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Abstract
This paper considers estimation and inference in semiparametric quantile regression
models when the response variable is subject to random censoring. The paper consid-
ers both the cases of independent and dependent censoring and proposes three iterative
estimators based on inverse probability weighting, where the weights are estimated
from the censoring distribution using the Kaplan–Meier, a fully parametric and the
conditional Kaplan–Meier estimators. The paper proposes a computationally simple
resampling technique that can be used to approximate the finite sample distribution of
the parametric estimator. The paper also considers inference for both the parametric
and nonparametric components of the quantile regression model. Monte Carlo simu-
lations show that the proposed estimators and test statistics have good finite sample
properties. Finally, the paper contains a real data application, which illustrates the
usefulness of the proposed methods.

Keywords Inverse probability of censoring · Local linear estimation · M-M algorithm

1 Introduction

Since its introduction as a generalization of the linear regression model, quantile
regression (Bassett and Koenker 1978; Koenker and Bassett 1978) has been widely
used in economics, finance, biostatistics and medical statistics—see Koenker (2005)
for a review of applications. Compared to standard linear regression models, quantile
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regression models provide a more complete characterization of the conditional distri-
bution of the responses given a set of covariates, being at the same time more robust
to the presence of possible outliers. Nonparametric and semiparametric extensions to
quantile regression have been considered by Chauduri (1991), Fan et al. (1994), He
and Shi (1996), Chauduri et al. (1997), Yu and Jones (1998), He and Liang (2000),
Lee (2003), Horowitz and Lee (2005), Cai and Xu (2008) and Cai and Xiao (2012),
among many others.

All of the above results assume that the data are always observable. However, in
many situations of empirical relevance, some of the responses are subject to censoring
and ignoring this fact may give highly biased estimates (see, e.g., Koenker 2005). One
important type of censoring is random censoring, which naturally arises in duration
and survival analysis. Ying et al. (1995), Bang andTsiatis (2002) andZhou (2006) have
considered censored median regression. Ying et al. (1995) proposed a simple estima-
tion method, which, however, involves a complicated set of discontinuous estimating
equations that can be difficult to solve. Bang and Tsiatis (2002) proposed a modified
version of the least absolute deviation estimator (Bassett and Koenker 1978) that is
similar to the one used by Koul et al. (1981) and is computationally easy, but poten-
tially suffers from the well-known instability in the right tail of the Kaplan–Meier
estimator. Zhou (2006) provided a simple modification of Bang and Tsiatis (2002)
estimator that involves a convex function and a simple modification to the data that
avoids the potential instability problem of the Kaplan–Meier estimator. All of these
procedures are based on the assumption of unconditional independence between the
censored response and the censoring variable itself, which is often restrictive. Indeed,
as noted, for example, by Kalbfleisch and Prentice (2002), conditional independence
(given the covariates) is often a more natural and appropriate assumption. Conditional
independence was assumed by Peng and Huang (2008), Leng and Tong (2013) and
Wang andWang (2009) for quantile regressions. El Ghouch and van Keilegom (2009)
and Xie et al. (2015) considered, respectively, nonparametric and varying coefficients
quantile regressions. Peng and Huang (2008) used martingales techniques under an
assumption of global linearity (that can be restrictive in practice) and suggested an
L1-type convex objective function to compute their estimator; Leng and Tong (2013)
computed their estimator using linear programming based on amodification of Ying et
al.’s (1995) estimating equations, while Wang and Wang (2009) proposed an estima-
tor based on locally reweighting. El Ghouch and van Keilegom (2009) and Wang and
Wang (2009) both used the M-M algorithm (Hunter and Lange 2000), which replaces
the nonsmooth objective function used in the quantile estimation with an approximat-
ing function that can be majorized by a smooth (quadratic) function that can be easily
minimized by standard iterative methods.

In this paper, we consider estimation of a semiparametric quantile regressionmodel,
where the response is subject to randomcensoring.We consider both unconditional and
conditional independent censoring, but it is important to note that the proposed estima-
tion method could be used also for certain type of informative (“induced dependent”)
censoring situations, such as the analysis of medical cost data and health outcome
data (see, e.g., Bang and Tsiatis 2000; Lin 2000), and more generally in any situation
where the process (data) of interest is increasing over time and its observations are
stopped because of the occurrence of a terminal underlying event.
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Semiparametric quantile regression with random censoring 267

The estimation procedure that we propose is a weighted two (or three) step one,
where the weights are given by the inverse probability of censoring. The inverse
probability of censoring weighting approach has been used in survival analysis by
Koul et al. (1981), Robins and Rotnitzky (1992), Bang and Tsiatis (2000) and Satten
and Datta (2001), among many others. The first step is used to estimate locally all
the unknown parameters of the model, whereas the second step is used to estimate
the parametric component. As the second step requires undersmoothing, an additional
third step can be used to re-estimate the nonparametric part of the model, should it be
of interest.

In this paper, wemake the following contributions: First, we consider three different
estimators for the censoring distribution: the Kaplan–Meier estimator for independent
censoring, a parametric estimator (e.g., Cox’s (1972) maximum partial likelihood
estimator or Breslow’s (1972) probability of censoring estimator) and a nonparamet-
ric estimator—the conditional or local Kaplan–Meier estimator (Beran 1981) for the
dependent censoring case. We derive the asymptotic distributions of the three result-
ing estimators of both the nonparametric and parametric components. Second, we
propose a computationally simple resampling method that can be used to estimate
the asymptotic variances of the estimators of the parametric component. Third, we
consider inference both for the parametric and the nonparametric components of the
model and propose test statistics that can be used to test both global and local hypothe-
ses about the unknown parameters. Fourth, we use a Monte Carlo study to illustrate
the finite sample properties of the proposed estimators and test statistics. Finally, we
show the usefulness of the proposed method with a real data application.

The rest of the paper is structured as follows: Next section introduces the model and
the estimators. Section 3 contains the main results, Sect. 4 introduces the resampling
method and shows its consistency, whereas Sect. 5 first describes some details on the
computational aspects of the proposed estimators and then reports the results of the
Monte Carlo study. Section 6 contains an empirical application. All proofs and some
additional results on a two-step version of the proposed estimators can be found in the
online supplemental Appendix.

The following notation is used throughout the paper: “T” indicates transpose, a
prime “′” and double prime “′′ ” denote first and second derivative and for any vector
v, v⊗2 = vvT .

2 Themodel and the estimators

Consider a semiparametric quantile regression model

QY |X (τ |X) = inf (t : Pr (Y ≤ t |X) ≥ τ) = X T
1 β0τ + θ0τ (X2) , (2.1)

where β0τ is a k dimensional vector of unknown parameters, X = [
X T
1 , X2

]T
and

θ0τ (·) is an unknown real-valued function, assumed to be twice continuously differen-
tiable with derivatives θ ′

0τ (·) and θ ′′
0τ (·). We note here that bearing in mind the curse

of dimensionality, the results reported below can be readily modified to allow for X2
to be vector valued. In this case, the convergence rate of the estimators of the nonpara-
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268 F. Bravo

metric component would be slower as it depends on the dimension of X2, whereas
the convergence rate for the parametric estimators would not be affected under an
appropriately strengthened version of the (standard) undersmoothing condition given
in Theorems 3–5 (see Sect. 3.2).

We assume that the sample values of the response variable (Yi )
n
i=1 are subject to

random censoring; hence, the random sample we observe is
(
Zi , X ′

i , δi
)n

i=1 where
Zi = min (Yi , Ci ) and δi = I (Yi ≤ Ci ) denotes the censoring indicator. Let G0 (·)
denote the unknown survival distribution for both the independent and dependent cases
of the censoring random variable C . We follow the same approach as that originally
suggested for parametric median regression models by Bang and Tsiatis (2000) (see
also Zhou 2006) and use inverse probability of censoring weighting based on the
survival function of the censoring variable.

Let

Qn (β, θ, G) =
n∑

i=1

δi

G0 (·)ρτ

(
Zi − X T

1iβτ − θτ (X2i )
)

(2.2)

be the objective function, where ρτ (·) = · (τ − I (· < 0)) denotes the check function.
Let Ĝ (·) denote a consistent estimator for G0 (·), which depends on the type of

censoring and will be discussed in some detail at the end of this section, and let

θ0τ (X2) = θ0τ (x2) + θ ′
0τ (x2) (X2 − x2) := aτ + bτ (X2 − x2) (2.3)

denote the local linear approximation to θ0τ (X2).
The estimation procedure to estimate the unknown parameters β0τ and θ0τ (·) is

the following:

Step 1 Estimate β0τ and θ0τ (·) locally using (2.3), that is

β̂l
τ , âl

τ , b̂l
τ = arg min

aτ ,bτ ,βτ

n∑

i=1

δi

Ĝ (·)ρτ

(
Zi − X T

1iβτ − aτ − bτ (X2i − x2)
)

Kh (X2i − x2) , (2.4)

where Kh (·) = K (·/h) is a kernel function and h is a bandwidth.
Step 2 Estimate β0τ globally using

β̂τ = argmin
βτ

n∑

i=1

δi

Ĝ (·)ρτ

(
Zi − X T

1iβτ − θ̂ l
τ (X2i )

)
(2.5)

where θ̂ l
τ (X2i ) = âl

τ .

