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Abstract
Most statisticalmethods are based onmodels, butmost practical applications ignore the
fact that the results depend on the model as well as on the data. This paper examines
the size of this model dependence, and finds that there can be very considerable
variation between the results of fitting different models to the same data, even if the
models being considered are restricted to those which give an acceptable fit to the data.
Under reasonable regularity conditions, we show that different empirically acceptable
models can give rise to non-overlapping confidence intervals for the same parameter.
Application papers need to recognize that the validity of conventional statistical results
rests on the assumption that the underlying model is known to be correct, and that this
is a much stronger requirement than merely confirming that the model gives a good
fit to the data. The problem of model dependence is only partially resolved by using
formal methods of model selection or model averaging.

Keywords Goodness-of-fit · Model choice · Model uncertainty · Subset selection

1 Introduction

Most statistical methods are based on a model, but the reasons for choosing any
particular model are often less than convincing. As Hodges (1987) points out, models
usually used in statistical practice are ‘... little more than conventions: they have
become conventional through constant exposition in service courses and textbooks,
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through availability in popular software packages and because their mathematical
tractability makes them inviting examples ...’. However, if we plot some relevant
aspects of the data and find good agreement with what we would expect under a
fitted model, then we usually take this as confirmation that the model, and hence our
inference based on it, is at least reasonable. The tacit assumption is that if a model
gives an acceptable fit to the data then inferences based on it will be sound. Also, we
like our models to be simple because they tend to give narrower confidence intervals
and less uncertainty. This amounts to a second tacit assumption that a simple model
is to be preferred unless the data indicate a clear need for greater complexity. It is the
consequences of these tacit assumptions that we want to discuss.

For any given dataset, there will usually be many models M that give an acceptable
fit to the data and so would appear to be reasonable models for the analysis. Different
Ms give different inferences. Imagine a paper reporting a clinical trial showing a
significant treatment effect for some new drug. The author’s analysis is based onmodel
M1. The paper is submitted to a medical journal and sent to two referees. Referee 1
checks the author’s analysis and confirms that it is correct. Referee 2 decides to do his
own independent re-analysis of the data and disagrees with the author—this referee
uses model M2 and finds that the treatment effect is no longer significant. Realizing
that the conflicting conclusions arise solely because different models have been used,
the editor challenges the author and referee 2 to explain why they have chosen their
particular models. Both justify their model by demonstrating an acceptable fit to the
data. What should the editor decide? Arguably, the editor will reject the paper on the
grounds that the claimed significance depends on an arbitrary choice of model rather
than on the actual evidence contained in the data. It is the extent to which inferences
of this kind depend on the model, rather than on the data, that we want to look at.

Section 2 looks at two simple textbook examples. Section 2.1 (Example 1) is a
2 × 4 contingency table giving the frequencies of success/failure tabulated against 4
levels of an ordered categorical covariate. The aim is to estimate the probability of
success at a given category. We could just use the saturated model M0, which makes
no modeling assumptions at all about the probabilities in the table, or we could get
more accurate estimates by assuming that the probabilities are linked by a logistic
model, M say. These give respective confidence intervals CIM0 and CIM . There are
many possible choices for M depending on the structural assumptions made about the
ordered categories, and many of these appear to give an acceptable fit to the data as
judged by the usual χ2 test.

Section 2.2 (Example 2) is a multiple regression dataset giving observed values of
response y and 13 covariates x . The aim here is to predict the expected value of y
for a given set of xs. We could just fit the usual multiple regression model with all
13 covariates, model M0 say, giving confidence interval CIM0 , or we could try and
achieve more accurate estimates by fitting a subset regression M using only some of
the x’s, giving a shorter confidence interval CIM . Taking the usual F test as the means
of judging the adequacy of different subsets, we find that many subset regressions give
an acceptable fit to the dataset. In both examples, we are trying to reduce the number
of unknown parameters by fitting sub-models M nested within a more general model
M0.
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Although these two examples are very different, they both suggest similar conclu-
sions as far as this paper is concerned. In both examples, we are trying to estimate a
single parameter of interest, φ say, we have a base model M0, and are interested in
sub-models M , nested within M0, which we are assessing by a standard goodness-of-
fit test (χ2 or F). If M is the set of empirically acceptable models as judged by this
test, we look at the overall spread of confidence intervals given by

I = ∪M∈MCIM .

In both examples, we find that I is very much wider than CIM0 , indicating a great deal
of variability between CIMs for different empirically acceptable models. There are
many values of φ ∈ I falling substantially outside CIM0 . This means that if we take
the customary naive interpretation of a confidence interval as the set of parameter val-
ues that can be considered reasonable in the light of the data, then the uncritical use of
goodness of fit as the sole means of assessing models has the perverse consequence of
entertaining values of φ which would appear reasonable under an empirically accept-
able model, but quite unreasonable if we just relied on the basic model M0 without
making any further modelling assumptions. In both examples, we also find many
instances of pairs of models in M which have very similar goodness-of-fit statistics
but which give confidence intervals which are disjoint. So, parameter values which
are judged reasonable under one model may seem quite unreasonable under another
model, even though the two models fit the data equally well. Of course we know
that different models will give different inferences, but this degree of inconsistency
between apparently sensible models does seem surprising.

Section 3 shows that the qualitative conclusions seen in these two examples hold
much more generally, at least asymptotically. In this wider setting, covering many of
the simpler problems of practical interest, we continue to have a parameter of interest
φ, a base model M0 representing the most general model we are prepared to consider,
and a relevant goodness-of-fit statistic. Section 3.3 compares I with CIM0 and shows
that, under standard regularity conditions, I is wider than CIM0 by a factor of at least√
2. Section 3.4 examines what this means in terms of significance tests for a given

point null hypothesis of the form H0 : φ = φ0, and looks at when we have significance
for (a) at least one M ∈ M, and (b) for all M ∈ M. Conditions for (a) are extremely
weak: Given any value of φ0 there will always be at least one model M ∈ M which
indicates rejection of the null hypothesis (so the p value is essentially 1) . Condition
(b) is clearly much stronger than requiring significance under any single model and,
perversely, is considerably stronger even than requiring significance under M0. (The
required p value is much smaller than the p value we would need if we had just used
the base model M0.)

