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Abstract
For an autoregressive process of order p, the paper proposes new sequential estimates
for the unknown parameters based on the least squares (LS) method. The sequential
estimates use p stopping rules for collecting the data and presumes a special modifi-
cation the sample Fisher information matrix in the LS estimates. In case of Gaussian
disturbances, the proposed estimates have non-asymptotic normal joint distribution
for any values of unknown autoregressive parameters. It is shown that in the i.i.d. case
with unspecified error distributions, the new estimates have the property of uniform
asymptotic normality for unstable autoregressive processes under some general con-
dition on the parameters. Examples of unstable autoregressive models satisfying this
condition are considered.

Keywords Unstable autoregressive process · Non-asymptotic distribution of
estimates · Sequential least squares method · Uniform asymptotic normality of
estimates

1 Introduction

Consider the autoregressive AR(p) model

xk = θ1xk−1 + . . . + θpxk−p + εk, (1)

where {εk} are independent and identically distributed (i.i.d.) unobservable random
errors (noise) with Eε1 = 0 and 0 < Eε21 = σ 2 < ∞; xk is the observation with
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the initial values x0, . . . , x−p+1 independent of {εk} and θ1, . . . , θp are unknown
parameters of the model.

Throughout the sequel, we shall assume that the distribution of εk is either unspec-
ified or is Gaussian, that is εk ∼ N (0, σ 2). Henceforth, for simplicity we set σ 2 = 1.
Model (1), which is a general autoregressive time series, is said to be stable if all roots
λ1, . . . , λp of the characteristic polynomial

φ(z) = z p − θ1z
p−1 − . . . − θp (2)

lie inside the unit circle, that is |λi | < 1, i = 1, p; it is said to be unstable if
max1≤i≤p |λi | = 1, and purely explosive if |λi | > 1, i = 1, p.

We shall let

Λp = {
(θ1, . . . , θp) : |λ1| < 1, . . . , |λp| < 1

}
, ∂Λp and [Λp] (3)

denote, respectively, the parametric stability region of the AR(p) process, its boundary
and its closure; [Λp] = Λp + ∂Λp.

Defining the p-dimensional vectors

θ = (θ1, . . . , θp)
′, Xk = (xk, . . . , xk−p+1)

′,

Equation (1) can be written as

xk = X ′
k−1θ + εk, k = 1, 2, . . . ; (4)

(the transpose of any vector or matrix a is indicated by a′).
A commonly used estimate for θ = (θ1, . . . , θp)

′ by observations x1, . . . , xn is
the least squares estimate (LSE) or the maximum likelihood estimate (MLE) in the
Gaussian case, given by

θ̂ (n) = G−1
n

n∑

k=1

Xk−1xk, Gn =
n∑

k=1

Xk−1X
′
k−1. (5)

Autoregressive models are widely used in engineering applications and time series
analysis because they can generate a great variety of processes (see, e.g., Anderson
1971; Box et al. 2008).

Estimate (5) can be represented (Lai and Wei 1985) in the recursive form of the
Kalman filter type providing a simple algorithm for its computation.

The statistical properties of θ̂ (n) have been well studied in the literature. The prob-
lem of strong consistency of estimate (5) for general autoregressive models, without
any assumption on the roots of the characteristic polynomial (2) was solved by Lai
and Wei (1983). The theory of asymptotic distributions, under different assumptions
on the order p and the range of unknown parameters, has been developed by many
authors (see Mann and Wald 1943; Anderson 1959, 1971; Ahtola and Tiao 1987;
Brockwell and Davis 1991; Greenwood and Shiryaev 1992; Monsour and Mikulski
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1998; Shiryaev and Spokoiny 2000; Liptser and Shiryaev 2001 and references therein).
For general stable AR(p) processes, it was established by Anderson (1959) that the
limiting distribution of normalized estimate (5) is multivariate standard normal in the
case of i.i.d. errors {εk}.

For unstable autoregressive models, there is no one universal limiting distribution.
It is well known (White 1958; Rao 1978; Shiryaev and Spokoiny 2000) that the least
squares estimate for the AR(1) model has three different limiting distributions, each
demanding its own normalizing factor.

For unstable AR(p) processes, Chan and Wei (1988) proved, by applying the func-
tional central limit theorem approach, that the limiting distribution of (5) can be
represented by ratios of certain Brownian functionals. The limiting distributions for
the maximum likelihood estimates in the purely explosive Gaussian AR(p) process
have been investigated in Anderson (1971), Mikulski and Monsour (1991).

In recent decades, remarkable theoretical advancements in statistical inference for
stochastic regression models, including the autoregressive processes, were made by
applying the sequential analysis approach. A distinguishing feature of sequential infer-
ence methods is that the sample size, they use in the procedures, is not fixed in advance
and determined by special stopping rules.

Sequentialmethods are especially important in problems of constructing confidence
intervals (regions of fixed size) for the unknown parameter with a prescribed coverage
probability (see Novikov 1972; Lai and Siegmund 1983; Lee 1994; Shiryaev and
Spokoiny 2000; Sriram and Iaci 2014) and in problems of constructing sequential
point estimates of unknown parameters with prescribed mean square precision (see
Borisov and Konev 1977; Konev and Pergamenshchikov 1981; Pergamenshchikov
1992; Konev and Lai 1995; Konev and Pergamenshchikov 1997; Konev and Le Breton
2000; Galtchouk and Konev 2001, 2006).

The present paper has two linked objectives. First, we address the problem of
constructing sequential least squares estimates for parameters in AR(p) model with
non-asymptotic normal joint distribution under the condition that the errors (εk) in (1)
form a Gaussian white noise. The second problem is to study asymptotic properties of
these estimates for the unstableAR(p) process in the casewhen {εk} is an i.i.d. sequence
of random variables with unspecified distribution and to find a general condition on the
autoregressive parameters providing the uniform asymptotic normality of estimates.

The key idea of our approach is to use a special transformation of the sample Fisher
informationmatrix in (5) to obtain the sequential estimates with the desired properties.

The paper is organized as follows. In Sect. 2, we construct sequential least square
estimates. The exact distribution of these estimates in the case of Gaussian white noise
has been found (Theorem 1). The heart of the proof of Theorem 1 is a probabilistic
result for square integrable martingales with conditionally Gaussian increments estab-
lished in Appendix (Theorem 3). In Sect. 3, we prove uniform asymptotic normality
of the estimates in case of unstable AR(p) process under a general condition on the set
of parameters. Three important examples are considered: AR(1), AR(2) and AR(3)
unstable processes (Propositions 1–5). In Sect. 3.4, we consider the case of unstable
AR(p) process under the assumption that the roots of the characteristic polynomial (2)
are all different and prove uniform asymptotic normality (Proposition 4). In Propo-
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sition 5, we establish the uniform asymptotic normality of the proposed estimates in
case of stable AR(p) process.

