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Abstract
We study the asymptotic properties of a new version of the SparseGroup Lasso estima-
tor (SGL), called adaptive SGL. This new version includes two distinct regularization
parameters, one for the Lasso penalty and one for the Group Lasso penalty, and we
consider the adaptive version of this regularization, where both penalties are weighted
by preliminary random coefficients. The asymptotic properties are established in a
general framework, where the data are dependent and the loss function is convex.
We prove that this estimator satisfies the oracle property: the sparsity-based estimator
recovers the true underlying sparse model and is asymptotically normally distributed.
We also study its asymptotic properties in a double-asymptotic framework, where the
number of parameters diverges with the sample size. We show by simulations and
on real data that the adaptive SGL outperforms other oracle-like methods in terms of
estimation precision and variable selection.

Keywords Asymptotic normality · Consistency · Oracle property

1 Introduction

High-dimensional statisticalmodeling is concernedwith the significantly large number
of parameters to estimate. For instance, predicting a single outcome is not an easy
challenge since the exact functional form used to predict this outcome is rarely known.
A consequence is that the researcher/practitioner is faced with a large set of potential
variables formed by all the different ways of interacting and altering these underlying
variables. There are different methods for developing prediction models within the
high-dimensional framework to tackle the over-fitting problem. The key point is model
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regularization/penalization—these terms are equivalent—or dimension reduction. In
(semi-) parametric models, which require the estimation of many parameters with
respect to the sample size, the parameters need to be constrained to avoid the over-
fitting issue.

A significant literature developed onmodel penalization. For instance, the Akaike’s
or Bayesian information criteria aim at selecting the size of a model. However, these
methods are unstable, computationally complex, and their sampling properties are
difficult to study as Fan and Li (2001) pointed out mainly because they are stepwise
and subset selection procedures.

The Lasso procedure of Tibshirani (1996) overcomes these drawbacks as it simul-
taneously performs variable selection and model estimation. It then fosters sparsity
and allows for continuity of the selected models. Other penalties were proposed such
as the smoothly clipped absolute deviation (SCAD) of Fan (1997), which modifies the
Lasso to shrink large coefficients less severely. The elastic net regularization proce-
dure of Zou and Hastie (2005) was developed to overcome the collinearity between
the variables, which hampers the Lasso to perform well. Their idea consists of mixing
a l1 penalty, which performs variable selection, with a l2 penalty, which stabilizes the
solution paths. The Group Lasso of Yuan and Lin (2006) fosters sparsity at a group
level. Simon et al. (2013) designed the Sparse Group Lasso to foster sparsity both at a
group level and within a group using one regularization parameter. Their penalization
involves a combination of a l1 Lasso-type penalty and a mixed l1/l2 penalty for group
selection.

Knight and Fu (2000) extensively explored the asymptotic properties of the Lasso
penalty for OLS loss functions. Fan and Li (2001) generalized this penalization frame-
work to general likelihood functions and studied the asymptotic properties of the
SCAD penalty. They proved that the SCAD estimator satisfies the oracle property,
that is, the sparsity-based estimator recovers the true underlying sparse model and
is asymptotically normally distributed. This property is actually not satisfied by the
Lasso as proposed by Tibshirani. To fix this drawback, Zou (2006) proposed the adap-
tive Lasso, where adaptive weights are used to penalize different coefficients in the
penalty. Nardi and Rinaldo (2008) applied the same methodology for the Group Lasso
estimator and studied its oracle property.

These theoretical studies were developed for fixed dimensional models with i.i.d.
data, a case where the number of parameters does not depend on the sample size, and
for least square-type loss functions, except Fan and Li (2001). The high-dimensional
setting was later considered by Fan and Peng (2004), who focused on a penalized
likelihood framework when the number of parameters diverges—also called double-
asymptotic—with the sample size. In this work, the authors prove that the SCAD
penalty satisfies the oracle property. Zou and Zhang (2009) also focused on the oracle
property of the adaptive elastic-net within the double-asymptotic framework. Their
work highlights that adaptive weights penalizing different coefficients are key quanti-
ties to satisfy the oracle property as one canmodify the convergence rate of the penalty
terms. Nardi and Rinaldo (2008) also proposed within the double-asymptotic setting
selection consistency results for the Group Lasso, which states that asymptotically the
true set of relevant variables is selected.
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In this paper, our first contribution is to propose a generalization of the SparseGroup
Lasso (SGL) estimator, initially proposed by Simon et al. (2013), and we perform its
asymptotic theory, a work that has not previously been performed. More precisely, our
proposed generalization consists in the specification of two regularization parameters
controlling for the sparsity degree, one for the l1 Lasso term and one for the l1/l2

Group Lasso term. Our asymptotic results emphasize the trade-off between the group
regularization and the within-group regularization. Our second contribution is to per-
form this theory for dependent data and for any convex loss function with respect to
the parameters, for both parametric and semi-parametric models.

Our results show that the SGL as proposed by Simon et al. (2013) does not satisfy
the oracle property.We thus propose a new version of the SGL, the adaptive SGL using
the same methodology of Zou (2006), which consists of penalizing different coeffi-
cients and groups of coefficients using random weights that are positive functions of
a first step estimator. This enables to alter the rate of convergence of the penalties to
satisfy the oracle property. Our theoretical results also point out the trade-off between
these random weights depending if they are related to the l1 or l1/l2 term. Our work is
influenced by Fan and Peng (2004) concerning the oracle property for general penal-
ized loss functions and by Zou and Zhang (2009) regarding the modeling of random
weights penalizing the coefficients differently. We also prove that the adaptive SGL
satisfies the oracle property in a double-asymptotic framework. In this setting, where
the number d of parameters diverges with the sample size T , the dimension evolves
as d = O(T c) with 0 < c < 1/5, a rate that is required to satisfy the oracle property.

The rest of the paper is organized as follows: In Sect. 2, we describe our general
framework for penalized convex empirical criteria and the SGL penalty. In Sect. 3,
we derive the optimality conditions of the statistical criterion. In Sect. 4, we derive
the asymptotic properties of both the SGL and adaptive SGL when the number of
parameters is fixed. In Sect. 5, we prove the oracle property of the adaptive SGL in a
double-asymptotic setting. In Sect. 6, we use simulations and real data to compare the
finite sample performance of the adaptive Sparse Group Lasso with other competitors.
Appendix provides some preliminary results and the proofs of Sect. 4.

2 Framework and notations

2.1 Loss function, vector of parameters, sparsity assumption

We observe at time t the vector εt ∈ R
N , N ≥ 1 and consider a dynamic system in

which the criterion is

θ �→ GT l(θ) = 1

T

T∑

t=1

l(εt ; θ , εt−1), (1)

with εt−1 = (εs, s ≤ t − 1) and θ ∈ R
d , d ≥ 1. l(.) is a generic known loss

function on the sample space so that for any process (εt ), θ �→ l(εt ; θ , εt−1) is convex.
This framework includes both parametric and semi-parametric models: for instance,
the maximum likelihood method—under the convexity assumption—where the l(.)

123



300 B. Poignard

function corresponds to l(εt ; θ , εt−1) = − log f (εt ; θ , εt−1), with f (εt ; θ , εt−1) the
density of the observation (εt ) underPθ given the past observations εt−1.Alternatively,
a linear regression model would be l(εt ; θ , εt−1) = ‖εt −θ ′g(εt−1)‖p, where g(εt−1)

corresponds to a transformation of the past observations. For instance, this includes a
model where one may want to predict a component of εt by its past and by the other
components of εt−1 using a linear regression. To simplify the notations, we will keep
l(εt ; θ) instead of l(εt ; θ , εt−1). We denote the empirical score and Hessian of the
empirical criterion, respectively, as

ĠT l(θ) = 1

T

T∑

t=1

∇θ l(εt ; θ), G̈T l(θ) = 1

T

T∑

t=1

∇2
θθ ′l(εt ; θ).

The parameter vector θ of size d can be split into m groups Gk, k = 1, . . . ,m, so
that card(Gk) = ck , c1 + · · · + cm = d and these groups are non-overlapping. We use
the notation θ (l) as the subvector of θ , that is, the set {θk : k ∈ Gl}. Hence the vector
θ = (θ j , j = 1, . . . , d) can be written as θ = (θ

(k)
i , k ∈ {1, . . . ,m}, i = 1, . . . , ck).

The size d of θ corresponds to the number of covariates for predicting the outcome.
For instance, in a Cox proportional hazards model, which is semi-parametric—no
estimation of the hazard function—the estimation relies on a log-partial likelihood
function that is convex with respect to the parameters. The hazard rate at time t can
be predicted using m group of covariates, each group containing variables that are
correlated. We denote by θ0 the true parameter vector of interest. Moreover, θ →
E[l(εt ; θ)] is supposed to be a one-to-one mapping and is minimized uniquely at
θ = θ0.

We assume that the true vector of parameters θ0 is sparse, that is, the number of
nonzero components among θ0 is strictly inferior to d. We denote by S := {k : θ (k) 
=
0} the set of indices for which the groups are active and A := { j : θ0, j 
= 0} the
true subset model so that card(A) < d. This set can be decomposed into subgroups
of active sets as l ∈ S, Al = {(l, i) : θ

(l)
0,i 
= 0}. Besides, there are inactive indices

Gl\Al = Ac
l = {(l, i) : θ

(l)
0,i = 0}. We have {l /∈ S} ⇔ {∀i = 1, . . . , cl , θ

(l)
0,i = 0}. In

this setting,A = ∪
l∈S

Al such that for k 
= l, Ak ∩Al = ∅. Furthermore,Ac = m∪
l=1

Ac
l

such that for k 
= l, Ac
k ∩ Ac

l = ∅.
Based on these notations, we denote ĠT l(θ)(k) ∈ R

ck the “score” vector of the
empirical criterion taken over group k of size ck , ĠT l(θ)(k),i ∈ R the i th compo-
nent of this score, and ĠT l(θ)A ∈ R

card(A) the score over the set of active indices.
G̈T l(θ)(k)(k) ∈ Mck×ck (R) (resp. H(k)(k)) is the empirical (resp. theoretical) Hessian
taken over the block representing group k, and G̈T l(θ)AA ∈ Mcard(A)×card(A)(R) is
the Hessian over the set of active indices.

