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Abstract
We introduce a new type of point process model to describe the incidence of conta-
gious diseases. The model incorporates the premise that when a disease occurs at low
frequency in the population, such as in the primary stages of an outbreak, then anyone
with the disease is likely to have a high rate of transmission to others, whereas when
the disease is prevalent, the transmission rate is lower due to prevention measures and
a relatively high percentage of previous exposure in the population. The model is said
to be recursive, in the sense that the conditional intensity at any time depends on the
productivity associated with previous points, and this productivity in turn depends on
the conditional intensity at those points. Basic properties of the model are derived,
estimation and simulation are discussed, and the recursive model is shown to fit well
to California Rocky Mountain Spotted Fever data.

Keywords Conditional intensity · Contagious diseases · Hawkes process ·
Productivity

1 Introduction

The Hawkes self-exciting point process (Hawkes 1971) is a type of branching point
process model that has become very commonly used in modeling clustered phenom-
ena. For example, versions of Hawkes models are used to model seismicity (Ogata
1988, 1998), crimes (Mohler et al. 2011), invasive plants (Balderama et al. 2012), ter-
rorist strikes (Porter and White 2012), and perturbations in financial markets (Bacry
et al. 2013, 2015).
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1272 F. P. Schoenberg et al.

Although Hawkes models have some features making them amenable to modeling
incidence of infectious diseases, consideration of the nature of the spread of disease
may suggest a somewhat different type of model. For instance, Hawkes processes have
the property that the productivity (the expected number of secondary events triggered
directly by the given event, or in the case of infectious disease, the expected number
of transmissions from one individual to another) is static. In the case of Hawkes
models applied to earthquakes (e.g., Ogata 1988, 1998), the basic Hawkes model was
extended to allow the productivity of an earthquake to depend on itsmagnitude, but still
not to depend on the time or location of the event, nor on the number of previously
occurring events. When considering infectious diseases, however, this assumption
of static productivity seems questionable. Early in the onset of an epidemic, when
prevalence of the disease is still low, one would expect the rate of transmission to
be much higher than when the prevalence of the disease is higher, because of human
efforts at containment and intervention of the disease, and because some potential hosts
of the disease may have already been exposed. This is a feature common to grid-based
contagionmodels, but as noted by Law et al. (2009), relative to suchmodels, where the
surface of study is divided into an array of pixels on a grid, point processes can enable
greater precision of forecasts, and can offer a more detailed and precise account of
heterogeneity and clustering. Thus, we introduce a new type of point process model
where the productivity (expected number of transmissions) for a subject infected at
time t is a function of the conditional intensity at t . Since the conditional intensity in
turn depends critically on this productivity, we call the model recursive.

Here we present this extension of Hawkes point process models (as they apply to
infectious diseases) in the following format. After a brief review of point processes
in general and Hawkes models in particular in Sect. 2, we introduce the recursive
model in Sect. 3, followed by the derivation of some basic properties of the model in
Sect. 4. Simulation and estimation are discussed in Sects. 5 and 6, respectively, and in
Sect. 7, we fit the model to data on recorded cases of Rocky Mountain Spotted Fever
in California from Jan 1, 1960, to Dec 31, 2011. Section 8 contains some concluding
remarks.

2 Hawkes point processes

A point process (Daley and Vere-Jones 2003, 2007) is a σ -finite collection of points
{τ1, τ2, . . . } occurring in some metric space S. While the definitions and results below
can be extended quite readily to other spaces, wewill assume for simplicity throughout
that the metric space S is a bounded interval [0, T ] in time, and the results here extend
easily to the case of a space–time point process on a bounded region B × [0, T ] in
space–time, where B is a subset of some complete separable metric space equipped
with Lebesgue measure, �, and assuming for convenience that the spatial region is
scaled so that �(B) = 1. A point process is simple if, with probability 1, none of the
points overlap exactly.

A temporal point process is typically modeled via its conditional intensity, λ(t),
which represents the infinitesimal rate at which points are accumulating at time t ,
given information on all points occurring prior to time t . Simple point processes are
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A recursive point process model for infectious diseases 1273

uniquely characterized by their conditional intensity (Daley and Vere-Jones 2007); for
models for non-simple point processes, see Schoenberg (2006).

