non-empty convex set. The set C◦ given by

C◦ = {η ∈ R
p : 〈η, θ〉 ≤ 1 ∀θ ∈ C}

is called the polar of C.
The set C◦ is closed convex and contains the origin.When C is also closed and contains
the origin, then it coincides with its bipolar, i.e., C◦◦ = C.

Let C ⊆ R
p be a non-empty closed convex set containing the origin. The gauge of

C is the function γC defined on Rp by

γC(θ) = inf
{
λ > 0 : θ ∈ λC}.

As usual, γC(θ) = +∞ if the infimum is not attained.
Lemma 4 hereafter recaps themain properties of a gauge that we need. In particular,

(ii) is a fundamental result of convex analysis that states that there is a one-to-one
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correspondence between gauge functions and closed convex sets containing the origin.
This allows to identify sets from their gauges, and vice versa.

Lemma 4 (i) γC is a nonnegative, lsc and sublinear function.
(ii) C is the unique closed convex set containing the origin such that

C = {θ ∈ R
p : γC(θ) ≤ 1

}
.

(iii) γC is finite-valued if, and only if, 0 ∈ int(C), in which case γC is Lipschitz
continuous.

(iv) γC is finite-valued and coercive if, and only if, C is compact and 0 ∈ int(C).

See Vaiter et al. (2015a) for the proof.
Observe that thanks to sublinearity, local Lipschitz continuity valid for any finite-

valued convex function is strengthened to global Lipschitz continuity. Moreover, γC
is a norm, having C as its unit ball, if and only if C is bounded with non-empty interior
and symmetric.

We now define the polar gauge.

Definition 4 (Polar Gauge) The polar of a gauge γC is the function γ ◦
C defined by

γ ◦
C (ω) = inf

{
μ ≥ 0 : 〈θ ,ω〉 ≤ μγC(θ),∀θ

}
.

An immediate consequence is that gauges polar to each other have the property

〈θ , u〉 ≤ γC(θ)γ ◦
C (u) ∀(θ , u) ∈ dom(γC) × dom(γ ◦

C ), (42)

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges correspond
to the best inequalities of this type.

Lemma 5 Let C ⊆ R
p be a closed convex set containing the origin. Then,

(ii) γ ◦
C is a gauge function and γ ◦◦

C = γC .
(iii) γ ◦

C = γC◦ , or equivalently

C◦ = {θ ∈ R
p : γ ◦

C (θ) ≤ 1
}
.

(iv) The gauge of C and the support function of C are mutually polar, i.e.,

γC = σC◦ and γC◦ = σC .

SeeRockafellar (1996),Hiriart-Urruty andLemaréchal (2001) andVaiter et al. (2015a)
for the proof.
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B Expectation of the inner product

We start with some definitions and notations that will be used in the proof. For a
non-empty closed convex set C ∈ R

p, we denote
(C)0 its minimal selection, i.e., the

element of minimal norm in C. This element is of course unique. For a proper lsc and
convex function f and γ > 0, itsMoreau envelope (orMoreau–Yosida regularization)
is defined by

γ f (θ)
def= min

θ∈Rp

1

2γ

∥∥θ − θ
∥∥2
2 + f (θ).

The Moreau envelope enjoys several important properties that we collect in the
following lemma.

Lemma 6 Let f be a finite-valued and convex function. Then

(i) (γ f (θ))γ>0 is a decreasing net, and ∀θ ∈ R
p, γ f (θ) ↗ f (θ) as γ ↘ 0.

(ii) γ f ∈ C1(Rp) with γ −1-Lipschitz continuous gradient.
(iii) ∀θ ∈ R

p, ∇ γ f (θ) → (∂ f (θ)
)0

and
∥
∥∇ γ f (θ)

∥
∥
2 ↗ ∥∥(∂ f (θ)

)0∥∥
2 as γ ↘ 0.

Proof (i) Bauschke and Combettes (2011, Proposition 12.32). (ii) Bauschke and
Combettes (2011, Proposition 12.29). (iii) Since f is finite-valued and convex, it
is subdifferentiable everywhere and its subdifferential is a maximal monotone opera-
tor with full domain Rp, and the result follows from Bauschke and Combettes (2011,
Corollary 23.46(i)). ��

We are now equipped to prove the following important result. It will be proved here
using Moreau–Yosida regularization. Yet another alternative proof could be based
on mollifiers for approximating subdifferentials. Our result hereafter turns out to be
instrumental to study EWA in the low-temperature regime for general penalties.

Proposition 5 Let the density μn in (2), where

(a) F satisfies Assumptions (H.1)–(H.2);
(b) J is a finite-valued lower-bounded convex function, and ∃R > 0 and ρ ≥ 0, such

that ∀θ ∈ R
p,
∥∥(∂ J (θ)

)0∥∥
2 ≤ R ‖θ‖ρ

2 ;
(c) and Vn is coercive.

