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In this document, we provide some supplementary materials to the article “A two-stage sequential

conditional selection approach to sparse high-dimensional multivariate regression models”. The first

part of the document contains the technical details of the proofs for the asymptotic properties of

the TASCS approach. The second part contains some miscellaneous materials.

1 Technical proofs

In order to make the document self-contained for the convenience of the reader, the conditions and

the results in Section 3 of the article are re-stated in this section.

A1 ln p = O(nκ), where 0 < κ < 1/3; maxj p0j = O(nc), for some 0 < c < 1/6;

A2 For any sj ⊂ s0j but sj 6= s0j , maxk∈s0j\sj |γj(k, sj)| > maxk 6∈s0j |γj(k, sj)|;

A3 min1≤j≤q
{
λmin[ 1

nX
>(s0j)X(s0j)] mink∈s0j |βjk|

}
≥ Cn−1/6+δ, where δ is an arbitrary small

positive number.

A4 limn→∞min1≤j≤q minsj :s0j 6⊂sj ,|sj |≤kp0j
∆(sj ,µj)

p0j ln p → ∞, where ∆(sj ,µj) = µ>j [I − Hx(sj)]µj ,

µj = Xβj , and k > 1 is a fixed constant.

Theorem 1. We have

(i) Assume conditions A1−A4,

P (ŝm0j = s0j , j = 1, . . . , q)→ 1,

as n→∞.
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(ii) In addition, suppose P (T̂ m0 = T0)→ 1. Then

P (ŝc0j = s0j , j = 1, . . . , q)→ 1,

as n→∞.

The theorem is proved by establishing the Lemmas s1 — s4 given below.

Lemma s1. Let ŝmj1 ⊂ · · · ⊂ ŝmjk ⊂ · · · be the sequence of sets of selected features for the jth

marginal model of the sparse high-dimensional multivariate regression model obtained in the first

iteration of TASCS. Under conditions A1−A3,

P (ŝmj1 ⊂ · · · ⊂ ŝmjk ⊂ · · · ⊂ ŝmjp0j−1 ⊂ ŝmjp0j = s0j ; j = 1, . . . , q) > 1− r1n, as n→∞,

where r1n =
2 max1≤j≤q σj

C
1/2
n ln p

exp
{
− (ln p)2

2 + ln p+ ln q + ln(max p0j)
}

, and

Cn = min
1≤j≤q

{√
n

ln p
λmin[

1

n
X>(s0j)X(s0j)] min

k∈s0j
|βjk|

}
.

Lemma s2. Under conditions A1−A3,

P
(
EBIC(ŝmjk) > EBIC(ŝmjk+1), 1 ≤ k < p0j ; j = 1, . . . , q

)
> 1− r2n,

where r2n = O(n−1+ω) for some ω < 1.

Lemma s3. Let sj be any set of features for the jth marginal model satisfying |sj | ≤ kp0j for a

given k > 1. Under conditions A1−A4,

P

(
min
sj

EBIC(sj) > EBIC(s0j), j = 1, . . . , q

)
> 1− r3n,

where r3n = Cq
Rn ln p , Rn diverging to ∞ and C being a generic constant.

Lemma s4. Assume conditions A1 − A3 and, in addition, suppose that P (T̂ m0 = T0) → 1 where

T̂ m0 is the estimate of T0 from the first stage. Let ŝcj1 ⊂ · · · ⊂ ŝcjk ⊂ · · · be the sequence of sets of

selected features for the jth marginal model of the sparse high-dimensional multivariate regression

model obtained in the second stage of TASCS. Then

P (ŝcj1 ⊂ · · · ⊂ ŝcjk ⊂ · · · ⊂ ŝcjp0j−1 ⊂ ŝcjp0j = s0j ; j = 1, . . . , q)→ 1, as n→∞.
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Lemma s1 states that the true set s0j is among the increasing sequence of the selected sets of

features. Lemma s2 states that the EBIC values of the sequence of the selected sets are decreasing

until the sequence reaches the true set. Lemma s3 implies that the EBIC values of the selected sets

after the true set are larger than that of the true one. By the nature of the sequential procedure, the

procedure will stop at exactly the step when the true set is selected. The probability of these events

happen simultaneously converges to 1. Thus Thorem 1 (i) follows. Lemma s2 can be established

for the sequence ŝcjk in exactly the same argument as that for the sequence ŝmjk with a convergence

rate at least not slower. Then, Lemma s2, Lemma s3 together with Lemma s4 establish that