Step 3 Estimate θ0τ (·) locally using

âτ , b̂τ = arg min
aτ ,bτ

n∑

i=1

δi

Ĝ (·)ρτ

(
Zi − X T

1i β̂τ − aτ − bτ (X2i − x2)
)

Kh (X2i − x2) ,

where β̂τ is the estimate of Step 2.
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Semiparametric quantile regression with random censoring 269

The form of the estimator Ĝ (·) depends on the type of censoring. In the case
of independent censoring, Ĝ (·) = Ĝ (Zi ) is the Kaplan–Meier estimator, which,
as mentioned in Introduction, is well known to be unstable on the right tail of the
survival distribution. To avoid this problem, we follow Zhou’s (2006) suggestion
and use a modification of the response. To be specific, since for any constant L >(
X T
1 β0τ + θ0τ (X2)

)
, the τ -quantile of Y equals that of min (Y , L), we can replace

the observations (Zi , Yi , δi )
n
i=1 with

(
Z L

i , Y L
i , δL

i

)n
i=1 where Z L

i = min (Zi , L) ,

Y L
i = min (Zi , L) and δL

i = 1 − (1 − δi ) I (L > Zi ), and define both (2.4) and (2.5)
in terms of

(
Z L

i , Y L
i , δL

i

)n
i=1. The resulting estimators are more stable since Ĝ

(
Z L

i

)

is bounded from below by Ĝ (L).
In the case of dependent censoring, Ĝ (·) can be a parametric or a nonparametric

estimator. In the former case, Ĝ (·) = G γ̂ (Zi |Xi ), where Gγ0 (Zi |Xi ) =: G0 (Zi |Xi )

is a parametric specification indexed by the unknown finite-dimensional parameter γ0
and γ̂ is the maximum likelihood estimator of γ0. In the latter case, Ĝ (·) = Ĝ (Zi |Xi )

is the local Kaplan–Meier estimator

Ĝ (z|x) =
n∏

i=1

(

1 − ωi (x)
∑n

j=1 I
(
Z j ≥ Zi

)
ω j (x)

)I (Zi ≤z,δi =0)

, (2.6)

where ωi (x) is a sequence of nonnegative weights such that
∑n

i=1 ωi (x) = 1. In the
remaining part of the paper, we use the Nadaraya–Watson weights

ωi (x) = L

(
Xi − x

b

)/ n∑

j=1

L

(
X j − x

b

)
,

where L (·) is a kernel function and b is another bandwidth. Note that to avoid the curse
of dimensionality, we consider only Ĝ (Zi |X2i ); that is, we assume that the response
and the censoring variable are conditionally independent given only the covariate X2.

To relax this assumption, one could use the same dimension reduction approach as
that suggested by Li and Patilea (2017). They assume that the response and censoring
variable are conditionally independent of all of the covariates given the index X T α0,
where α0 is an unknown parameter that can be estimated at the parametric rate. Then,
at least in principle, their asymptotic representation of the conditional Kaplan–Meier
estimator Ĝ (z |̂α, v), where

Ĝ (z|α, v) =
n∏

i=1

(

1 − ωi (α, v)
∑n

j=1 I
(
Z j ≥ Zi

)
ω j (α, v)

)I (Zi ≤z,δi =0)

and

ωi (α, v) = L

(
X T

i α − v

b

)/ n∑

j=1

L

(
X T

j α − v

b

)

,
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270 F. Bravo

could be used to obtain an extension of Theorem 5 given below that would not rely on
the conditional independence of the response and censoring variable given only the
covariate X2. We leave this possibility for future communications.

3 Asymptotic results

3.1 Nonparametric component

In this section,we obtain the asymptotic distribution of the local estimator (2.4) defined
in Step 1. Let κ j = ∫

t j K (t) dt and v j = ∫
t j K 2 (t) dt and assume that:

A1 (i) {Yi , Xi }n
i=1 is an i.i.d. sample from the joint distribution FY ,X (·) of Y and X ,

{Ci }n
i=1 is an i.i.d. sample from a distribution with survival function G0 (·), (ii)

either Y is independent of C or Y and C are conditionally independent given X
or given X2,

A2 (i) the conditional distribution of ε = Y − X T
1 β0τ − θ0τ (X2) given X , Fε|X (·) is

such that Fε|X (0|x) = τ for all x ∈ X1×X2, (ii) the conditional density fε|X (·|x)

is uniformly bounded and positive in a neighborhood of 0 for all x ∈ X1 × X2,
(iii) the marginal density of X2 fX2 (x) is continuous and positive at x = x2, (iv)
X1 and X2 have bounded support X1 × X2,

A3 The kernel functions K (·) and L (·) are symmetric with bounded support and
bounded first derivatives,

A4 (i) θ ′′
τ (x) is continuous at x = x2, (ii) the matrix Σ (x2) defined in (3.1) is non-

singular for all x2 ∈ X2,
A5 (i) G0 (·) has a uniformly bounded density g0 (·) and there exists a constant C

such that G0 (Y ≥ C) > 0, or (ii) the conditional distribution Gγ (·|X) has con-
ditional density gγ (·|X) uniformly bounded in a neighborhood of γ0, and the
maximum likelihood estimator γ̂ satisfies n1/2 (γ̂ − γ0) = Op (1), or (iii) there
exists a constant C such that supx2∈X2

G0 (Y ≥ C |X2 = x2) > 0 and the condi-
tional distribution G (·|X2) has conditional density g (·|x) uniformly bounded in
a neighborhood of x = x2 ∈ X2.

The above regularity conditions are fairly standard: A1(ii) and A5(i)–(iii) are com-
monly used in survival analysis; in particular, A5(i) ensures the uniform consistency
of the Kaplan–Meier estimator for all c ≤ C and similarly A5(iii) ensures the uni-
form consistency of the local Kaplan–Meier estimator. A2(iii)–A2(iv), A3 and A4 are
commonly used in semiparametric estimation and finally A2(i), A2(ii) are standard
assumption in quantile regression; see, for example, Koenker (2005).

Theorem 1 Under assumptions A1–A5 and for nh → ∞, nhb4 → 0, h log n/b → 0

(nh)1/2
[

β̂l
τ − β0τ

θ̂ l
τ (x2) − θ0τ (x2)

− B (x2)

]
d→ N

(
0,Σ1 (x2)

−1 Σ1G (x2)Σ1 (x2)
−1
)

,
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Semiparametric quantile regression with random censoring 271

where

B (x2) = h2

2
fX2 (x2) θ ′′

0τ (x2)Σ1 (x2)
−1 E

{
κ2 fε|X (0|X)

[
X T
1 1

]T |X2 = x2
}

,

Σ1 (x2) = fX2 (x2) E
{

fε|X (0|X)
[

X T
1 1

]T⊗2 |X2 = x2
}

,

Σ1G (x2) = fX2 (x2) E

{
τ (1 − τ) v0

G0 (·)
[

X⊗2
1 X1

X T
1 1

]
|X2 = x2

}
,

where G0 (·) is G0 (Z) or Gγ0 (Z |X) or G0 (Z |X2).

Theorem 1 shows that the asymptotic variance of the inverse probability of censor-
ing weighted local estimator depends on the unknown distribution of censoring but
not on the type of censoring. The asymptotic variance is larger than the correspond-
ing one with uncensored responses, but is typical for nonparametric estimators with
inverse probability of censoring weighting and more generally with synthetic type of
responses (see, e.g., Fan and Gijbels 1994). Note also that in case of dependent cen-
soring estimated nonparametrically without the bandwidth assumption nhb4 → 0, the
bias term B (x2) would feature an extra term of order Op

(
b2
)
, which might dominate

the mean squared error.
For the local estimator of Step 3, we have the following result:

Theorem 2 Under the same assumptions of Theorem 1 and for any n1/2
(
β̂τ − β0τ

) =
Op (1)

(nh)1/2
[(

θ̂τ (x2) − θ0τ (x2)
)− eT

K+1B (x2)
]

d→ N
(
0, eT

K+1Σ1 (x2)
−1 Σ1G (x2)Σ1 (x2)

−1 eK+1

)
,

where eK+1 = [
0T

K , 1
]T

.

3.2 Parametric component

In this section, we obtain the asymptotic distribution of the global estimator (2.5)
defined in Step 2. We first consider the case of independent censoring so that the
global estimator for β0τ is defined as

β̂τ = argmin
βτ

n∑

i=1

δL
i

Ĝ
(
Z L

i

)ρτ

(
Z L

i − X T
1iβτ − θ̂ l

τ (X2i )
)

.

Let

ϕ (Xi ) = E
[

fε|X (0|X) X1

[
0T , 1, 0

]
|X2 = X2i

]
Σ (X2i )

−1
[

X T
1i , 1, 0

]T
,

ρ′
τ (·) = (τ − I (· < 0)) ,
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272 F. Bravo

where Σ (·) is defined as

Σ (·) = E

⎧
⎨

⎩
fε|X (0|X)

⎡

⎣
X⊗2
1 X1 0

X T
1 1 0
0 0 κ2

⎤

⎦ |X2 = ·
⎫
⎬

⎭
, (3.1)

and assume that

A6 E
(

fε|X (0|X) X⊗2
1

)
:= Σ2 is nonsingular.