2.2 Statistical problem: Sparse Group Lasso penalization

The main problem is to recover A by the SGL regularization. The statistical problem
consists of minimizing over the parameter space Θ a penalized criterion of the form
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Asymptotic theory of the adaptive Sparse Group Lasso 301

θ̂ = arg min
θ∈Θ

{GTϕ(θ)}, (2)

where GTϕ(θ) = GT l(θ) + p1(λT , θ) + p2(γT , θ) and

p1 : R+ × R
m+ × Θ → R+ with (λT , α, θ) �→ p1(λT , θ) = λT

T

m∑
k=1

αk‖θ (k)‖1,

p2 : R+ × R
m+ × Θ → R+ with (γT , ξ, θ) �→ p2(γT , θ) = γT

T

m∑
l=1

ξl‖θ (l)‖2.

Both αk and ξl are known nonnegative scalar weights; they both can take the same
value and can be set as

√
ck : see Yuan and Lin (2006) or Simon et al. (2013). The

regularization parameters (also called tuning parameters) λT and γT vary with T . This
proposed regularization procedure generalizes the SGL as proposed by Simon et al.
(2013) as each penalty is specified with its own regularization parameter. Asymptot-
ically, their relative convergence rate plays a key role when deriving consistency and
distribution results.

The estimator θ̂ obtained in (2) is not the minimum of the empirical unpenalized
criterion GT l(.). Our main interest is to analyze the bias generated by the penalties
and how the oracle property can be satisfied in the sense of Fan and Li (2001). More
precisely, the sparsity-based estimator must satisfy

(i) Â = {i : θ̂i 
= 0} = A asymptotically—in probability—that is model selection
consistency.

(ii)
√
T (θ̂A−θ0,A)

d→ N (0,V0)withV0 a covariance matrix related to the criterion
of interest.

We highlight in Proposition 1, Sect. 4 that actually the SGL as proposed in (2) gener-
alizing the SGL of Simon et al. (2013) cannot perform the oracle property. Hence in
Sect. 4, we propose a new estimator based on the same idea as Zou (2006), the adaptive
Sparse Group Lasso, for which the oracle property is obtained when the weights are
randomized, as proved in Theorem 5.

3 Optimality conditions

The statistical problem consists of solving (2). Both GT l(.), p1(λT , α, .) and
p2(γT , ξ, .) are convex functions, and there are no inequality constraints. Conse-
quently, by the Karush–Kuhn–Tucker optimality conditions, which are necessary and
sufficient since the problem is convex, the estimator θ̂ satisfies for a group k

ĠT l(θ̂)(k) + λT T
−1αkŵ

(k) + γT T
−1ξk ẑ

(k) = 0, (3)

where w(k) and z(k) are subgradient vectors, respectively, of ‖θ̂ (k)‖1 and ‖θ̂ (k)‖2 sat-
isfying for i = 1, . . . , ck
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ŵ
(k)
i = sgn(θ̂ (k)

i ) if θ̂
(k)
i 
= 0 and ŵ

(k)
i ∈ {ŵ(k)

i : |ŵ(k)
i | ≤ 1} if θ̂

(k)
i = 0,

ẑ(k) = θ̂
(k)

/‖θ̂ (k)‖2 if θ̂
(k) 
= 0 and ẑ(k) ∈ { ẑ(k) : ‖ ẑ(k)‖2 ≤ 1} if θ̂

(k) = 0.

If θ̂
(k) 
= 0, the criterion function GTϕ(.) is partially differentiable with respect to

θ (k) and it is necessary and sufficient that these partial derivatives are zero due to the
convexity.

Now with θ̂
(k) = 0, from (3), we obtain

ck∑

i=1

(
ĠT l(θ̂)(k),i + λT T

−1αkŵ
(k)
i

)2 =
ck∑

i=1

(
γT T

−1ξk ẑ
(k)
i

)2 ≤ γ 2
T T

−2ξ2k ‖ ẑ(k)‖22.

The subgradient equations are satisfied with θ̂
(k) = 0 if

‖ĠT l(θ̂)(k) + λT T
−1αkŵ

(k)‖2 ≤ γT T
−1ξk .

The subgradient equations also provide understanding into the sparsity within a group

that is partially a nonzero group. With θ̂
(k) 
= 0, the subgradient condition for θ̂

(k)
i

becomes

∀i = 1, . . . , ck,−ĠT l(θ̂)(k),i = λT T
−1αkŵ

(k)
i + γT T

−1ξk
θ̂

(k)
i

‖θ̂ (k)‖2
.

This subgradient equation is satisfied for θ̂
(k)
i = 0 when

|ĠT l(θ̂)(k),i | ≤ λT T
−1αk .

Bertsekas (1995) proposed the use of subdifferential calculus to characterize necessary
and sufficient solutions for problems such as (2). The conditions we derived are close
to those of Simon et al. (2013) (obtained for a least squares loss function). They will
be extensively used in the rest of the paper.

4 Asymptotic properties: fixed d

In this section, we consider the fixed dimensional case only. All the proofs of this
section can be found in Appendix. To prove the asymptotic results, we make the
following assumptions.

Assumption 1 (εt ) is a strictly stationary and ergodic process.

Assumption 2 The parameter set Θ ⊂ R
d is convex and not necessarily compact.

Assumption 3 For any (εt ), the function θ �→ l(εt ; θ) is convex and C3(R,Θ).
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Asymptotic theory of the adaptive Sparse Group Lasso 303

Assumption 4 (∇l(εt ; θ0)) is a square integrable martingale difference.

Assumption 5 H := E[∇2
θθ ′l(εt ; θ0)] andM := E[∇θ l(εt ; θ0)∇θ ′l(εt ; θ0)] exist and

are positive definite.

Assumption 6 Let υt (C) = sup
k,l,m=1,...,d

{ sup
θ :‖θ−θ0‖2≤νT C

|∂3θkθlθm l(εt ; θ)|}, where C > 0

is a fixed constant and νT −→
T→∞ 0, a quantity thatwill bemade explicit in theAppendix.

Then

η(C) := 1

T 2

T∑

t,t ′=1

E[υt (C)υt ′(C)] < ∞.

4.1 Non-adaptive version of the Sparse Group Lasso estimator

We focus on the large sample properties of the estimator given by (2).

Theorem 1 Under Assumptions 1–3, if λT /T → λ0 ≥ 0 and γT /T → γ0 ≥ 0, then
for any compact set B ⊂ Θ such that θ0 ∈ B,

θ̂
P−→ arg min

x∈B
{G∞ϕ(x)} = θ∗

0,

with

G∞ϕ(x) = G∞l(x) + λ0

m∑

k=1

αk‖x(k)‖1 + γ0

m∑

l=1

ξl‖x(l)‖2,

whereG∞l(.) is the limit in probability ofGT l(.). Hence ifλT = o(T ) and γT = o(T ),
then θ̂ is consistent.

The penalized estimator does not converge to θ0 under the convergence rate λT =
O(T ) and γT = O(T ). We assumed thatG∞l(x) admits unique minimum in Sect. 2.1
so that the solution θ∗

0 is unique.
The next result provides an explicit convergence for the SGL estimator.

Theorem 2 Under Assumptions 1–3 and 6, the sequence of penalized estimators θ̂

satisfies

‖θ̂ − θ0‖ = Op

(
T−1/2 + λT T

−1a + γT T
−1b

)
,

when λT = o(T ) and γT = o(T ), and a := card(A)(max
k

αk), b := card(A)(max
l

ξl)

satisfy λT T−1aT → 0 and γT T−1bT → 0.

This result highlights that if λT T−1 = O(T−1/2) and γT T−1 = O(T−1/2), then we
would obtain a

√
T -consistent θ̂ .
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304 B. Poignard

To derive the asymptotic distribution, we rely on the convexity property of ϕ(.),
and hence of GTϕ(.). The intuition is as follows: Let FT (u) and F∞(u), u ∈ R

d , be
random convex functions such that their minimum are, respectively, uT and u∞. Then
if FT (.) converges in finite distribution to F∞(.), and u∞ is the unique minimum of
F∞ with probability one, then uT converges weakly to u∞. This method to prove the
convergence of arg min processes is called the convexity argument. It was developed
by Pollard (1991), Davis et al. (1992), Geyer (1996) or Kato (2009). The convexity
argument is stated as a lemma in the proof of Theorem 4.1 in Chernozhukov (2005).
It is reported in Appendix.

Theorem 3 Under Assumptions 1–6, if λT T−1/2 → λ0 and γT T−1/2 → γ0, then

√
T (θ̂ − θ0)

d−→ arg min
u∈Rd

{F∞(u)},

provided F∞ is the random function in R
d , where

F∞(u) = 1

2
u′
Hu + u′Z + λ0

m∑
k=1

αk

ck∑
i=1

{
|u(k)

i |1
θ

(k)
0,i =0

+ u(k)
i sgn(θ(k)

0,i )1θ
(k)
0,i 
=0

}

+ γ0
m∑
l=1

ξl

{
‖u(l)‖21θ

(l)
0 =0 + u(l)′θ (l)

0

‖θ (l)
0 ‖2

1
θ

(l)
0 
=0

}
,

with H = H(θ0) := E[∇2
θθ ′l(εt ; θ0)] and some random vector Z ∼ N (0,M), M =

M(θ0) := E[∇θ l(εt ; θ0)∇θ ′l(εt ; θ0)].

The previous result establishes the
√
T -consistency of the SGL estimator. However,

for λT = O(
√
T ) and γT = O(

√
T ), the true active set A can not be recovered with

high probability as stated in the next proposition.

Proposition 1 Under Assumption 1–6, if λT T−1/2 → λ0 and γT T−1/2 → γ0, then

lim sup
T→∞

P(Â = A) ≤ c < 1,

where c is a constant depending on the true model.