2 Sequential least squares estimates. Distribution in the case of
Gaussian noise

In this section, a new sequential sampling scheme for estimating unknown parame-
ters θ1, . . . , θp in an autoregressive model of order p, specified by Equation (1), is
developed. The goal is to construct sequential least square estimates with known joint
distribution, in the case of Gaussian white noise. To define a sequential counterpart of
least square estimate (5), we introduce a system of special stopping rules and do some
modifications of the sample Fisher information matrix Gn . We set

Gn,l =
l∑

k=n+1

Xk−1X
′
k−1, (6)

where 0 ≤ n < l < ∞. For every h > 0, we define p stopping times τi (h), 1 ≤ i ≤ p,

τi (h) = inf

⎧
⎨

⎩
n > τi−1(h) :

n∑

k=τi−1(h)+1

x2k−i ≥ h

⎫
⎬

⎭
, i = 1, p, (7)

where τ0(h) ≡ 0; inf{∅} = +∞.
Further we introduce a system of the modified sample Fisher information matrices

Ĝi,τi (h) =
τi (h)∑

k=τi−1(h)+1

√
βi,k(h)Xk−1X

′
k−1, i = 1, p, (8)

where

βi,k(h) =
{
1 i f k < τi (h),

αi (h) i f k = τi (h);

α1(h), . . . , αp(h) are the correction multipliers (0 < αi (h) ≤ 1) defined by the
equations

τi (h)−1∑

k=τi−1(h)+1

x2k−i + αi (h)x2τi (h)−i = h, i = 1, p.

The matrix Ĝi,τi (h) can possibly be regarded as the sample Fisher information
matrix computed by the observations at the (random) time period (τi−1, τi ].
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Sequential fixed accuracy estimation for AR models 239

By making use of matrices (8), we construct a sequential counterpart of the sample
Fisher information matrix (5) as

Gp(h) = ‖〈Gp〉i, j (h)‖, 〈Gp〉i, j (h) = 〈Ĝi,τi (h)〉i j (9)

where the symbol ‖Ai, j‖ means a matrix having elements Ai, j and 〈A〉i, j denotes the
(i, j)-th element of a matrix A. Let v(h) = (v1(h), . . . , vp(h))′ be a vector with the
coordinates

vi (h) =
τi (h)∑

k=τi−1(h)+1

√
βi,k(h)〈Xk−1xk〉i (10)

where 〈b〉i denotes the i-th component of vector b.
Finally we define the sequential least squares estimate for θ = (θ1, . . . , θp)

′ as

θ∗(h) = (θ∗
1 (h), . . . , θ∗

p(h))′ = G−1
p (h)v(h). (11)

ThematrixGp(h) is assumed to be invertible for sufficiently large h. This conditions
is checked in Proposition 5 for a stable AR(p) model.

Now that the construction of sequential estimate (11) is complete, the natural ques-
tion arises: whether there are some arguments in favor of this estimate in comparison
with the commonly used LSE (5). A certain justification of the more complicated form
of the sequential estimate (11) is the fact that, in contrast to (5), it permits one to derive
its exact distribution by samples of small volumes, in the case of Gaussian noise.

The desired result may be given as follows.

Theorem 1 Suppose that (εi )i≥1 are i.i.d. with the standard Gaussian distribution,
εi ∼ N (0, 1) and the estimate for θ = (θ1, . . . , θp)

′ be defined by (11). Then for any
θ ∈ Rp and h > 0

Law

(
Gp(h)√

h
(θ∗(h) − θ)

)
= N (O, Ip)

that is the standardized deviation of θ∗(h) with normalization factor (9) has the p-
dimensional standard normal distribution; Ip is the unit matrix of order p.

The proof of this theorem, given in Appendix, makes fundamental use of the
properties of stopped square integrable martingales with the conditionally Gaussian
increments (see Theorem 3 in Appendix).

3 Uniform asymptotic normality of the sequential plan

In this section, we will extend the developed sequential method to the problem of esti-
mating parameters in AR(p) model (1) with unknown distribution of the disturbances
(εk)k≥1. In what follows, the noise (εk)k≥1 is assumed to be a sequence of independent
identically distributed random variables. We consider the case of unstable AR(p) pro-
cess when all roots λ1, . . . , λp of the characteristic polynomials (2) lie on or inside the
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unit circle, that is |λi | ≤ 1, i = 1, p. The goal of this section is to prove the property
of uniform asymptotic normality of sequential estimate (11) as h in the stopping rules
(7) tends to infinity. To this end, we will need to impose an additional condition on
the parametric set.

Let K be a compact subset in the closure [Λp] of the stability region (3) satisfying
the following condition.

Condition 1
sup
θ∈K

sup
n≥1

‖An(θ)‖ =: κp < ∞ (12)

where ‖ · ‖ denotes a matrix norm and

A(θ) =
(

θ1 . . . θp
Ip−1 0

)
. (13)

We will establish the following uniform asymptotic normality result.

Theorem 2 Let (εk)k≥1 in AR(p) model (1) be a sequence of i.i.d. random variables
with Eεk = 0, and 0 < Eε2k = 1 and θ∗(h) for θ = (θ1, . . . , θp)

′ be given by (11).
Then for any set K ⊂ [Λp], satisfying condition 1,

lim
h→∞ sup

θ∈K
sup
t∈Rp

∣∣∣∣Pθ

(
Gp(h)√

h
(θ∗(h) − θ) ≤ t

)
− Φp(t)

∣∣∣∣ = 0 (14)

where t = (t1, . . . , tp)′, Φp(t) is the standard p-dimensional normal distribution
function and Λp is given by (3).

The proof of this result is shown in Appendix.
Consider some applications of Theorem 2.

3.1 AR(1) model

Let {xk}k≥0 obey the first-order autoregressive equation

xk = θ1xk−1 + εk, (15)

where the εk’s are i.i.d. with Eεk = 0, Eε2k = 1.
In this case, estimate (11) of parameter θ has the form

θ∗(h) = 1

h̃

⎛

⎝
τ(h)−1∑

k=1

xk−1xk +√
α(h)xτ(h)−1xτ(h)

⎞

⎠ , (16)

where

τ(h) = inf

{

n ≥ 0 :
n∑

k=1

x2k−1 ≥ h

}

, h̃ =
τ(h)−1∑

k=1

x2k−1 +√
α(h)x2τ(h)−1; (17)
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Sequential fixed accuracy estimation for AR models 241

with the correction factor 0 < α(h) ≤ 1 determined by the equation

τ(h)−1∑

k=1

x2k−1 + α(h)x2τ(h)−1 = h.

Similar to the sequential least squares estimate proposed by Lai and Siegmund
(1983), Borisov and Konev (1977), estimate (16) has the property of uniform asymp-
totic normality for the unstable AR(1) process.

Proposition 1 Let (εk)k≥1 in (15) be an i.i.d. sequence of random variables with Eεk =
0 and Eε2k = 1 and θ∗(h) be defined by (16). Then

lim
h→∞ sup

|θ |≤1
sup

−∞<t<∞

∣∣∣∣Pθ

(
h̃√
h

(θ∗(h) − θ) ≤ t

)
− Φ(t)

∣∣∣∣ = 0. (18)

The proof of this result proceeds along the lines of Theorem2.1 inLai andSiegmund
(1983) and is omitted.

If {εk}k≥1 in (15) is a sequence of i.i.d. random variables with standard normal
distribution, i.e., εk ∼ N (0, 1), then, by applying Theorem 1 in Sect. 2, we get an
exact non-asymptotic distribution of estimate (16): for any h > 0 and −∞ < θ < ∞

Pθ

(
h̃√
h

(
θ∗(h) − θ

) ≤ t

)
= Φ(t), − ∞ < t < ∞.

Some extensions of this result can be found in Konev (2016).

