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SUPPLEMENTARY APPENDIX

Appendix A: Proof of Inequality (17)

Lemma
Let M be a model and G(x,M) be an omnibus goodness-of-fit test satisfying (11).

Then, for sufficiently large sample size n and almost all x, there exists a (non-null) set
of data vectors x∗ for which G(x∗,M) ≤ gα and |z(x∗,M)| > zα.

Proof of Lemma
The proof follows the classic proof of the Neyman-Pearson Lemma. Consider the two

sets
{x : G(x,M) ≤ gα} and {x : |z(x,M)| ≤ zα} .

The assumption of an omnibus test means that, with positive probability, these sets
are different. Both have the same asymptotic probability under model M , and so for
sufficiently large n there must exist values of x∗ (with positive probability) that belong
to the first set but not to the second.

Proof of (17)
Inequality (17) is established if, for sufficiently large n and almost all data vectors x,

we can find a model M for which

σM = σ∗ , G(x,M) ≤ gα , |z(x,M)| > zα . (32)

Let θ̂ be the MLE based on model M0, and choose a vector γ for which

(ϕ′Tγ)2

γT Iγ
= σ∗2 , (33)

where ϕ′ = ∂ϕ(θ)/∂θ evaluated at θ̂. It is easy to show that γ satisfying (33) exists for
any σ∗2 ≤ σ2 = ϕ′T I−1ϕ′. Now consider the model N , with scalar parameter θN , that is
defined by the linear function

FN(θN) = θ̂ + θNγ .

1



From (10), DN = γ and σN = σ∗. Model N gives an exact fit to the data in the sense
that FN(0) = θ̂, and so is empirically acceptable in the sense of this paper.

Using the Lemma, for sufficiently large sample size n and for almost all x, we can
find another data vector x∗ for which

G(x∗, N) ≤ gα , |z(x∗, N)| > zα . (34)

Let θ̂∗ be the MLE of θ for data x∗ under model M0, and θ̂∗N the corresponding MLE of
θN under model N . Now consider another scalar parameter model, M , defined by

FM(θM) = θ̂ + d+ θMγ ,

where d = θ̂∗−FN(θ̂
∗
N). Model M is essentially the same as N but with the fitted values

of θ shifted by the constant displacement d. Trivially, M also has DM = γ and σM = σ∗.
Geometrically, M and N can be thought of as two parallel straight lines in θ-space,

with the point θ̂ on the N -line projecting onto the point FM(θ̂M) on the M -line, and the
point θ̂∗ on the M -line projecting on to the point FN(θ̂

∗
N) on the N -line. Using standard

first order likelihood approximations as in (12), we get

θ̂∗N =
γT I(θ̂∗ − θ̂)

γT Iγ
, θ̂M = −γT Id

γT Iγ

up to Op(n
−1). The first of these equations gives

d = θ̂∗ − (θ̂ + θ̂∗Nγ) = (θ̂∗ − θ̂)− γ
γT I(θ̂∗ − θ̂)

γT Iγ
+Op(n

−1) ,

and so, from the second, we get θ̂M = Op(n
−1). Hence

d = θ̂∗ − FN(θ̂
∗
N) = −{θ̂ − FM(θ̂M)}+Op(n

−1) . (35)

Geometrically, this means that the two projections between the N -line and the M -line
are also (approximately) parallel. As FM(θ̂M) = FN(θ̂

∗
N) +Op(n

− 1
2 ), (35) and (11) give

G(x,M) = G(x∗, N) +Op(n
− 1

2 ) . (36)

Also, from (35),

ϕ(θ̂)− ϕ{FM(θ̂M)} = −[ϕ(θ̂∗)− ϕ{FN(θ̂
∗
N)}] +Op(n

−1) ,

and so, from (15),

z(x,M) = −z(x∗, N) +Op(n
− 1

2 ) . (37)

Comparing (36) and (37) with (34) shows that, for sufficiently large n and almost all x,
model M satisfies (32).
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Appendix B: Proof of Equation (30)

To simplify the notation, define

b2 = θ̂TP θ̂ , c = ξTPξ , d = ξTP θ̂ , v2 = θ̂T θ̂ , r = θ̂T ξ/v .