Proposition 1 shows that the SGL estimator as specified in (2) does not satisfy the
oracle property. To fix this issue, Zou (2006) proposed the adaptive Lasso and Nardi
and Rinaldo (2008) the adaptive Group Lasso for OLS models. The idea is to alter the
convergence rate of the regularization parameters by considering random weights to
penalize the coefficients differently. We propose to use this methodology in our SGL
regularization procedure.
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4.2 Adaptive SGL-regularized loss function

The adaptive specification of the proposed estimator is

θ̂ = arg min
θ∈Θ

{GTψ(θ)}, (4)

with GTψ(θ) = 1

T

T∑
t=1

l(εt ; θ) + p1(λT , θ̃ , θ) + p2(γT , θ̃ , θ), both penalties are

p1(λT , θ̃ , θ) = λT T
−1

m∑

k=1

ck∑

i=1

α(θ̃
(k)
i )|θ(k)

i |, p2(γT , θ̃ , θ) = γT T
−1

m∑

l=1

ξ(θ̃
(l)

)‖θ (l)‖2.

These penalties are now randomized through the θ̃ argument in the weights α’s and
ξ ’s. This first step estimator θ̃ is supposed to be a T 1/2-consistent estimator of θ0. For
instance, it can be defined as an M-estimator of the unpenalized empirical criterion
GT l(.), that is, θ̃ = arg min GT l(θ) with θ ∈ Θ . The weights are now random, and

for any group k or l, α(θ̃
(k)

) ∈ R
ck+ , ξ(θ̃

(l
) ∈ R+ are specified as

(k)
T := (θ̃

(k)
) = (|θ̃ (k)

i |−η, i = 1, . . . , ck), ξT ,l := ξ(θ̃
(l
) = ‖θ̃ (l)‖−μ

2 ,

for some constants η > 0 and μ > 0 (to be specified).

Theorem 4 Under Assumptions 1–3 and 6, the sequence of penalized estimators θ̂

satisfies

‖θ̂ − θ0‖ = Op

(
T−1/2 + λT T

−1aT + γT T
−1bT

)
,

with aT = card(A).(max
k∈S

(max
i∈Ak

α
(k)
T ,i )), bT = card(A).(max

l∈S
ξT ,l) stochastic quanti-

ties, such that λT T−1aT
P−→ 0 and γT T−1bT

P−→ 0.

This result is similar to Theorem 2, the difference being that aT and bT are stochastic.
The following theorem shows that the adaptive SGL satisfies the oracle property under
proper convergence rates of λT and γT and provides the trade-off between the l1/l2

regularizer and the l1 regularizer.

Theorem 5 Under Assumptions 1–6, if λT T−1/2 → 0, γT T−1/2 → 0, T (η−1)/2λT →
∞, T (μ−1)/2γT → ∞ and T (μ−η)/2γT λ−1

T → ∞, then θ̂ obtained in (4) satisfies

lim
T→∞P(Â = A) = 1, and
√
T (θ̂A − θ0,A)

d−→ N
(
0,H−1

AAMAAH
−1
AA

)
.
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306 B. Poignard

5 Asymptotic properties: diverging d

5.1 Framework, assumptions and properties

From now on, we consider the case where d = dT , so that dT → ∞ as T → ∞. We
have card(S) = O(card(A)) = O(dT ). The dimension is supposed to be dT = O(T c)

for some q2 < c < q1. In this section, we prove that the adaptive SGL satisfies the
oracle property for proper choices of 0 ≤ q2 < q1 < 1. This work has not been
performed so far for the SGL estimator. All the proofs of this section are reported in
the Supplementary File.

The quantities depend on dT , hence on T and should be indexed by T . We denote
HT := E[∇2

θθ l(εt ; θ0)] and MT := E[∇θ l(εt ; θ0)∇θ ′l(εt ; θ0)] in the rest of the
paper. To make the reading easier, we do not index other quantities by T , which will
be implicit. The criterion is

θ̂ = arg min
θ∈Θ

{GT l(θ) + λT

T

m∑

k=1

ck∑

i=1

α
(k)
T ,i |θ(k)

i | + γT

T

m∑

l=1

ξT ,l‖θ (l)‖2}, (5)

with α
(k)
T ,i = |θ̃ (k)

i |−η and ξT ,l = ‖θ̃ (l)‖−μ
2 , where η > 0, μ > 0, and θ̃ is a first step

estimator satisfying θ̃ = arg min
θ∈Θ

{GT l(θ)}.
The two next assumptions are similar to condition (F) of Fan and Peng (2004)

and allow for controlling the minimum and maximum eigenvalues of the limits of the
empirical Hessian and the score cross-product. We denote by λmin(M) and λmax(M)

the minimum and maximum eigenvalues of any positive definite square matrix M.

Assumption 7 HT and MT exist. HT is non-singular, and there exist b1, b2 with 0 <

b1 < b2 < ∞ and c1, c2 with 0 < c1 < c2 < ∞ such that, for all T ,

b1 < λmin(MT ) < λmax(MT ) < b2, c1 < λmin(HT ) < λmax(HT ) < c2.

Let VT = H
−1
T MTH

−1
T , we deduce there exist a1, a2 with 0 < a1 < a2 < ∞ such

that, for all T , a1 < λmin(VT ) < λmax(VT ) < a2.

Assumption 8 E[{∇θ l(εt ; θ0)∇θ ′l(εt ; θ0)}2] < ∞, for every dT (and then of T ).

Assumption 9 There exist some functions Ψ (.) such that, for all T ,

sup
k=1,...,dT

E[∂θk l(εt ; θ)∂θk l(εt ′ ; θ)] ≤ Ψ (|t − t ′|), and sup
T

1

T

T∑

t,t ′=1

Ψ (|t − t ′|) < ∞.

Assumption 10 Let ζkl,t := ∂2θkθl l(εt ; θ0) − E[∂2θkθl l(εt ; θ0)]. There exist some func-
tions χ(.) such that

|E[ζkl,tζk′l ′,t ′ ]| ≤ χ(|t − t ′|), and sup
T

1

T

T∑

t,t ′=1

χ(|t − t ′|) < ∞.
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Assumption 11 Letυt (C) := sup
k,l,m=1,...,dT

{ sup
θ :‖θ−θ0‖2≤νT C

|∂3θkθlθm l(εt ; θ)|},whereC >

0 is a fixed constant and νT = (dT /T )1/2. Then

η(C) := 1

T 2

T∑

t,t ′=1

E[υt (C)υt ′(C)] < ∞.

Theorem 6 Under Assumptions 1–3, 7–11 and if d4T = o(T ), the sequence of unpe-

nalized M-estimators solving θ̃ = arg min
θ∈Θ

{GT l(θ)} satisfies

‖θ̃ − θ0‖2 = Op

⎛

⎝
(
dT
T

) 1
2
⎞

⎠ .

θ̃ and θ0 depend on T such that θ̃ = θ̃T and θ0 = θ0,T := θ0,∞.eT .

d4T = o(T ) is also used in Theorem 1 of Fan and Peng (2004). The convergence rate

of θ̂ is the same as the analysis of the M-estimator by Huber (1973).
The first step estimator used for the adaptiveweights is (T /dT )1/2-consistent. How-

ever, the estimated quantities onAc converge to zero by consistency. We then propose

a slight modification of the first step estimator, denoted ˜̃
θ , which disappears asymp-

totically as follows: ˜̃
θ = θ̃ + eT so that eT → 0 is a strictly positive quantity. We

choose eT = T−κ with κ > 0. This means we add in the adaptive weights a power of
T to the first step estimator, that is

α
(k)
T ,i = |˜̃θ(k)

i |−η = |θ̃ + T−κ |−η, ξT ,l = ‖˜̃
θ (l)‖−μ

2 = ‖θ̃ (l) + T−κ‖−μ
2 .

Theorem 7 Under Assumptions 1–3, 7–11, if d4T = o(T ), and if γT√
T
T

c
2+κμ −→

T→∞ 0,

λT√
T
T κη −→

T→∞ 0, then the sequence of penalized estimators θ̂ solving 5 satisfies

‖θ̂ − θ0‖2 = Op

⎛

⎝
(
dT
T

) 1
2
⎞

⎠ .

Wemake additional assumptions regarding the adaptive penalty components so that
the adaptive SGL satisfies the oracle property.

Assumption 12 For any T , there exists β such that 0 < β < min
i∈Ak

θ0,i,Ak , k ∈ S.
Moreover,

β−1T−1
{
λT d

1/2
T E

[
max

k∈S,i∈Ak

αT ,Ak ,i

]
+ γTE

[
max
k∈S

ξT ,k

]}
−→
T→∞ 0.
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Assumption 13 The model complexity is assumed to behave as d5T = o(T ), which
implies that 0 < c < 1

5 . The regularization parameters are chosen such that they
satisfy

γT√
T
T

c
2+κμ −→

T→∞ 0,
γT√
T
T

1
2 [(1+μ)(1−c)−1] −→

T→∞ ∞,
λT√
T
T κη −→

T→∞ 0,

λT√
T
T

1
2 [(1+η)(1−c)−1] −→

T→∞ ∞,
γT

λ
1+μ
T

T (1+μ)(1− c
2−κη)−1 −→

T→∞ ∞.

The rate d5T = o(T ) is also assumed in Theorem 2 of Fan and Peng (2004). Moreover,
the convergence rates of the regularization parameters are closely related to condition
(A5) of Zou and Zhang (2009). In Sect. 6, we provide further details about the choice
of the adaptive weights and μ, η, κ .

Assumption 14 Let XT ,t = √
T QTV

−1/2
T ,AAH

−1
T ,AAĠT lt (θ0)A with (QT ) a sequence

of r × card(A) matrices such that QT × Q′
T

P−→ C, for some r × r nonnegative
symmetric matrix C, VT ,AA = (H−1

T MTH
−1
T )AA and ĠT lt (θ0)A = 1

T ∇Al(εt ; θ0).
Let FT

t = σ(XT ,s, s ≤ t), then XT ,t is a martingale difference and we have

E[ sup
i, j=1,...,dT

E

[{
∂θi l(εt ; θ0)∂θ j l(εt ; θ0)

}2 |FT
t−1

]
λmax,t−1(H

T
t−1)] ≤ B̄ < ∞,

with HT
t−1 := E[∇θ l(εt ; θ0)∇θ ′l(εt ; θ0)|FT

t−1] and λmax,t−1(H
T
t−1) < ∞.