For a simple Hawkes process (Hawkes 1971), the conditional rate of events at time
t can be written

λ(t) = μ + K
∫ t

0
g

(
t − t ′

)
dN

(
t ′
)
, (1)

where μ > 0, is the background rate, g(v) ≥ 0 is the triggering density satisfying∫ ∞
0 g(u)du = 1 which describes the conductivity of events, and the constant K is
the productivity, which is typically required to satisfy 0 ≤ K < 1 in order to ensure
stationarity and subcriticality (Hawkes 1971).

Ogata (1988) extended the Hawkes model in order for earthquakes of larger
magnitudes to have greater productivity. Hawkes models and their extension to the
temporal-magnitude case were called epidemic by Ogata (1988), since they posit that
an earthquake can produce aftershocks which in turn produce their own aftershocks,
etc. Several forms of the triggering function g have been posited for describing seis-
mological data, such as g(u) = 1

(u+c)p , where u is the time elapsed since a previous
event (Ogata 1988).

Hawkes processes have been extended to describe the space–time–magnitude distri-
bution of seismic events.Aversion suggested byOgata (1998) called the epidemic-type
aftershock sequence (ETAS) model uses a spatially inhomogeneous background rate
and circular aftershock regions where the squared distance between an aftershock and
its triggering event follows a Pareto distribution. The model may be written

λ(s, t) = μ(s) + K
∫
m

∫
B

∫ t

0
g

(
s − s′, t − t ′,m′) dN (

s′, t ′,m′) ,

with triggering function

g(u, v,m) = (||u||2 + d
)−q

exp {a(m − M0)} (v + c)−p, (2)

where ||si − s j ||2 represents the squared distance between the epicenters or hypocen-
ters si and s j of earthquakes i and j , respectively, and d > 0 and q > 0 are parameters
describing the spatial distribution of triggered earthquakes about their respectivemain-
shocks.

The ETAS model has been extended by allowing the parameters to vary spa-
tially and temporally. For example, the HIST-ETAS model (Ogata et al. 2003; Ogata
2004) assumes the parameters in the ETAS model are locally constant within small
spatial–temporal cells. Similarly, Harte (2014) allows the ETAS model’s productivity
parameter to vary smoothly in space and time. In the following section, we extend the
model in a different way, allowing the productivity to vary as a function of λ.
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1274 F. P. Schoenberg et al.

3 Proposed recursive model

Consideringwhat we know from both specific disease epidemics (Wallinga and Teunis
2004; Cauchemez et al. 2016) and general modeling of outbreaks (Lloyd-Smith et al.
2015), there is good reason to question the usual assumption in Hawkes models of
static productivity. For instance, when the prevalence of the disease is low or zero in
a region, as is the case when the epidemic has never struck before or has not struck
in considerable time, then the conditional intensity λ is small and one would expect
the rate of transmission for each infected person to be quite high, as a majority of
hosts are likely immunologically naive, and a carrier of the disease may be expected
to infect many others. When the epidemic is at its peak and many subjects have
contracted the disease, on the other hand, λ is large and one might expect the rate of
transmission to be lower due to human efforts at containment and intervention of the
disease, and because many subjects may have already been exposed and thus might
be recovered and immune to further infection, or deceased (in either case no longer
part of a susceptible pool). These considerations suggest a point process model where
the productivity for a subject infected at time t is inversely related to the conditional
intensity at time t . Since the conditional intensity in turn depends critically on this
productivity, we call the model recursive.

We may write this model

λ(t) = μ +
∫ t

0
H (λt ′) g

(
t − t ′

)
dN

(
t ′
)
, (3)

where μ > 0, g > 0 is a density function, and λt ′ means λ(t ′). The productivity func-
tion H should typically be decreasing in light of the considerations above regarding
the transmission of disease, and we focus in particular in what follows on the case
where H(x) = κx−α , with κ > 0, so that

λ(t) = μ + κ

∫ t

0
λ−α
t ′ g

(
t − t ′

)
dN

(
t ′
)
. (4)

The triggering density g may be given, e.g., by an exponential density,

g(u) = β exp(βu). (5)

When α = 0, (4) reduces to a Hawkes process. We will refer to the special case
where α = 1, i.e., where

λ(t) = μ + κ

∫ t

0

g
(
t − t ′

)
λt ′

dN
(
t ′
)

(6)

as standard. The standard recursivemodel has especially simple and attractive features,
some of which are described in Sect. 4.
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A recursive point process model for infectious diseases 1275

4 Basic properties of the recursionmodel

We prove the existence of a simple point process with conditional intensity (4), and
find the mean, variance, and certain large sample properties of the process.