Section 4 looks more carefully at subset selection in multiple regression, again
assuming that the aim of the analysis is prediction of the response at ψ , a given vector
of the covariates. Now the models M are restricted to linear regressions on subsets of
the regressors, a special case of the more general definition of M in Sect. 3. Explicit
results show that the bounds obtained in Sect. 3.3 continue to apply for most, but not
all, values of ψ . For prediction in regression, we show that the important role of the
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parameter of interest is the angle between the vector ψ and the vector of least squares
regression coefficients in the full model.

These observations suggest that the fictitious ‘editor’s dilemma’ mentioned at the
start of this section is by no means unusual. If the editor believes that there are good
scientific reasons for preferring M1 to M2, then the conclusion indicated by M1 would
prevail (or the other way round). But if the editor views the matter as purely empirical
and accepts that in the light of the data there seems little to choose between them,
then there is good reason for rejecting the paper on the grounds that significance
depends entirely on an arbitrary choice of model. If several referees, using different
empirically acceptablemodels, all agree that the treatment is significant, then the editor
would no doubt accept the paper. But this would amount to condition (b) mentioned
above, namely that the null value φ0 would need to be outside the composite interval
I. Section 3.3 shows that condition (b) is an absurdly strong requirement; it would
be much better to abandon all additional modeling assumptions and just use M0 to
allow the data to speak for themselves. Conversely, as shown in Sect. 3.4, the fact
that the author of the paper has found an empirically acceptable model M1 leading to
significance (condition (a)) tells us almost nothing about the truth or otherwise of the
null hypothesis. All these raise questions about the customary use of goodness of fit
as the sole (or even the main) arbiter for model choice. Model diagnostics are clearly
useful if our aim is data description, but they are not enough if our aim is inference
focussed on some given parameter of interest. These and other points for discussion
are summarized in the concluding Sect. 5.

There has been much comment on what has been described as the ‘reproducibility
crisis’ in the scientific literature. Wadman (2013) reports that in a high proportion of
cases, independent researchers have been unable to verify claims made in published
research in the biomedical sciences, recalling the title of Ioannidis (2005), ‘Why most
published research findings are false.’ The inadequate reporting of data analysis is
frequently cited. Simmons et al. (2011) claim that ‘undisclosed flexibility’ in published
papers in psychology ‘allowspresenting anything as significant.’Given that a statistical
method depends on the model M on which it is based, ‘inadequate reporting of data
analysis’ implies the inadequate recognition of M and the reason that this particular
M has been selected.

Of course there is nothing new in pointing out problems caused by ignoring model
uncertainty. Many papers show that when a model is selected to be the ‘best’ model
according to some specified selection criterion, the actual coverage of the resulting
confidence interval can be noticeably less than the nominal level. Bootstrap methods
can be used to estimate marginal properties of post-selection estimates (Efron 2014).
The large literature on subset selection in regression (Miller 2002) shows, however,
that the choice of model selection criterion can be critical, with different methods
resulting in quite different subsets and sometimes sharply different predictions. There
is also a large literature on Bayesian model averaging, using a two-stage model cov-
ering uncertainty both within and between a given set of candidate models. Hoeting
et al. (1999) give an accessible introduction. However, the approach is not univer-
sally accepted: Efron (2014) refers to the ‘intimidating amount of prior knowledge’
required, and Cox (1995) argues that inferences from different models are of interest
in their own right. Hjort and Claeskens (2003) discuss a wide-ranging methodology
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for frequentist approaches to model averaging. Claeskens and Hjort (2008) provide a
good review of research in this area, including some of the information-based criteria
which are often recommended for model selection. The problem of choosing subsets
of predictors in linear regression is taken as a key example in much of this literature.

Model uncertainty is also discussed in many papers outside the usual statistical
literature. Despite the very different terminology, many papers within the machine
learning literature relate to these topics: Langford (2005) provides an accessible way
into this literature by discussing some machine learning approaches to assessing error
rates in binary classification. Of themany related papers in the econometrics literature,
Potscher (1991) andLeeb andPotscher (2005) question the commonlyheld assumption
that if a selection criterion is consistent then, for large enough sample sizes, the model
selection process can safely be ignored. Non-uniformity of convergence near model
boundaries means that asymptotic distributions can exhibit features that are not even
approximately true, however large the sample size might be. These papers also raise
doubts about the validity of some of the current model selection proposals in the
literature.

The technical nature of most of these papers, however, means that the problem
of model uncertainty is almost never mentioned in elementary statistics textbooks or
courses, and so this literature is largely inaccessible tomost users of statisticalmethods.
All too often, model-based inferences, inmedical papers for example, are reported as if
they are the definitive conclusion to be drawn from the data. The substantial variability
between model-based inferences using the same data suggests that the role of the
model is crucial and needs to be acknowledged much more widely. Demonstrating a
reasonable fit to the data is a sensible requirement but is not enough: The model also
needs to be seen as sensible in the light of the scientific context.

2 Two examples

We illustrate the variability of inference over different empirically acceptable models
by looking at two simple textbook data sets, a 2 × 4 contingency table from Everitt
(1977) and a multiple regression dataset from Royston and Sauerbrei (2008).

2.1 Example 1: modeling a contingency table

The frequencies in Table 1 record the incidence of heart disease (D) against blood
pressure (BP), grouped into four ordered categories from low (1) to high (4). Suppose
we are interested in assessing the risk at a particular blood pressure category, say level
3. Measuring probability on the logit scale defines the parameter of interest in this
case to be

φ = logit{P(D|BP = 3)}. (1)

The simplest inference for the logit φ is just to take the data in the third category as
a binomial sample with 20 cases out of n = 224 trials. With the continuity correction
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Table 1 Example 1: heart
disease (D) and blood pressure
(BP)

BP = 1 BP = 2 BP = 3 BP = 4

D 20 28 20 24

D̄ 388 527 204 118

408 555 224 142

discussed by Cox (1970) of adding 0.5 to both the number of successes and the number
of failures, and assuming normality of empirical logits, gives the bias-adjusted estimate
and 95% confidence interval

φ̂ = −2.30 , CI = (−2.75,−1.85). (2)

This is the inference from the saturated model, making no parametric modelling
assumptions about the probabilities underlying the contingency table.

The data show a steady rise in risk as we move from the lowest to the highest
category, suggesting that we would get more accurate estimates if we fitted a model to
the complete dataset. A conventional choice might be logistic regression using equally
spaced numerical scores for the ordered categories,

logit{P(D|BP = i)} = α + βxi , (3)

with the xi s given by x = (1, 2, 3, 4). Estimating (α, β) by maximum likelihood in
the usual way gives the fitted probabilities and hence the expected frequencies of the
entries in the contingency table (assuming the column totals are fixed). This gives the
chi-squared test of goodness of fit as χ2 = 2.99 on two degrees of freedom, indicating
a very acceptable fit. The corresponding estimate and confidence interval for φ are

φ̂ = −2.24 , CI = (−2.48,−2.00). (4)

The estimates are quite similar but, as expected, the model-based confidence interval
in (4) is much narrower than in (2).