Theorem 8 Under Assumptions 1–3, and Assumptions 7–14, the sequence of adaptive
estimator θ̂ solving (5) satisfies

lim
T→∞P(Â = A) = 1, and

√
T QTV

−1/2
T ,AA(θ̂A − θ0,A)

d→ N (0,C),

where (QT ) is a sequence of r × card(A) matrices such that QT × Q′
T

P−→ C, for
some r × r nonnegative symmetric matrix C and VT ,AA = (H−1

T MTH
−1
T )AA.

5.2 From fixed to double asymptotic: discussion

The sample size indexing on d := dT alters significantly the theoretical analysis. In
Sect. 5, the regularity conditions on (l(t ; θ)) have been strengthened to keep uniform
properties for the double-asymptotic analysis: Hence Assumptions 9, 10 and 11 differ
from Assumption 6. Assumptions 7 and 8 are stronger than Assumption 5, but they
facilitate the theoretical analysis. Assumption 12 might be artificial, but it is key to
obtain the oracle property and is in line with assumption (H) of Fan and Peng (2004).
This assumption shows the rate at which the penalized criterion distinguishes nonzero
parameters from zero parameters.
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Asymptotic theory of the adaptive Sparse Group Lasso 309

Furthermore, the convergence rates on dT are different from Sect. 4 due to the
necessary control on the third-order term of the Taylor expansions. As a consequence,
the conditions d4T = O(T ) for the consistency result and d5T = O(T ) for the oracle
property must be assumed. This issue was encountered by Fan and Peng (2004) in an
i.i.d. and non-adaptive framework. This problem is moved aside when considering the
linear model, where the third-order derivative vanishes. For instance, Zou and Zhang
(2009) proved the oracle property of the adaptive elastic-net in a double-asymptotic
framework for linear models where 0 ≤ c < 1. Nardi and Rinaldo (2008) in Theorem
4.2 provide a model selection consistency result for the adaptive Group Lasso when
log(dT )/T → 0, a rate also obtained in Theorem 1 of Wainwright (2009). This
scaling between dT and T is obtained for the linear regression model by applying
standard results on the maximum of a Gaussian vector. Their assumption (S4) also
allows the dimension dT to grow at a faster rate than T for a suitable choice of
the adaptive weights. Since we consider a general penalized likelihood setting, we
rely on Assumption 11 to control for the third-order term, which in turn implies
the convergence d5T = o(T ) stated in Assumption 13. The latter also controls the
convergence rates of the regularization parameters and provides a trade-off between
the group and the within-group regularizations.

Moreover, the double asymptotic requires the use of explicit vector/matrix norms,
especially for Theorems 6 and 7: Because of the norm equivalences, some constants
may appear so that these constant may depend on the size dT and thus on T . Hence
the norms of the latter theorems are explicit, contrary to Theorems 2 and 4.

Finally, |A| is allowed to diverge, which implies that the vector size of (θ̂A−θ0,A)

also diverges. To derive the distribution in Theorem 8, we thus multiplied the discrep-
ancy

√
T (θ̂ − θ0)A by a matrix sequence (QT ) of size r × card(A), r being arbitrary

but finite. This method was also used by Fan and Peng (2004) or Zou and Zhang
(2009). The derivation of the asymptotic distribution heavily relies on Assumption 14.

6 Empirical applications

Our empirical experiments are based on linear dynamic systems with fixed dimension
so that the statistical problem corresponds to a penalized OLS criterion. We consider 6
penalization methods: the Lasso (L), the adaptive Lasso (AL), the Group Lasso (GL),
the adaptive Group Lasso (AGL), the Sparse Group Lasso (SGL) and the adaptive
Sparse Group Lasso (ASGL). Table 1 reports for simulated data the variable selection
performance through the number of zero coefficients correctly estimated, denoted as
C and the number of nonzero coefficients incorrectly estimated, denoted IC . Besides,
the mean squared error is reported as an estimation accuracy measure. Table 2 reports
the regularization performances based on real data sets.

6.1 Tuning of the regularization parameters and the adaptive weights

They both must satisfy some convergence rate provided in Theorem 5 for fixed
dimensions and Theorem 8 for diverging dimensions to satisfy the oracle prop-
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Table 1 Model selection and
precision accuracy based on 100
replications

Model MSE C IC

Truth 47 0

Lasso 0.1558 22.34 5.44

aLasso 0.1270 24.56 5.48

GLasso 0.1153 28.59 2.50

AGLasso 0.0414 40.91 2.40

SGL 0.0407 39.42 2.49

ASGL 0.0392 43.34 1.90

Table 2 Mean square error based on 100 test sets

Data set Lasso aLasso GLasso AGLasso SGL ASGL

MPG 0.592 0.581 0.985 0.909 0.274 0.257

Automobile 0.311 0.263 0.889 0.424 0.283 0.238

erty. More precisely, we suppose λT = T β and γT = T ν , where β and ν are
both strictly positive constant. Within the double-asymptotic framework, regarding

Assumption 13 and Theorem 8, taking condition γT T
1
2 [(1+μ)(1−c)−1]− 1

2 → ∞ means

T ν− 1
2+ 1

2 [(1+μ)(1−c)−1] → ∞, which implies ν − 1
2 + 1

2 [(1 + μ)(1 − c) − 1] > 0.
Thus the set of conditions is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν + c
2 + κμ − 1

2 < 0,

ν − 1
2 + 1

2 [(1 + μ)(1 − c) − 1] > 0,

β + κη − 1
2 < 0,

β − 1
2 + 1

2 [(1 + η)(1 − c) − 1] > 0,

(1 + μ)[1 − c
2 − κη − β] + ν − 1 > 0.

This system allows for flexibility when choosing μ and η once κ, c, ν and β are fixed.
For instance, for c = 1/6, κ = 0.05, ν = 1/10 and β = 1/10, then μ ∈ [0.4, 6.3]
and η ∈ [0.6, 7.9]. If ν = β = 1/5 and for c = 1/6 and κ = 0.05, then μ ∈ [0.4, 4.3]
and η ∈ [0.3, 5.9].

As for the fixed dimensional case, the conditions in Theorem 5 are

⎧
⎪⎨

⎪⎩

β − 1
2 < 0, ν − 1

2 < 0,

β + η
2 − 1

2 > 0, ν + μ
2 − 1

2 > 0,

ν − β + μ−η
2 > 0,

(6)

For instance, let ν = 1/3 and β = 1/5, then we would have 1 ≤ η ≤ μ.
We used a cross-validation (CV) procedure to select both parameters λT and γT

such that both terms are defined by λT = T β and γT = T ν , and β = ν = 1/8. The
adaptive weights are computed as follows: We first compute an OLS estimator θ̃ such
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that the adaptive weights entering the penalties correspond to ˜̃
θ = θ̃ + T−κ , with

κ = 0.2. As for the adaptive weights, they are chosen such that the above system is
satisfied: We set η = 2.5 and μ = 1.5. The standard CV developed for i.i.d. data can
not be used in dependent framework. To fix this issue, we used the hv-CV procedure
devised by Racine (2000), which consists in leaving a gap between the test sample
and the training sample, on both sides of the test sample.

6.2 Numerical procedure

There are several methods to numerically solve the non-differentiable statistical prob-
lem (4) or (5). Fan and Li (2001) proposed a local quadratic approximation (LQA)
of the first-order derivative of the penalty function and a Newton–Raphson-type algo-
rithm. To circumvent numerical instability, they suggest to shrunk to zero coefficients
that are close to zero, that is, a coefficient |θ j | < ε, with ε > 0 to be calibrated. The
drawback is that once it is set to zero, it will be excluded at any step of the LQA
algorithm. Hunter and Li (2005) proposed a more sophisticated version of the LQA
algorithm to avoid the drawback of the stepwise selection and numerical instability.
When one consider the OLS loss function, closed form algorithms can be applied to
our problem. Bühlmann and van de Geer (2011) compiled these methodologies for
solving the Lasso and the Group Lasso using gradient descent methods for general
penalized convex empirical function. We used these algorithms in our study for solv-
ing the group Lasso. As for the Lasso, we applied the shooting algorithm developed
by Fu (1998), which is a particular case of the gradient descent method. Finally, we
used the alternative direction method of multipliers provided by Li et al. (2014) for
solving the SGL penalization.

6.3 Simulated experiment

We consider a data generating process

yt = σtηt ,

x1,t = β1x1,t−1 + ν1,t , x2,t = β2x2,t−1 + ν2,t ,

σ 2
t =

p∑

k=1

ak y
2
t−k +

q∑

l=1

{bl |x1,t−l | + cl |x2,t−1|},

where the exogenous variable (|x1,t |) and (|x2,t |) are positive and stationary. They are
simulated as β1 ∼ U([0.85, 0.95]) and β2 ∼ U([0.6, 0.75]) with U(.) the uniform
distribution. Moreover, (ηt ) is uncorrelated with (νt ) = (ν1,t , ν2,t ) ∼ N (0, Γ )where

Γ =
(
0.05 0.035
0.035 0.04

)
.

(σ 2
t ) corresponds to an ARCH(p) model with exogenous variables (q lags). We set

T = 5000 p = 5, q = 2 and ak ∼ U([0.01, 0.2]), bl , cl ∼ U([0.01, 0.2]) so that
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the stationarity conditions derived by Francq and Thieu (2015) for GARCH models
with exogenous variables are satisfied. They are also supposed to satisfy an ordering
constraint, id est ∀k ≥ 2, ak ≤ ak−1, ∀l ≥ 2, bl ≤ bl−1 and ∀l ≥ 2, cl ≤ cl−1.