4.1 Existence

Proposition 1 Given a complete probability space, a recursive model with conditional
intensity satisfying (4) can be constructed with H(x) = κx−α , for any α, κ > 0.

Proof Let (ek)k≥1 be a sequence of independent exponential random variables with
unit mean. Set T0 = 0 and

Tk+1 = inf

{
t > Tk,

∫ t−

Tk

(
μ + κ

k∑
i=1

λ−α
Ti

g(s − Ti )

)
ds ≥ ek+1

}
.

Define, for k ≥ 1 the sequence of processes N (k)
t = ∑k

i=1 1{Ti≤t}. For a given integer
k, N (k) only has points at T1, T2, . . . Tk by construction. The intensity of N (k) can be
verified directly or by appealing to the random time change theorem (Meyer 1971, or
Daley and Vere-Jones 2003, Theorem 7.4.1) such that

λ
(k)
t = μ + κ

∫ t−

0

(
λ(k)
u

)−α

g(t − u)dN (k)
u ,

for N (k)
t− < k and λ

(k)
t = 0 when N (k)

t− = k, where N (k)
t− = limu↗t N

(k)
u . Let Nt =

limk→∞ N (k)
t . Let us show that Nt is well-defined, i.e., has no accumulation of jumps.

We have

E
[
N (k)
t

]
= E

[∫ t

0
λ

(k)
s−ds

]

≤ μt + κE

[∫ t

0

∫ (s−)

0

(
λ(k)
u

)−α

g(s − u)dN (k)
u ds

]

≤ μt + κμ−αE

[∫ t

0

∫ (s−)

0
g(s − u)dN (k)

u ds

]

= μt + κμ−αE

[∫ t

0
g(t − s)N (k)

s ds

]

where the last line can be obtained for instance by Lemma 22 in Delattre et al. (2016).
Hence

E
[
N (k)
t

]
≤ μt + κμ−α

∫ t

0
g(t − s)E

[
N (k)
s

]
ds
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1276 F. P. Schoenberg et al.

and the function Gk(t) = E[N (k)
t ] satisfies Gk(t) ≤ μt + κμ−α

∫ t
0 g(t − s)Gk(s)ds,

for whichGronwall lemma implies supk Gk(t) ≤ μtC(t, g, μ, α) for some constantC
depending on t, g, μ and α, provided g is locally integrable (see, for instance Lemma
23(i) in Delattre et al. 2016). Letting k → ∞, we infer by monotone convergence that
E

[
Nt

]
< ∞ and thus Nt < ∞ P-almost surely follows. From this, one can observe

that the stochastic intensity λ of N satisfies the desired equation. �	

4.2 Mean and variance

The mean of the recursive process (4) can be obtained simply by using the martingale
property for point processes (Daley and Vere-Jones 2003; Zhuang 2015). For S =
[0, T ],

1

T
EN (S) = 1

T
E

∫
S
dN

= 1

T
E

∫ T

0
λt dt

= 1

T
E

∫ T

0

{
μ + κ

∫ t

0
λ−α
t ′ g

(
t − t ′

)
dNt ′

}
dt

= μ + κ

T
E

∫ T

0

∫ t

0
λ1−α
t ′ g

(
t − t ′

)
dtdt ′

= μ + κ

T
E

∫ T

0
λ1−α
t ′

{∫ T−t ′

0
g

(
t − t ′

)
dt

}
dt ′

→ μ + κ

T
E

∫ T

0
λ1−α
t ′ dt ′, (7)

as T → ∞, provided

lim
T→∞

∫ T−t ′

0
g

(
t − t ′

)
dt = 1, ∀t ′. (8)

If assumption (8) is violated, then Eq. (7) is merely an approximation. Impacts of
violations to assumption (8) are investigated in Schoenberg (2016).

Note that for the standard recursive model, α = 1, and (7) reduces simply to

μ + κ. (9)

This highlights a major difference between Hawkes models and recursive models.
For a Hawkes process, doubling the background rate amounts to doubling the total
expected number of points, but this is far from true for the recursive process. As an
example, in the rather realistic simulations in Fig. 1a where μ = 0.1 and κ = 2,
doubling μ would only increase the total expected number of points by less than 5%,
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A recursive point process model for infectious diseases 1277

and in the case of the process simulated in Fig. 1cwhereμ = 0.01 and κ = 2, doubling
μ would increase the total expected number of points by less than 0.5%.