Theorem 3 Under assumptions A1–A5(i) and A6 for nh → ∞ and nh4 → 0

n1/2 (β̂τ − β0τ
) d→ N

(
0,Σ−1

2 Σ2kmΣ−1
2

)
,

where

Σ2km =E
[(

(X1 − ϕ (X)) ρ′
τ (ε)

)⊗2
]

+ E

[∫ L

0

(
(X1 − ϕ (X)) ρ′

τ (ε)

E
[
(X1 − ϕ (X)) ρ′

τ (ε) I (Z ≥ u)
]

S (u)
I (Z > u)

]⊗2
λ0 (u)

G0 (u)
du

⎤

⎦ ,

λ0 (u) is the hazard function for the censoring distribution and S (u) = Pr (Y ≥ u).

In the case of dependent censoring with the censoring distribution estimated para-
metrically, the global estimator for β0τ is defined as

β̂τ = argmin
βτ

n∑

i=1

δi

G γ̂ (Zi |Xi )
ρτ

(
Zi − X T

1iβτ − θ̂ l
τ (X2i )

)
.

We assume that

A6′ (i) E
(

fε|X (0|X) X⊗2
1

)
:= Σ2 is nonsingular, (ii) the parametric estimator

G γ̂ (·|·) admits the following linear representation

G γ̂ (Zi |x) − G0 (Z |x) = 1

n

n∑

i=1

ψγ0 (Wi , x) + op

(
n−1/2

)
, (3.2)

where Wi = [
Zi , δi , X T

i

]
.

Note that (3.2) is satisfied by both Cox’s (1975) maximum partial likelihood and
Breslow’s (1972) estimators of the probability of censoring.

Theorem 4 Under assumptions A1–A4, A5(ii) and A6′ for nh → ∞ and nh4 → 0

n1/2 (β̂τ − β0τ
) d→ N

(
0,Σ−1

2 Σ2pΣ
−1
2

)
,
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Semiparametric quantile regression with random censoring 273

where

Σ2p = E

[
(X1 − ϕ (X)) ρ′

τ (ε)

G0 (Z |X)

−E

(
(X12 − ϕ (X12, X22)) ρ′

τ (ε2)
ψγ0 (W1, X12, X22)

G0 (Z1|X12, X22)
|W1

)]⊗2

.

In the case of dependent censoring with the censoring distribution estimated non-
parametrically, the global estimator for β0τ is defined as

β̂τ = argmin
βτ

n∑

i=1

δi

Ĝ (Zi |X2i )
ρτ

(
Zi − X T

1iβτ − θ̂ l
τ (X2i )

)
,

where Ĝ (·|·) is the local Kaplan–Meier defined in (2.6). Let

ψ (Z , δ, t, u) =
∫ min(Z ,t)

0
− g0 (s|u) ds

G0 (s|u)2 (1 − F (s|u))
+ (1 − δ) I (Z ≤ t)

G0 (Z |u) (1 − F (Z |u))
;

Theorem 5 Under assumptions A1–A4, A5(iii) and A6 for nh → ∞, nh4 → 0,
nb3 → ∞ and nb4 → 0

n1/2 (β̂τ − β0τ
) d→ N

(
0,Σ−1

2 Σ2npΣ
−1
2

)
,

where

Σ2np = E

[
(X1 − ϕ (X)) ρ′

τ (ε)

G0 (Z |X2)

−E

[
fX2 (X2)

ψ (Z , δ, Y , X2) (X1 − ϕ (X)) ρ′
τ (ε)

G0 (Z |X2)
|X2

]]⊗2

.

3.3 Resampling

The asymptotic variances of the estimators of Theorems 3–5 are rather complicated to
estimate, so in this section we suggest a resampling technique that has been previously
used by Su and Wei (1991), Jin et al. (2001), Zhou (2006) and Xie et al. (2015),
among others. We generate B random samples {ξi }n

i=1 from the random variable ξ

with E (ξ) = 1 and Var (ξ) = 1 and compute

β̂∗
τ = argmin

βτ

n∑

i=1

δiξi

Ĝξ (·)ρτ

(
Zi − X T

1iβτ − θ̂ l
τ (X2i )

)
,

where in the case of independent censoring the Zi ’s and δi ’s are replaced by the Z L
i ’s

and δL
i ’s and Ĝξ (·) corresponds to the perturbed version of the three different estima-
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274 F. Bravo

tors of G0 (·). To be specific in the case of independent censoring, Ĝξ (·) corresponds
to the perturbed Kaplan–Meier estimator Ĝξ (Zi ), where

Ĝξ (z) =
n∏

i=1

(
1 − dNξ (z)

Yξ (z)

)

and Nξ (z) = ξi I
(
Z L

i ≤ z, δi = 0
)
, Yξ (u) = ∑n

i=1 ξi I
(
Z L

i ≥ u
)
. In the case of

dependent censoring, Ĝξ (Zi |Xi ) is either G γ̂ ξ (Zi |Xi ) with

G γ̂ ξ (Zi |x) − G0 (Z |x) = 1

n

n∑

i=1

ξiψγ0 (Wi , x) + op

(
n−1/2

)
,

or

Ĝξ (Zi |x) =
n∏

i=1

(

1 − ωi (x)
∑n

j=1 ξi I
(
Z j ≥ Zi

)
ω j (x)

)I ξi (Zi ≤z,δi =0)

.

Theorem 6 Under the same assumptions of Theorems 3–5, conditionally on(
Zi , δi , X T

i

)n
i=1

n1/2 (β̂∗
τ − β̂τ

) d→ N
(
0,Σ−1

2 Σ2∗Σ−1
2

)
,

where Σ2∗ is either Σ2km or Σ2p or Σ2np, defined, respectively, in Theorems 3–5.

Theorem 6 shows that the proposed resampling technique consistently estimates
the distributions of the various estimators proposed in Sect. 3.2. In particular, we can
use the asymptotic variance–covariance matrices of β̂∗

τ to obtain confidence intervals
for β0τ using the normal approximation and test statistical hypotheses on βτ using the
χ2 approximation and the delta method—see Sect. 4 for further details.

3.4 Extension: partially linear varying coefficients models

The results of the previous sections can be readily extended to semiparametric models
containing varying coefficients (see, e.g., Fan and Huang 2005). To be specific, let

QY |X (τ |X) = inf (t : Pr (Y ≤ t |X) ≥ τ) = X T
1 β0τ + X T

3 θ0τ (X2) , (3.3)

where X3 is a p-dimensional vector of additional covariates and, as in the previous
sections, X2 is assumed to be univariate. Then, the same iterative estimation of Sect. 2
based on the inverse probability of censoring weighting and the local approximation

θ0τ (X2) = θ0τ (x2) + θ ′
0τ (x2) (X2 − x2) := aτ + bτ (X2 − x2) ,
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where now both aτ and bτ are p-dimensional vectors, can be used to estimate β0τ and
θ0τ (·).

Theorem 7 Under assumptions A1–A5 (with X = [
X T
1 , X2, X T

3

]T
and X3 with

bounded support X3) and for nh → ∞, nhb41 → 0, h log n/b1 → 0

(nh)1/2
[

β̂l
τ − β0τ

θ̂ l
τ (x2) − θ0τ (x2)

− B (x2)

]
d→ N

(
0,Ω1 (x2)

−1 Ω1G (x2)Ω1 (x2)
−1
)

,

where

B (x2) = h2

2
fX2 (x2) Ω1 (x2)

−1 E

{
κ2 fε|X (0|X)

[
X1X T

3
X⊗2
3

]
|X2 = x2

}
θ ′′
0τ (x2) ,

Ω1 (x2) = fX2 (x2) E

{

fε|X (0|X)

[
X1
X3

]⊗2

|X2 = x2

}

,

Ω1G (x2) = fX2 (x2) E

{
τ (1 − τ) v0

G0 (·)
[

X1
X3

]⊗2

|X2 = x2

}

and G0 (·) is G0 (Z) or Gγ0 (Z |X) or G0 (Z |X2).

Let S = [
Opk, Ip, Op

]
denote a selection matrix, where Opk is a p × k matrix of

zeroes, Ip is the identity matrix of order p and Op is a p × p matrix of zeroes and let

ξ (Xi ) = E
[

fε|X (0|X) X1X T
3 |X2 = X2i

]
SΩ (X2i )

−1
[

X T
1i , X T

3i , 0
T
]T

,

where Ω (·) is defined as

Ω (·) = E

⎧
⎨

⎩
fε|X (0|X)

⎡

⎣
X⊗2
1 X1X T

3 0
X1X T

3 X⊗2
3 0

0 0 κ2X⊗2
3

⎤

⎦ |X2 = ·
⎫
⎬

⎭

The following two theorems are direct generalizations of Theorems 3–6 to the partially
linear varying coefficient model (3.3).

Theorem 8 Under assumptions A1–A5 (with X = [
X T
1 , X2, X T

3

]T
and X3 with

bounded support X3) and A6 for nh → ∞, nh4 → 0, nb31 → ∞ and nb41 → 0

n1/2 (β̂τ − β0τ
) d→ N

(
0,Σ−1

2 Ω2∗Σ−1
2

)
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where Ω2∗ is either Ω2km or Ω2p or Ω2np, and

Ω2km =E
[(

(X1 − ξ (X)) ρ′
τ (ε)

)⊗2
]

+ E

[∫ L

0
(X1 − ξ (X)) ρ′

τ (ε)

− E [(X1 − ξ (X)) I (Z ≥ u)]

S (u)
I (Z > u)

]⊗2
λ0 (u)

G0 (u)
du

]

,

Ω2p =E

{
(X11 − ξ (X)) ρ′

τ (ε1)

G0 (Z1|X1)

−E

[
(X12 − ξ (X12, X22)) ρ′

τ (ε2)
ψγ0 (W1, X12, X22)

G0 (Z1|X12, X22)
|W1

]}⊗2

.