This model can be estimated by an ordinary least squares procedure as (yt ) and
(xt ) are observed variables. We would have the linear model

y2t =
p∑

k=1

ak y
2
t−k +

q∑

l=1

{bl |x1,t−l | + cl |x2,t−1|} + ut ,

where ut = y2t − σ 2
t is the error term. For instance, (yt ) can be a stock index (e.g.,

Apple), (x1,t ) the S&P500 return index and x2,t theNASDAQ return index.We specify
an initial number of lags m = 20 and estimate

θ̂ = arg min
θ∈Θ

⎧
⎨

⎩
1

T

T∑

t=m+1

m∑

k=1

(y2t − Z ′
t−kθ

(k))2 + λT

T

m∑

i=1

ci∑

j=1

α
(i)
T , j |θ(k)

i |+
m∑

l=1

ξT ,l‖θ (l)‖2
⎫
⎬

⎭ ,

with Zt−k = (y2t−k, |x1,t−k |, |x2,t−k |)′, θ (k) = (ak, bk, ck)′. The weights are con-

structed as α
(i)
T , j = |θ̃ (i)

j |−η the j th component of group i , ξT ,l = ‖θ̃ (l)‖−μ
2 with β̃

defined as an unpenalized OLS version of the previous criterion. In this setting, ci = 3.
The parameters are subject to nonnegative constraints. The regularization procedures
aim at correctly selecting the variables, that is, we would like to discard the y2t−k and|xi,t−l | for k > 5 and l > 2, for any i = 1, 2. That means the total number of zeros to
be identified is equal to 47.

We discuss how this OLS objective function satisfies the assumptions of Theorem 5.
By construction, the vector of observation εt = (yt , x1,t , x2,t )′ is a strictly stationary
and ergodic process. The loss function is quadratic with respect to θ so it is convex
(Assumption 3). The score of the unpenalized part would be

∇θ l(εt ; θ) = ∇θ

(
y2t − Z ′

t−kθ
(k)
)2 = Zt−k

(
y2t − Z ′

t−kθ
(k)
)

= Zt−kut ,

so thatE[∇θ l(εt ; θ)|Ft−1] = 0 as the error (ut ) is uncorrelatedwith past observations.
Hence Assumption 4 is satisfied, that is, (ut ,Ft ) is a martingale difference when
E[y2t ] = σ 2

t < ∞. Assumption 5 is satisfied using step (ii) of the proof of Theorem
6.1 of Francq and Zakoïan (2010), where they show the invertibility of E[Zt Z ′

t ] by
contradiction. As for Assumption 6, the third-order term vanishes in the OLS model.
Finally, the convergence rates provided in 6 must be satisfied to satisfy the oracle
property.

Table 1 reports the performances of the regularization methods. The adaptive ver-
sions of theLasso, theGroupLasso or the SGLoutperform their non-adaptive versions.
The difference is significant for the adaptive Lasso and the adaptive SGL. This is in
line with the asymptotic theory. The adaptive SGL performswell as it can discard inac-
tive groups and inactive indices among active groups and outperform other adaptive
penalization methods.
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An additional simulated experiment for VARmodels is reported in the Supplementary
file, Sect. 4.

6.4 Real data experiment

We carry out a performance analysis of the regularization methods on two data sets
from UCI Machine Learning Repository: the auto MPG and the Automobile data.
Both contain real and categorical data, which are dummy encoded. For the Auto-
mobile data set, the car’s price is predicted from 3 categorical variables (car’s style,
engine type, fuel system) and 9 real-valued variables, which are grouped as follows:
a group for the car’s dimension (height, width, length, curb-weight), a group for the
engine’s properties (size, bore and stroke, compression ratio, horsepower, the peak of
power band), one group for the miles per gallon (city and highway); each set of indi-
cator variables corresponding to a given categorical covariate are grouped together.
There are 195 observations and 30 parameters to estimate. As for the MPG data, the
city-cycle fuel consumption is predicted by four real-valued predictors (horsepower,
weight, displacement, acceleration), each of them corresponding to one group, and 3
categorical variables (cylinders, model year and origin) so that the dummy variables
from one covariate are grouped. There are 392 observations and 25 parameters to
estimate. The grouping structure is arbitrary.

The OLS problem—after centering and standardizing the variables, no intercept is
included—was considered for prediction purposes with the Lasso, the Group Lasso
and the Sparse Group Lasso regularization procedures together with their adaptive
versions. For the Automobile (resp. MPG) data, 145 (resp. 312) observations were
randomly chosen to fit the penalized OLS models and the 50 (resp. 80) remaining
observations were used as a test set. The procedure was repeated 100 times so that
an average mean square error for prediction is reported in Table 2. The adaptive SGL
still outperforms the other methods. The procedure is well adapted in the presence of
both categorical factors and continuous covariates. The prediction performances also
emphasize the gain to consider adaptive weights.
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Fermanian for his significant help and helpful comments. I gratefully acknowledge the Ecodec Laboratory
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Appendix

We first introduce some preleminary results. The dependent setting requires the use of
more sophisticated probabilistic tools to derive asymptotic results than the i.i.d. case.
Assumptions 1 and 4 allow for using the central limit theorem of Billingsley (1961).
We remind this result stated as a corollary in Billingsley (1961).

Corollary 1 (Billingsley 1961) If (xt ,Ft ) is a stationary and ergodic sequence of
square integrable martingale increments such that σ 2

x = Var(xt ) 
= 0, then

T−1/2∑T
t=1 xt

d→ N (0, σ 2
x ).
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Note that the square martingale difference condition can be relaxed by α-mixing and
moment conditions. For instance, Rio (2013) provides a central limit theorem for
strongly mixing and stationary sequences.

To prove Theorem 1, we remind of Theorem II.1 of Anderson andGill (1982) which
proves that pointwise convergence in probability of random concave functions implies
uniform convergence on compact subspaces.

Theorem 9 (Anderson and Gill 1982) Let E be an open convex subset of Rp, and let

F1, F2, . . . , be a sequence of random concave functions on E such that Fn(x)
P−→

n→∞
f (x) for every x ∈ E where f is some real function on E. Then f is also concave,
and for all compact A ⊂ E,

sup
x∈A

|Fn(x) − f (x)| P−→
n→∞ 0.

The proof of this theorem is based on a diagonal argument and Theorem 10.8 of
Rockafeller (1970), that is, the pointwise convergence of concave random functions
on a dense and countable subset of an open set implies uniform convergence on any
compact subset of the open set. Then the following corollary is stated.

Corollary 2 (Anderson and Gill 1982) Assume Fn(x)
P−→

n→∞ f (x), for every x ∈ E,

an open convex subset of Rp. Suppose f has a unique maximum at x0 ∈ E. Let X̂n

maximize Fn. Then X̂n
P−→

n→∞ x0.

Newey andPowell (1987) use a similar theorem to prove the consistency of asymmetric
least squares estimators without any compacity assumption on Θ . We apply these
results in our framework, where the parameter set Θ is supposed to be convex.

We used the convexity argument to derive the asymptotic distribution of the SGL
estimator. Chernozhukov and Hong (2004) and Chernozhukov (2005) use this con-
vexity argument to obtain the asymptotic distribution of quantile regression-type
estimators. This argument relies on the convexity lemma, which is a key result to
obtain an asymptotic distribution when the objective function is not differentiable. It
only requires the lower-semicontinuity and convexity of the empirical criterion. The
convexity lemma, as in Chernozhukov (2005), proof of Theorem 4.1, can be stated as
follows:

Lemma 1 (Chernozhukov 2005) Suppose

(i) a sequence of convex lower-semicontinuous FT : Rd → R̄marginally converges
to F∞ : Rd → R̄ over a dense subset of Rd ;

(ii) F∞ is finite over a non-empty open set E ⊂ R
d ;

(iii) F∞ is uniquely minimized at a random vector u∞.

Then

arg min
z∈Rd

FT (z)
d−→ arg min

z∈Rd
F∞(z), that is uT

d−→ u∞.
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This is a key argument used in Theorem 3, Proposition 1 and Theorem 5.
When we consider a diverging number of parameters, the empirical criterion can be

viewed as a sequence of dependent arrays forwhichweneed refined asymptotic results.
Shiryaev (1991) proposed a version of the central limit theorem for dependent sequence
of arrays, provided this sequence is a square integrablemartingale difference satisfying
the so-calledLindeberg condition.A similar theoremcanbe found inBillingsley (1995,
Theorem 35.12, p.476). We provide here the theorem of Shiryaev (see Theorem 4,
p.543 of Shiryaev 1991) that we will use to derive the asymptotic distribution of the
adaptive SGL estimator.

Theorem 10 (Shiryaev 1991) Let a sequence of square integrable martingale differ-
ences ξn = (ξnk,Fn

k ), n ≥ 1, with Fn
k = σ(ξns, s ≤ k), satisfy the Lindeberg

condition for any 0 < t ≤ 1, for ε > 0, given by

�nt�∑

k=0

E

[
ξ2nk1|ξnk |>ε |Fn

k−1

]
P−→

n→∞ 0,

then if
�nt�∑
k=0

E[ξ2nk |Fn
k−1]

P−→
n→∞ σ 2

t , or
�nt�∑
k=0

ξ2nk
P−→

n→∞ σ 2
t , then

�nt�∑
k=0

ξnk
d−→ N (0, σ 2

t ).

There exist central limit results relaxing the stationarity and martingale difference
assumptions for sequences of arrays. Neumann (2013) proposed such a central limit
theorem for weakly dependent sequences of arrays. Such sequences should also satisfy
a Lindeberg condition and conditions on covariances. Equippedwith these preliminary
results, we now report the proofs of Sect. 4.

Proof of Theorem 1 By definition, θ̂ = arg min
θ∈Θ

{GTϕ(θ)}. In a first step, we prove

the uniform convergence of GTϕ(.) to the limit quantity G∞ϕ(.) on any compact set
B ⊂ Θ , idest

sup
x∈B

|GTϕ(x) − G∞ϕ(x)| P−→
T→∞ 0. (7)

We define C ⊂ Θ an open convex set and pick x ∈ C. Then by Assumption 1, the law
of large number implies

GT l(x)
P−→

T→∞ G∞l(x).

Consequently, if λT /T → λ0 ≥ 0 and γT /T → γ0 ≥ 0, we obtain the pointwise
convergence

|GTϕ(x) − G∞ϕ(x)| P−→
T→∞ 0.