Then, ∀θ ∈ R
p,

Eμn

[
〈(∂Vn(θ)

)0
, θ − θ〉

]
= −pβ.

This result covers of course the situation where J fulfills (H.3). In this case, since
∂ J (θ) ⊂ C◦ by Theorem 1(i), we have ρ = 0 and R = diam(C◦), the diameter of the
convex compact set C◦ containing the origin. It can be shown that, when F(·, y) is
strongly coercive, the coercivity assumption (c) can be equivalently stated as J∞(θ) >

0, ∀θ ∈ ker(X) \ {0}, where J∞ is the recession/asymptotic function of J , see e.g.,
Rockafellar and Wets (1998).
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Proof Let V γ
n (θ)

def= 1
n F(Xθ , y)+λn

γ J (θ) and defineμ
γ
n (θ)

def= exp
(−V γ

n (θ)/β
)
/Z ,

where 0 < Z < +∞ is the normalizing constant of the density μn . Assumption (H.1)
and Lemma 6(ii)–(iii) tell us that V γ

n ∈ C1(Rp) and∇V γ
n (θ) → (∂Vn(θ)

)0 as γ → 0.
Thus

Eμn

[
〈(∂Vn(θ)

)0
, θ − θ〉

]
=
∫

Rp
lim
γ→0

〈μγ
n (θ)∇V γ

n (θ), θ − θ〉dθ .

We now check that 〈μγ
n (θ)∇V γ

n (θ), θ − θ〉 is dominated by an integrable function.
From the definition of the Moreau envelope, we have

V γ
n (θ) = min

θ∈Rp

1
n F(Xθ , y) + λn

(
J (θ − θ) + 1

2γ

∥∥θ
∥∥2
2

)
.

From coercivity of Vn , the objective in the min is also coercive in (θ , θ) by Rockafellar
and Wets (1998, Exercise 3.29(b)). It then follows from Rockafellar and Wets (1998,
Theorem 3.31) that V γ

n is also coercive. In turn, Rockafellar and Wets (1998, Theo-
rem 11.8(c) and 3.26(a)) allow to assert that for some a ∈]0,+∞[, ∃b ∈] − ∞,+∞[
such that for all γ > 0 and θ ∈ R

p

μ
γ
n (θ) ≤ exp (−a ‖θ‖2 − b)/Z . (43)

Lemma 6-(iii) and assumption (b) on J entail that for any θ ∈ R
p,

∥
∥∇ γ J (θ)

∥
∥
2 ≤ ∥∥(∂ J (θ)

)0∥∥
2 ≤ R ‖θ‖ρ

2 .

Altogether, we have

∣∣〈μγ
n (θ)∇V γ

n (θ), θ − θ〉∣∣
≤ μ

γ
n (θ)
(∣∣〈X� 1

n∇F(Xθ, y), θ − θ〉∣∣+ λn
∥∥∇ γ J (θ)

∥∥
2

∥∥θ − θ
∥∥
2

)

≤ CZ−1 exp (−F(Xθ , y)/(nβ))
∣∣〈 1n∇F(Xθ, y), X(θ − θ)〉∣∣

+ (Z exp b)−1λn R exp (−a ‖θ‖2)
∥∥θ
∥∥ρ
2

∥∥θ − θ
∥∥
2,

where the constant C > 0 reflects the lower boundedness of J . It is easy to see that
the function in this upper bound is integrable, where we also use (H.2). Hence, we
can apply the dominated convergence theorem to get

Eμn

[
〈(∂Vn(θ)

)0
, θ − θ〉

]
= lim

γ→0

∫

Rp
〈μγ

n (θ)∇V γ
n (θ), θ − θ〉dθ .
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Now, by simple differential calculus (chain and product rules), we have

〈μγ
n (θ)∇V γ

n (θ), θ − θ〉 = −β〈∇μ
γ
n (θ), θ − θ〉

= −β

p∑

i=1

∂

∂θ i

(
μ

γ
n (θ)(θ i − θ i )

)
− pβμ

γ
n (θ).

Integrating the first term, we get by Fubini theorem and the Newton–Leibniz formula

∫

Rp−1

(∫

R

∂

∂θ i

(
μ

γ
n (θ)(θ i − θ i )

)
dθ i

)
dθ1 · · · dθ i−1dθ i+1 · · · dθ p

=
∫

Rp−1

[
μ

γ
n (θ)(θ i − θ i )

]

R

dθ1 · · · dθ i−1dθ i+1 · · · dθ p = 0,

where we used coercivity of V γ
n (see (43)) to conclude that lim|θ i |→+∞ μ

γ
n (θ)(θ i −

θ i ) = 0. For the second term, we have from Lemma 6(i) that μ
γ
n → μn as γ → 0.

Thus, arguing again as in (43), we can apply the dominated convergence theorem to
conclude that

lim
γ→0

∫

Rp
μ

γ
n (θ)dθ =

∫

Rp
μn(θ)dθ = 1.

This concludes the proof. ��
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