There is no loss of generality if we assume that r ≥ 0.
First we consider the bounds, over symmetric idempotent matrices P , of the value of

d for a given value of c. To do this consider the Lagrangian

L(P ) = ξTP θ̂ − 1

2
trace{Λ(P 2 − P )} − 1

2
µ{ξTPξ − c} ,

where the Lagrange multipliers are the symmetric k × k matrix Λ and the scalar µ. We
get

∂

∂P
L(P ) = Q− ΛP − PΛ + Λ = 0 , (38)

where Q is the symmetric matrix

Q = ξθ̂T + θ̂ξT − µξξT . (39)

Pre-multiplying (38) by P , and noting that P 2 = P , gives PΛP = PQ, from which we
get the key equation

PQ = PQP ,

since PΛPP = PQP . (We can also get the same equation using a Lagrangian in terms
of AM with the constraint AMAT

M = IkM ).
Substituting (39) for Q in

ξTPQξ = ξTPQPξ , (40)

and identifying each term in the above notation, gives

rvc+ d− µc = 2cd− µc2 .

Similarly, replacing one or the other of the vectors ξ to the left and right of each side of
(40) by θ̂ gives two further equations, and hence simultaneous equations from which we
can eliminate b and µ to get

d2 − 2rvcd = cr2v2 + c(1− c)v2 .

This is a quadratic equation for d whose roots give the maximum and minimum

v[rc− {c(1− c)(1− r2)}
1
2 ] ≤ d ≤ v[rc+ {c(1− c)(1− r2)}

1
2 ] . (41)

To satisfy |z| ≤ zα we also need (29), which in this notation is

rv − δ(1− c)
1
2 ≤ d ≤ rv + δ(1− c)

1
2 . (42)
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The confidence limits are

CIM = (d− δc
1
2 , d+ δc

1
2 ) .

For large n, we are interested in these limits when δ is small.
To prove (30), we first fix c and find the maximum of d + δc

1
2 for d satisfying both

(41) and (42), and then maximize over c. This is max{f3(c)} where

f1(c) = v[rc+ {c(1− c)(1− r2)}
1
2 ]

f2(c) = rv + δ(1− c)
1
2

f3(c) = min{f1(c), f2(c)}+ δc
1
2 .

Elementary calculation shows that

f1(c) < f2(c) if c < c∗

f1(c) > f2(c) if c > c∗ ,

where, to first order in δ,

c∗ = r2 + 2δ
r(1− r2)

1
2

v
,

and so

f3(c) =

{
f1(c) + δc

1
2 if c < c∗

f2(c) + δc
1
2 if c > c∗

}
. .

Note that f3(c) has a discontinuity in first derivative at c = c∗. The first derivative
to the left is

f ′
3(c

∗−) =
v

2r
+O(δ) ,

which is positive when δ is small. In fact f3(c) is an increasing function for c < c∗. The
derivative to the right is

f ′
3(c

∗+) =
δ

2r(1− r2)
1
2

{(1− r2)
1
2 − r} =

{
> 0 if r < 2−

1
2

< 0 if r > 2−
1
2

}
.

It follows that the maximum of f3(c) is attained at c = c∗ if r > 2−
1
2 and at c = c∗∗ if

r < 2−
1
2 , where c∗∗ > c∗ is the solution to

∂

∂c
{f2(c) + δc

1
2} =

δ

2
{c−

1
2 − (1− c)−

1
2} = 0 .

This gives c∗∗ = 1
2
which, for large n, exceeds c∗ = r2 + O(δ) when r < 2−

1
2 . Thus we

have equation (30),

max
c

{f3(c)} =

{
f3(

1
2
) = rv + 2

1
2 δ if r ≤ 2−

1
2

f3(x
∗) = rv + δ{(1− r2)

1
2 + r) if r > 2−

1
2

.
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