By Theorem 9 of Anderson and Gill (1982), G∞ϕ(.) is a convex function and we
deduce the desired uniform convergence over any compact subset of Θ , that is (7).
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Now we would like that arg min {GTϕ(.)} P−→
T→∞ arg min {G∞ϕ(.)}. By Assump-

tion 3, ϕ(.) is convex, which implies

|GTϕ(θ)| P−→
‖θ‖→∞

∞.

Consequently, arg min{GTϕ(x)} = O(1), such that θ̂ ∈ Bo(θ0,C) with probability
approaching one for C large enough, with Bo(θ0,C) an open ball centered at θ0 and
of radius C . Furthermore, as G∞ϕ(.) is convex, continuous, then arg min

x∈B
{G∞ϕ(x)}

exists and is unique. Then by Corollary 2 of Andersen and Gill, we obtain

arg min
x∈B

{GTϕ(x)} P−→
T→∞ arg min

x∈B
{G∞ϕ(x)}, that is θ̂

P−→
T→∞ θ∗

0.

��
Proof of Theorem 2 We denote νT = T−1/2 + λT T−1a + γT T−1b, with a =
card(A)(max

k
αk) and b = card(A)(max

l
ξl). We would like to prove that for any

ε > 0, there exists Cε > 0 such that P(ν−1
T ‖θ̂ − θ0‖ > Cε) < ε. We have

P(ν−1
T ‖θ̂ − θ0‖ > Cε) ≤ P

(
∃u ∈ R

d , ‖u‖2 ≥ Cε : GTϕ(θ0 + νT u) ≤ GTϕ(θ0)
)

.

‖u‖2 can potentially be large as it represents the discrepancy θ̂ − θ0 normalized by
νT . Now based on the convexity of the objective function, we have

{∃u∗, ‖u∗‖2 ≥ Cε,GTϕ(θ0 + νT u∗) ≤ GTϕ(θ0)
}

⊂ {∃ū, ‖ū‖2 = Cε,GTϕ(θ0 + νT ū) ≤ GTϕ(θ0)
}
, (8)

a relationship that allows us to work with a fixed ‖u‖2. Let us define θ1 = θ0 + νT u∗
such that GTϕ(θ1) ≤ GTϕ(θ0). Let α ∈ (0, 1) and θ = αθ1 + (1 − α)θ0. Then by
convexity of GTϕ(.), we obtain

GTϕ(θ) ≤ αGTϕ(θ1) + (1 − α)GTϕ(θ0) ≤ GTϕ(θ0).

We pick α such that ‖ū‖ = Cε with ū := αθ1 + (1 − α)θ0. Hence (8) holds, which
implies

P(‖θ̂ − θ0‖ > CενT ) ≤ P(∃u ∈ R
d , ‖u‖2 ≥ Cε : GTϕ(θ0 + νT u) ≤ GTϕ(θ0))

≤ P(∃ū, ‖ū‖2 = Cε : GTϕ(θ0 + νT ū) ≤ GTϕ(θ0)).

Hence, we pick a u such that ‖u‖2 = Cε . Using p1(λT , α, 0) = 0 and p2(γT , ξ, 0) =
0, by a Taylor expansion to GT l(θ0 + νT u), we obtain
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GTϕ(θ0 + νT u) − GTϕ(θ0) = νT ĠT l(θ0)u + ν2T

2
u′
G̈T l(θ0)u

+ ν3T

6
∇′{u′

G̈T l(θ̄)u}u + p1(λT , α, θT )

− p1(λT , α, θ0) + p2(γT , ξ, θT ) − p2(γT , ξ, θ0),

where θ̄ is defined as ‖θ̄ − θ0‖ ≤ ‖θT − θ0‖. We want to prove

P(∃u, ‖u‖2 = Cε : ĠT l(θ0)u + νT

2
E[u′

G̈T l(θ0)u] + νT

2
RT (θ0)

+ ν2T

6
∇′{u′

G̈T l(θ̄)u}u + ν−1
T { p1(λT , α, θT ) − p1(λT , α, θ0)

+ p2(γT , ξ, θT ) − p2(γT , ξ, θ0)} ≤ 0) < ε, (9)

where RT (θ0) =
d∑

k,l=1
ukul{∂2θkθlGT l(θ0) − E[∂2θkθlGT l(θ0)]}. By Assumption 1,

(εt ) is a non-anticipative stationary solution and is ergodic. As a square integrable
martingale difference by Assumption 4,

√
T ĠT l(θ0)u

d−→ N (0, u′
Mu),

by the central limit theorem of Billingsley (1961), which implies ĠT l(θ0)u =
Op(T−1/2u′

Mu). By the ergodic theorem of Billingsley (1995), we have

G̈T l(θ0)
P−→

T→∞ H.

This impliesRT (θ0) = op(1). Furthermore, by the Markov inequality, for b > 0

P(∃u, ‖u‖2 = Cε : sup
θ̄ :‖θ−θ0‖2≤νT Cε

|ν
2
T

6
∇′{u′

G̈T l(θ̄)u}u| > b) ≤ ν4TC
6
ε

36b2
η(Cε),

where η(Cε) is defined in Assumption 6. We now focus on the penalty terms. As
p1(λT , α, 0) = 0, for the l1 norm penalty, we have

p1(λT , α, θT ) − p1(λT , α, θ0) = λT T
−1
∑

k∈S
αk

{
‖θ (k)

0 + νT u(k)‖1 − ‖θ (k)
0 ‖1

}
,

and | p1(λT , α, θT ) − p1(λT , α, θ0)| ≤ card(S){max
k∈S

αk}λT T
−1νT ‖u‖1.
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As for the l1/l2 norm, we obtain

p2(γT , ξ, θT ) − p2(γT , ξ, θ0) = γT T
−1
∑

l∈S
ξl

{
‖θ (l)

T ‖2 − ‖θ (l)
0 ‖2

}
,

and | p2(γT , ξ, θT ) − p2(γT , ξ, θ0)| ≤ γT T
−1
∑

l∈S
ξlνT ‖u(l)‖2

≤ card(S)

{
max
l∈S

ξl

}
γT T

−1νT ‖u‖2.

Then denoting by δT = λmin(H)C2
ε νT /2, and using

νT

2
E[u′

G̈T l(θ0)u] ≥ δT , we

deduce that (9) can be bounded as

P(∃u, ‖u‖2 = Cε : ĠT l(θ0)u + νT

2
u′
G̈T l(θ0)u + ν2T

6
∇′{u′

G̈T l(θ̄)u}u
+ ν−1

T { p1(λT , α, θT ) − p1(λT , α, θ0) + p2(γT , ξ, θT )

− p2(γT , ξ, θ0)} ≤ 0)

≤ P(∃u, ‖u‖2 = Cε : |ĠT l(θ0)u| > δT /8) + P(∃u, ‖u‖2
= Cε : νT

2
|RT (θ0)| > δT /8)

+P(∃u, ‖u‖2 = Cε : |ν
2
T

6
∇′ {u′

G̈T l(θ̄)u
}
u| > δT /8)

+P(∃u, ‖u‖2 = Cε : | p1(λT , α, θT ) − p1(λT , α, θ0)| > νT δT /8)

+P(∃u, ‖u‖2 = Cε : | p2(γT , ξ, θT ) − p2(γT , ξ, θ0)| > νT δT /8).

We also have for Cε and T large enough, and using norm equivalences that

P(∃u, ‖u‖2 = Cε : | p1(λT , α, θT ) − p1(λT , α, θ0)| > νT δT /8)

≤ P(∃u, ‖u‖2 = Cε : card(S){max
k∈S αk}λT T

−1νT ‖u‖1 > νT δT /8) < ε/5,

P(∃u, ‖u‖2 = Cε : | p2(γT , ξ, θT ) − p2(γT , ξ, θ0)| > νT δT /8)

≤ P(∃u, ‖u‖2 = Cε : card(S){max
l∈S ξl}γT T−1νT ‖u‖2 > νT δT /8) < ε/5.

Moreover, if νT = T−1/2 + λT T−1a + γT T−1b, then for Cε large enough

P(∃u, ‖u‖2 = Cε : |ĠT l(θ0)u| > δT /8) ≤ C2
εCst

T δ2T
≤ Cst

C4
ε

< ε/5.

Moreover

P(∃u, ‖u‖2 = Cε : sup
θ̄ :‖θ̄−θ0‖2<νT Cε

|ν
2
T

6
∇′{u′

G̈T l(θ̄)u}u| > δT /8)
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≤ Cstν
4
T η(Cε)

δ2T
≤ Cstν

2
TC

2
ε η(Cε)

where Cst > 0 is a generic constant. We obtain

P(∃u, ‖u‖2 = Cε : |ĠT l(θ0)u| > δT /8) + P(∃u, ‖u‖2 = Cε : νT

2
|RT (θ0)| > δT /8)

+P(∃u, ‖u‖2 = Cε : |ν
2
T

6
∇′{u′

G̈T l(θ̄)u}u| > δT /8)

+P(∃u, ‖u‖2 = Cε : | p1(λT , α, θ0) − p1(λT , α, θT )| > νT δT /8)

+P(∃u, ‖u‖2 = Cε : | p2(γT , ξ, θ0) − p2(γT , ξ, θT )| > νT δT /8)

≤ Cst

C4
ε

+ ν2TC
2
ε η(Cε)Cst + 3ε/5 ≤ ε,

for Cε and T large enough. We then deduce ‖θ̂ − θ0‖ = Op(νT ). ��
Proof of Theorem 3 Let u ∈ R

d such that θ = θ0+u/T 1/2 andwe define the empirical
criterion FT (u) = TGT (ϕ(θ0 + u/T 1/2) − ϕ(θ0)). First, we are going to prove the
finite distributional convergence of FT to F∞. Then we use the convexity of FT (.) to
obtain the convergence in distribution of the arg min empirical criterion to the arg min
process limit. To do so, let u = √