3.2 The case of unstable AR(2) process

Consider an AR(2) process satisfying the equation

xk = θ1xk−1 + θ2xk−2 + εk, k = 1, 2, . . . (19)

with x0 = x−1 = 0. In this case, the closure of stability region Λ2, given by (3), is the
triangle:

[Λ2] = {θ = (θ1, θ2)
′ : −1 + θ2 ≤ θ1 ≤ 1 − θ2, −1 ≤ θ2 ≤ 1}. (20)

Lemma 1 Condition 1 holds for AR(2) process (19) for any compact set

K ⊂ [Λ2] \ {(−2,−1), (2,−1)}. (21)

Proof. One can check that the powers of the matrix

A(θ) =
[

θ1 θ2
1 0

]
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are given by the formulae

An = 1

z1 − z2

(
zn+1
1 − zn+1

2 −(zn1 − zn2)z1z2
zn1 − zn2 −(zn−1

1 − zn−1
2 )z1z2

)

if roots of the characteristic polynomial ϕ(z) = z2 − θ1z − θ2 are real and by

An = an−1

sinϕ

(
sin(n + 1)ϕ −a2 sin nϕ

sin nϕ − sin(n − 1)ϕ

)

if the roots are complex, that is z1 = aeiϕ and z2 = ae−iϕ . Using these equations,
one can easily verify (12). This completes the proof of Lemma 1. ��

By applying Theorem 2 and Lemma 1, we arrive at the following result.

Proposition 2 Let (εn)n≥1 in AR(2) model (19) be a sequence of i.i.d. random vari-
ables with Eεn = 0 and Eε2n = 1 and the estimate θ∗(h) for θ = (θ1, θ2)

′ be given by
(11) with p = 2.

Then for any compact set K , satisfying (21),

lim
h→∞ sup

θ∈K
sup
t∈R2

∣∣∣∣Pθ

(
G2(h)√

h
(θ∗(h) − θ) ≤ t

)
− Φ2(t)

∣∣∣∣ = 0 (22)

where t = (t1, t2)′, Φ2(t) = Φ(t1)Φ(t2), Φ is the standard normal distribution
function.

3.3 The case of unstable AR(3) process

Consider an AR(3) process satisfying the equation

xk = θ1xk−1 + θ2xk−2 + θ3xk−3 + εk, k ≥ 1, (23)

with x0 = x−1 = x−2 = 0. In this case, the boundary of the stability region Λ3,
defined by (3) with p = 3, is the union of three surfaces

δΛ3 = S1
⋃

S2
⋃

S3

where S1 is the triangle with apexes

B1 = (1, 1,−1), B2 = (−1, 1, 1), B3 = (−3,−3,−1),

S2 is the triangle with apexes B1, B2 and B4 = (3,−3, 1),

S3 = {(θ1, θ2, θ3) : θ1 = a + 2 cosϕ, θ2 = −1 − 2a cosϕ, θ3 = a, |a| ≤ 1, 0 ≤ ϕ ≤ π}.
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Sequential fixed accuracy estimation for AR models 243

Lemma 2 Condition 1 holds for AR(3) process (23) for any compact set K satisfying
the inclusion

K ⊂ [Λ3] \ ([B1, B4]
⋃

[B2, B3]) (24)

where [Λ3] is the closure of the region Λ3, [B1, B4] and [B2, B3] are the segments
connecting the points B1, B4 and B2, B3, respectively.

For the sake of brevity, we omit the proof of Lemma 2.

Remark 1 It should be observed that the characteristic polynomial ϕ3(z) = z3 −
θ1z2 − θ2z − θ3 has multiple roots on the unit circle for all points θ = (θ1, θ2, θ3) in
the segments [B1, B4] and [B2, B3].

Proposition 3 Let (εn)n≥1 in AR(3) model (23) be a sequence of i.i.d. random vari-
ables with Eεn = 0 and Eε2n = 1 and the estimate θ∗(h) = (θ∗

1 , θ∗
2 , θ∗

3 )′ be given by
(11) with p = 3.

Then for any compact set K , satisfying (24)

lim
h→∞ sup

θ∈K
sup
t∈R3

∣∣∣∣Pθ

(
G3(h)√

h
(θ∗(h) − θ) ≤ t

)
− Φ3(t)

∣∣∣∣ = 0. (25)

This result is a direct consequence of Lemma 2 and Theorem 2.

3.4 The case of unstable AR(p) process

Consider the autoregressive AR(p) model specified by Equation (1) with zero initial
values x0 = x−1 = . . . = x1−p = 0. Because the calculations in terms of the
general Jordan canonical form are laborious, we shall check condition (12) under the
assumption that the characteristic roots λi = λi (θ) of matrix (13) are all different.
Moreover, we suppose that the vector of unknown parameters θ = (θ1, . . . , θp)

′
belongs to the set

Kδ = {θ ∈ [Λp] : |λi (θ) − λ j (θ)| ≥ δ for i �= j; i, j = 1, n} (26)

for some positive number δ. Then matrix (13) can be written as

A(θ) = T (θ)D(θ)T−1(θ)

where D(θ) is a diagonal matrix, D(θ) = diag{λ1(θ), . . . , λp(θ)} and T (θ) is the
Vandermonde matrix

T =

⎡

⎢⎢
⎣

λ
p−1
1 (θ) . . . λ

p−1
p (θ)

. . . . . . . . .

λ1(θ) . . . λp(θ)

1 . . . 1

⎤

⎥⎥
⎦ .
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Noting that

inf
θ∈Kδ

|T (θ)| = inf
θ∈Kδ

∣∣∣∣∣∣

p−1∏

k=1

p∏

i=k+1

(λk(θ) − λi (θ))

∣∣∣∣∣∣
≥ δ

p(p−1)
2

one gets
sup
θ∈Kδ

sup
n≥1

‖An(θ)‖ ≤ sup
θ∈Kδ

‖T (θ)‖ · ‖T−1(θ)‖ < ∞.

Therefore, condition (12) is satisfied and applying Theorem 2, we obtain the fol-
lowing result

Proposition 4 Let (ε)n≥1 in AR(p) model (1) be a sequence of i.i.d. random variables
with Eεn = 0 and Eε2n = 1 and θ = (θ1, . . . , θp)

′ ∈ Kδ where Kδ is defined in (26).
Then estimate (11) is asymptotically uniformly normal on the set Kδ , that is

lim
h→∞ sup

θ∈Kδ

sup
t∈Rp

∣∣∣∣Pθ

(
Gp(h)√

h
(θ∗(h) − θ) ≤ t

)
− Φp(t)

∣∣∣∣ = 0. (27)

It will be noted that in the case of stable autoregressive process (1) the property of
the uniform asymptotic normality of sequential estimate (11) holds true without any
restriction on multiplicity of the roots of the characteristic polynomials (2). The result
is as follows.

Proposition 5 Let AR(p) model (1) be stable, (εn)n≥1 be a sequence of i.i.d. random
variables with Eεn = 0 and Eε2n = 1 and the estimate θ∗(h) for θ = (θ1, . . . , θp)

′ be
given by (11).

Then for any compact set K ⊂ Λp

lim
h→∞ sup

θ∈K
sup
t∈Rp

∣∣∣∣Pθ

(
Gp(h)√

h
(θ∗(h) − θ) ≤ t

)
− Φp(t)

∣∣∣∣ = 0 (28)

where t = (t1, . . . , tp)′, Φp(t) = Φ(t1) · · · Φ(tp), Φ is the standard normal distribu-
tion function.

Moreover,

lim
h→∞

Gp(h)

h
= F

〈F〉11 , a.s., (29)

lim
h→∞

τp(h)

h
= p

〈F〉11 , a.s. (30)

where F is a positive definite matrix given in (63).