The assumption of a logistic model with equally spaced xi s is clearly arbitrary.
Arguably, all we could safely assume a priori is that we have four probabilities which
increase as we go from the low to the high category. However, any increasing sequence
of probabilities can still be written in the form (3) for some increasing sequence xi .
There is no loss of generality if we linearly transform the xi s so that x1 = 0 and
x4 = 1, giving x = (0, a, b, 1) with

0 ≤ a ≤ b ≤ 1. (5)

Each fixed choice of (a, b) gives a different logistic model with its own expected
frequencies, chi-squared statisticχ2(a, b)on twodegrees of freedom,maximum likeli-
hood estimate φ̂(a, b), and asymptotic 95% confidence limits {φ̂(L)(a, b), φ̂(U )(a, b)}.
The previous results (4) are for a = 1/3 and b = 2/3.
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Fig. 1 Example 1: Contours of chi-squared (dashed lines) and of estimated values of φ (solid lines) for
logisticmodelswith scores (0, a, b, 1). The dotted-dashed line corresponds to geometric scoreswith xi ∝ νi

with ν > 1

The range of inferences for different choices of (a, b) is illustrated in Fig. 1. The
dashed lines are contours of χ2(a, b), plotted in the triangular region (5). The area
to the left of the contour labeled 5.99 (the dashed contour furthest to the right) is
the region of values of (a, b) which give empirically acceptable models as judged by
the chi-squared test at the 5% level. This region includes the equally spaced point
(1/3, 2/3), corresponding to an arithmetic progression of the category scores. An
increasing geometric progression of scoresmight seem equally plausible in the context
of the data, in which case xi ∝ νi for some ν > 1. The dotted-dashed line on Fig. 1
corresponds to all possible geometric scores with ν ≥ 1. The solid lines in Fig. 1 are
contours of the estimates φ̂(a, b). Over the region of empirically acceptable fit, the
maximum likelihood estimate of φ can take any value between about −2.7 and −2.0,
a range considerably wider than the confidence interval (4), and almost as wide as
the saturated confidence interval (2). The region also includes the origin in Fig. 1, the
limiting geometric model as ν → ∞, for which

φ̂ = −2.80 , CI = (−3.04,−2.56). (6)

When a = b = 0 the four logit probabilities in (3) are (α, α, α, α + β), suggesting
a base line risk which only increases for the largest blood pressure category. Note
that most values of φ in this confidence interval lie outside the saturated confidence
interval (2), and all of them lie completely outside the equally spaced confidence
interval (4). This indicates a sharp difference between the inferences resulting from
assuming equally spaced scores and geometrically spaced scores with a large common
ratio.

Figure 2 takes a uniform random sample of points (a, b) from the region (5) with
χ2(a, b) ≤ 5.99, and plots the corresponding confidence intervals (vertical line seg-
ments) against the chi-squared statistic. Two pairs of horizontal lines are shown. The
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Fig. 2 Example 1: Confidence intervals for empirically acceptable models (vertical lines) plotted against
values of χ2

2 . Horizontal lines indicate saturated and outer confidence limits

solid lines indicate the saturated confidence limits (2), and the dashed lines indicate
the extremes of the model-based confidence limits for χ2 ≤ 5.99, the outer limits

I =
{

min
χ2(a,b)≤5.99

φ̂(L)(a, b) , max
χ2(a,b)≤5.99

φ̂(U )(a, b)

}
= (−3.04,−1.68). (7)

This is the range of values of φ that are included in the confidence interval for at least
one empirically acceptable choice of (a, b) in (5).

Looking at the vertical line segments in Fig. 2 suggests:

– model-based confidence intervals are all shorter than the saturated interval (2);
– there is very considerable variation between confidence intervals for different
empirically acceptable models;

– the outer limits I are considerably wider than the saturated limits (2);
– there are many pairs of empirically acceptable models that give disjoint confidence
intervals, including pairs which fit the data equally well as judged by χ2.

These four comments will be echoed in later sections of the paper, suggesting that they
reflect general properties of empirically acceptable models and are not just special
features of this particular example.

2.2 Example 2: subsets in multiple regression

One of the examples used in the regression text Royston and Sauerbrei (2008) is a
multiple regression dataset in which, for each of 252 male subjects, we have data on
percentage body fat (response variable y) and a vector of 13 covariates (x) giving age
and weight plus eleven separate body measurements. The data can be downloaded
as the file edu.bodyfat from the website accompanying Royston and Sauerbrei
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(2008).We follow these authors byomitting one aberrant observation (case 39), leaving
n = 251 observations for analysis. These data were originally discussed in Penrose
et al. (1985) and also used as an example in Hoeting et al. (1999).

We assume that these data follow the multiple regression model

y = θ0 + θTx + σε,

where ε is a standard normal residual. Table 2.3 in Royston and Sauerbrei (2008)
lists the 13 least squares estimates of θ and their standard errors, showing that only
3 of these are significantly different from zero. This suggests that the model can be
simplified by choosing a subset of the xi s and assuming that the remaining θi s are
zero. Many different ways of selecting subsets have been suggested in the literature,
so that the choice of any particular subset selection method may seem rather arbitrary.
Some of these selection techniques are reviewed in Royston and Sauerbrei (2008) and
illustrated on this dataset. The aim of the analysis is explicitly stated in Royston and
Sauerbrei (2008, p. 36) as ‘to predict the percentage of body fat from the 13 predictors.’
So in this example, we define the parameter of interest to be

φ = E(y|x = ξ) (8)

for some given vector ξ of covariates.
With 13 covariates, there are 213−1 = 8191 non-null subsets, each of which can be

tested using the F test to compare the fit of the subset regression with the fit of the full
regression. For these data, it turns out that 1473of these subsets pass the F test at the 5%
level. Assume that subset S includes kS covariates and gives confidence interval CIS
for φ. If FS is the F statistic for this subset then FS is on (13−kS, 251−13−1 = 237)
degrees of freedom.We are interested in the variability of CIS over those 1473 subsets
for which FS is less than its corresponding null percentage point.