4.3 Law of large numbers

We specialize in this section to the case α = 1 and show that T−1NT converges to
μ + κ as T → ∞ with rate of convergence

√
T in L2.

Proposition 2 Assume lim supT→∞ T 1/2
∫ ∞
T g(t)dt < ∞. Then

sup
T

T E

[(
T−1NT − (μ + κ)

)2]
< ∞.

Proof Write T−1NT − (μ + κ) = AT + BT , with

AT = T−1NT − 1

T

∫ T

0
λsds and BT = 1

T

∫ T

0
λsds − (μ + κ).

We claim that both supT T E[A2
T ] < ∞ and supT T E[B2

T ] < ∞, from which the
proposition readily follows. Let us first consider the term involving BT . We have

BT = μ + κ
1

T

∫ T

0
g(T − s)

∫ s−

0

dNu

λu
ds − (μ + κ)

= κ

{
1

T

∫ T

0
g(T − s)Ñsds − 1

}

= κ
1

T

∫ T

0
g(T − s)

(
Ñs − s

)
ds + κ

{
1

T

∫ T

0
g(T − s)sds − 1

}

= B(1)
T + B(2)

T ,

say, where Ñs = ∫ s−
0

dNu
λu

ds. Clearly

1

T

∫ T

0
g(T − s)sds − 1 = − 1

T

∫ T

0
g(s)ds +

∫ T

0
g(s)ds − 1

= − 1

T

∫ T

0
g(s)ds +

∫ ∞

T
g(s)ds

and this (deterministic) term is O(T−1/2) by assumption and thus B(2)
T has the right

order. As for B(1)
T , since s �→ g(T − s) is a probability density, we successively use

Jensen’s inequality, Fubini, the fact that Ñs is a martingale with predictable compen-
sator s, hence (Ñs − s)2 itself also a martingale with predictable compensator s to
obtain

E

[(
B(1)
T

)2] ≤ κ2 1

T 2

∫ T

0
g(T − s)E

[(
Ñs − s

)2]
ds
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1278 F. P. Schoenberg et al.

= κ2 1

T 2

∫ T

0
g(T − s)E

[〈
Ñ· − ·〉s

]
ds

= κ2 1

T 2

∫ T

0
g(T − s)sds

and this term multiplied by T is negligible, as for the term B(2)
T . We finally turn to the

important term AT . Since Nt − ∫ t
0 λsds is a martingale, its predictable compensator

is also
∫ t
0 λsds. It follows that

E
[
A2
T

]
= T−2E

{(
NT −

∫ T

λsds

)2}

= T−2E

{〈
N· −

∫ ·

0
λsds

〉
T

}

= T−2
∫ T

0
E [λs] ds.

The remainder of the proof consists of showing that sups>0 E[λs] < ∞. This follows
in the same line as for the proof of non-accumulation of jumps in Proposition 1. �	

4.4 Productivity

The productivity of a point τi is typically defined in the context of Hawkes or ETAS
processes as the expected number of first generation offspring of the point τi . For a
Hawkes process, the productivity of each point is simply K .

In the case of the recursive model (3), the productivity of any point τi is given by
H{λ(τi )}. Thus the total productivity, for n points τ1, τ2, . . . , τn , is

∑n
i=1 H{λ(τi )},

and for the special case of the standard recursive model (6), the expected value of the
total productivity is

κE
∫ T

0

1

λt
dNt = κE

∫ T

0

1

λt
λt dt = κT .

Thus under assumption (8) the average productivity for the standard recursive
model is κT /N (S) → κ/(μ + κ) a.s., since N (S)/T → μ + κ a.s. This
highlights another difference between the recursive and Hawkes models. For a
Hawkes process, the points τ1, τ2, . . . all have constant productivity, K . For a
standard recursive process, the productivity for the first point τ1 is κ/μ, which
is larger than the productivity for any subsequent point. The productivity of the
second point is κ/ {μ + κg(τ2 − τ1)/μ}, the productivity of the third point is
κ/ {μ + κg(τ3 − τ1)/μ + κg(τ3 − τ2)/(μ + κg(τ2 − τ1)/μ)}, etc., and the produc-
tivity of the points ultimately averages κ/(μ + κ).
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4.5 Declustering

In the seismological context, one is often interested in mainshocks, and it can occa-
sionally be desirable to remove the earthquakes that could be considered aftershocks
from a catalog. Zhuang et al. (2002) proposed a method of stochastic declustering
for Hawkes or ETAS processes whereby one may assign to each observed point τi
a probability that it was a mainshock, attributable to the background rate μ, and to
each pair of points (τi , τ j ) one may compute the probability that earthquake j was
triggered by earthquake i , and may thus be considered an aftershock of event i .

