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There is a gap at the end of the proof of Theorem 1, since there the application of the
conditional McDiarmid inequality yields

Jn − E{Jn|X1, . . . , Xn} → 0 a.s.,

where Jn = ∫ ∣
∣∑n

i=1 Wn,i (x) · (Yi − m(Xi ))
∣
∣µ(dx), and not yet the assertion

Jn → 0 a.s.

in the last step of the proof of Theorem 1.
This gap can be filled by adding into assumption (A3) the second condition

n∑

i=1

∫
|Wn,i (x)|2µ(dx) → 0 a.s. (29)

The original article can be found online at https://doi.org/10.1007/s10463-018-0674-9.

B Michael Kohler
kohler@mathematik.tu-darmstadt.de

Matthias Hansmann
hansmann@mathematik.tu-darmstadt.de

Harro Walk
walk@mathematik.uni-stuttgart.de

1 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289
Darmstadt, Germany

2 Fachbereich Mathematik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-018-0687-4&domain=pdf
https://doi.org/10.1007/s10463-018-0674-9
https://doi.org/10.1007/s10463-018-0674-9


1266 M. Hansmann et al.

Using this condition together with |Y | ≤ L a.s., it is easy to see that one has

E{Jn|X1, . . . , Xn} → 0 a.s.,

which is still needed to obtain the assertion.
In order to verify (29) in the applications of Theorem 1, for kernel estimation in the
context of Lemma 6 one notices that, up to some constant factor, the left-hand side of
(29) is majorized by

∫
1

1 + ∑n
i=1 ISr1

(
x−Xi
hn

)µ(dx),

which can be treated similarly to the verification of (A4) in Lemma 6. The verification
of (29) for partitioning estimation in the context of Lemma 9 is analogous.

Details

Last part of the proof of Theorem 1. It remains to show

Jn · IBn → 0 a.s.

Application of the conditional McDiarmid inequality as in the proof of Theorem 1
yields

Jn · IBn − E{Jn · IBn |X1, . . . , Xn} → 0 a.s.

Hence, it suffices to show

E{Jn|X1, . . . , Xn} → 0 a.s. (30)

By the inequality of Jensen, the independence of the data and |Y | ≤ L a.s., we get

(E{Jn|X1, . . . , Xn})2
≤ E{J 2n |X1, . . . , Xn}

≤ E

⎧
⎨

⎩

∫ ∣
∣
∣
∣
∣

n∑

i=1

Wn,i (x) · (Yi − m(Xi ))

∣
∣
∣
∣
∣

2

µ(dx)

∣
∣
∣
∣X1, . . . , Xn

⎫
⎬

⎭

= E

⎧
⎨

⎩

∣
∣
∣
∣
∣

n∑

i=1

Wn,i (X) · (Yi − m(Xi ))

∣
∣
∣
∣
∣

2 ∣
∣
∣
∣X1, . . . , Xn

⎫
⎬

⎭

= E

⎧
⎨

⎩
E

⎧
⎨

⎩

∣
∣
∣
∣
∣

n∑

i=1

Wn,i (X) · (Yi − m(Xi ))

∣
∣
∣
∣
∣

2 ∣
∣
∣
∣X , X1, . . . , Xn

⎫
⎬

⎭

∣
∣
∣
∣X1, . . . , Xn

⎫
⎬

⎭
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= E

{
n∑

i=1

Wn,i (X)
2 · E

{

(Yi − m(Xi ))
2
∣
∣
∣
∣X , X1, . . . , Xn

} ∣
∣
∣
∣X1, . . . , Xn

}

≤ 4L2 · E
{

n∑

i=1

Wn,i (X)
2
∣
∣
∣
∣X1, . . . , Xn

}

= 4L2 ·
n∑

i=1

∫
|Wn,i (x)|2µ(dx).

Thus, (30) follows from (29).
Proof of (29) in the context of Lemma 6. On the one hand, we have

n∑

i=1

Wn,i (x)
2 =

∑n
i=1 K

(
x−Xi
hn

)2

(∑n
j=1 K

(
x−X j
hn

))2 ≤ 1.