T (θ − θ0). We have

FT (u) = T
{
GT (l(θ) − l(θ0)) + p1(λT , α, θ) − p1(λT , α, θ0) + p2(γT , ξ, θ)

− p2(γT , ξ, θ0)
}

= TGT (l(θ0 + u/T 1/2) − l(θ0)) + λT

m∑

k=1

αk

[
‖θ (k)

0 + u(k)/
√
T ‖1 − ‖θ (k)

0 ‖1
]

+ γT

m∑

l=1

ξl

[
‖θ (l)

0 + u(l)/
√
T ‖2 − ‖θ (l)

0 ‖2
]
,

where FT (.) is convex and C0(Rd). We now prove the finite dimensional distribution
of FT to F∞ to apply Lemma 1. For the l1 penalty, for any group k, we have for T
sufficiently large

‖θ (k)
0 + u(k)/

√
T ‖1 − ‖θ (k)

0 ‖1 = T−1/2
ck∑

i=1

{
|u(k)

i |1
θ

(k)
0,i =0

+ u(k)
i sgn(θ(k)

0,i )1θ
(k)
0,i 
=0

}
,

which implies that

λT

m∑

k=1

αk

[
‖θ (k)

0 + u(k)/
√
T ‖1 − ‖θ (k)

0 ‖1
]

−→
T→∞ λ0

m∑

k=1

αk

ck∑

i=1

{
|u(k)

i |1
θ

(k)
0,i =0

+ u(k)
i sgn(θ(k)

0,i )1θ
(k)
0,i 
=0

}
,
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under the condition that λT /
√
T → λ0. As for the l1/l2 quantity, for any group l, we

have

‖θ (l)
0 + u(l)/

√
T ‖2 − ‖θ (l)

0 ‖2 = T−1/2

{
‖u(l)‖21θ

(l)
0 =0 + u(l)′θ (l)

0

‖θ (l)
0 ‖2

1
θ

(l)
0 
=0

}
+ o(T−1).

Consequently, if γT T−1/2 → γ0 ≥ 0, we obtain

γT

m∑

l=1

ξl

[
‖θ (l)

0 + u(l)/
√
T ‖2 − ‖θ (l)

0 ‖2
]

= γ0

m∑

l=1

ξl

{
‖u(l)‖21θ

(l)
0,k=0

+u(l)′θ (l)
0

‖θ (l)
0 ‖2

1
θ

(l)
0 
=0

}
+ o(T−1)γT .

Now for the unpenalized criterion GT l(.), by a Taylor expansion, we have

TGT (l(θ0 + u/T 1/2) − l(θ0)) = u′T 1/2
ĠT l(θ0) + 1

2
u′
G̈T l(θ0)u

+ 1

6T 1/3∇′{u′
G̈T l(θ̄)u}u,

where θ̄ is defined as ‖θ̄ − θ0‖ ≤ ‖u‖/√T . Then by Assumption 4, we have the
central limit theorem of Billingsley (1961)√

T ĠT l(θ0)
d−→ N (0,M), and by the ergodic theorem G̈T l(θ0)

P−→
T→∞ H. Fur-

thermore, we have by Assumption 6

|∇′{u′
G̈T l(θ̄)u}u|2

≤ 1

T 2

T∑

t,t ′=1

d∑

k1,l1,m1

d∑

k2,l2,m2

uk1ul1um1uk2ul2um2 |∂3θk1θl1θm1
l(εt ; θ̄).∂3θk2 θl2 θm2

l(εt ′ ; θ̄)|

≤ 1

T 2

T∑

t,t ′=1

d∑

k1,l1,m1

d∑

k2,l2,m2

uk1ul1um1uk2ul2um2υt (C)υt ′(C),

forC large enough, such that υt (C) = sup
k,l,m=1,...,d

{ sup
θ :‖θ−θ0‖2≤νT C

|∂3θkθlθm l(εt ; θ)|}with
νT = T−1/2+λT T−1aT+γT T−1bT .Wededuce∇′{u′

G̈T l(θ̄)u}u = Op(‖u‖32η(C)).
We obtain

1

6T 1/3∇′{u′
G̈T l(θ̄)u}u P−→

T→∞ 0.
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Then we proved that FT (u)
d−→ F∞(u), for a fixed u. Let us observe that

u∗
T = arg min

u
{FT (u)},

and FT (.) admits as a minimizer u∗
T = √

T (θ̂ − θ0). As FT is convex and F∞ is
continuous, convex and has a unique minimum by Assumption 5, then by convexity
Lemma 1, we obtain

√
T (θ̂ − θ0) = arg min

u
{FT } d−→ arg min

u
{F∞}.

��

Proof of Proposition 1 In Theorem 3, we proved
√
T (θ̂ − θ0) := arg min

u∈Rd
{FT } d−→

arg min
u∈Rd

{F∞} for λT /
√
T → λ0 and γT /

√
T → γ0. The limit random function is

F∞(u) = 1

2
u′
Hu + u′Z + λ0

m∑

k=1

αk

ck∑

i=1

{
|u(k)

i |1
θ

(k)
0,i =0

+ u(k)
i sgn(θ(k)

0,i )1θ
(k)
0,i 
=0

}

+ γ0

m∑

l=1

ξl{‖u(l)‖21θ
(l)
0 =0 + u(l)′θ (l)

0

‖θ (l)
0 ‖2

1
θ

(l)
0 
=0}.

First, let us observe that

{Â=A}=
{
∀k=1, . . . ,m, i ∈Ac

k, θ̂
(k)
i =0

}
∩
{
∀k=1, . . . ,m, i ∈Âc

k, θ
(k)
0,i =0

}
.

Both sets describing {Â = A} are symmetric, and thus we can focus on

{Â = A} ⇒
{
∀k = 1, . . . ,m, i ∈ Ac

k, T
1/2θ̂

(k)
i = 0

}
.

Hence

P(Â = A) ≤ P

(
∀k = 1, . . . ,m,∀i ∈ Ac

k, T
1/2θ̂

(k)
i = 0

)
.

Denoting by u∗ := arg min
u∈Rd

{F∞(u)}, Theorem 3 corresponds to
√
T (θ̂A−θ0,A)

d−→
u∗
A. By the Portmanteau theorem (see Wellner and van der Vaart 1996), we have

lim sup
T→∞

P(∀k = 1, . . . ,m,∀i ∈ Ac
k , T

1/2θ̂
(k)
i = 0) ≤ P(∀k = 1, . . . ,m,∀i ∈ Ac

k , u
(k)∗
i = 0),
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as θ0,Ac = 0. Consequently, we need to prove that the probability of the right-hand
side is strictly inferior to 1, which is upper-bounded by

P(∀k = 1, . . . ,m,∀i ∈ Ac
k, u

(k)∗
i = 0) ≤

min(P(k /∈ S, u(k)∗ = 0),P(k ∈ S,∀i ∈ Ac
k, u

(k)∗
i = 0)). (10)

If λ0 = γ0 = 0, then u∗ = −H
−1Z so that Pu∗ = N (0,H−1

MH
−1). Hence c = 0.

If λ0 
= 0 or γ0 
= 0, the necessary and sufficient optimality conditions for a group
k tell us that u∗ satisfies

⎧
⎪⎨

⎪⎩
(Hu∗ + Z)(k) + λ0αk p(k) + γ0ξk

θ
(k)
0

‖θ (k)
0 ‖2

= 0, k ∈ S,

(Hu∗ + Z)(k) + λ0αkw
(k) + γ0ξk z(k) = 0, otherwise,

(11)

where w(k) and z(k) are the subgradients of ‖u(k)‖1 and ‖u(k)‖2 given by

w
(k)
i

{
= sgn(u(k)

i ) if u(k)
i 
= 0,

∈ {w(k)
i : |w(k)

i | ≤ 1} if u(k)
i = 0,

z(k)

⎧
⎪⎨

⎪⎩
= u(k)

‖u(k)‖2 if u
(k) 
= 0,

∈ {z(k) : ‖z(k)‖2 ≤ 1} if u(k) = 0,

and p(k)
i = ∂ui {|u(k)

i |1
θ

(k)
0,i =0

+ u(k)
i sgn(θ(k)

0,i )1θ
(k)
0,i 
=0

}.
If u(m)∗ = 0,∀m /∈ S, then the optimality conditions (11) become

{
HSSu∗

S + ZS + λ0τS + γ0ζS = 0,
‖ − H(l)Su∗

S − Z(l) − λ0αlw
(l)‖2 ≤ γ0ξl , as ‖z(l)‖2 ≤ 1, l ∈ Sc,

(12)

with τS = vec(k ∈ S, αk p(k)) and ζS = vec(k ∈ S, ξk
θ

(k)
0

‖θ (k)
0 ‖2

), which are vectors of

R
card(S).
For k ∈ S, that is, the vector θ

(k)
0 is at least nonzero, then

⎧
⎪⎨

⎪⎩
(Hu∗ + Z)i + λ0αksgn(θ

(k)
0,i ) + γ0ξk

θ
(k)
0,i

‖θ (k)
0 ‖2

= 0, if k ∈ S, i ∈ Ak,

(Hu∗ + Z)i + λ0αkw
(k)
i = 0, i ∈ Ac

k .

(13)

Consequently, if u(k)∗
i = 0,∀i ∈ Ac

k , with k ∈ S, then the conditions (13) become

⎧
⎨

⎩
HAkAku

∗
Ak

+ ZAk + λ0αksgn(θ0,Ak ) + γ0ξk
θ0,Ak

‖θ0,Ak‖2
= 0,

| − (HAc
kAku

∗
Ak

+ ZAc
k
)i | ≤ λ0αk .
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Combining relationships in (12), we obtain

‖H(l)SH−1
SS(ZS + λ0τS + γ0ζS) − Z(l) − λ0αlw

(l)‖2 ≤ γ0ξl , l ∈ Sc.

The same reasoning applies for active groups with inactive components, so that com-
bining relationships in (13), we obtain

|
(
HAc

kAkH
−1
AkAk

(
ZAk + λ0αksgn(θ0,Ak ) + γ0ξk

θ0,Ak

‖θ0,Ak‖2

)
− ZAc

k

)

i

| ≤ λ0αk .