Similarly, when discussing the spread of a contagious disease in a given spatial
region, one may consider the probability that events generated by the recursive model
(3) are new outbreak points, attributable to the background rate μ, or whether point τ j
was infected by point τi . Such triggering or infection probabilities would be extremely
relevant to a statistical analysis of epidemic data.

Fortunately, these background and infection probabilities are very easy to calcu-
late for the recursive model. Whereas in a subcritical Hawkes process, the expected
proportion of background points is 1/(1− K ), for the standard recursive process, this
proportion isμ/(μ+κ). This follows directly from the formula (9) for the mean of the
recursive process. Referring to the form of the recursive model in (3), for any points
τi < τ j , the probability that subject j was infected by subject i is given by

H(λτi )g(τ j − τi )

μ + ∫ τ j
0 H(λt ′) g

(
τ j − t ′

)
dNt ′

, (10)

which can readily be computed.

5 Simulation

One way to simulate a recursive point process is using the thinning technique of
Lewis and Shedler (1979). Specifically, one sets b to some large value, generates a
homogeneous Poisson process of candidate points with rate b on the domain S, sorts
the candidate points in order of time, and for each candidate point τi , for i = 1, 2, . . . ,,
one keeps the point independently of the others with probability λ(τi )/b. Here, λ(τi )

is computed using Eq. (3), where in calculating

λ(t) = μ +
∫ t

0
H (λt ′) g

(
t − t ′

)
dN

(
t ′
) = μ +

∑
i :ti<t

H
(
λti

)
g(t − ti ),

the sum is taken over only the kept points ti . Hawkes processes may be simulated in
a similar manner.

Figure 1 shows simulations of a recursive process and a Hawkes process over the
same domain, with the same exponential triggering density, and the same background
rate μ. In the top panels, μ = 0.05 and βt = 0.8, and in the bottom panels, μ = 0.1
and β = 1. In each case, the parameter K of the Hawkes process was selected as
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Fig. 1 (Top left) simulation of a standard recursive model (6) with μ = 0.05, κ = 2, and g as in (5)
with βt = 0.8. (Top right) Simulation of a Hawkes model (1) with the same g and μ as in, and with
K = μ/(μ + κ) so that the processes the top row have the same expected number of points. (bottom left)
Simulation of a standard recursive model (6) with μ = 0.1, κ = 2, and g as in (5) with βt = 1. (Bottom
right) Simulation of a Hawkes model (1) with the same g and μ and with K = μ/(μ + κ) so that the
processes in the bottom row have the same expected number of points. All four simulations are over the
same temporal domain [0, 1000]. The points are spread uniformly over the y axis for ease of visualization

κ/(μ + κ) so that the Hawkes and recursive processes would have the same expected
number of points.One sees also how the parameterβ influences the degree of clustering
in the processes. One main difference between the Hawkes and recursive models is
that the former exhibits occasional small clusters with just a few or even just one
isolated point, whereas the latter produces almost exclusively large clusters. The form
for H(λ) implies that events occurring following a period of no events or relatively
few events will trigger more offspring. In models for earthquakes such as ETAS, rare
events trigger more offspring only in the sense that larger magnitude events are rare.
However, in ETAS and other Hawkes-type models for earthquakes, two events of
the same magnitude have the same productivity regardless of when they occur. In the
epidemic disease context, this may be violated since diseases may spread more rapidly
when the disease has been dormant for a while and human attempts to curb contagion
are not in place. In the earthquake context, it has been noted by some authors, including
notably Ogata (1988), that large earthquakes have frequently followed periods of
relative quiescence, but this effect has typically not been incorporated into models
such as ETAS for forecasting earthquakes.

6 Estimation

As with most temporal or space–time point process models including Hawkes and
ETAS processes, the parameters in recursive point processes can be estimated by
maximizing the log-likelihood,

L(θ) =
∫
S
log λ(s)dN (s) −

∫
S
λ(s)dt, (11)
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where θ is the vector of parameters to be estimated. Maximum likelihood estimates
(MLEs) of the parameters in such point process models are consistent, asymptotically
normal, and efficient (Ogata 1978).