Suppose, for instance, that we want to estimate φ in (8) with ξ equal to the first
observed value of x in the dataset. Figure 3 takes a random sample of 100 subsets
from the 1473 empirically acceptable subsets, and plots the corresponding confidence
intervals CIS (vertical line segments) against a measure of how well subset S fits the
data. Since each FS has different degrees of freedom, we bring them onto a common
scale by transforming FS monotonically into an equivalent value of χ2 on two degrees
of freedom, namely

χ2
2 = F−1

1 {F2(FS)},

where F1 and F2 are the respective cumulative distribution functions of χ2 on two
degrees of freedom, and F on (13 − kS, 237) degrees of freedom. This is simply a
technical device to ensure that the horizontal axis of Fig. 3 is directly comparable to that
of Fig. 2 in the first example. The horizontal solid lines in Fig. 3 give the corresponding
confidence limits from the full regression (thereforematching the vertical line segment
shown at χ2 = 0) and the horizontal dashed lines are the outer extremes of CIS over
all 1473 empirically acceptable subset regressions. If we draw an analogy between the
full regression in Example 2 and the saturated model in Example 1, and between the
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Fig. 3 Example 2: Confidence intervals for empirically acceptable subset regression models (vertical lines)
plotted against equivalent values of χ2

2 . Horizontal lines indicate confidence limits for the full regression
(solid lines), and outer confidence limits over all empirically acceptable subsets (dashed lines)

choice of subset S in Example 2 and the choice of (a, b) in Example 1, we see that
there is a striking similarity between Figs. 2 and 3. The comments listed at the end of
Sect. 2.1 apply equally well here.

For these data, we find that all empirically acceptable subsets have kS ≥ 4 and
include the covariates x6 (abdominal circumference) and x13 (wrist circumference),
the two most significant covariates in the full regression. We get two empirically
acceptable four-covariate subsets by adding x5 (chest circumference) and then either
x1 (age) or x3 (height). It turns out that this is an example of two empirically acceptable
models which give disjoint confidence intervals, subset (x1, x5, x6, x13) giving CIS =
(13.67, 15.84), and subset (x3, x5, x6, x13) giving CIS = (15.98, 17.45). Given that
one wants to choose a subset with the smallest acceptable number of covariates, it is
difficult to see that there would be any substantive reason for preferring x1 or x3 as the
fourth covariate when x5, x6 and x13 are already included, and so the choice between
these twomodels seems pretty arbitrary. However, the fact that the confidence intervals
are disjoint shows that the predictions resulting from these two models differ sharply.
The same point also arises with model averaging, where model uncertainty translates
into uncertainty about the prior model probabilities. If we assign prior probabilities
ρ and 1 − ρ to these two subsets, we can see how the 95% highest posterior interval
for φ depends on ρ. Following the approximation in Draper (1995), section 5.4, these
are the same as the disjoint confidence intervals when ρ = 0 and 1, and for ρ =
1
2 we get (13.87, 17.52) , quite close to the set union of the two. Using the same
data, Hoeting et al. (1999) makes the conventional assumption of a uniform prior
distribution, implying that ρ = 1

2 , but offers no substantive reason why this particular
value of ρ is appropriate.
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3 Asymptotic theory

3.1 Basic setup

As indicated in Sect. 1, and illustrated by both examples in Sect. 2, our basic setup
involves four key ingredients: (a) a base model M0, (b) a model M , (c) a goodness-
of-fit statistic G(x, M), and (d) a parameter of interest φ. In example 2.1 these are,
respectively, the saturated model, a model with given values of (a, b), the χ2 test, and
the logit disease risk for the third blood pressure category. In Example 2.2, they are
the full multiple regression model, a subset regression, the F test, and the predicted
response at a given set of covariates. In this section, we generalize these examples into
a wider parametric setting by making the following assumptions.

(a) Base model M0.
We assume that M0 is a regular parametric model under which observation x has

probability density function f (x, θ) for a vector parameter θ with k components. For
simplicity of notation we shall assume that x is continuous. The base model M0 gives
the score vector and expected information matrix

s = s(x, θ) = ∂

∂θ
log f (x, θ) , I = I (θ) = −E

{
∂2

∂θ∂θT
log f (x, θ)

}
. (9)

(b)Model M .
We assume that M is nested within M0 in the sense that observation x still has

distribution f (x, θ), but now θ is restricted to a function θ = FM (θM ), where θM has
kM < k parameters. Assuming that FM (θM ) is a twice differentiable function of θM ,
the score vector and expected information matrix for model M are, respectively,

sM = sM (x, θM ) = DT
Ms{x, FM (θM )}

IM = IM (θM ) = DT
M I {FM (θM )}DM ,

where DM is the k × kM matrix

DM = DM (θM ) = ∂θ

∂θTM
= ∂FM (θM )

∂θTM
. (10)

(c) Goodness-of-fit statistic G.
For given sample data x = (x1, x2, . . . , xn) and significance level α, we judge the

fit of model M relative to the fit of the more general model M0 by comparing a test
statistic G(x, M) to its asymptotic null percentage point gα = gα,M . This is a size α

test of the null hypothesis that θ = FM (θM ) for some θM . We assume that G takes the
asymptotic form

G(x, M) = H
[
n

1
2

{
θ̂ − FM

(
θ̂M

)}
, FM

(
θ̂M

)]
+ Op

(
n− 1

2

)
, (11)
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where θ̂ is the MLE of θ under M0, θ̂M is the MLE of θM under M , and H(c, d) is
a smooth function of (c, d) satisfying H(0, d) = 0 and H(c, d) = H(−c, d). For
G to be an omnibus test (sensitive to departures in all directions) we assume that if
H(c, d) ≤ gα then all of the components of vector c are necessarily finite. The factor

n
1
2 in the first argument of (11) is necessary so that the null distribution of G remains

finite as n → ∞. In regular models of the kind considered here, the asymptotic form
of most goodness-of-fit tests of practical interest can be expressed in the form (11). In
both of the examples in Sect. 2, H(c, d) is a positive definite quadratic form in c.

(d) Parameter of interest φ.
We assume that the parameter of interest is a differentiable scalar function φ(θ) of

the parameter θ of the base model M0. If model M is true then φ = φ{FM (θM )}.
These strong regularity assumptions will hold for many of the simpler problems

of practical interest, but clearly not all. In particular, we exclude all cases with non-
identifiability problems, such as missing data or hidden confounders.