P (ŝc0j = s0j , j = 1, . . . , q) → 1. This proves Theorem 1 (ii). By the way, Proposition 1 is obvious

from Lemma s1.

In what follows, we provide the proofs for Lemmas s1 — s4.

Proof of Lemma s1

Proof. We establish that

P (s∗mj1 ⊂ · · · ⊂ s∗mjk ⊂ · · · ⊂ s0j ⊂ · · · ; j = 1, . . . , q) > 1− r1n, as n→∞. (1)

In what follows, we denote s∗mjk by s∗jk for convenience. Let

γ̂j(l, s
∗
jk) =

1

n
x>l [In −Hx(s∗jk)]yj = γj(l, s

∗
jk) +

1

n
x>l [In −Hx(s∗jk)]ej .

A slight modification of the proof of Theorem 3.1 in Luo and Chen (2014) yields

P

(
max
l∈s∗cjk

1

n
x>l [I −Hx(s∗jk)]ej ≥ C1/2

jn n−1/2 ln p

)
≤ 2σj

C
1/2
jn ln p

exp

{
− (ln p)2

2
+ ln p

}
,

where Cjn =
√
n

ln pλmin( 1
nX

τ (s0j)X(s0j)) minl∈s0j |βjl|. By Bonferroni inequality, we have

P

(
max

0<k<p0j
max
l∈s∗cjk

1

n
x>l [I −Hx(s∗jk)]ej ≥ C1/2

jn n−1/2 ln p, j = 1, . . . , q

)

≤ 2 maxj σj

minC
1/2
jn ln p

exp

{
− (ln p)2

2
+ ln p+ ln q + ln(max p0j)

}
= r1n. (2)
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It was shown in Luo and Chen (2014) that

max
l∈s∗−jk

|γj(l, s∗jk)| ≥ Cjnn−1/2 ln p, (3)

where s∗−jk = s∗cjk ∩ s0j . By conditions A1 and A3, minj Cjn →∞. Thus, (2), (3) and condition A2

imply that

P

(
max
l∈s∗−jk

|γ̂j(l, s∗jk)| > max
l∈sc0j

|γ̂j(l, s∗jk)|, 0 ≤ k ≤ p0j , j = 1, . . . , q

)
> 1− r1n. (4)

Given s∗jk ⊂ s0j , maxl∈s∗−jk
|γ̂j(l, s∗jk)| > maxl∈sc0j |γ̂j(l, s

∗
jk)| implies that s∗jk+1 ⊂ s0j . Since the

sequential procedure starts with s∗j0 = ∅ ⊂ s0j , the lemma is implied by (4).

Proof of Lemma s2

Proof. Let Djk = EBIC(s∗jk)− EBIC(s∗jk+1). We have

Djk = n ln

(
‖(I −Hx(s∗jk))yj‖22
‖(I −Hx(s∗jk+1))yj‖22

)
− (lnn+ 2γ ln p)

= n ln

(
1 +
‖(I −Hx(s∗jk))yj‖22 − ‖(I −Hx(s∗jk+1))yj‖22

‖(I −Hx(s∗k+1))yj‖22

)
− (lnn+ 2γ ln p)

= Tjk − (lnn+ 2γ ln p), say.