Ω2np =E

[
(X1 − ξ (X)) ρ′

τ (ε)

G0 (Z |X2)

−E

[
fX2 (X2)

ψ (Z , δ, Y , X2) (X1 − ξ (X)) ρ′
τ (ε)

G0 (Z |X2)
|X2

]]⊗2

.

Theorem 9 Under the same assumptions of Theorem 8, conditionally on(
Zi , δi , X T

i

)n
i=1

n1/2 (β̂∗
τ − β̂τ

) d→ N
(
0,Σ−1

2 Ω2∗Σ−1
2

)
,

where Ω2∗ is either Ω2km or Ω2p or Ω2np, given in Theorem 8.

4 Inference

The results of the previous section can be used to test statistical hypotheses about both
the parametric and nonparametric components βτ and θτ (·). First, Theorem 7 can be
used to construct Wald statistics to test local hypotheses about θτ (·). To investigate
the asymptotic properties of such statistics, we consider the following local hypothesis
with a Pitman drift

Hn : Rθ0τ
(
x∗
2

) = rτ

(
x∗
2

)+ γτn
(
x∗
2

)
(4.1)

for some fixed x∗
2 ∈ X2, where R is an l × p matrix of constants and γτn (·) is a

bounded continuous function that may depend on n. Let

Wl
(
x∗
2

) = (nh)
(
R
(
θ̂τ

(
x∗
2

)− rτ

(
x∗
2

)))T
(

RΩ̂1Gθτ

(
x∗
2

)
RT
)−1

R
(
θ̂τ

(
x∗
2

)− rτ

(
x∗
2

))
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denote the local Wald statistic, where

Ω̂1Gθτ

(
x∗
2

) = [
Opk, Ip

]
Ω̂1
(
x∗
2

)−1
Ω̂1Ĝ

(
x∗
2

)
Ω̂1
(
x∗
2

)−1
[

OT
pk, Ip

]T
,

Ω̂1 (x2) = f̂ X2 (x2)
1

nh

n∑

i=1

δi

Ĝ (·) f̂̂ε|X (0|Xi )

[
X1i

X3i

]⊗2

Kh (X2i − x2) ,

Ω̂1G (x2) = f̂ X2 (x2)
1

nh

n∑

i=1

δiτ (1 − τ) v0

Ĝ (·)2
[

X1i

X3i

]⊗2

Kh (X2i − x2) ,

f̂ X2 (·), f̂̂ε|X (·) are kernel estimates of fX2 (·), fε|X (·) and Ĝ (·) is any of the three
estimators described in Sect. 2 for G0 (·).
Proposition 10 Under the assumptions of Theorem 7, if rank (R) = l (l ≤ p) and
nh5 → 0, then under (4.1) (i) for (nh)1/2 γτn

(
x∗
2

) → γτ

(
x∗
2

)
> 0 (for some∥∥γτ

(
x∗
2

)∥∥ < ∞)

Wl
(
x∗
2

) d→ χ2 (κ, l) ,

where χ2 (κ, l) is a noncentral Chi-squared distribution with l degrees of freedom and
noncentrality parameter

κ = fX2

(
x∗
2

)
γτ

(
x∗
2

)T
(

RΩ1Gθτ

(
x∗
2

)
RT
)−1

γτ

(
x∗
2

)
;

(ii) for (nh)1/2 γτn
(
x∗
2

) → ∞,

Wl
(
x∗
2

) p→ ∞.

Proposition 10 shows that the proposed test has power against local Pitman-type
alternatives and is consistent against any fixed alternatives of the form γτn (·) = γτ (·) .

Under the null hypothesis H0: Rθ0τ
(
x∗
2

) = rτ

(
x∗
2

)
, the proposition can be used to

construct confidence regions for Rθ
(
x∗
2

)
with nominal coverage 1 − α that is for

Pr
(
χ2 (l) ≤ cα

) = 1 − α and Cα

(
x∗
2

) = Pr
(
r
(
x∗
2

) |Wl
(
x∗
2

) ≤ cα

)
,

Pr
(
r
(
x∗
2

) ∈ Cα

(
x∗
2

)) = 1 − α + o (1) .

Proposition 10 can also be used to test the important hypothesis of constancy of the
varying coefficients θτ (·), corresponding to

H0: θ0τ
(
x∗
2

) = θ0τ . (4.2)

The test can be easily implemented by considering the restricted quantile regression
model

QY |X (τ |X) = inf (t : Pr (Y ≤ t |X) ≥ τ) = X T
1 β0τ + X T

3 θ0τ . (4.3)
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Let
�

θ τ denote the quantile estimator of θ0τ in (4.3), and note that under the
null hypothesis (4.2) and assumptions A1–A3 (only for the kernel L (·)), A5,

A6 for E
(

fε|X (0|X)
[
X T
1 , X T

3

]T⊗2
)
and nb4 → 0, it is possible to show that

n1/2
(

�

θ τ − θ0τ

)
= Op (1). Hence,

(nh)1/2
(

θ̂τ

(
x∗
2

)− �

θ τ

)
= (nh)1/2

(
θ̂τ

(
x∗
2

)− θ0τ
)+ op (1) ,

and by Proposition 10

Wc
(
x∗
2

) = nh
(
θ̂τ

(
x∗
2

)− θ0τ
)T

Ω1Gθτ

(
x∗
2

)−1 (
θ̂τ

(
x∗
2

)− θ0τ
) d→ χ2 (p) . (4.4)

It is important to note that the test statistics Wl
(
x∗
2

)
and Wc

(
x∗
2

)
are asymptoti-

cally valid at a single point x∗
2 . If one wants to consider them over a fixed range of

values of x∗
2 , say

{
x∗
2 j

}m

j=1
, then the test statistics max j Wl

(
x∗
2 j

)
and max j Wc

(
x∗
2 j

)

( j = 1, . . . , m) can be used instead, as the following proposition shows.

Proposition 11 Under the assumptions of Proposition 10, (i)

max
1≤ j≤m

Wl

(
x∗
2 j

)
d→ max

j
χ2

j

(
κ j , l

)
,

where

κ j = fX2

(
x∗
2 j

)
γτ

(
x∗
2 j

)T (
RΩ1Gθτ

(
x∗
2 j

)
RT
)−1

γτ

(
x∗
2 j

)
,

or (ii)

max
1≤ j≤m

Wl

(
x∗
2 j

)
p→ ∞.

Note that the distribution of the test statistic in Proposition 11 is nonstandard,
since it involves themaximum ofm independent noncentral Chi-squared distributions.
However, under the null hypothesis Rθ0τ

(
x∗
2

) = rτ

(
x∗
2

)
, the test statistic is asymptotic

distribution free; that is, it does not depend on any nuisance parameters; hence, its
distribution can be evaluated numerically or easily simulated.

Finally, we consider inference on the parametric component βτ ; let

Hn : Rβ0τ = rτ + γτn, (4.5)

where R is an l × k matrix of constants and γτn (·) is a bounded continuous function
that may depend on n. Let

W = n
(
R
(
β̂τ − rτ

))T
(

RΩ̂2∗βτ RT
)−1

R
(
β̂τ − rτ

)
j = 2, 3
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denote the Wald statistic for (4.5), where Ω̂2∗βτ = Σ̂−1
2 Ω̂2∗Σ̂−1

2 and Ω̂2∗ are consis-
tent estimators of Ω2km , Ω2p and Ω2np defined in Theorem 8.

Proposition 12 Under the assumptions of Theorem 8, if rank (R) = l (l ≤ k) and
nh5 → 0, then under (4.5) (i) for n1/2γτn → γτ > 0 (for some ‖γτ‖ < ∞)

W
d→ χ2 (κ, l) ,

where χ2 (κ, l) is a noncentral Chi-squared distribution with l degrees of freedom and

noncentrality parameter κ = γ T
τ

(
RΩ2∗βτ RT

)−1
γτ ; (ii) for n1/2γτn → ∞,

W
p→ ∞.

5 Simulation study

We first discuss some computational aspects of the proposed estimators and describe
how to use the M-M algorithm to estimate the unknown parameters. Let ε(k) =:
Z − X T

1 βτ(k) − X T
3 θτ(k) (X2) denote the kth iterate in finding the minimum of the

objective function, and let

ςτ

(
ε|ε(k)

) = 1

4

[
ε2

ε + ∣∣ε(k)

∣∣ + (4τ − 2) ε + c(k)

]

denote the so-called surrogate function,where the constant c(k) is such thatς
(
ε(k)|ε(k)

)

is equal to ρτ

(
ε(k)

)
and 0 < ε ≤ 1 is a tuning parameter to be selected. Then, since

ς
(
ε|ε(k)

) ≥ ρτ (ε) for all ε, the unknown parameters can be estimated by minimizing
both the local and the global majorizer objective functions

n∑

i=1

δi

Ĝ (·)ςτ

(
εi |εi(k)

)
Kh (X2i − x2) ,

n∑

i=1

δi

Ĝ (·)ςτ

(
ε̂l

i |̂εl
i(k)

)
,

where Ĝ (·) is any of the three estimators of G0 (·) and ε̂l = Z − X T
1 βτ − X T

3 θ̂ l
τ (X2).