Despite the recursive nature of themodel, the log-likelihood of a recursive point pro-
cess can be computed quite directly. For anygiven realization of points {τ1, τ2, . . . , τn},
given a particular value of the parameter vector θ , λ(τ1) = μ so one can immediately
compute H{λ(τ1)} = H(μ), and thus λ(τ2) = μ + H(μ)g(τ2 − τ1). One therefore
has H{λ(τ2)} = H(μ + H(μ)g(τ2 − τ1)), and one can continue in this fashion to
compute λ(τi ) for i = 1, 2, . . . , n.

The integral term
∫
S λ(s)dt may readily be approximated in the standard way (see,

e.g., Schoenberg 2013). Assuming g(t) has negligible mass for t > T − τi , one may
invoke the approximation

∫
S
λ(s)dt =

∫ T

0

{
μ +

∫ t

0
H(λ(s))g(t − s)dN (s)

}
dt

= μT +
∫ T

0
H(λ(s))

∫ T−s

0
g(u)dN (s)du

≈ μT +
∫ T

0
H(λ(s))dN (s)

= μT +
∑
i

H(λ(τi )),

which is trivial to compute. The parameter vector θ maximizing the approximation
of (11) can then be estimated by standard Newton–Raphson optimization routines. In
what follows, we use the function optim() in R. Approximate standard errors can be
derived via the diagonal elements of the inverse of the Hessian of the log-likelihood
(Ogata 1978), or by repeatedly simulating and re-estimating by MLE as suggested by
Harte (2010) and taking an outlier-resistant measure of standard error as inWang et al.
(2010), such as the root-median-squared errors for each parameter.

7 Application to RockyMountain Spotted Fever cases in California

Recorded cases of Rocky Mountain Spotted Fever in California from Jan 1, 1960,
to Dec 31, 2011, were obtained from Project Tycho, www.tycho.pitt.edu (Panhuis
et al. 2013). The data consist of weekly counts of confirmed cases of Rocky Mountain
Spotted Fever in California published by the United States Centers of Disease Control
(CDC) in its open access weekly Morbidity and Mortality Weekly Reports. Weeks
with no data over this period were treated as having zero confirmed cases. Since the
temporal resolution of the data is by week, the onset time for each individual case
was drawn uniformly within each 7-day time interval, as, e.g., in Althaus (2014) and
Chaffee (2017). Figure 2 shows a histogram of the cases, along with the estimated rate
of the recursive model (4) with exponential triggering fit to the data by maximum like-
lihood. The estimated parameters are (μ̂, κ̂, β̂, α̂) = (0.000139 points/day, 0.00205
triggered points/observed point, 0.00151 points/day, 1.09), with corresponding
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year

rate
 (pts

/day
)

0
0.01

0.02
0.03

0.04
0.05

1960 1970 1980 1990 2000 2010

Fig. 2 Histogram (black) of Rocky Mountain Spotted Fever cases in California from Jan 1, 1960, to Dec
31, 2011, along with the estimated rate of the recursive model (green) and Hawkes model (red), each with
exponential triggering function and fit by maximum likelihood (color figure online)

standard error estimates (0.000144, 0.0403, 0.00630, 0.0731). The estimated Hessian
of the log-likelihood was singular in this case, so as suggested in Harte (2010), the
standard errorswere estimated by 100 repeated simulations and re-estimation byMLE.
Note in particular the statistical significance of the estimated coefficient α, indicating
significant disagreement between the data and the Hawkes model.

It is important to check that the estimates obtained by MLE are reasonable and not
merely local rather than global optima, and one common way to check is to compute
the ratio

∫ T
0 λ̂(t)dt/N (0, T ), as suggested in Harte (2015), which should be close to

1 since E
∫ T
0 λ(t)dt = E

∫ T
0 dN = N (0, T ). For the Rocky Mountain Spotted Fever

data, the ratio is 0.978, and the log-likelihood is −364.2.
To compare with the recursive model (4), a Hawkes model (1) was also fit to

the Rocky Mountain Spotted Fever dataset. The Hawkes model is identical to (4)
but with the restriction α = 0, and the MLEs of the other parameters are (μ̂, κ̂, β̂) =
(0.000368points/day, 0.895 triggered points/observedpoint, 0.00422points/day),with
corresponding standard error estimates (0.000665, 0.0221, 0.0340), again obtained by
simulating and re-estimating the model 100 times. The estimated conditional inten-
sity of the fitted Hawkes model is also shown in Fig. 2. The log-likelihood for the
fitted Hawkes model is −385.1, or 19.9 less than the log-likelihood of the recursive
model. As these are nested models, the difference in log-likelihoods is approximately
χ2-distributed, and based on the Akaike Information Criterion (Akaike 1974), the
improvement in fit using the recursive model is statistically significant.