3.2 Maximum likelihood estimates and asymptotic confidence intervals

The maximum likelihood estimates of φ under models M0 and M are φ(θ̂) and
φ(FM (θ̂M )), respectively. Using standard maximum likelihood asymptotics we can
approximate the variances of these estimates, and the covariance between them, in
terms of the information matrix I defined in (9), from which we get

Var
(
φ̂ − φ̂M

)
= n−1

(
σ 2 − σ 2

M

)
+ o

(
n−1

)
, (12)

where

σ 2 = nVar
(
φ̂
)

= ∂φ

∂θT
I−1 ∂φ

∂θ
+ O

(
n− 1

2

)
(13)

σ 2
M = nVar

(
φ̂M

)
= ∂φ

∂θT
DM

(
DT

M I DM

)−1
DT

M
∂φ

∂θ
+ O

(
n− 1

2

)
(14)

Equation (12) is just the usual analysis of variance identity for linear models when
applied to local linear approximations to φ and M . An immediate consequence is that
σ 2
M ≤ σ 2, confirming that model M always gives a shorter asymptotic confidence

interval than the base model M0. We can see this in Figs. 2 and 3 by noting that the
lengths of the vertical line segments are all less than the distance between the two
horizontal solid lines.

The variances defined in (13) and (14) give the asymptotic confidence intervals of
φ under models M0 and M to be

CI = CIM0 =
(
φ̂ − n− 1

2 zασ , φ̂ + n− 1
2 zασ

)

CIM =
(
φ̂M − n− 1

2 zασM , φ̂M + n− 1
2 zασM

)
,
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where zα is the (1 − α/2) quantile of the standard normal distribution. Also, from
(12), the statistic

z = z(x, M) =
n

1
2

(
φ̂M − φ̂

)
(
σ 2 − σ 2

M

) 1
2

(15)

is asymptotically standard normal under model M . This allows us to rewrite CIM as

CIM =
{
φ̂ + n− 1

2

[(
σ 2−σ 2

M

) 1
2
z−zασM

]
, φ̂ + n− 1

2

[(
σ 2 − σ 2

M

) 1
2
z + zασM

]}
.

(16)

This shows that the asymptotic model-based confidence interval for φ depends on
the model M through just two scalar quantities, the model variance σ 2

M and z(x, M)

reflecting how well model M fits the data. It is easy to show that z in (15) is just the
scalar projection of the usual score test for M in the direction given by ∂φ/∂θ , and so
can be thought of as the log likelihood ratio test most relevant to detecting differences
in φ.

3.3 Bounds for confidence limits for empirically acceptable models

The expressions in square brackets in (16) are proportional to the differences between
the confidence limits under M and the base estimate φ̂. They involve a classic
bias/variance compromise: as σ 2

M decreases the size of the variance term ±zασM

decreases, but the size of the bias term (σ 2 − σ 2
M )

1
2 z increases. We naturally prefer

a model M which gives a small variance σ 2
M , but we also need to control the size of

the bias. In practice, we do this by confirming (or assuming) that our model gives an
adequate fit to the data as measured by a goodness-of-fit test. We are thus interested
in the size of z = z(x, M) for models M with G(x, M) ≤ gα .

We show in Supplementary Appendix A that for any fixed value of σ ∗ ≤ σ , and
for sufficiently large n,

sup
M

{|z(x, M)| : σM = σ ∗ , G(x, M) ≤ gα

}
> zα (17)

for almost all data vectors x . Thus, if we denote the upper and lower confidence limits
of CIM in (16) by CIM = (CI(L)

M ,CI(U )
M ), (17) gives

I(U ) = sup
M :G(x,M)≤gα

CI(U )
M = sup

M :G(x,M)≤gα

{
φ̂ + n− 1

2

[(
σ 2 − σ 2

M

) 1
2
z + zασM

]}

> sup
σ ∗2≤σ 2

{
φ̂ + n− 1

2 zα

[(
σ 2 − σ ∗2) 1

2 + σ ∗
]}

= φ̂ + 2
1
2 n− 1

2 zασ . (18)
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The last step follows from the elementary inequality

(
σ 2 − σ ∗2) 1

2 + σ ∗ ≤ 2
1
2 σ,

with equality attained when σ ∗2 = 1
2σ

2. Reversing the sign in (18) gives I(L), the
complementary bound for the lower confidence limit. So for large n and almost all x ,

I =
(
I(L), I(U )

)
⊃ CI(2) =

(
φ̂ − 2

1
2 n− 1

2 zασ , φ̂ + 2
1
2 n− 1

2 zασ
)

. (19)

The interval CI(2) on the right-hand side of (19) is the base model confidence interval
CI widened by a factor of

√
2 (or doubling the variance). The strict inequality in (17)

arises from the assumption that G is an omnibus test, which precludes the possibility
that G = |z|. But by thinking of |z| as the limit of a sequence of omnibus tests giving
increasing weight to the particular direction given by φ = φ(θ), these inequalities can
be rewritten as the asymptotic minimax property

[
sup
G

{
inf

M :G(x,M)≤gα

CI(L)
M

}
, inf

G

{
sup

M :G(x,M)≤gα

CI(U )
M

}]
= CI(2).

These bounds can be expressedmore simply as follows, taking the conventional values

α = 0.05 and zα = 1.96. Consider any value of φ between the limits φ̂ ± 2.77n− 1
2 σ .

Then for any 5% goodness-of-fit test G of the form (11), φ ∈ CIM for at least one
model M which gives an acceptable fit to the data as judged by G.

We have used a very wide definition of models M by allowing θ = FM (θM ) to
be any smooth function of a model-based parameter vector θM of lower dimension
than θ . But in practice, we will want to restrict the choice of models to those that
might be considered sensible in the context of the data. The interval I restricted to the
models M being considered may therefore be shorter and no longer satisfy (19). Our
two examples, however, suggest that confidence intervals for empirically acceptable
models of practical interest can still reach considerably beyond the limits of the base
interval CI. In Example 1, modeling assumptions only involve disease probabilities
within each column of the contingency table and leave the column totals as free
parameters, and even then, only models with monotonic risks are considered. In this
case, the extremes of the confidence limits for φ amongmodels that pass the χ2 test are
(−3.02,−1.68), which is much wider than CI = (−2.75,−1.85), and quite similar to
the doubled-variance interval CI(2) = (−2.94,−1.66). In Example 2, the only models
considered were subset regressions, but again we find a similar pattern for predicting
the expected response at the particular ξ weconsidered. The extremes of the confidence
limits resulting from subset regressions that pass the F test are (13.14, 18.39), much
wider than the full regression confidence interval CI = (14.37, 17.46), and also wider
than the doubled-variance interval CI(2) = (13.74, 18.09).
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Fig. 4 Example 2: Values of φ̂M plotted against σM for all subset regressions with |z| ≤ 1.96. The lines
relate to the discussion in Sect. 3.4

3.4 Significance tests

Suppose we wish to test the hypothesis H0 : φ = φ0 for some null value φ0 of interest.
Then, for any given model M , the test which rejects H0 if and only if φ0 /∈ CIM is an
asymptotic significance test of level α. The above discussion of asymptotic confidence
intervals can therefore be immediately recast in terms of asymptotic significance tests.