As in Hunter and Lange (2000), we use the Gauss–Newton algorithm with direction

Δ(k) (x2) = −
[

X (x2)
T W

(
δ, Ĝ (·) , ε(k), K

)
X (x2)

]−1
X (x2)

T d
(
δ, Ĝ (·) , ε, K

)
,

Δ(k) = −
[

X T
1 W

(
δ, Ĝ (·) , ε(k)

)
X1

]−1
X T
1 d
(
δ, Ĝ (·) , ε

)
,
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where X (x2) is an n × (k + 2p) matrix containing the k, p and p covariates X T
1i , X T

3i
and X T

3i (X2i − x2) (i = 1, . . . , n),

W
(
δ, Ĝ (·) , ε(k), K

) = diag

[
δ1

Ĝ (·)
1

ε + ε1(k)

Kh (X21 − x2) , . . . ,

δn

Ĝ (·)
1

ε + εn(k)

Kh (X2n − x2)

]T
,

d
(
δ, Ĝ (·) , ε, K

) =
[(

1 − 2τ − ε1

ε + ε1

)
Kh (X21 − x2) , . . . ,

(
1 − 2τ − εn

ε + εn

)
Kh (X2n − x2)

]T
,

and W
(
δ, Ĝ (·) , ε(k)

)
and d

(
δ, Ĝ (·) , ε

)
defined similarly.

The implementation of the M-M algorithm involves the following steps:

1. Set k = 0, choose the initial values
[
β0T

τ , a0T
τ , b0T

τ

]T
and set εn |ln ε| = δ, with

δ = 10−6,
2. Define

[
βk+1T

τ , ak+1T
τ , bk+1T

τ

]T = [
βkT

τ , akT
τ , bkT

τ

]T + Δ(k) (x2) /2k ,

3. Iterate until
∥
∥∥
[
βk+1T

τ , ak+1T
τ , bk+1T

τ

]T − [
βkT

τ , akT
τ , bkT

τ

]T∥∥∥ < δ.

As initial values
[
β0T

τ , a0T
τ , b0T

τ

]T
, we choose

[
0T , 0T , 0T

]T
, as the Monte Carlo

results presented below seem to suggest that the algorithm is not sensitive to the initial
values.1 The algorithm is very quick, with convergence achieved after few iterations
(typically four or five) and each iteration taking between 10 and 15s on average.
Next, we discuss how to choose the bandwidth h. As mentioned by El Ghouch and
van Keilegom (2009), the problem of optimally choosing the bandwidth in censored
semiparametric quantile regression models is still an open one. Here, we propose a
twofold method, which consists of computing for a random subset of the sample—the

1 In the simulations below, we tried as starting values the following alternative specifica-

tions:
[
β0T
τ , a0T

τ , b0T
τ

]T =
[
β̂T

qτ , θ̂T
qτ , 0T

]T
, where β̂qτ and θ̂qτ are defined as β̂qτ , θ̂qτ =

argminβτ ,θτ

∑n
i=1

δi
Ĝ(·) ρτ

(
Zi − X T

1i βτ − X T
3i θτ

)
, that is β̂qτ and θ̂qτ are the estimators of a

parametric quantile regression,
[
β0T
τ , a0T

τ , b0T
τ

]T =
[
β̂T

qτ , âT
f τ

, b̂T
f τ

]T
, where â f τ and b̂ f τ are

defined as â f τ , b̂ f τ = argminaτ ,bτ

∑n
i=1

δi
Ĝ(·) ρτ

(
Zi − X T

1i β̂qτ − X T
3i

(
aτ f − bτ f

(
X2i − x2 f

)))

Kh
(
X2i − x2 f

)
, where x2 f is a chosen point in the support of X2i and the minimization is carried out

using the Nelder–Mead algorithm, and finally
[
β0T
τ , a0T

τ , b0T
τ

]T
are chosen as independent draws from

a uniform distribution on (− 2, 2) . All of the above initial values resulted in final estimators with biases
and/or IMSEs that were very close (with maximum difference at the second decimal place) to those reported
in Tables 1, 2, 3, 4, 5, 6 and 7 in the paper.
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training set—St with 0 < t < 1

[
β−tT

τ , a−tT
τ , b−tT

τ

]T
(h) = arg min

βτ ,aτ ,bτ

∑

i∈St

δi

Ĝ (·)ςτ

(
εi |εi(k)

)
Kh (X2i − x2) ,

β̂−t
τ (h) = argmin

βτ

∑

i∈Sτ

δi

Ĝ (·)ςτ

(
ε̂−t

i |̂ε−t
i(k)

)
,

where ε̂−t
i = Zi − X T

1iβ
−t
τ − X T

3i θ̂
−t
τ (X2i ) and then using the remaining part of the

sample S1−t—the validation set—to select h as

ĥ = argmin
h

∑

i∈S1−t

δi

Ĝ (·)ςτ

(
ε̂−t

i (h) |̂ε−t
i(k) (h)

)
. (5.1)

In the simulations, 80% of the censored observations and 80% of the uncensored
observations are used as the training set and the remaining 20% of the observations
are used as the validation set. In this way, both the training and validation sets contain
the original proportion of censored data.2

We consider the following semiparametric specifications

Yi = β00τ + X11iβ10τ + X12iβ20τ + sin (2π X2i ) + X1/2
11i εiτ i = 1, . . . , n,

(5.2)

Yi = β00τ + X11iβ10τ + X12iβ20τ + X T
3i

[
cos (π X2i ) , X2

2i

]T

+ εiτ i = 1, . . . , n (5.3)

where X11i , X12i and X2i are generated independently from, respectively, a uniform
distribution on (0, 2), a Bernoulli distribution with probability of success p = 1/2
and a uniform distribution on (0, 1), X T

3i = [X31i , X32i ] are jointly normal with mean
zero, variance 1 and correlation coefficient 0.5 and the unobservable error term εiτ

has zero τ quantile. In the simulations, we specify the unknown parameter vector as
β0τ = [β00τ , β10τ , β20τ ]T = [1, 2, 1/2]T, use the Epanechnikov kernel and consider
two sample sizes: n = 100 and n = 400.

We first consider the case of independent censoring; in this case, the censoring
variables {Ci }n

i=1 are generated from a normal distribution N (c, 1), where the constant
c is chosen to obtain two levels of censoring, a low one at 15% and a medium one at
45%,whereas the artificial censoring variable L is chosen so that Ĝ (L) = 0.01. Tables
1 and 2 report, respectively, the bias and the standard error for the three estimators
β̂τ = [

β̂0τ , β̂1τ , β̂2τ
]T

at the five quantiles τ = (0.10, 0.25, 0.5, 0.75, 0.90) for the
semiparametric quantile regressions (5.2) and (5.3) using 1000 replications and two
specifications for the distribution of εiτ : a standard normal (N (0, 1)) and aChi-squared
distribution with four degrees of freedom (χ2 (4)). The standard errors are calculated
using the resampling technique of Sect. 3.3 with the number of replications B set to

2 I am grateful to one referee for suggesting this procedure.
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Table 1 Bias and standard errors (SE) for the semiparametric quantile regression (5.2) with independent
censoring

τ C = 15a C = 45a

β0τ β1τ β2τ β0τ β1τ β2τ

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

n = 100 N (0, 1) N (0, 1)

0.10 .012 .161 .025 .183 .024 .128 .018 .169 .029 .191 .027 .153

0.25 .011 .159 .024 .184 .022 .128 .018 .168 .028 .190 .026 .153

0.50 .012 .160 .025 .184 .022 .129 .020 .171 .030 .192 .026 .154

0.75 .013 .164 .025 .186 .023 .131 .021 .171 .031 .193 .027 .155

0.90 .014 .170 .027 .191 .025 .138 .022 .175 .031 .198 .028 .159

χ2 (4) χ2 (4)

0.10 .014 .169 .032 .201 .021 .155 .020 .211 .036 .217 .033 .189

0.25 .014 .168 .031 .201 .019 .156 .019 .210 .035 .216 .033 .188

0.50 .016 .170 .032 .203 .022 .157 .022 .212 .036 .217 .035 .188

0.75 .018 .172 .033 .203 .033 .159 .023 .214 .036 .218 .035 .190

0.90 .018 .178 .035 .209 .035 .163 .024 .219 .036 .223 .037 .195

n = 400 N (0, 1) N (0, 1)

0.10 .009 .111 .023 .121 .024 .092 .017 .124 .026 .127 .023 .104

0.25 .009 .111 .022 .120 .022 .093 .017 .125 .025 .127 .021 .103

0.50 .010 .113 .023 .123 .023 .094 .018 .127 .025 .129 .022 .105

0.75 .011 .115 .024 .124 .024 .095 .020 .131 .026 .133 .024 .106

0.90 .012 .121 .026 .129 .024 .103 .022 .138 .026 .140 .025 .111

χ2 (4) χ2 (4)

0.10 .013 .136 .031 .150 .024 .115 .018 .156 .030 .156 .022 .114

0.25 .012 .136 .029 .150 .025 .116 .017 .156 .030 .157 .023 .114

0.50 .013 .1376 .029 .151 .025 .116 .019 .158 .032 .158 .023 .115

0.75 .015 .137 .030 .153 .027 .117 .021 .158 .032 .160 .024 .118

0.90 .015 .142 .031 .159 .028 .121 .022 .162 .033 .165 .026 .123

a Percentage of censoring

500 and the random variables ξi generated from an exponential distribution with mean
1.