The proof of this proposition is given in Appendix.
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4 Monte Carlo results

In this section, we report the results of Monte Carlo experiments, carried out for the
autoregressive model AR(2), to compare the performance of the proposed sequential
estimates (11) with the fixed sample size LSE counterparts given by (5). In all simu-
lations of the AR(2) process, obeying Equation (19), the distribution of the residuals
{εk} was taken to beN (0, 1) and x0 = 0, x−1 = 0. According to (11), the sequential
estimate θ∗(h) = (θ∗

1 (h), θ∗
2 (h))′ for θ = (θ1, θ2)

′ has the form

θ∗(h) = G−1
2 (h)v(h). (31)

Here G2(h) is the modified sample Fisher information matrix of size 2 × 2 with
the elements

〈G2(h)〉11 =
τ1(h)∑

k=1

√
β1,k(h)x2k−1, 〈G2(h)〉12 =

τ1(h)∑

k=1

√
β1,k(h)xk−1xk−2,

〈G2(h)〉21 =
τ2(h)∑

k=τ1(h)+1

√
β2,k(h)xk−2xk−1, 〈G2(h)〉22 =

τ2(h)∑

k=τ1(h)+1

√
β2,k(h)x2k−2.

and v(h) = (v1(h), v2(h))′ is the vector with coordinates

v1(h) =
τ1(h)∑

k=1

√
β1,k(h)xk−1xk, v2(h) =

τ2(h)∑

k=τ1(h)+1

√
β2,k(h)xk−2xk,

where τ1(h) and τ2(h) are stopping rules given by

τ1(h) = inf

{

n ≥ 1 :
n∑

k=1

x2k−1 ≥ h

}

, τ2(h)

= inf

⎧
⎨

⎩
n > τ1(h) :

n∑

k=τ1(h)+1

x2k−2 ≥ h

⎫
⎬

⎭
.

The values of parameters θ1, θ2, used in the simulations, are given in the first two
columns of Tables 1, 2 and belong to set (20).

The experiment to access the performance of the sequential estimate (11) consisted
of 10000 replications of the sequential procedure (31) with thresholds h = 300 and
h = 500 for each pair of parameters (θ1, θ2). The columns of Table 1with the headings
θ∗
1 , θ∗

2 and Eτ2 report, respectively: θ∗
1 is the mean of the sequential estimate θ∗

1 (h) for
parameter θ1, θ∗

2 (h) is that for θ2 and Eτ2 is the mean duration of sequential procedure
(31), based on the results of 10000 replications. To assess the accuracy of the least
squares estimates (5) for p = 2 in the fixed sample case, the sample size n was chosen
so that Eθ τ2 ≈ n for each θ = (θ1, θ2)

′. The last two columns with the headings θ̂1
and θ̂2 report the means of the LS estimates based on 10000 replications.
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Table 1 Averages of sequential
LSE and LSE with fixed sample
size (104 replications)

h = 300

θ1 θ2 θ∗
1 θ∗

2 Eτ2 θ̂1 θ̂2

−1.4 −1 − 1.458 − 1.083 48 − 1.288 −0.893

−0.6 −1 − 0.576 − 0.906 62 − 0.562 −0.933

0 −1 0.002 − 0.899 64 − 0.003 − 0.931

0.6 −1 0.577 − 0.916 62 0.572 − 0.923

−1.2 −0.4 − 1.314 − 0.531 143 − 1.185 − 0.403

0.6 −0.4 0.602 −0.398 415 0.595 −0.398

−0.8 0 −0.860 −0.066 223 −0.790 −0.008

0.2 0 0.203 0.001 581 0.197 − 0.002

0 0.4 0.002 0.397 506 − 0.001 0.394

h = 500

θ1 θ2 θ∗
1 θ∗

2 Eτ2 θ̂1 θ̂2

−1.4 −1 − 1.439 − 1.056 62 − 1.331 − 0.927

−0.6 −1 − 0.579 − 0.924 79 − 0.571 − 0.94

0 −1 0.000 − 0.924 80 − 0.002 − 0.943

0.6 −1 0.583 − 0.936 79 0.581 − 0.950

0.2 −0.6 0.198 − 0.595 385 0.199 − 0.594

−1.2 −0.4 −1.281 − 0.490 229 − 1.190 − 0.399

0.6 −0.4 0.597 − 0.397 691 0.599 − 0.400

−0.8 0 − 0.822 − 0.027 373 − 0.794 − 0.005

0.2 0 0.203 0.001 962 0.201 − 0.002

0 0.4 − 0.002 0.395 846 − 0.003 0.393

The values in Table 1 indicate that the performance of the fixed sample size proce-
dure (5) is close to that of the sequential least squares estimates (31). It will be noted
that both estimators for the fixed sample case and those for the sequential case perform
also well when the process AR(2) is unstable (θ2 = −1).

The simulation study included as well testing the hypothesis that the joint distri-
bution of the sequential estimates (θ∗

1 (h), θ∗
2 (h))′ is normal. To this end, we used the

tests of Mardia (1974), Henze and Zirkler (1990), Royston (1983) and the multivariate
Shapiro–Wilk test which were realized , up to standard, in the program package R. The
experiment consisted of 200 replications of sequential procedure (31) with h = 300
for each pair of parameters (θ1, θ2) tabulated in the first two columns of Table 2.

The computed p-values of all tests are reported in columns 3–6 of Table 2. It will be
noted that each result for Mardia test consists of two p-values: p-value of the skewness
statistic and p-value of the kurtosis statistic.

For the confidence level α = 0.05, the results of tests can be interpreted as follows:
the hypothesis is accepted if the corresponding p-value exceeds 0.05. For example,
the first row in Table 2 indicates that, in case of θ1 = 0.3 and θ2 = −0.1, one accepts
the hypothesis of bivariate normality of (θ∗

1 (h), θ∗
2 (h))′ by applying any of the tests

of Mardia, Henze–Zirkler and Royston. The multivariate test of Shapiro-Wilk rejects
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Table 2 Testing hypothesis of bivariate normality of sequential LSE, h = 300 (200 replications)

θ1 θ2 Mardia’s test Henze–Zirkler’s test Royston’s test Multivariate
Shapiro–Wilk test

0.3 −0.1 0.083/0.667 0.464 0.469 0.022

0 0.5 0.371/0.131 0.226 0.058 0.161

−0.2 −0.8 0.116/0.982 0.369 0.062 0.307

1.2 −0.9 0.589/0.380 0.971 0.723 0.405

−0.2 −0.1 0.037/0.808 0.182 0.047 0.701

0.2 0.7 0.339/0.378 0.770 0.366 0.403

0 1 0.123/0.287 0.916 0.732 0.789

1 0 0.229/0.292 0.284 0.080 0.663

0.3 −1 0.104/0.719 0.431 0.132 0.664

Table 3 Sample frequencies of G2(h)(θ∗(h) − θ)
√
h hitting the area {(x, y) : x ≤ −0.3; y ≤ 1.7} for

normal noises and different values of h

(θ1, θ2) (0,1) (−1,0) (1,0) (0,−1) (1.9,−1) (−1.9,−1)

h = 20 0.3649 0.3549 0.3671 0.3641 0.3472 0.3027

h = 50 0.3679 0.3614 0.3619 0.3682 0.3642 0.3322

h = 200 0.3577 0.3675 0.3654 0.3675 0.3647 0.3626

h = 500 0.3611 0.3601 0.3633 0.3647 0.3626 0.3611

Table 4 Sample frequencies of G2(h)(θ∗(h) − θ)
√
h hitting the area {(x, y) : x ≤ −0.3; y ≤ 1.7} for

skew t-distribution of noises and different values of h

(θ1, θ2) (0,1) (−1,0) (1,0) (0,−1) (1.9,−1) (−1.9,−1)

h = 20 0.3419 0.336 0.3271 0.3223 0.314 0.2962

h = 50 0.344 0.3318 0.3347 0.3251 0.3149 0.3015

h = 200 0.3467 0.3523 0.3412 0.3393 0.3392 0.3309

h = 1000 0.3509 0.3641 0.3455 0.3465 0.3415 0.3326

the hypothesis. Table 2 shows that the performance of the sequential estimates agrees
with the statement of Theorem 1.