The acceptance region of the test corresponding to CIM is

|φ̂M − φ0| ≤ n− 1
2 zασM , (20)

and, if the test statistic z in (15) is used as a measure of model fit, then model M is
empirically acceptable if

|φ̂M − φ̂| ≤ n− 1
2 zα(σ 2 − σ 2

M )
1
2 . (21)

These two regions are illustrated in Fig. 4, which plots values of φ̂M against σM for
0 ≤ σM ≤ σ . For this illustration, we have assumed α = 0.05 and taken the values
n = 251, φ̂ = 15.92 and σ = 0.79 from Example 2 of Sect. 2.2. The semi-elliptical
region bounded by the solid line consists of the values of (σM , φ̂M ) within (21), and
the triangular region bounded by the dashed lines consist of the points in (20). The
apex of the triangle locates the null value φ0, illustrated here for the arbitrarily chosen
value φ0 = 17.92. The scatter of points shown in Fig. 4 corresponds to all the values
of (σM , φ̂M ) for subset regressions in Example 2 with |z(x, M)| ≤ 1.96.

The intersection of the two regions in Fig. 4 delineates those models that both fit the
data in the sense that |z| ≤ zα and also lead to acceptance of H0. As φ0 moves away
from the base model estimate φ̂, or as the dashed lines in Fig. 4 move upwards, this
intersection becomes smaller and vanishes when the lower of these lines just touches

the upper ellipse. This happens at the point (σM = 2− 1
2 σ, φ̂M = φ̂ + n− 1

2 zασM ),
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Fig. 5 Example 2: Values of φ̂M plotted against σM for all subset regressions that give an acceptable fit as
judged by the F test. The lines relate to the discussion in Sect. 3.4

at which φ0 just falls on the boundary of the doubled-variance confidence interval
CI(2). It follows that, if and only if φ0 /∈ CI(2), H0 will be rejected by all models
with |z(x, M)| ≤ zα . This means that requiring rejection for all such models is a very
strong requirement since, even if the null hypothesis is true andweonly assume the base

model M0, the actual asymptotic significance level would be 2�(−2
1
2 zα) = 0.0055

if α = 0.05. Evidently, it would be better to abandon the search for empirically
acceptable models M and simply use the base model to retain the nominal significance
level. Note also that, whatever the value of φ0, the semi-elliptical region in Fig. 4 can
never lie wholly within the triangle, which means that there is no null hypothesis that
would be judged acceptable by all models with |z| ≤ zα . Equivalently, whatever the
value of φ0, there will always be at least one model M with |z(x, M)| ≤ zα which
leads to rejection of H0.

As discussed in Sect. 3.3, when fit is judged by an omnibus test, there may be
empirically acceptable models M with |z(x, M)| > zα . The points (σM , φ̂M ) for such
models will then lie outside the ellipse shown in Fig. 5. Figure 5 is the same as Fig. 4,
but now shows the points (σM , φ̂M ) for all the subset regressions in Example 2 that
give an acceptable overall fit as judged by the omnibus F test. The clusters of points
in these two graphs are quite different. There are many subsets included in Fig. 4 but
excluded from Fig. 5. These are the subsets which give estimates of φ close to φ̂ but
give a poor fit to the regression as a whole. Conversely, there are subsets in Fig. 5
but not in Fig. 4. These correspond to the points falling outside the ellipse, subsets
giving an acceptable overall fit but only at the expense of a poorer fit in the particular
direction φ.

Models deemed empirically acceptable by an omnibus test, but giving points outside
the ellipse, may lead to acceptance of H0 even though φ0 /∈ CI(2). Using the numerical
results for Example 2 quoted in Sect. 2.2, the condition for H0 to be rejected by all
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models that pass the F test is that φ0 /∈ I = (13.14, 18.39). This is even more
stringent than requiring that φ0 /∈ CI(2) = (13.74, 18.09). Requiring rejection of H0
by all empirically acceptable models is a very strong requirement, much stronger than
merely to require rejection under the base model, which for this example means that
φ0 /∈ CI = (14.47, 17.46).

The earlier comment that there is no null hypothesis that would be accepted by all
models with |z| ≤ zα , continues to hold when model fit is judged by an omnibus test.
In both Figs. 2 and 3, for example, we see that there is no value of φ that is covered by
all the vertical line segments shown on the graph. Equivalently, for any fixed value of
φ, there will always be at least one vertical line segment that does not cover φ. This
holds for any goodness-of-fit test of the form (11) and for any value of φ0 : There will
always be at least one empirically acceptable model that indicates rejection of H0. So,
in the ‘editor’s dilemma’ of Sect. 1, if the only reason given by the author for using
model M1 is that it gives an acceptable fit to the data, then the editor can reject the
author’s analysis as worthless.

4 Example 2 revisited: prediction from subset regression

Wehave used Example 2 (Sect. 2.2) several times to illustrate our discussion. However,
as remarked earlier, confining attention to subset regressions represents only a special
case of the general definition of M , and our completely arbitrary use of the first
observation in the dataset to define φ means that we have ignored the important role of
the choice of the covariate vector at which we wish to predict. In this section, we take
a more careful look at the problem of prediction using subsets in multiple regression.

4.1 Notation and setup

Using the familiar notation for regression, let M0 be the standard linear regression
model for the regression of response variable y on covariate x , a vector of k explanatory
variables. Little is lost by ignoring the intercept, so assume from now on that model
M0 is

M0 : y|x ∼ N
(
θTx, σ 2

)
. (22)

We have n independent observations (yi , xi ), i = 1, 2, . . . , n. Our goal is to predict y
for a given vector ξ of covariates, for which we need to estimate

φ = E(y|x = ξ) = θTξ. (23)

There is no loss of generality if we assume that ξ is scaled so that ξTξ = 1. For the
data in Sect. 2.2, k = 13, n = 251 and ξ was taken as the (centered and scaled) vector
x observed for the first subject in the dataset.