In order to assess the fit of the model, we used super-thinned residuals (Clements
et al. 2013). In super-thinning, one selects a constant b, thins the observations by
keeping each observed point τi independently with probability b/λ̂(τi ) if λ̂(τi ) > b,
and superposes points from a Poisson process with rate (b− λ̂)1

λ̂≤b, where 1 denotes

the indicator function. A default choice for b is the mean of the λ̂ at the observed
points, as suggested in Gordon et al. (2015). The resulting super-thinned residuals
form a homogeneous Poisson process with rate b iff. λ̂ is the true conditional rate of the
observed point process (Clements et al. 2013). If ti are the times of the super-thinned
points, one may consider the interevent times, ri = ti − ti−1 (with the convention
t0 = 0), which should be exponential with mean 1/b if the fitted model λ̂ is correct,
and it is natural therefore to inspect the uniformity of the standardized interevent times
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Fig. 3 Super-thinned residuals tk using b = 100 points/year and their corresponding standardized interevent
times uk . The solid line shows, for each value of tk , the normalized cumulative sum

∑k
i=1 ui /

∑m
i=1 ui ,

where m is the number of super-thinned residuals. Dotted lines show lower and upper simultaneous 95%
confidence bounds based on 1000 simulations of the normalized cumulative sums of m uniform random
variables
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Fig. 4 Lag plot of the standardized interevent times ui of the super-thinned residuals using b = 100
points/year

ui = F−1(ri ), where F is the cumulative distribution function of the exponential with
mean 1/b. Figure 3 shows the super-thinned residuals ti alongwith their corresponding
standardized interevent times ui , as well as the cumulative sum of the standardized
interevent times, and the individual 95% confidence bounds based on 1000 simulations
of an equivalent number of uniform random variables. The super-thinned residuals
appear to be well scattered, though the model does not fit perfectly; there are fewer
small interevent times than expected, especially between 1979 and 1985. Despite the
noticeable absence of small interevent times around 1970 and 1979–1985, in general
the interevent times appear to be largely well scattered, as confirmed in the lag plot of
the standardized interevent times in Fig. 4.

The proposed recursive model can also be compared with the Hawkes model in
terms of predictive efficacy. We separated the California Rocky Mountain Spotted
Fever data into a training set (1/1/1960–12/31/2006) on which the models would be fit
by MLE, and saved the last 5years of this dataset for testing. For the fitted recursive
model, the log-likelihood over the test data was 65.8, and the log-likelihood for the
fitted Hawkes model was −128.8, for a difference of 194.6. To make this difference
concrete, we imagine using as a threshold the 95th percentile of λ̂(ti ), evaluated at the
observed points ti in the training set. Again, this intensity λ̂(t) was fit only on the data
up to 12/31/2006, and then evaluated on the test data from 2007 to 2011. With this
threshold, for the recursive model, 13 out of 23 observed points (56.5%) in the test
set occurred when the estimated value of λ exceeded the threshold, and only 9.6% of
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Fig. 5 Stochastic declustering of the Rocky Mountain Spotted Fever cases in CA based on the fitted model
(4). For each observed point ti , the y-coordinate, μ/λ(ti ), is the probability, based on model (4), that the
point is attributed to the background rate (μ) as opposed to contagion from previous points

days in the test set were false alarms, i.e., days when the threshold was exceeded yet
no points occurred. By contrast, for the fitted Hawkes model, the corresponding 95th
percentile threshold was lower and as a result 26.2% of days in the test set would have
been false alarms, yet only 7 out of 23 observed points (30.4%) in the test set occurred
when λ̂ exceeded the threshold.