In Tables 3, 4, we compare the performance of sequential procedure (31) for the
autoregressive model AR(2) in two cases when the distribution of the disturbances
εk in (19) is normal and when it is a skewed t-distribution. We conduct a simulation
study to assess the property of the uniform asymptotic normality of the standardized
deviation of estimate (31)

G2(h)(θ∗(h) − θ)/
√
h. (32)

The experiment, for each type of noises, consisted of 10000 replications of the pro-
cedure (31) for different values of θ = (θ1, θ2)

′ given in the first rows of Tables 3, 4
and those of parameter h indicated in the first columns. It will be noted all values of
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θ = (θ1, θ2)
′ lie on the boundary ∂Λ2 of stability region (20). Each figure in Table 3 is

the corresponding frequency count of the number of times vector (32) hits the region

S = {(x, y) : x ≤ −0.3; y ≤ 1.7} (33)

in the case of normal noises. Note that for the bivariate standard normal vector P(S) =
0.3648.

Table 4 refers to the case of the skewed t-distribution. The figures in the rows
of Tables 3, 4 indicate that sequential estimate (31) performs well, and the sample
probabilities are close to the true probability value.

However, the convergence in the case of t-distribution becomes slower with respect
to h and greater values of the threshold h in the stopping rules are needed to ensure the
desired approximation. One can remark also that in both cases the quality of sequential
estimates deteriorates for the point θ = (−1.9,−1) near the corner point (−2,−1) of
stability region (20) which corresponds to the root on the unit circle with multiplicity
2.

Remark 2 When modeling AR(2) model with skewed t-distribution of disturbances,
we used the rST-function (with d f = 3, skew = 17) in the betategarch library which
is built in the R-package. The disturbance density was explicitly specified as

pγ (x) = 2

γ + 1
γ

{
fd f

(
x

γ

)
I[0,∞)(x) + fd f (xγ ) I(−∞,0)(x)

}

where fd f was a t-distribution with d f = 3 degrees of freedom. The value of γ was
chosen so that the skewness of pγ would be equal to parameter skew = 17. Then the
corresponding centering and normalization operations were applied.

5 Concluding remarks

In this paper,wehave primarily focused on two issues concerning sequential estimation
of parameters in autoregressive process. Our first issue is related to the AR(p) model
(1) with Gaussian disturbances (εk). We propose a new construction of sequential
estimates on the basis of the LSE estimates. An important property of these estimates
is that they have a non-asymptotic normal joint distribution for any values of unknown
parameters (θ1, . . . , θp)

′ ∈ Rp (Theorem 1).
The second issue is related to the unstable AR(p) process when the noise distribu-

tion is unspecified. Under general condition (12) on the admissible parameter set, we
prove uniform asymptotic normality of the proposed estimates (Theorem 2). This con-
dition has been checked for AR(1), AR(2) and AR(3) models and also for a general
autoregressive process when all roots of the characteristic polynomial are simple.

Acknowledgements The authors are grateful to the Associate Editor and to an anonymous referee for their
helpful comments which improved this paper.
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A Additional probabilistic result for the square integrable
martingales with conditionally Gaussian increments

In order to prove Theorem 1, we will establish first the following probabilistic result
for the square integrable martingales with conditionally Gaussian increments.

Theorem 3 Let (Ω,F , P) be a probability space with a filtration (Fk)k≥0. Let
(Ml

k,Fk)k≥0, l = 1, p, be a family of p square integrable martingales with the

quadratic characteristics {< M (l) >n}n≥1 such that

(a) P(< M (l) >∞= +∞) = 1, l = 1, p;
(b) Law(ΔM (l)

k |Fk−1) = N (0, σ 2
l (k − 1)), k = 1, 2, . . . , l = 1, p, i.e., the Fk−1-

conditional distribution of ΔMl
k = M (l)

k − M (l)
k−1 is Gaussian with parameters 0

and σ 2
l (k − 1) = E((ΔM (l)

k )2|Fk−1).

For every h > 0, define the sequence of stopping times

τl = τl(h) = inf

⎧
⎨

⎩
n > τl−1 :

n∑

k=τk−1(h)+1

σ 2
l ( j − 1) ≥ h

⎫
⎬

⎭
, j = 1, p (34)

where τ0 = τ0(h) = 0, inf{∅} = +∞, and the sequence of random variables

ml(h) = 1√
h

τl∑

k=τl−1+1

√
βk(h, l)ΔM (l)

k , l = 1, . . . , p,

where

βk(h, l) =
{
1 i f τl−1(h) < k < τl(h),

αl(h) i f k = τl(h);

and αl(h) are correcting factors, 0 < α j (h) ≤ 1 determined by the equations

τl−1∑

k=τl−1+1

σ 2(k − 1) + α j (h)σ 2
l (τl(h) − 1) = h.

Then, for any h > 0, the vector m(h) = (m1(h), . . . ,mp(h))′ has p-dimensional
standard normal distribution, that is m(h) ∼ N (0, Ip).

We will show that the characteristic function of the random vector m(h) =
(m1(h), . . . ,mp(h))′ has the form

ϕ(u) = ϕ(u1, . . . , u p) = E exp

(

i
p∑

l=1

ml(h)ul

)

= e
− 1

2

p∑

l=1
u2l

for any u = (u1, . . . , u p) ∈ Rp.
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Let Fτi denote a σ−algebra of the events prior to stopping time τi , that is

Fτi = {A ∈ F∞ : A ∩ (τi ≤ k) ∈ Fk for every k ≥ 0}

where F∞ = σ
(∪k≥0Fk

)
. The family of σ−algebras {Fτi }0≤i≤p is non-decreasing,

that is

Fτ0 ⊂ Fτ1 ⊂ . . . ⊂ Fτp .

Since

ϕ(u) = E

⎧
⎨

⎩
exp

⎛

⎝i
p−1∑

l=1

ml(h)ul

⎞

⎠ E
(
eim p(h)u p

∣∣∣Fτp−1

)
⎫
⎬

⎭
,

one has to verify that

E
{
eim1(h)u1

}
= e− u21

2 , (35)

E
[
eiml (h)ul

∣∣∣Fτl−1

]
= e− u2l

2 , l = 2, p. (36)

We introduce the sequence of truncated stopping times τ 1(h, N ) = τ1(h)∧N , N =
1, 2, . . . and denote

ξN (h) = 1√
h

τ 1(h,N )∑

k=1

√
βk(h, 1)ΔM (1)

k .

Noting that

lim
N→∞ ξN (h) = m1(h) a.s.,

one has

Eeim1(h)u1 = lim
N→∞ Eeiu1ξN (h).

Further we use the equation

Eeiu1ξN (h) = e− u21
2 Eeξ

(1)
N (h,u1) + RN , (37)

where

RN = Eeξ
(1)
N (h,u1)

(
e−ξ

(2)
N (h,u1) − e− u21

2

)
.
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ξ
(1)
N (h, u1) =

N∑

k=1

[
iu1

√
βk(h, 1)ΔM (1)

k√
h

χ{k≤τ(h)} + u21βk(h, 1)σ 2
1 (k − 1)

2h
χ{k≤τ1(h)}

]

,

ξ
(2)
N (h, u1) = u21

2h

N∑

k=1

βk(h, 1)σ 2
1 (k − 1)χ{k≤τ1(h)}. (38)

By the definition of stopping time τ1(h) in (38), one obtains

lim
N→∞ ξ

(2)
N (h, u1) = u21

2
.