With a relatively large number of covariates, it is standard practice to try and simplify
the model by reducing its dimension. This might be done by selecting a subset of the
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covariates in the form that they have been measured. For the data in Example 2, Figure
2.1 in Royston and Sauerbrei (2008, p. 38) shows that backward elimination results
in a subset of only 4 covariates which gives fitted values of y quite close to those of
the full regression with all 13 covariates. In practice, however, we may wish to first
transform the covariates into more meaningful predictors. In the example, the body
measurements x4 to x13 are clearly related to the basic variables x1 to x3 of age, weight
and height, and so for predicting percentage body fat it might be more meaningful to
first transform to age-corrected body measurements, or to measures corrected for their
dependence on some or all of x1, x2 and x3. Essentially, this would mean replacing
a measure by its residual from an appropriate regression among the covariates. This
suggest that subset regressions could usefully be extended to regressions of y on
vectors of linearly transformed covariates.

We are thus interested in models M given by

M : y|x ∼ N
(
θTMxM , σ 2

)
, (24)

where xM = AMx and AM is a kM × k matrix with kM < k. A subset regression is
the special case when AM is a matrix of zeros and ones, with one 1 in each of its kM
rows. Although the coefficients and dimension of AM may have been estimated from
the same data, we continue to be interested in the standard practice of assuming that
each submodel is fixed, thus treating AM as if it had been fixed in advance. Note that
if model M is true, then both (22) and (24) must have the same residual variance σ 2.
The omnibus F test is just the empirical check of this assumption.

In the general notation of Sect. 3, (24) asserts that θ = FM (θM ) = AT
MθM and

(23) asserts that φ = φ(θ) = ξTθ , so in this case both FM (θM ) and φ(θ) are linear
functions. We are interested in the models generated by all possible kM × k matrices
AM of full row rank with 1 ≤ kM ≤ k−1. Let X be the full n×k design matrix of the
observed covariate vectors. Allowing for all possible matrices AM means that there is
no loss of generality if we assume that x has been linearly transformed to orthonormal
form. Similarly, model M is invariant under linear transformations of xM . This means
that we can assume from now on that

XTX = nIk , AM AT
M = IkM .

The least squares estimate of θ and its variance under the base model M0 are then
simply

θ̂ = 1

n
XTy , Var

(
θ̂
)

= σ 2

n
Ik,

where y = (y1, y2, . . . , yn) is the vector of observed values of the response variable.
Similarly, for model M we have

θ̂M =
(
AM XTX AT

M

)−1
AM XTy = AM θ̂ , Var

(
θ̂M

)
= σ 2

n
P, (25)
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where

P = AT
M AM .

Note that for the k× k matrix P we have PP = P and so P is idempotent for all AM .
In the notation of Sect. 3.2, it follows immediately that

φ̂ = θ̂Tξ , Var
(
φ̂
)

= σ 2

n
. (26)

Comparing (26) with (13) confirms that there is no conflict of notation in using σ 2

both for the residual variance and for its earlier definition as nVar(φ̂). Also

φ̂M = θ̂TPξ , σ 2
M = nVar

(
φ̂M

)
= σ 2ξTPξ. (27)

The earlier inequality σ 2
M ≤ σ 2 is an immediate consequence of the fact that P is

idempotent and ξTξ = 1.

4.2 Confidence intervals for�

From (26) and (27), the asymptotic confidence intervals for φ under models M0 and
M are

CI =
{
θ̂Tξ − δ , θ̂Tξ + δ

}

CIM =
{
θ̂TPξ − δ

(
ξTPξ

) 1
2

, θ̂TPξ + δ
(
ξTPξ

) 1
2
}

, (28)

where

δ = σ√
n
zα.

As in the general case, we also have

nVar
(
φ̂M − φ̂

)
= σ 2 − σ 2

M ,

and so φ̂M and φ̂ are not significantly different at level α if

∣∣∣θ̂T(Ik − P)ξ

∣∣∣ ≤ δ
{
ξT(Ik − P)ξ

} 1
2
. (29)

In the previous notation, this is the condition |z| ≤ zα .We showed in Sect. 3.3 that, with
the more general definition of M , the maximum upper limit of CIM over empirically
acceptable models was least when models are accepted if |z| ≤ zα . So to investigate
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what happens when M is restricted to the linear form assumed here, we are interested
in the extremes of CIM when AM ∈ A, where

A =
k−1⋃
kM=1

{
AM : AM AT

M = IkM ,

∣∣∣θ̂T (
Ik−AT

M AM
)
ξ

∣∣∣ ≤ δ
{
ξT

(
Ik−AT

M AM
)
ξ
} 1
2

}
.

It turns out that the crucial property of ξ is the angle between ξ and θ̂ , measured
by the correlation

r = θ̂Tξ(
θ̂Tθ̂

) 1
2

.

We show in Supplementary Appendix B that, for sufficiently large n,

sup
AM∈A

CI(U )
M =

{
θ̂Tξ + 2

1
2 δ if |r | ≤ 2− 1

2

θ̂Tξ + δ{(1 − r2)
1
2 + |r |} if |r | > 2− 1

2
. (30)

This can be compared with θ̂Tξ + 2
1
2 δ, the upper bound for the general case in (18).

The corresponding results for the lower confidence limits are exactly the same with
the sign of δ reversed. For smaller values of r , meaning that ξ is not too co-linear with
θ̂ , these bounds are exactly the same. For values of r closer to±1, φ̂M and σ 2

M become

more closely linked and the outer limits are less extreme.When r = 1, ξ = θ̂/(θ̂Tθ̂ )
1
2 ,

and so the confidence limits CIM can be written
(
θ̂Tθ̂

) 1
2
B ± δB

1
2 ,

where B = (θ̂TP θ̂ )/(θ̂Tθ̂ ). Since P is idempotent, B ≤ 1, confirming that in this
case CIM ⊆ CI as indicated in (30).