Hence we deduce

P(∀k = 1, . . . ,m,∀ ∈ Ac
k, u

(k)∗
i = 0) ≤

min(P(k /∈ S, u(k)∗ = 0),P(k ∈ S,∀i ∈ Ac
k, u

(k)∗
i = 0)) := min(a1, a2).

Under the assumption that λ0 < ∞ and γ0 < ∞, we obtain

a1 = P(l ∈ Sc, ‖H(l)SH−1
SS(ZS + λ0τS + γ0ζS) − Z(l) − λ0αlw

(l)‖2 ≤ γ0ξl) < 1,

a2 = P(k ∈ S, i ∈ Ac
k, |(HAc

kAkH
−1
AkAk

(ZAk + λ0αksgn(θ0,Ak )

+γ0ξk
θ0,Ak

‖θ0,Ak‖2
) − ZAc

k
)i | ≤ λ0αk) < 1.

Thus c < 1, which proves (10), that is proposition 1. ��
Proof of Theorem 4 The proof relies on the same steps as in the proof of Theorem 2.

��
Proof of Theorem 5 We start with the asymptotic distribution and proceed as in the
proof of Theorem3,wherewe usedLemma1. To do so,we prove the finite dimensional
convergence in distribution of the empirical criterion FT (u) to F∞(u) with u ∈ R

d ,
where these quantities are, respectively, defined as

FT (u) = TGT (ψ(θ0 + u/
√
T ) − ψ(θ0))

= TGT (l(θ0 + u/
√
T ) − l(θ0)) + λT

m∑

k=1

ck∑

i=1

α
(k)
T ,i

[
|θ(k)
0,i + u(k)

i /
√
T | − |θ(k)

0,i |
]

+ γT

m∑

l=1

ξT ,l

[
‖θ (l)

0 + u(l)/
√
T ‖2 − ‖θ (l)

0 ‖2
]
,

and

F∞(u) =
⎧
⎨

⎩

1

2
u′
AHAAuA + u′

AZA if ui = 0, when i /∈ A, and

∞ otherwise,
(14)
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with ZA ∼ N (0,MAA). By Lemma 1, the finite dimensional convergence in distribu-

tion implies arg min
u∈Rd

{FT (u)} d−→ arg min
u∈Rd

{F∞(u)}. We first consider the unpenalized

empirical criterion of FT (.), which can be expanded as

TGT (ψ(θ0 + u/
√
T ) − ψ(θ0)) = T 1/2

ĠT l(θ0)u + u′

2
G̈T l(θ0)u

+ 1

6T 1/3∇′{u′
G̈T l(θ̄)}u,

where θ̄ lies between θ0 and θ0 + u/
√
T . First, using the same reasoning on the

third-order term, we obtain
1

6T 1/3∇′{u′
G̈T l(θ̄)}u P−→

T→∞ 0. By the ergodic theorem,

we deduce G̈T l(θ0)
P−→

T→∞ H and by Assumption 4,
√
T ĠT l(θ0)

d−→ N (0,M).

We now focus on the penalty terms of (4), we remind that α(k)
T ,i = |θ̃ (k)

i |−η, so that

for i ∈ Ak, k ∈ S, θ̃ (k)
i

P−→
T→∞ θ

(k)
0,i 
= 0. Note that

√
T (|θ (k)

0,i + u(k)
i /

√
T | − |θ (k)

0 |] P−→
T→∞ u(k)

i sgn(θ(k)
0,i )1θ

(k)
0,i 
=0

.

This implies that, for i ∈ Ak , k ∈ S, we have

λT T
−1/2

ck∑

i=1

α
(k)
T ,i

√
T (|θ(k)

0,i + u(k)
i /

√
T | − |θ(k)

0,i |)
P−→

T→∞ 0,

under the condition λT T−1/2 → 0. For i ∈ Ac
k , θ

(k)
0,i = 0, then T η/2(|θ̃ (k)

i |)η = Op(1).

Hence under the assumption λT T (η−1)/2 → ∞, we obtain

λT T
−1/2α

(k)
T ,i

√
T
(
|θ(k)
0,i + u(k)

i /
√
T | − |θ(k)

0,i |
)

= λT T
−1/2|u(k)

i | T η/2

(T 1/2|θ̃ (k)
i |)η

P−→
T→∞ ∞. (15)

As for the l1/l2 quantity, we remind that ξT ,l = ‖θ̃ (l)‖−μ
2 , so that for l ∈ S,

θ̃
(l) P−→

T→∞ θ
(l)
0 , and in this case

√
T
{
‖θ (l)

0 + u(l)/
√
T ‖2 − ‖θ (l)

0 ‖2
}

= u(l)′θ (l)
0

‖θ (l)
0 ‖2

+ o
(
T−1/2

)
.
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Consequently, using γT T−1/2 → 0, and for l ∈ S, we obtain

γT T
−1/2

√
T ξT ,l

(
‖θ (l)

0 + u(l)/
√
T ‖2 − ‖θ (l)

0 ‖2
)

P−→
T→∞ 0.

Combining the fact k ∈ S and θ
(k)
0 is partially zero, that is i ∈ Ac

k , we obtain the

divergence given in (15). Furthermore, if l /∈ S, that is θ
(l)
0 = 0, then

√
T
{
‖θ (l)

0 + u(l)/
√
T ‖2 − ‖θ (l)

0 ‖2
}

= ‖u(l)‖2,

and Tμ/2(‖θ̃ (l)‖2)μ = Op(1). Then by γT T (μ−1)/2 → ∞ we have

γT T
−1/2ξT ,l

√
T
[
‖θ (l)

0 + u(l)/
√
T ‖2 − ‖θ (l)

0 ‖2
]

= γT T
−1/2‖u(l)‖2 Tμ/2

(T 1/2‖θ̃ (l)‖2)μ
P−→

T→∞ ∞.

We deduce the pointwise convergence FT (u)
d−→ F∞(u), where F∞(.) is given

in (14). As FT (.) is convex and F∞(.) is convex and has a unique minimum
(H−1

AAZA, 0Ac ) since H is positive definite, by Lemma 1, we obtain

√
T (θ̂ − θ0) = arg min

u∈Rd
{FT (u)} d−→ arg min

u∈Rd
{F∞(u)},

that is to say
√
T (θ̂A − θ0,A)

d−→ H
−1
AAZA, and

√
T (θ̂Ac − θ0,Ac )

d−→ 0Ac .
We now prove the model selection consistency. Let i ∈ Ak , then by the asymptotic

normality result, θ̂
(k)
i

P−→
T→∞ θ

(k)
0 , which implies P(i ∈ Âk) → 1. Thus the proof

consists of proving

∀k = 1, . . . ,m,∀i ∈ Ac
k,P(i ∈ Âk) → 0.

This problem can be split into two parts as

∀k /∈ S,P(k ∈ Ŝ) → 0, and ∀k ∈ S,∀i ∈ Ac
k,P(i ∈ Âk) → 0. (16)

Let us start with the case k /∈ S. If k ∈ Ŝ, by the optimality conditions given by the
Karush–Kuhn–Tucker theorem applied on GTψ(θ̂), we have

ĠT l(θ̂)(k) + λT

T
α

(k)
T � ŵ

(k) + γT

T
ξT ,k

θ̂
(k)

‖θ̂ (k)‖2
= 0,
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� is the element-by-element vector product, and

ŵ
(k)
i

{
= sgn(θ̂ (k)

i ) if θ̂
(k)
i 
= 0,

∈ {ŵ(k)
i : |ŵ(k)

i | ≤ 1} if θ̂
(k)
i = 0.

Multiplying the unpenalized part by T 1/2, we have the expansion

T 1/2
ĠT l(θ̂)(k) = T 1/2

ĠT l(θ0)(k) + T 1/2
G̈T l(θ0)(k)(k)(θ̂ − θ0)(k)

+ T 1/2∇′{(θ̂ − θ0)
′
(k)G̈T l(θ̄)(k)(k)(θ̂ − θ0)(k)},

which is asymptotically normal by consistency, Assumption 6 regarding the bound on
the third-order term, the Slutsky theorem and the central limit theorem of Billingsley
(1961). Furthermore, we have

γT T
−1/2ξT ,k

θ̂
(k)

‖θ̂ (k)‖2
= γT T

(μ−1)/2(T 1/2‖θ̃ (k)‖2)−μ
θ̂

(k)

‖θ̂ (k)‖2
P−→

T→∞ ∞.

Then using T (μ−η)/2γT λ−1
T → ∞, we have

∀k /∈ S,P(k ∈ Ŝ) ≤ P

⎛

⎝−ĠT l(θ̂)(k) = λT

T
α

(k)
T � ŵ

(k)
i + γT

T
ξT ,k

θ̂
(k)

‖θ̂ (k)‖2

⎞

⎠ → 0.

We now pick k ∈ S and consider the event {i ∈ Âk}. Then the Karush–Kuhn–Tucker
conditions for GTψ(θ̂) are given by

(ĠT l(θ̂))(k),i + λT

T
α

(k)
T ,i sgn(θ̂

(k)
T ,i ) + γT

T
ξT ,k

θ̂
(k)
i

‖θ̂ (k)‖2
= 0.

Using the same reasoning as previously, T 1/2(ĠT l(θ̂))(k),i is also asymptotically nor-

mal, and θ̃
(k) P−→

T→∞ θ
(k)
0 for k ∈ S, and besides

λT T
−1/2α

(k)
T ,i sgn(θ̂

(k)
i ) = λT

T (η−1)/2

(T 1/2|θ̃ (k)
i |)η

P−→
T→∞ ∞,

so that we obtain the same when adding γT T−1/2ξT ,k
θ̂

(k)
i

‖θ̂ (k)‖2
. Therefore, we have for

any k ∈ S and i /∈ Ak
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P(i ∈ Âk) ≤ P

(
−(ĠT l(θ̂))(k),i = λT

T
α

(k)
T ,i sgn(θ̂

(k)
i ) + γT

T
ξT ,k

θ̂
(k)
i

‖θ̂ (k)‖2

)
→ 0.

We have proved (16). ��
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