For the dependent censoring case, we assume aCox proportional hazardmodel with
Ci = exp (X2iγ0),whereγ0 is chosen toobtain the same level of censoring as that of the
independent censoring case, namely 15%and 45%.We useBreslow’s (1972) estimator
to estimate G (Zi |X2i ) = Gγ0 (Zi |X2i ) parametrically, whereas we use the Epanech-
nikov kernel to compute the weights ωi (·) in the local Kaplan–Meier estimator (2.6)
for the nonparametric estimation of G (Zi |X2i ). Tables 3 and 4 report, respectively,
the bias and the standard error for the three estimators β̂τ = [

β̂0τ , β̂1τ , β̂2τ
]T

and
the five quantiles τ = (0.10, 0.25, 0.5, 0.75, 0.90) for the semiparametric quantile
regressions (5.2) and (5.3) and the same two specifications of the distribution of εiτ
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Table 2 Bias and standard errors (SE) for the semiparametric quantile regression (5.3) with independent
censoring

τ C = 15a C = 45a

β0τ β1τ β2τ β0τ β1τ β2τ

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

n = 100 N (0, 1) N (0, 1)

0.10 .015 .160 .027 .192 .021 .132 .020 .172 .031 .194 .030 .160

0.25 .014 .160 .027 .193 .020 .132 .020 .172 .031 .195 .030 .160

0.50 .015 .161 .028 .193 .021 .134 .021 .173 .031 .195 .030 .162

0.75 .015 .163 .029 .197 .022 .135 .022 .175 .032 .198 .031 .162

0.90 .016 .167 .030 .204 .023 .139 .022 .180 .034 .204 .033 .165

χ2 (4) χ2 (4)

0.10 .016 .181 .034 .215 .029 .160 .024 .207 .037 .231 .038 .188

0.25 .015 .181 .034 .216 .029 .160 .023 .208 .036 .231 .038 .189

0.50 .017 .183 .035 .216 .030 .162 .024 .210 .036 .233 .038 .191

0.75 .017 .185 .038 .218 .030 .164 .026 .212 .038 .235 .040 .191

0.90 .019 .190 .038 .223 .032 .168 .027 .218 .039 .239 .041 .194

n = 400 N (0, 1) N (0, 1)

0.10 .011 .120 .024 .122 .026 .109 .019 .130 .027 .140 .028 .116

0.25 .010 .120 .022 .121 .024 .102 .018 .131 .026 .138 .028 .116

0.50 .011 .121 .022 .121 .025 .103 .019 .132 .026 .139 .029 .118

0.75 .013 .122 .023 .123 .025 .105 .020 .134 .028 .141 .030 .118

0.90 .013 .126 .023 .127 .025 .108 .020 .138 .028 .148 .032 .121

χ2 (4) χ2 (4)

0.10 .014 .132 .028 .152 .026 .120 .021 .154 .029 .160 .028 .118

0.25 .013 .133 .029 .148 .025 .119 .020 .154 .029 .159 .028 .119

0.50 .014 .135 .030 .150 .027 .120 .020 .156 .030 .161 .029 .121

0.75 .014 .136 .031 .151 .028 .122 .021 .157 .031 .164 .030 .122

0.90 .014 .141 .032 .156 .028 .128 .021 .163 .032 .169 .032 .125

a Percentage of censoring

used in Tables 1 and 2. Tables 5 and 6 report the same results using the local Kaplan–
Meier. As with Tables 1 and 2, Tables 3, 4, 5 and 6 are based on 1000 replications with
the standard errors calculated using B = 500 replications with ξi generated from an
exponential distribution with mean 1.

The results of Tables 1, 2, 3, 4, 5 and 6 suggest that the proposed estimators perform
well with reasonable sample sizes: The biases are statistically insignificant, and the
standard errors are getting smaller as the sample size increases. As expected, the
standard errors increase with the level of censoring, especially at the 0.90 quantile,
which can be explained by the fact that right censoring affects the higher quantiles of
the conditional distribution of the responses. Finally, between the three estimators of
the survival function G0, those based on the local Kaplan–Meier estimator seem to be
characterized by a slightly larger bias and standard error, which can be explained by
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Table 3 Bias and standard errors (SE) for the semiparametric quantile regression (5.2) with dependent
censoring and Breslow’s (1972) estimator

τ C = 15a C = 45a

β0τ β1τ β2τ β0τ β1τ β2τ

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

n = 100 N (0, 1) N (0, 1)

0.10 .009 .155 .031 .177 .023 .131 .021 .165 .026 .190 .027 .146

0.25 .010 .157 .030 .177 .023 .132 .021 .165 .026 .191 .028 .146

0.50 .011 .159 .031 .179 .024 .133 .023 .168 .026 .191 .029 .148

0.75 .013 .160 .032 .181 .025 .135 .023 .170 .030 .192 .030 .150

0.90 .014 .166 .031 .187 .025 .139 .024 .175 .030 .196 .031 .155

χ2 (4) χ2 (4)

0.10 .015 .162 .031 .190 .028 .148 .022 .200 .038 .216 .030 .185

0.25 .014 .162 .032 .191 .028 .149 .023 .199 .037 .217 .030 .185

0.50 .014 .164 .033 .193 .029 .151 .024 .201 .037 .218 .031 .185

0.75 .016 .165 .035 .194 .030 .152 .025 .202 .038 .218 .031 .186

0.90 .017 .169 .035 .198 .030 .158 .025 .208 .038 .221 .031 .190

n = 400 N (0, 1) N (0, 1)

0.10 .008 .108 .024 .115 .020 .095 .018 .120 .026 .131 .025 .101

0.25 .008 .109 .024 .115 .020 .096 .018 .120 .024 .126 .024 .101

0.50 .009 .111 .025 .117 .020 .096 .020 .122 .024 .128 .024 .102

0.75 .011 .112 .025 .119 .021 .099 .021 .124 .025 .130 .026 .104

0.90 .014 .117 .026 .125 .023 .104 .024 .123 .026 .135 .027 .110

χ2 (4) χ2 (4)

0.10 .011 .138 .028 .141 .021 .112 .021 .153 .034 .148 .028 .118

0.25 .012 .138 .026 .141 .022 .112 .020 .153 .032 .148 .026 .118

0.50 .012 .140 .026 .142 .022 .113 .021 .155 .034 .150 .026 .117

0.75 .014 .141 .029 .145 .024 .115 .025 .158 .035 .150 .028 .120

0.90 .014 .149 .030 .148 .025 .117 .026 .162 .038 .155 .028 .124

a Percentage of censoring

the fact that the local Kaplan–Meier estimator has a slightly higher integrated mean
squared error compared to that of the Kaplan–Meier and Breslow’s (1972) estimators;
see Table 7 and the comments after it.

Figure 1 shows the five quantiles τ = (0.10, 0.25, 0.5, 0.75, 0.90) estimates for the
nonparametric component—estimated with the global estimates β̂τ replacing β0τ—in
the case of the semiparametric quantile regression (5.2) with normal unobservable
errors, censoring level at 15% and sample size n = 100.

Figure 2 shows the five quantiles τ = (0.10, 0.25, 0.5, 0.75, 0.90) estimates for the
first nonparametric component of the semiparametric quantile regression (5.3) with
Chi-squared unobservable errors, censoring level at 15% and sample size n = 100.

To measure the performance of the estimators θ̂τ (·) for the nonparametric compo-
nents, we use the (empirical) integrated mean squared error (IMSE) as in De Backer
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Table 4 Bias and standard errors (SE) for the semiparametric quantile regression (5.3) with dependent
censoring and Breslow’s (1972) estimator

τ C = 15a C = 45a

β0τ β1τ β2τ β0τ β1τ β2τ

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

n = 100 N (0, 1) N (0, 1)

0.10 .011 .161 .035 .180 .024 .130 .023 .168 .035 .201 .027 .151

0.25 .011 .161 .034 .180 .024 .131 .023 .169 .035 .201 .027 .151

0.50 .011 .164 .034 .181 .025 .130 .026 .171 .035 .203 .028 .153

0.75 .013 .166 .036 .183 .027 .132 .027 .172 .037 .205 .030 .155

0.90 .013 .169 .037 .188 .028 .136 .028 .176 .038 .210 .031 .159

χ2 (4) χ2 (4)

0.10 .013 .168 .034 .201 .025 .148 .024 .195 .038 .215 .031 .169

0.25 .013 .168 .034 .201 .025 .148 .024 .195 .038 .215 .031 .169

0.50 .013 .171 .035 .203 .026 .151 .025 .197 .039 .217 .032 .172

0.75 .015 .173 .036 .205 .027 .153 .026 .199 .040 .218 .032 .174

0.90 .017 .179 .036 .210 .028 .158 .027 .204 .041 .223 .032 .180

n = 400 N (0, 1) N (0, 1)

0.10 .009 .117 .026 .121 .020 .103 .019 .121 .025 .133 .026 .106

0.25 .009 .116 .025 .121 .020 .103 .018 .121 .026 .133 .025 .106

0.50 .010 .115 .025 .123 .020 .105 .019 .123 .027 .135 .026 .108

0.75 .012 .119 .027 .125 .021 .106 .020 .125 .028 .136 .026 .109

0.90 .015 .123 .028 .127 .022 .111 .021 .128 .029 .141 .028 .114

χ2 (4) χ2 (4)

0.10 .012 .139 .027 .140 .019 .112 .020 .156 .029 .147 .026 .122

0.25 .010 .140 .026 .140 .020 .112 .020 .156 .029 .148 .027 .121

0.50 .011 .142 .026 .142 .020 .114 .021 .158 .029 .149 .028 .121

0.75 .012 .143 .028 .144 .021 .115 .023 .160 .030 .152 .029 .122

0.90 .013 .147 .029 .149 .023 .120 .024 .164 .031 .156 .030 .126

a Percentage of censoring

et al. (2017), which is given by

IMSE
(
θ̂τ

) = 1

N

N∑

i=1

⎛

⎝ 1

M

M∑

j=1

(
θ̂τ j (X2i ) − θ0τ (X2i )

)
⎞

⎠ ,

where we take M = 100 and (X2i )
N
i=1 with N = 20 are randomly generated from a

uniform distribution on (0, 1). Table 7 reports the IMSE for the estimator considered in
Fig. 1 (at 15%and 45%censoring level and both unobservable errors ετ specifications).