The lemma holds if min1≤k≤p0j ,j=1,...,q Tjk > lnn + 2γ ln p with probability bigger than 1 − r2n,

which is implied by

min
jk

{
‖(I −Hx(s∗jk))yj‖22 − ‖(I −Hx(s∗jk+1))yj‖22

}
≥ Cnmin

j
(λmin[

1

n
X(s0j)

>X(s0j)] min
l∈s0j

|βjl|)2, (5)

and

max
jk
‖(I −Hx(s∗jk+1))yj‖22 ≤ Cnmax{p2

0j}, (6)

with probability bigger than 1 − r2n, where C is a generic constant. It is because that, when (5)

4



and (6) hold, we have

min
1≤k<p0j ,j=1,...q

Tjk ≥ n ln

(
1 + C

minj [λmin( 1
nX(s0j)

>X(s0j)) minl∈s0j |βjl|]2

maxj p2
0j

)

≥ nC

2 max p2
0j

[min
j
λmin(

1

n
X(s0j)

>X(s0j)) min
l∈s0j

|βjl|]2

> Cn1/3+2δ > lnn+ 2γ ln p,

where the last two inequalities hold by condition A1 and A3.

In the following, we verify (5) and (6). For any given set s, vectors u and v, let ∆(s,u) =

u>[I −Hx(s)]u and ∆(s,u,v) = u>[I −Hx(s)]v. To verify (5), express

‖(I −Hx(s∗jk))yj‖22 − ‖(I −Hx(s∗jk+1))yj‖22

= [∆(s∗jk,µj)−∆(s∗jk+1,µj)] + 2[∆(s∗jk,µj , ej)−∆(s∗jk+1,µj , ej)] + [∆(s∗jk, ej)−∆(s∗jk+1, ej)].

It has been shown in Luo and Chen (2014) that

min
k

[∆(s∗jk,µj)−∆(s∗jk+1,µj)] ≥ n(λmin[
1

n
X(s0j)

>X(s0j)] min
l∈s0j

|βjl|)2.

Therefore

min
jk

[∆(s∗jk,µj)−∆(s∗jk+1,µj)] ≥ nmin
j

(λmin[
1

n
X(s0j)

>X(s0j)] min
l∈s0j

|βjl|)2 ≡ dn. (7)

Since ∆(s∗k, ej) − ∆(s∗k+1, ej) follows a χ2 distribution with degree of freedom 1, by Bonferroni

inequality, we have,

P ( max
1≤k<p0j ;j=1,...,q

[∆(s∗jk, ej)−∆(s∗jk+1, ej)] ≥ d1/2
n )

≤ qmax
j
p0jP (χ2

1 ≥ d1/2
n ) = 2qmax

j
p0j [1− Φ(d1/4

n )]

≤ C

d
1/4
n

exp{−d
1/2
n

2
+ ln q + ln max

j
p0j}. (8)

Note that
∆(s∗jk,µj ,ej)−∆(s∗jk+1,µj ,ej)√

∆(s∗jk,µj)−∆(s∗jk+1,µj)
= Zjk follows a standard normal distribution. The same

argument as above yields

P ( max
1≤k<p0j ;j=1,...,q

|Zjk| ≥ d1/4
n ) ≤ C

d
1/4
n

exp{−d
1/2
n

2
+ ln q + ln max

j
p0j}. (9)
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Inequality (5) follows from (7), (8) and (9).

To verify (6), note that

‖(I −Hx(s∗k+1))yj‖22 = ∆(s∗k+1,µj) + ∆(s∗k+1, ej) + 2∆(s∗k+1,µj , ej)

≤ ∆(s∗k+1,µj) + ∆(s∗k+1, ej) + 2
√

∆(s∗k+1,µj)∆(s∗k+1, ej). (10)

It was shown in Luo and Chen (2014) that, for any j and k < p0j , ∆(s∗jk+1, µ) ≤ Cnp2
0j . Therefore

max
jk

∆(s∗jk+1, µ) ≤ Cnmax{p2
0j}. (11)