Applying the theorem on dominated convergence yields

lim
N→∞ RN = 0. (39)

From here and (37), we come to (35).
Now we check (36). We have

E
[
eiml (h)ul

∣∣∣Fτl−1

]
= lim

n→∞ E
[
eiml (h)ul

∣∣∣Fτl−1∧n
]
,

E
[
eiml (h)ul

∣∣∣Fτl−1∧n
]

=
n∑

t=0

E
[
eiml (h)ul

∣∣∣Ft

]
χ{τl−1=t}

=
n∑

t=0

E
[
eξ(h,l,t)

∣∣∣Ft

]
χ{τl−1=t}; (40)

where

ξ(h, l, t) = i√
h

τl∑

k=t+1

√
βk(h, l)ΔM (l)

k ul .

Introducing truncated stopping times

τl ∧ N , N = t + 1, t + 2, . . . ,

and the sequence of random variables

ξN (h, l, t) = i√
h

τl∧N∑

k=t+1

√
βk(h, l)ΔM (l)

k ul , N = t + 1, . . .

and taking into account that

lim
N→∞ ξN (h, l, t) = ξ(h, l, t) a.s.,
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we get

E
[
eξ(h,l,t)

∣∣∣Ft

]
= lim

N→∞ E
[
eξN (h,l,t)

∣∣∣Ft

]
= e− u2l

2 . (41)

Further we represent ξN (h, l, t) as

ξN (h, l, t) = ξ
(1)
N (h, l, t) − ξ

(2)
N (h, l, t),

where

ξ
(1)
N (h, l, t) =

N∑

k=t+1

[
iul

√
βk(h, l)√
h

ΔM (l)
k χ{k≤τl } + u2l βk(h, l)

2h
σ 2
l (k − 1)χ{k≤τl }

]

,

ξ
(2)
N (h, l, t) = u2l

2h

N∑

k=t+1

βk(h, l)σ 2
l (k − 1)χ{k≤τl (h)}.

Then

E
[
eξN (h,l,t)

∣∣∣Ft

]
= e− u2l

2 E
[
eξ

(1)
N (h,l,t)

∣∣∣Ft

]
+ RN , (42)

where

RN = E
{
eξ

(1)
N (h,l,t)

[
e−ξ

(2)
N (h,l,t) − e− u2l

2

] ∣∣∣Ft

}
.

Noting that

E
[
eξ

(1)
N (h,l,t)

∣∣∣Ft

]
= E

[
eξ

(1)
N−1(h,l,t)

∣∣∣Ft

]
= . . . = 1,

and tending N → ∞ in (41) one gets

E
[
eξ(h,l,t)

∣∣∣Ft

]
= e− u2l

2 .

In view of (39)

E
[
eiml (h)ul |Fτl−1∧n

]
= e− u2l

2 χ{τl−1≤n}.

Limiting n → ∞ we arrive at the desired results (35). Theorem 3 is proven. ��
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B Proofs of main theorems

B.1 Proof of Theorem 1

Substituting xk from (1) in (10) yields

vi (h) =
τi (h)∑

k=τi−1(h)+1

√
βi,k(h)〈Xk−1(X

′
k−1θ + εk)〉i

=
τi (h)∑

k=τi−1(h)+1

√
βi,k(h)〈Xk−1X

′
k−1θ〉i +

τi (h)∑

k=τi−1(h)+1

√
βi,k(h)〈Xk−1〉iεk

=
〈

τi (h)∑

k=τi−1(h)+1

√
βi,k(h)Xk−1X

′
k−1θ

〉

i

+
τi (h)∑

k=τi−1(h)+1

√
βi,k(h)xk−iεk

= 〈Ĝi,τi (h)θ〉i + ηi (h) = 〈Gp(h)θ〉i + ηi (h),

where ηi (h) =
τi (h)∑

k=τi−1(h)+1

√
βi,k(h)xk−iεk .

Therefore
v(h) = Gp(h)θ + η(h), (43)

where η(h) = (η1(h), . . . , ηp(h))′.
Combining (11) and (43), one obtains

Gp(h)(θ∗(h) − θ) = η(h).

It remains to show that the random vector η(h)/
√
h has p-dimensional standard

normal distribution. To this end, we apply Theorem 3. First we introduce the natural
filtration (Fk)k≥0 of process (1) defined as

F0 = σ(x0, . . . , x1−p),

Fk = σ(x0, . . . , x1−p; ε1, . . . , εk), k ≥ 1.
(44)

It will be noted that the random variables {τl(h)}1≤l≤p, defined in (7), are stopping
times with respect to this filtration for every h > 0.

Further we need the following p stochastic processes {M (l)
t }t≥0 defined as

M (l)
0 = 0,

M (l)
t =

t∑

k=1

xk−lεk, l = 1, . . . , p.

These processes are martingales with respect to filtration (44) and, under the
assumptions of Theorem 1, they satisfy both conditions (a), (b) of Theorem 3. More-
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over, the stopping times (34) employed in Theorem 3 reduce, in the case of AR(p)
model, to those given by (7) because σ 2

l (k − 1) = x2k−l .

Applying Theorem 3 to the vector η(h)
/√

h = 1√
h
G p(h)(θ∗(h) − θ) with the

coordinates
ηi (h)√

h
= 1√

h

τi (h)∑

k=τi−1(h)+1

√
βik(h)xk−iεk, (45)

one comes to the desire result. This completes the proof of Theorem 1. ��

B.2 Proof of Theorem 2

In view of the equation for the standardized deviation

Gp(h)√
h

(θ∗(h) − θ) = η(h)√
h

,

one has to study the asymptotic distribution of the vector η(h)/
√
h with coordinates

(45).
Wewill show that, for every vectorλ = (λ1, . . . , λp)

′ withλ21+. . .+λ2p = 1, λ j �=
0, the linear combination λ′η(h)/

√
h satisfies the limiting relation

lim
h→∞ sup

θ∈K
sup

−∞<t<∞

∣∣∣∣Pθ

(
λ′η(h)√

h
≤ t

)
− Φ(t)

∣∣∣∣ = 0. (46)

Let {y j } j≥1 and {z j } j≥1 be two sequences of random variables defined as

y j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1
√

β1, j+1x j i f 0 ≤ j < τ1(h);
. . .

λp−1

√
βp−1, j+1(h)x j−p+2 i f τp−2(h) ≤ j < τp−1(h);

λpx j−p+1 i f j ≥ τp−1(h);

(47)

z j =
⎧
⎨

⎩

y j i f 0 ≤ j < τp(h) − 1;
λp

√
αp(h)xτp−p i f j = τp(h) − 1.

(48)

Then λ′η(h)
√
h can be written as

λ′η(h)√
h

= 1√
h

τp(h)∑

j=1

z j−1ε j = Y (h) + ζ(h) (49)
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where

Y (h) = 1√
h

τp(h)∑

j=1

y j−1ε j , (50)

ζ(h) = 1√
h

(√
αp(h) − 1

)
yτp(h)−1ετp(h). (51)

Further we establish the following results.

Proposition 6 Under conditions of Theorem 2, for any set K ⊂ [Λp] satisfying (12)

lim
h→∞ sup

θ∈K
sup

−∞<t<∞
|Pθ (Y (h) ≤ t) − Φ(t)| = 0 (52)

where Y (h) is given by (50).