Figure 5 shows the stochastic declustering of the Rocky Mountain Spotted Fever
data in California using the fittedmodel (4). The y-axis shows the probability, based on
the fittedmodel (4), that the point is attributed to the background rate (μ) as opposed to
contagion from previous points. The vast majority of points are attributed to contagion
rather than novel outbreaks. Two particular points in 1966 and 2006 are assigned near
certainty of being attributed to new outbreaks, and two points in 1973 and 1976 are
assigned substantially higher probability of being attributable to new outbreaks rather
than contagion from one of the other points in the dataset, according to the fitted
model.

8 Concluding remarks

The recursive point process model proposed here and fit to infectious disease data
seems to be an improvement over Hawkes models because of its more general form
and its flexibility, enabling it to account for changes in the rate of contagion over
the course of an epidemic. We should note that although Hawkes models are widely
used in seismology and are occasionally called epidemic-type models, and although
the processes by which humans spread contagious diseases seem naturally to lend
themselves to such models, the use of Hawkes models in describing the spread of
infections has been scant. Exceptions are Becker (1977), who proposed purely tempo-
ral self-exciting point process models to describe the temporal spread of smallpox in
Brazil, Farrington et al. (2003), who describe the effect of vaccinations on the spread of
Rocky Mountain Spotted Fever in the USA using self-exciting point process models,
and Balderama et al. (2012), who model invasive red banana plant locations and times
using a parametric space–time Hawkes point process model. Diggle (2006) investi-
gated inhomogeneity in foot-and-mouth disease using spatial–temporal point process
models estimated by partial likelihood methods, and Diggle (2014) discusses some
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successful uses of spatial–temporal point process modeling in describing in detail
ecological phenomena such as the locations of Japanese black pine saplings as well
as public health data such as liver cirrhosis in Northeastern England, but these efforts
currently do not appear to have been widely replicated. Perhaps the added flexibility
of the recursive model proposed here will facilitate the more frequent use of point
process models for such epidemic data.

The improvement in fit from the recursivemodel relative to theHawkesmodel is sig-
nificant and cannot be explained as overfitting, as even when the models were fit using
a training dataset (1/1/1960 to 12/31/2006) and then assessed on a separate testing
time period (1/1/2007–12/31/2011), the recursive model significantly outperformed
the Hawkes model using this data on Rocky Mountain Spotted Fever in California.
Note that there may be cases missing from the CDC reports from which these data
were obtained, as well as cases of Rocky Mountain Spotted Fever that were mis-
diagnosed as other diseases (Centers for Disease Control and Prevention 2015). In
addition, the parameter estimates are based on when the Rocky Mountain Spotted
Fever cases were reported. This may differ from the actual times when subjects con-
tracted the disease. In this analysis, the onset times of the disease for each subject
were uniformly distributed within a 7-day period, and if more detailed temporal data
were available, perhaps more small-scale clustering of the data would be observed.
There may be numerous covariates, such as climate, geographical and geological vari-
ables for instance, that are omitted here yet may influence the relationship observed
here between previously observed points and the rate of future points. The conditional
intensity may nevertheless be consistently estimated in the absence of such infor-
mation provided the impact of the missing covariates is suitable small, as shown in
Schoenberg (2016).

We have presented an extension of the Hawkes point process model, a recursive
model, that allows for previous disease status to informaflexible component describing
the time intervals between contagious events. In the special case where the productiv-
ity is inversely proportional to the conditional intensity (i.e., when α = 1), we have
shown that this standard recursive model is computationally trivial to estimate, and
does not require estimates of more complex parameters typically needed for accurate
estimations of transmission events. We have demonstrated that these recursive models
perform well on historical disease datasets, and can lead to insights into the transmis-
sion dynamics of particularly contagious diseases. These advances are particularly
relevant, given the increase in emerging infectious diseases and their effects on human
populations (Jones et al. 2008), and will hopefully encourage informed strategies as to
how best prevent and mitigate future outbreaks. While we have used the term alarms
in the context of false alarm rates and assessment of the hypothetical predictive capac-
ity of the recursive and Hawkes models, we must emphasize that we are in no way
proposing the issuance of actual alarms based on these models. Much further research
is needed to determine how best to warn the public of the dangers of disease epidemics,
to determine how best to decide if differences in the conditional intensity between the
recursivemodel and alternatives such as the Hawkesmodel are statistically significant,
and to allow the productivity to depend not only on the conditional intensity but on
covariates as well, such as population density, climate, and other biotic and abiotic
factors.
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