The extremes of confidence limits are illustrated in Fig. 6, which shows values of

maxφ∈CI(G)

∣∣φ − φ̂
∣∣

maxφ∈CI
∣∣φ − φ̂

∣∣ (31)

plotted against r for 0 ≤ r ≤ 1. The value of (31) depends on ξ , the vector of covariates
for which the prediction confidence intervals are being calculated, and the definition
of the class CI(G) of confidence intervals. The plotted points correspond to the data
in Example 2, taking ξ as a weighted combination of the specific ξ used in Sect. 2.2,
and the unique vector ξ ∝ XTX β̂ for which r = 1. We have chosen the weights to
generate a sequence of vectors ξ with values of r ranging from 0 to 1. For each ξ , we
define CI(G) to be the set union of all confidence intervals CIM for subset regressions
selected by the goodness-of-fit statistic G. The points marked O are when G is the
usual F test, the points marked X are when G is taken as |z|, i.e., when subsets are
accepted if they satisfy (29). The horizontal dotted lines indicate the values

√
2, when
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Fig. 6 Example 2 : Illustrating the relative extremes of subset confidence intervals as defined in (31). Points
marked X are for subsets with |z| ≤ 1.96, points marked O are for subsets that give an acceptable fit as
judged by the F test. The curve shows the corresponding asymptotic limits in Eq. (30)

CI(G) = CI(2), and 1, when CI(G) = CI. The curve in Fig. 6 is the multiple of δ in
(30), the asymptotic value of (31) when CI(G) is defined as the union of the more
general confidence intervals CIM in (28). The points marked X are close to the line,
suggesting that the extremes of model-based inferences are due to the fact that we are
selecting subsets, rather than because we are allowing the extra flexibility of admitting
different linear combinations of the covariates. As expected from the general theory
of Sect. 3.3, judging fit by the F test gives consistently larger values of (31) than when
selection is confined to those subsets with |z| ≤ zα .

Ferrari and Yang (2015) also consider the set of models selected by the F test at
a given level of significance, but instead of discussing the consistency of predictions
as we have done here, they are interested in assessing the overall importance of the
individual predictors for regression. Their measures are based on looking at incidence
and co-appearance of predictors within the subset of the most parsimonious models
among those selected. Both approaches illustrate the inadequacy of goodness-of-fit
measures such as the F test for choosing predictors, and warn against the uncritical
use of conventional methods such as stepwise regression which fail to recognize that
equally plausible methods might well give a quite different set of predictors and result-
ing inferences. The problem of uncertainty in the choice of predictors is particularly
challenging in high-dimensional regression, where the number of predictors may be
larger than the sample size. The practical importance of such models, in genomics
for example, is attracting a large statistical and computational literature on penalized
regression methods. See Nan and Yang (2014) for a related discussion of variable
selection diagnostics in such models.
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5 Comments and conclusions

We have assumed that the significance level α is the same for both confidence intervals
and tests of fit. Although this may be the usual convention with α = 5%, the results
of Sect. 3 adapt easily to the case of level α for the confidence intervals but some
other error rate β for testing model fit. The factor

√
2 appearing in (19) then becomes

mα,β = √
(1 + z2β/z2α). In practice, assessments of fit are often more informal than

using a formal goodness-of-fit test, perhaps based on diagnostic plots. Arguably, when
looking for specific patterns in such plots it is easy to underestimate sample variability,
suggesting that informal model checking may be like taking β > α. For example if
α = 5% and β = 10%, then mα,β = 1.31 and so the outer confidence limits for φ in
(19) are wider than CI by 31% instead of by 41%.

The well-known comment by Box (1976), that ‘all models are wrong,’ continues
‘but some models may be useful.’ But useful for what? For estimating the unknown
parameter φ, we might say that M is a useful model if it allows us to narrow down the
range of possibilities so that CIM is a strict subset of CI, the range of values of φ that
we would otherwise have to entertain in light of the data. But passing a goodness-of-fit
test G(x, M) ≤ gα is not a sufficient condition for CIM ⊂ CI, as the confidence lim-
its calculated from empirically acceptable models can stray considerably outside the
limits of CI. With the usual naive interpretation of confidence intervals, it would only
seem sensible for CIM to include values outside CI if model M was bringing in addi-
tional information beyond the information already contained in the data, contradicting
the basic frequentist setup of our discussion. The need for such outside assumptions is
a common theme of most discussions of model uncertainty. Of the approaches briefly
reviewed in Sect. 1, Bayesian model averaging requires (at least) prior probabilities of
the different candidate models, frequentist model averaging requires the exact specifi-
cation of how model weights should depend on the quality of model fit, and marginal
assessments of post-selection inference depend on what assumptions are made about
the model selection criterion. Examples show that the resulting inferences can depend
critically on these outside assumptions.

Model diagnostics are widely used in practice, presumably under the tacit assump-
tion that a goodfitmeans a goodmodel. Suchmethods are useful for suggesting concise
descriptions of the data, but are they useful when the aim is formal inference of the
kind considered here?We commonly assume that making modeling assumptions such
as using log-linear models for contingency tables or subsets in multiple regression is
a good idea because such assumptions give narrower confidence intervals and hence
less uncertainty, but ignore the fact that such assumptions carry a bias which varies
substantially between different models, even among models that appear to fit the data
equally well. The comparison in Sect. 3.3 between I and CI(2), the confidence interval
we would get under M0 if we doubled the variance, suggests that the extra uncertainty
induced by this bias is of the same order of magnitude as the sampling variability in
the data. Ignoring this bias can lead to mutually inconsistent confidence intervals and
over-precise inferences.

Our discussion suggests that purely empirical considerations for differentiating
between models are not enough. For a model-based analysis to be convincing, we
need at least some outside information taking us beyond the observed data. If we have

123



Model dependence 351

used a formalmethod ofmodel selection ormodel averaging, such outside information
is clearly set out, either in the form of themeasure to be optimized or in the form of a set
of prior distributions. As discussed, the resulting inference can depend very sensitively
on what is assumed about these choices. Most users of statistics, however, follow the
traditional approach of using a single model and taking the resulting inference at
face value, even though the chosen model may be little more than a ‘convention’
(Hodges 1987). Papers using multiple regression, for example, often assume that only
the covariates making a significant contribution to the observed values of the response
need to be included, ignoring the fact that other choices of covariates which fit the
data equally well can produce sharply differing predictions.

The importance of the model is rarely acknowledged in statistical practice.We need
to give much more emphasis to the fact that a conventional model-based confidence
interval, or assessment of significance, rests on the assumption that the assumedmodel
is known to be correct, and asks wider questions about why this particular model is
appropriate in the context of the problem. Merely to show that the model gives an
acceptable fit to the data is not enough. The result in Sect. 3.4 that, whatever null
hypothesis is being tested, there will always be at least one empirically acceptable
model which indicates rejection, shows us that conventional model-based inferences
need to be interpreted with considerable caution.
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