Lemma 3 Let ζ(h) be defined by (51). Then for any Δ > 0 and any set K ⊂ [Λp]
satisfying (12)

lim
h→∞ sup

θ∈K
Pθ (|ζ(h)| > Δ) = 0. (53)

Combining these results with (49), one comes to (14). This completes the proof of
Theorem 2. ��

The proofs of Proposition 6 and Lemma 3 are rather tedious and given below in
this section.

C Some technical results

C.1 Some properties of unstable AR(p) model

Here we establish some technical results for unstable AR(p) process and for the
sequence of random variables (47) which are used below. Equation (1) can be written
in the form

Xk = AXk−1 + ξk, k = 1, 2, . . . (54)

where Xk = (xk, xk−1, . . . , xk−p+1)
′, ξk = (εk, 0, . . . , 0)′; A = A(θ) is given by

(13).

Lemma 4 Let the process (Xk)k≥0 satisfy (54) with θ ∈ [Λp]. Then for any n ≥ 1

n∑

k=0

‖Xk‖2 ≥ cp

n∑

k=1

ε2k (55)

where [Λp] is the closure of region (3),
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cp = inf
θ∈[Λp]

(
(1 + ‖A‖2)1/2 − ‖A‖

)2
,

‖A‖2 = tr AA′.

Proof of Lemma 4. Using Equation (54), one gets

n∑

k=1

‖Xk‖2 =
n∑

k=1

X ′
k−1A

′AXk−1 +
n∑

k=1

ξ ′
k AXk−1 +

n∑

k=1

X ′
k−1A

′ξk +
n∑

k=1

‖ξk‖2.

From here it follows that

n∑

k=1

‖ξk‖2 ≤
n∑

k=0

‖Xk‖2 + 2‖A‖
n∑

k=1

‖Xk−1‖‖ξk‖ ≤
n∑

k=0

‖Xk‖2

+2‖A‖
(

n∑

k=0

‖Xk‖2
)1/2 ( n∑

k=1

‖ξk‖2
)1/2

= s

⎛

⎝

√√√√
n∑

k=0

‖Xk‖2 + ‖A‖
√√√√

n∑

k=1

‖ξk‖2
⎞

⎠

2

− ‖A‖2
n∑

k=1

‖ξk‖2.

This implies that

(1 + ‖A‖2)
n∑

k=1

‖ξk‖2 ≤
⎛

⎝

√√√√
n∑

k=0

‖Xk‖2 + ‖A‖
√√√√

n∑

k=1

‖ξk‖2
⎞

⎠

2

.

Therefore

√√√√
n∑

k=0

‖Xk‖2 ≥
[(

1 + ‖A‖2
)1/2 − ‖A‖

]( n∑

k=1

‖ξk‖2
)1/2

and noting that
∑n

k=1 ‖ξk‖2 = ∑n
k=1 ε2k one comes to (55). Hence Lemma 4. ��

Lemma 5 Let (εn)n≥1 in AR(p) model (1) be a sequence of i.i.d. random variables
with Eεn = 0 and Eε2n = 1 and K be a compact subset of [Λp] satisfying (12). Then
for any δ > 0 and natural number r

lim
m→∞ sup

θ∈K
Pθ

(

‖Xn+r‖2 ≥ δ

n∑

k=1

‖Xk−1‖2 for some n ≥ m

)

= 0.
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Proof of Lemma 5. Applying repeatedly, Equation (54) yields for any l ≥ 1

Xn+r = Al+r Xn−l +
l+r−1∑

i=0

Aiξn+r−i . (56)

Further, for each s = 1, 2, . . ., we define a number l(s)n such that

l(s)n ∈ {l : ‖Xn−l‖ = min
1≤ j≤s

‖Xn− j‖, 1 ≤ l ≤ s}.

Substituting l(s)n for l in (56), one has

Xn+r = Al(s)n +r X
n−l(s)n

+
l(s)n +r−1∑

i=0

Aiξn+r−i .

Using the elementary inequalities and taking into account (12), we obtain

‖Xn+r‖2 ≤ 2‖Al(s)n +r‖2‖X
n−l(s)n

‖2 + 2

⎛

⎝
l(s)n +r−1∑

i=0

‖Ai‖‖ξn+r−i‖
⎞

⎠

2

≤ 2‖Al(s)n +r‖2‖X
n−l(s)n

‖2 + 2
l(s)n +r−1∑

i=0

‖Ai‖2
l(s)n +r−1∑

i=0

‖ξn+r−i‖2

≤ 2κ2
p‖Xn−l(s)n

‖2 + 2(r + s)κ2
p

s+r−1∑

i=0

ε2n−i .

From here and Lemma 4, it follows that

‖Xn+r‖2
n∑

k=0
‖Xk‖2

≤ 2κ2
p‖Xn‖2

n∑

k=0
‖Xk‖2

+
2(r + s)κ2

p

s+r−1∑

i=0
ε2n−i

cp
n∑

k=1
ε2k

≤ 2κ2
p

s
+

2(r + s)κ2
p

s+r−1∑

i=0
ε2n−i

cp
n∑

k=1
ε2k

, s > r + 1.

Using this estimate and the strong law of large numbers completes the proof of
Lemma 5. ��
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Lemma 6 Let (y j ) j≥0 be defined by (47) and λ = (λ1, . . . , λp)
′, λi �= 0, λ21 + . . . +

λ2p = 1. Then for any set K ⊂ [Λp] satisfying (12)

lim
m→∞ sup

θ∈K
Pθ

(

y2n ≥ δ

n−1∑

i=0

y2i for some n ≥ m

)

= 0.

Proof. Using (47), we represent y2i−1 as

y2i−1 =
p−1∑

k=1

λ2k x
2
i−kχ(τk−1+1≤i<τk ) +

p−1∑

k=1

λ2kαk x
2
i−kχi=τk ) + λ2px

2
i−pχ(i≥τp−1+1).

From here, one has

n∑

i=1

y2i−1 ≥ λ2∗

⎛

⎝
p−1∑

k=1

n∑

i=1

x2i−kχ(τk−1+1≤i<τk ) +
n∑

i=1

x2i−pχ(i≥τp−1+1)

⎞

⎠

where λ2∗ = min(λ21, . . . , λ
2
p). Further we note that

n∑

i=1

x2i−kχ(τk−1+1≤i<τk ) =
n−k∑

j=0

x2jχ(τk−1−k+1≤ j<τk−k),

n∑

i=1

x2i−pχ(i≥τp−1+1) =
n−p∑

j=0

x2jχ( j≥τp−1−p+1).

Therefore

n∑

i=1

y2i−1 ≥ λ2∗

⎛

⎝
p−1∑

k=1

n−k∑

j=0

x2jχ(τk−1−k+1≤ j<τk−k) +
n−p∑

j=0

x2jχ( j≥τp−1−p+1)

⎞

⎠

≥ λ2∗
n−p∑

j=0

x2j
(
χ(0≤ j<τp−1−p+1) + χ( j≥τp−1−p+1)

) = λ2∗
n−p∑

j=0

x2j . (57)

In view of the identity

n∑

k=0

‖Xk‖2 =
p−1∑

i=0

n∑

k=i

x2k−i = p
n∑

l=0

x2l −
p−1∑

i=0

n∑

l=n−i+1

x2l ,

we get
n∑

l=0

x2l ≥ 1

p

n∑

k=0

‖Xk‖2. (58)
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Combining (57) and (58), one obtains

Pθ

(

y2n ≥ δ

n−1∑

i=1

y2i for some n ≥ m

)

≤ Pθ

⎛

⎝ max
1≤k≤p

x2n−k+1 ≥ δλ2∗
n−p∑

j=0

x2j for some n ≥ m

⎞

⎠

≤ Pθ

(

‖Xn‖2 ≥ δ · λ2∗ · 1
p

n−p∑

k=0

‖Xk‖2 for some n ≥ m

)

.