On the other hand, it holds

n∑

i=1

Wn,i (x)
2 ≤ c2 ·

∑n
i=1 K

(
x−Xi
hn

)

(∑n
j=1 K

(
x−X j
hn

))2 · I{∑n
j=1 K

( x−X j
hn

)
>0

}

≤ c2 · 1
∑n

j=1 K
(
x−X j
hn

) .

Consequently,

n∑

i=1

Wn,i (x)
2 ≤ min

⎧
⎨

⎩
1, c2 · 1

∑n
j=1 K

(
x−X j
hn

)

⎫
⎬

⎭

≤ min

⎧
⎨

⎩
1,

c2
c1

· 1
∑n

j=1 ISr1

(
x−X j
hn

)

⎫
⎬

⎭

≤ max

{

1,
c2
c1

}

· min

⎧
⎨

⎩
1,

1
∑n

j=1 ISr1

(
x−X j
hn

)

⎫
⎬

⎭

≤ max

{

1,
c2
c1

}

· 2

1 + ∑n
j=1 ISr1

(
x−X j
hn

) .

Hence, it suffices to show

Wn :=
∫

1

1 + ∑n
j=1 ISr1

(
x−X j
hn

)µ(dx) → 0 a.s. (31)
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For any bounded sphere S around 0, by Lemma 2a and by assumption (9), we get

E

⎧
⎨

⎩

∫

S

1

1 + ∑n
j=1 ISr1

(
x−X j
hn

)µ(dx)

⎫
⎬

⎭

=
∫

S
E

⎧
⎨

⎩
1

1 + ∑n
j=1 ISr1

(
x−X j
hn

)

⎫
⎬

⎭
µ(dx)

≤
∫

S

1

n · µ(x + hn · Sr1)
µ(dx)

≤ const

n · hdn
→ 0 (n → ∞),

where the last inequality holds because of equation (5.1) in Györfi et al. (2002).
Thus, it suffices to show

Wn − E{Wn} → 0 a.s. (32)

Analogously to the proof of (A4), with X ′
1, X1, …, Xn independent and identically

distributed and

W ′
n :=

∫
1

1 + ISr1

(
x−X ′

1
hn

)
+ ∑n

j=2 ISr1

(
x−X j
hn

)µ(dx),

by Lemma 4.2 in Kohler et al. (2003), one has

E{|Wn − E{Wn}|4} ≤ c11 · n2 · E{(Wn − W ′
n)

4} (n ∈ N).

Furthermore, by the second part of Lemma 5 one gets

E{|Wn − W ′
n|4}

≤ 16 · E

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

∫ ISr1

(
x−X1
hn

)

(
1 + ∑n

j=2 ISr1

(
x−X j
hn

))2µ(dx)

⎞

⎟
⎠

4⎫
⎪⎬

⎪⎭

≤ 16 · E

⎧
⎪⎨

⎪⎩

⎛

⎝
∫ ISr1

(
x−X1
hn

)

1 + ∑n
j=2 ISr1

(
x−X j
hn

)µ(dx)

⎞

⎠

4
⎫
⎪⎬

⎪⎭

≤ const

n4
.

From these relations, one obtains (32) by the Borel–Cantelli lemma and the Markov
inequality.
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Proof of (29) in the context of Lemma 9. Analogously to above it suffices to show

Vn :=
∫

1

1 + ∑n
j=1 IAPn (x)

(
X j

)µ(dx) → 0 a.s.

For any bounded sphere S around zero, by assumption (12) we get

∫

S

1

n · µ(APn (x))
µ(dx) → 0 (n → ∞),

from which by Lemma 2a we can conclude analogously to above

EVn → 0 (n → ∞).

Hence, it suffices to show

Vn − E{Vn} → 0 a.s.,

which follows analogously to above from the second part of Lemma 7.
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