Table 7 shows that among the three different estimators of G0 (·), those based
on the local Kaplan–Meier estimator are typically characterized by a larger IMSE.
This result is not surprising, though: Firstly, the local Kaplan–Meier estimator is the
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Table 5 Bias and standard errors (SE) for the semiparametric quantile regression (5.2) with dependent
censoring and local Kaplan–Meier estimator

τ C = 15a C = 45a

β0τ β1τ β2τ β0τ β1τ β2τ

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

n = 100 N (0, 1) N (0, 1)

0.10 .010 .161 .026 .185 .026 .134 .022 .174 .028 .194 .030 .155

0.25 .011 .161 .027 .186 .025 .134 .022 .174 .028 .194 .029 .156

0.50 .011 .162 .028 .188 .026 .136 .024 .176 .028 .195 .029 .156

0.75 .013 .168 .029 .190 .026 .136 .024 .178 .030 .197 .031 .158

0.90 .014 .173 .030 .194 .027 .140 .025 .182 .031 .203 .033 .161

χ2 (4) χ2 (4)

0.10 .014 .171 .027 .198 .027 .147 .026 .199 .032 .220 .030 .188

0.25 .013 .171 .028 .198 .027 .148 .025 .201 .032 .221 .031 .188

0.50 .013 .172 .029 .199 .027 .150 .027 .203 .033 .223 .032 .189

0.75 .015 .176 .031 .200 .029 .151 .027 .205 .035 .225 .034 .191

0.90 .016 .179 .033 .205 .029 .155 .028 .209 .036 .229 .035 .195

n = 400 N (0, 1) N (0, 1)

0.10 .008 .118 .023 .128 .021 .099 .019 .135 .027 .136 .025 .109

0.25 .009 .119 .022 .129 .020 .099 .018 .135 .026 .135 .026 .110

0.50 .010 .121 .023 .130 .021 .101 .019 .136 .027 .134 .026 .111

0.75 .011 .121 .024 .131 .022 .102 .020 .137 .029 .137 .027 .111

0.90 .012 .125 .025 .135 .023 .106 .022 .141 .029 .141 .029 .115

χ2 (4) χ2 (4)

0.10 .012 .135 .023 .159 .025 .118 .020 .158 .026 .167 .027 .129

0.25 .012 .136 .024 .159 .025 .118 .020 .158 .027 .167 .026 .129

0.50 .012 .137 .024 .161 .025 .120 .022 .159 .028 .168 .025 .131

0.75 .014 .139 .026 .160 .028 .121 .025 .160 .029 .170 .026 .133

0.90 .015 .142 .027 .166 .029 .125 .026 .164 .030 .174 .028 .137

a Percentage of censoring

only one depending on a bandwidth (b) and its choice has some bearings on the per-
formance of the quantile estimators of the nonparametric component. There are few
methods available to optimally choose the bandwidth b, but they are either not easy to
implement (see, e.g., Van Keilegom et al. 2001) or require a bootstrap approach (see,
e.g., Li and Datta 2001). Here, we use the simple ad hoc selection method based on
b̂ = 2

∣∣̂σZ ,X2

∣∣ n−1/5, where σ̂Z ,X2 is the sample covariance between Zi and X2i .3 Sec-
ondly, and perhaps more importantly, the performance of the semiparametric quantile
estimator based on the local Kaplan–Meier estimator is compared to that based on

3 To assess the sensitivity of the IMSE to this choice of b, we considered two alternative bandwidths,
b̂1 = b̂/4 and b̂2 = 4b̂, and computed the corresponding IMSE’s. The results of the simulations indicated
that the IMSE’s of the resulting quantile estimators were still larger than those based on Breslow’s (1972)
estimator.
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Table 6 Bias and standard errors (SE) for the semiparametric quantile regression (5.3) with dependent
censoring and local Kaplan–Meier estimator

τ C = 15a C = 45a

β0τ β1τ β2τ β0τ β1τ β2τ

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

n = 100 N (0, 1) N (0, 1)

0.10 .010 .174 .030 .194 .025 .138 .024 .188 .031 .208 .031 .158

0.25 .011 .174 .029 .194 .026 .139 .024 .189 .031 .208 .030 .157

0.50 .013 .176 .030 .196 .027 .141 .026 .190 .031 .210 .029 .159

0.75 .014 .177 .032 .199 .030 .143 .028 .192 .033 .211 .030 .161

0.90 .015 .181 .032 .203 .030 .146 .029 .195 .035 .214 .033 .165

χ2 (4) χ2 (4)

0.10 .014 .181 .032 .211 .027 .151 .025 .199 .034 .219 .032 .173

0.25 .014 .181 .032 .212 .027 .152 .024 .199 .034 .220 .032 .174

0.50 .015 .183 .034 .213 .028 .153 .025 .201 .035 .223 .033 .175

0.75 .017 .184 .034 .214 .029 .155 .027 .202 .037 .223 .034 .175

0.90 .018 .188 .035 .218 .030 .158 .028 .205 .037 .227 .035 .179

n = 400 N (0, 1) N (0, 1)

0.10 .007 .125 .022 .142 .022 .111 .019 .141 .024 .161 .022 .122

0.25 .008 .125 .023 .143 .021 .111 .020 .141 .025 .161 .023 .123

0.50 .010 .125 .024 .145 .022 .113 .021 .152 .027 .162 .024 .125

0.75 .011 .128 .026 .147 .023 .115 .023 .153 .027 .162 .027 .128

0.90 .012 .132 .027 .149 .024 .118 .023 .155 .028 .168 .028 .133

χ2 (4) χ2 (4)

0.10 .011 .141 .026 .148 .021 .115 .021 .159 .027 .151 .022 .130

0.25 .010 .142 .025 .148 .022 .116 .021 .160 .028 .151 .024 .131

0.50 .010 .141 .025 .149 .022 .116 .023 .161 .030 .154 .025 .132

0.75 .013 .145 .028 .150 .025 .119 .024 .163 .033 .155 .028 .135

0.90 .013 .149 .029 .154 .026 .122 .024 .167 .034 .159 .029 .138

a Percentage of censoring

Breslow’s (1972) estimator. The dependent censoring mechanism is fully parametric;
hence, an estimator based on maximum likelihood will always be more accurate (in
terms of IMSE) than a nonparametric one. It is also important to note that the local
Kaplan–Meier estimator is robust to misspecification as opposed to Breslow’s (1972)
estimator, which is an important feature in applied research, especially in situations
where a parametric specification of the survival distribution seems questionable.

Finally, we investigate the finite sample properties of the test statistic of Propo-
sition 11. We consider the semiparametric quantile regression (5.2) with the null
hypothesis

H0: θ0τ
(
x2∗ j

) = θ0τ = 1, (5.4)
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Fig. 1 Quantile estimates (full circles) for τ = (0.10, 0.25, 0.50, 0.75, 0.90) of the unknown nonpara-
metric component θ0τ (X2i ) = sin (2π X2i ) (empty circle). Left panel Kaplan–Meier estimator, center
panel Breslow’s (1972) estimator and right panel local Kaplan–Meier estimator of the unknown survival
distribution G0

versus the sequence of alternative hypotheses indexed by δ = [0, 0.2, 0.4, 0.6, 0.8,
1, 1.2]

H1: 1 + δ
(
θ0τ

(
x2∗ j

)− 1
)
. (5.5)

Table 8 reports the finite sample size (corresponding to δ = 0) for x2∗ j = 0.1 j
and j = 1, . . . , 8 at a 0.10 and 0.05 nominal level for the semiparametric quantile
regression (5.2) with the three estimators of G0 (·), level of censoring at 15% and 2
sample sizes n = 100 and n = 400, using 5000 replications and bandwidth fixed
at h = have where have is the average of the bandwidths used to obtain Tables 1, 3
and 5. The critical values of the nonstandard distribution given in Proposition 11 are
calculated using 105 simulations and are [3.365, 4.779] and [3.044, 4.345] for n = 100
and n = 400, respectively.