It remains to apply Lemma 5 to arrive at the desired result. Hence Lemma 6. ��

C.2 Proof of Proposition 6

First we note that the sequence (y j ) defined by (47) is adapted to the filtration (F j ) in
(44). In order to show (52),wewill use the followingprobabilistic result formartingales
from the paper by Lai and Siegmund (1983).

Lemma 7 (Lai and Siegmund (1983), Proposition 2.1) Let {xn}n≥0 and {εn}n≥1 be
sequences of random variables adapted to the increasing sequence of σ -algebras
(Fn)n≥0. Let {Pθ , θ ∈ Θ} be a family of probability measures such that under every
Pθ

A1: {εn} are i.i.d. with Eε1 = 0, Eε21 = 1;
A2: supθ Eθ {ε21|ε1| > a|} → 0 as a → ∞;
A3: εn is independent of Fn−1 for each n ≥ 1;
A4: Pθ

(∑∞
i=0 x

2
i = ∞) = 1;

A5: supθ Pθ (x2n > a) → 0 as a → ∞ for each n ≥ 0;

A6: limm→∞ supθ Pθ

(
x2n ≥ δ

∑n−1
i=0 x2i for some n ≥ m

)
= 0 for each δ > 0.

For h > 0 let T (h) = inf
{
n : ∑n

i=1 x
2
i−1 ≥ h

}
, inf{∅} = +∞. Then uniformly

in θ ∈ Θ and −∞ < t < ∞

Pθ

⎧
⎨

⎩
1√
h

T (h)∑

i=1

xi−1εi ≤ t

⎫
⎬

⎭
→ Φ(t) as h → ∞, (59)

where Φ is the standard normal distribution function.

We apply Lemma 7 to the sequence (y j ) j≥1 which, in view of Lemma 6, satisfies
all the conditions A1-A6 for any parametric set K subjected to the restriction (12).

It is easy to check that, for the sequence (47), the stopping time

T (h) = inf{n ≥ 1 :
n∑

i=1

y2i−1 ≥ h} (60)
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coincides with τp(h) defined in (7).
Therefore, Y (h) in (50) can be written as

Y (h) = 1√
h

T (h)∑

j=1

y j−1ε j

and, in virtue of Lemma 7, one comes to (52). Hence Proposition 6. ��
Remark 3 In spite of the fact that the sequence (y j ) in (47) depends on the parameter h,
the proof of Lemma 7 proceeds along the lines of Proposition 2.1 in Lai and Siegmund
(1983) and is omitted.

C.3 Proof of Lemma 3

Taking into account (60), one gets the following estimate

Pθ (|ζ(h)| > Δ) ≤ Pθ

(∣∣∣∣
yT (h)−1εT (h)√

h

∣∣∣∣ > Δ

)
≤ Pθ

(|εT (h)| > L
)

+Pθ

(
|yT (h)−1| > Δ

√
hL
)

≤ 1

L2 Eθ ε
2
T (h) + Pθ

(
m∑

k=1

y2k−1 ≥ h

)

+ αθ (m),

where L is a positive constant,

αθ (m) = Pθ

(

y2n−1 ≥ Δ2L2
n−1∑

k=1

y2k−1 for some n ≥ m

)

.

Since (T (h) = m) ∈ Fm−1, m = 1, 2, . . . , we compute

Eθ ε
2
T (h) =

∑

m≥
Eθ ε

2
mχ(T (h)=m) = Eθ

∑

m≥
Eθ

(
ε2mχ(T (h)=m)|Fm−1

)

= Eθ

∑

m≥
χ(T (h)=m)E(ε

2
m |Fm−1) = 1.

Therefore

sup
θ∈K

Pθ (|ζ(h)| > Δ) ≤ 1

L2 + sup
θ∈K

Pθ

(
m∑

k=1

y2k−1 ≥ h

)

+ sup
θ∈K

αθ (m).

Further, we note that

Pθ

(
m∑

k=1

y2k−1 ≥ h

)

≤ Pθ

(
m∑

k=1

‖Xk‖2 ≥ h

)
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and that for each θ ∈ [Λp]

‖Xk‖2 ≤
⎛

⎝
k∑

j=1

‖Ak− j‖ · |ε j |
⎞

⎠

2

≤
K∑

j=1

‖Ak− j‖2
k∑

j=1

ε2j ≤ κ2k
k∑

j=1

ε2j .

Thus

Pθ

(
m∑

k=1

y2k−1 ≥ h

)

≤ P

⎛

⎝κ2
p

m∑

k=1

k
k∑

j=1

ε2j ≥ h

⎞

⎠ .

From here it follows that

lim
h→∞ sup

θ∈K
Pθ

(
m∑

k=1

y2k−1 ≥ h

)

= 0. (61)

Now limiting h → ∞, m → ∞ and L → ∞ in (47) and taking into account (61)
and Lemma (6), we come to (53). This completes the proof of Lemma 3. ��

C.4 Proof of Proposition 5

In order to apply Theorem 2, one has to check condition (12).
Since for each θ ∈ Λp

sup
n≥1

‖An(θ)‖2 ≤
∑

j≥0

‖A j (θ)‖2,

it suffices to show that for any compact set K ⊂ Λp

sup
θ∈K

∑

j≥0

‖A j‖2 < ∞. (62)

We set

γ (θ) =
∑

j≥0

A j (θ)(A′(θ)) j .

This matrix series satisfies the equation

γ (θ) − A(θ)γ (θ)A′(θ) = Ip

where Ip is the p × p identity matrix. This equation can be rewritten as

(Ip2 − A(θ) ⊗ A(θ))vec γ (θ) = vec(Ip)
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where the vector operation vec(·) is defined by

vec(v) = (v1,1, . . . , vp,1, . . . , v1,p, . . . , vp,p)
′

and U ⊗ V = (Ui j · Vkl)1≤i, j,k,l≤p is the Kronecker product of p × p matrices
U = ‖Ui j‖ and V = ‖Vi j‖. The matrix Ip2 − A(θ) ⊗ A(θ) is invertible because all
eigenvalues of matrix A(θ) ⊗ A(θ) are less than one in modulus for any θ ∈ Λp.
Therefore

vec γ (θ) = (Ip2 − A(θ) ⊗ A(θ))−1vec(Ip).

Now we prove (29) and (30). It is well known (Anderson 1971) that the sample
Fisher information matrix (5) has the property

lim
h→∞

Gn

n
= F a.s.,

for each θ ∈ Λp, where F is a positive definite matrix F satisfying the equation

F − AFA′ = ‖δ1,iδ1, j‖. (63)

By making use of the definitions of stopping times (7), we obtain

lim
h→∞

τi (h) − τi−1(h)

h
= 1

〈F〉11 .

Further we have

lim
h→∞

Ĝi,τi (h)

τi (h) − τi−1(h)
= F .

Therefore

lim
h→∞

Gp(h)

h
= lim

h→∞
Ĝi,τi (h)

h
= F

〈F〉11 a.s.

lim
h→∞

τp(h)

h
= p

〈F〉11 .

This completes the proof of Proposition 5. ��
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