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SUPPLEMENTARY APPENDIX

Appendix A: Proof of Inequality (17)

Lemma

Let M be a model and G(z, M) be an omnibus goodness-of-fit test satisfying (11).
Then, for sufficiently large sample size n and almost all x, there exists a (non-null) set
of data vectors z* for which G(x*, M) < g, and |z(z*, M)| > z,.

Proof of Lemma

The proof follows the classic proof of the Neyman-Pearson Lemma. Consider the two
sets

{z : Gz, M) < g} and {z : |z(z,M)| < z,} .

The assumption of an omnibus test means that, with positive probability, these sets
are different. Both have the same asymptotic probability under model M, and so for
sufficiently large n there must exist values of z* (with positive probability) that belong
to the first set but not to the second.

Proof of (17)
Inequality (17) is established if, for sufficiently large n and almost all data vectors z,
we can find a model M for which

oy=0", G, M) < go, |z(x,M)| > 2z, . (32)
Let 6 be the MLE based on model My, and choose a vector v for which

<¢/T7)2 %2
Iy~ °

(33)

where ¢/ = 8¢(0)/80 evaluated at 0. It is easy to show that v satisfying (33) exists for
any 0*? < ¢? = ¢'TI~'¢/. Now consider the model N, with scalar parameter @y, that is
defined by the linear function

FN(9N> Ié—FQN’)/ .
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From (10), Dy = v and oy = o*. Model N gives an exact fit to the data in the sense
that Fx(0) = 0, and so is empirically acceptable in the sense of this paper.

Using the Lemma, for sufficiently large sample size n and for almost all z, we can
find another data vector x* for which

G(z*,N) < go, |2(z*,N)| > 2, . (34)

Let 6* be the MLE of 6 for data z* under model My, and 6% the corresponding MLE of
fn under model N. Now consider another scalar parameter model, M, defined by

where d = 6* — F, N(é}‘v) Model M is essentially the same as N but with the fitted values
of 0 shifted by the constant displacement d. Trivially, M also has Dy; =~ and o), = o*.

Geometrically, M and N can be thought of as two parallel straight lines in 6-space,
with the point 6 on the N-line projecting onto the point FM(HM) on the M-line, and the
point 6* on the M-line projecting on to the point FN(G* ) on the N-line. Using standard
first order likelihood approximations as in (12), we get
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up to Opy(n~1'). The first of these equations gives

T71()* )
Nk ) Nk A N Y I(e — 9) -1
d=0"—(0+0y7) = (0 —‘9)—7w+0p(n )
and so, from the second, we get 0y = O,(n'). Hence
d=0"—Fx(0y) = —{0 = Fu(0u)} + Op(n) . (35)

Geometrically, this means that the two projections between the N-line and the M-line
are also (approximately) parallel. As Fi(0y) = Fn(0y) + Op(n~2), (35) and (11) give

Gz, M) = G(z*,N) + Op(n"2) . (36)
Also, from (35),

0(0) — o{Far ()} = —[6(67) — o{Fw(63)}] + Op(n ")

and so, from (15),
2(z, M) = —z(z*, N) + Op(n"2) . (37)

Comparing (36) and (37) with (34) shows that, for sufficiently large n and almost all z,
model M satisfies (32).



Appendix B: Proof of Equation (30)
To simplify the notation, define
=0"P), c=¢"P¢, d=¢"PO, v*=0"0, r=0"¢)v .
There is no loss of generality if we assume that r» > 0.

First we consider the bounds, over symmetric idempotent matrices P, of the value of
d for a given value of c. To do this consider the Lagrangian

L(P)=¢"P6 — %trace{A(PQ —P)} — %y{ngg —c},

where the Lagrange multipliers are the symmetric k£ x k& matrix A and the scalar u. We
get

0
a—PL(P)—Q—AP—PA+A—O, (38)
where () is the symmetric matrix
Q=¢0" +0¢" — pee” . (39)

Pre-multiplying (38) by P, and noting that P? = P, gives PAP = PQ, from which we
get the key equation
PQ = PQP,

since PAPP = PQP. (We can also get the same equation using a Lagrangian in terms
of Ay with the constraint Ay A%, = Iy,,).
Substituting (39) for @ in

£'PQE = ¢TPQPE (40)
and identifying each term in the above notation, gives
rve +d — pc = 2cd — pc? .

Similarly, replacing one or the other of the vectors £ to the left and right of each side of
(40) by 6 gives two further equations, and hence simultaneous equations from which we
can eliminate b and p to get

d* — 2rved = cr®v? 4 ¢(1 — c)v? .
This is a quadratic equation for d whose roots give the maximum and minimum
vire —{c(1 —¢)(1 —r?)}2] < d < v[re+ {e(1 — o) (1 — 2)}2] . (41)

To satisty |z| < z, we also need (29), which in this notation is
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The confidence limits are
Cly = (d—bc2 , d+6c2) .

For large n, we are interested in these limits when ¢ is small.
To prove (30), we first fix ¢ and find the maximum of d + scz for d satisfying both
(41) and (42), and then maximize over c¢. This is max{fs3(c)} where

file) = v[re+{c(l —0)(1 —ﬁ)}%]
fale) = ro+6(1—c)2
f3(c) = min{fi(c), falc)} + e .

Elementary calculation shows that

file) < fale) ife<c*
fi(e) > fale) ife>c,

where, to first order in 9,

D=

1— 2
v

and so )
file) +dc2  ife<
folc)+6cz ife>e [

fs(e) = {

Note that f3(c) has a discontinuity in first derivative at ¢ = ¢*. The first derivative
to the left is v
Fi(e =) = 5=+ 00)

which is positive when § is small. In fact f3(c) is an increasing function for ¢ < ¢*. The

derivative to the right is
0 { >0 ifr<2: }
—r}= :

2r(1 — r2)z

N

f3(c+) = {1 =%

<0 ifr>2:

It follows that the maximum of f3(c) is attained at ¢ = ¢* if r > 273 and at ¢ = ¢** if
r < 2_%, where ¢** > ¢* is the solution to

0 1 0, _1 _1
O rachy =2t - -y =0,

This gives ¢** = L which, for large n, exceeds ¢* = r2 + O(8) when r < 272. Thus we

2
have equation (30),

_ [ fo(3) =ro+ 230 iy <27
max{ f3(c)} = { fg(;*) —rv+o{(1 =125 +r) ifr>273