Figure 3 (and its magnified version—at the lower and upper values of δ—Fig. 4)

shows the size-adjusted finite sample power of the test statistic max j Wl

(
x∗
2 j

)
of

Proposition 11 under the alternative hypothesis (5.5) for the semiparametric quantile
regression (5.2) with the three estimators of G0 (·), the unobservable errors χ2 (4) and
n = 100, computed using 1000 replications for each value of δ. Figure 3 shows that
the test statistic has good power properties for the three estimators of G0 (·), although

123



Semiparametric quantile regression with random censoring 289

0.0 0.4 0.8

2-
1-

0
1

2

X2

soc
(π

X 2
)

0.0 0.4 0.8

2-
1-

0
1

2

X2

soc
(π

X 2
)

0.0 0.4 0.8

2-
1-

0
1

2

X2

soc
(π

X 2
)

Fig. 2 Quantile estimates (full circles) for τ = (0.10, 0.25, 0.50, 0.75, 0.90) of the unknown nonparametric
component θ0τ (X2i ) = cos (π X2i ) (empty circle). Left panel Kaplan–Meier estimator, center panel Bres-
low’s (1972) estimator and right panel local Kaplan–Meier estimator of the unknown survival distribution
G0

the power is slightly lower at the lower and upper quantile, as Fig. 4 shows. Results
for the other cases are similar and hence are not reported.

6 Empirical application

We illustrate the applicability of the proposed method by considering the same lung
cancer study used byYing et al. (1995). In this clinical study, 121 patients with limited-
stage lung cancer were randomly assigned to two groups (A and B) in which the
sequencing of the standard therapy based on etoposide (E) and cisplatin (P) is reversed:
group A, P followed by E and group B, E followed by P. At the time of the study, there
was no loss to follow-up and each death time was either observed or administratively
censored, so that the censoring variable does not depend on the covariates, which are
the treatment indicator and the patient’s entry age. Let Yi (i = 1, . . . , 121) denote the
base 10 logarithm of the i th patient failure time with a censoring proportion of about
19%. To investigate the age-adjusted treatment difference, we consider the following
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Table 7 IMSE for the estimator
of θτ0 (·) in the censored
semiparametric quantile
regression (5.2)

τ C = 15a C = 45a

Ĝ (·)b Ĝ (·)c Ĝ (·)d Ĝ (·)b Ĝ (·)c Ĝ (·)d

N (0, 1) N (0, 1)

0.10 .142 .140 .146 .148 .145 .152

0.25 .142 .140 .145 .146 .144 .154

0.50 .140 .141 .144 .144 .141 .153

0.75 .146 .144 .150 .149 .151 .158

0.90 .157 .153 .158 .161 .155 .168

χ2 (4) χ2 (4)

0.10 .146 .142 .150 .151 .148 .157

0.25 .145 .142 .151 .151 .150 .157

0.50 .145 .141 .152 .150 .151 .155

0.75 .148 .146 .155 .152 .151 .160

0.90 .161 .157 .161 .162 .163 .170

a Percentage of censoring
b Kaplan–Meier estimator
c Breslow’s (1972) estimator
d Local Kaplan–Meier estimator

semiparametric quantile regression model

QYi |Xi (τ |Xi ) = β00τ + X1iβ10τ + θ0τ (X2i ) , (6.1)

where X1i = 0 if the i th patient is in group A and 1 otherwise, and X2i is the patient’s
entry age. We assume independent censoring as at the time of the study there was
no loss of follow-up, so that each death time was either observed or administratively
censored. Thus, the censoring variable does not depend on the covariates (see alsoYing
et al. 1995). Table 8 reports the estimates of β00τ and β10τ with the 95% confidence
intervals for the three quantiles τ = (0.25, 0.5, 0.75) based on B = 500 resampled
data with ξi generated from an exponential distribution with mean 1, whereas Fig. 5
shows the estimates of θ0τ (·) again for the three quantiles τ = (0.25, 0.5, 0.75).

The results of Table 9 show that for patientswith the same entry age, the first quartile
and median survival time of group A are larger than that of group B. This is consistent
with the findings of Ying et al. (1995) and Zhou (2006), which reported estimates
and confidence intervals, respectively, of β̂1τ = −0.163 (−0.388, −0.35) and β̂1τ =
−0.171 (−0.335,−0.007) for τ = 0.5. However, at the third quartile, groups A and B
do not show any statistically different survival times (t-statistic is equal to−0.146with
p value for the one-sided alternative of 0.442). Further statistical analysis shows that
the survival times of the two groups become statistically insignificant at τ = 0.64 with
β̂1τ = 0.084, t-statistic equals 0.674 and associated p value of 0.749; furthermore, at
τ = 0.92, we find that the survival time of group B becomes longer than that of group
A, since β̂1τ = 0.144 with a t-statistic equal to 2.66 and associated p value for the
one-sided alternative equal to 0.004.
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Table 8 Finite sample sizes of the test statistic max j Wl

(
x∗
2 j

)
for the null hypothesis (5.4) in the censored

semiparametric quantile regression (5.2)

τ C = 15a C = 45a

Ĝ (·)b Ĝ (·)c Ĝ (·)d Ĝ (·)b Ĝ (·)c Ĝ (·)d
.100 .050 .100 .050 .100 .050 .100 .050 .100 .050 .100 .050

n = 100 N (0, 1) N (0, 1)

0.10 .119 .055 .114 .054 .123 .054 .121 .056 .124 .056 .124 .060

0.25 .118 .055 .115 .055 .122 .056 .122 .056 .123 .057 .125 .060

0.50 .120 .056 .117 .056 .125 .056 .123 .058 .126 .059 .126 .062

0.75 .119 .059 .118 .059 .128 .060 .124 .059 .129 .061 .130 .063

0.90 .121 .061 .119 .062 .129 .063 .125 .062 .128 .062 .132 .065

n = 400

0.10 .111 .050 .111 .053 .117 .052 .120 .051 .118 .052 .120 .057

0.25 .112 .051 .110 .052 .118 .052 .120 .052 .119 .052 .120 .058

0.50 .113 .052 .109 .049 .119 .054 .121 .054 .120 .055 .121 .056

0.75 .118 .054 .112 .053 .121 .057 .122 .055 .121 .056 .122 .059

0.90 .119 .058 .113 .055 .122 .058 .123 .056 .122 .057 .123 .060

n = 100 χ2 (4) χ2 (4)

0.10 .120 .055 .114 .060 .125 .062 .123 .060 .124 .061 .127 .061

0.25 .121 .056 .114 .059 .126 .062 .124 .059 .125 .060 .128 .062

0.50 .120 .056 .115 .059 .128 .063 .125 .061 .125 .063 .130 .063

0.75 .121 .058 .117 .062 .131 .066 .128 .063 .127 .065 .131 .065

0.90 .123 .059 .118 .063 .132 .067 .128 .065 .128 .066 .132 .067

n = 400

0.10 .114 .057 .112 .054 .118 .055 .119 .053 .120 .055 .121 .057

0.25 .115 .055 .112 .055 .119 .055 .119 .054 .120 .055 .122 .057

0.50 .115 .056 .114 .056 .120 .056 .120 .055 .121 .057 .123 .058

0.75 .118 .056 .115 .057 .121 .059 .123 .057 .121 .058 .125 .060

0.90 .120 .057 .116 .058 .122 .060 .124 .059 .123 .060 .128 .063

a Percentage of censoring
b Kaplan–Meier estimator
c Breslow’s (1972) estimator
d Local Kaplan–Meier estimator

Table 9 Estimates and confidence intervals for the lung cancer study

β0τ β1τ

τ = 0.25 2.992 (2.362, 3.351) − 0.180 (−0.287, −0.057)

τ = 0.50 2.913 (2.412, 3.401) − 0.113 (−0.234, −0.012)

τ = 0.75 2.764 (2.121, 3.123) − 0.014 (−0.182, 0.083)
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Fig. 3 Finite sample power for the test statisticmax j Wl

(
x∗
2 j

)
for (5.5)withχ2 (4) errors and n = 100. Left

panel Kaplan–Meier estimator, center panel Breslow’s (1972) estimator and right panel local Kaplan–Meier
estimator of the unknown survival distribution G0

Finally, we test for the constancy of θ0τ (X2i ) using the max j Wc

(
x∗
2 j

)
statistic

evaluated at x∗
2 = [40, 44, 48, 52, 59, 64, 70, 74] (i.e., j = 8). The sample values of

max j Wc

(
x∗
2 j

)
for τ = (0.25, 0.5, 0.75) are, respectively, 7.31, 6.96, 7.04 with corre-

sponding p values of 0.019, 0.022 and 0.021; hence, the null hypothesis of constancy is
rejected at the 0.05 nominal level. Taken together, these results indicate the usefulness
of the semiparametric methods for quantile regression proposed in this paper.
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Fig. 4 Magnified version of Fig. 3 for 0 ≤ δ ≤ 0.4 and 0.9 ≤ δ ≤ 1.2
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Fig. 5 Nonparametric quantile estimates for τ = (0.25, 0.50, 0.75) of the age function
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7 Conclusions

In this paper,wepropose a generalmethod to estimate the unknownparameters in semi-
parametric quantile regressionmodels when the response variable is subject to random
censoring. The method is based on the inverse probability of censoring weighting and
can accommodate the cases of independent and dependent censoring. The paper also
proposes test statistics that can be used to test local linear hypotheses (including
those of constancy) of the nonparametric component. AMonte Carlo study shows that
the resulting estimators and test statistics perform well in finite samples, whereas an
empirical application illustrates the practical usefulness of the semiparametric meth-
ods proposed in this paper.
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