Since ∆(s∗k+1, ε) ∼ χ2
n−k−1, we have, for any δ > 0,

P

(
max
jk

∣∣∣∣∆(sjk+1∗, ej)
n− k − 1

− 1

∣∣∣∣ ≥ n−δ/2)
≤

∑
jk

P

(∣∣∣∣∆(sjk+1∗, ej)
n− k − 1

− 1

∣∣∣∣ ≥ n−δ/2)

≤
∑
jk

nδ Var(Z2)

n− k − 1
≤ qmax

j
p0j

nδ Var(Z2)

n−maxj p0j
< Cn−(1−δ)qmax

j
p0j ,

where Z is a standard normal variable and C is a generic constant. Therefore,

P

(
max
jk

∆(sjk+1∗, ej) < n(1 + n−δ/2)

)
≥ P

(
max
jk

∆(sjk+1∗, ej) < (n− k − 1)(1 + n−δ/2)

)
≥ P

(
∩jk

{∣∣∣∣∆(sjk+1∗, ej)
n− k − 1

− 1

∣∣∣∣ < n−δ/2
})

= P

(
max
jk

∣∣∣∣∆(sjk+1∗, ej)
n− k − 1

− 1

∣∣∣∣ < n−δ/2
)

≥ 1− Cn−(1−δ)qmax
j
p0j . (12)

Combining (9) and (12), we have that (6) holds with probability greater than 1−Cn−(1−δ)qmaxj p0j .

Let

r2n =
2C

d
1/4
n

exp{−d
1/2
n

2
+ ln q + ln max

j
p0j}+ Cn−(1−δ)qmax

j
p0j .

It follows from A1 and A3 that r2n = O(n−1+ω) for some ω < 1. Lemma s2 is established.
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Proof of Lemma s3

Proof. It was shown in Luo and Chen (2013) that

P ( min
sj ,|sj |≤knj

EBIC(sj) > EBIC(s0j))→ 1,

for fixed j, where knj = kp0j . However, Lemma 3 requires the uniform convergence of the above

probability for all j. In order to establish the uniform convergence, we derive a convergence rate for

the above probability in the following. Express

EBICγ(sj)− EBICγ(s0j) = n ln
∆(sj ,yj)

∆(s0j ,yj)
+ (|sj | − p0j)(lnn+ 2γ ln p)

≡ T1 + T2.

Note that ∆(s0j ,yj) = ∆(s0j , ej) which follows a χ2-distribution with degrees of freedom n − p0j

and can be written as
n−p0n∑
i=1

Z2
i where Zi’s are i.i.d. standard normal variables. By Chebyshev

inequality, for any small constant δ,

P

(∣∣∣∣∣ 1

n− p0j

n−p0n∑
i=1

Z2
i − 1

∣∣∣∣∣ > n−δ/2

)
≤ 2nδ

n− p0j
.

Therefore

P (∆(s0j , ej) = (n− p0j)(1 +O(n−δ/2))) ≥ 1− 2nδ

n− p0j
≡ 1− ω[1]

n . (13)

In what follows, we consider separately two cases: sj 6⊂ s0j and sj ⊂ s0j .

Case I: sj 6⊂ s0j . In this case, express

T1 = n ln

(
1 +

∆(sj ,yj)−∆(s0j , ej)

∆(s0j , ej)

)
.

Note that

∆(sj ,yj)−∆(s0j , ej) = ∆(sj ,µj) + 2∆(sj ,µj , ej) + e>j H
x(s0j)ej − e>j Hx(sj)ej .

First, by Chebyshev inequality we have

P (e>j H
x(s0j)ej ≤ ∆(sj ,µj)) ≥ 1− 1

(ln p) Dnj
, (I)
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where Dnj = ∆(sj ,µj)/(p0j ln p)→∞ by condition A4.

Next, we are going to show, for some constant C,

P ( max
sj ,|sj |≤knj

e>j H
x(sj)ej ≤ Cknj ln p) > 1− ω1n, (II)

and

P

(
| max
sj ,|sj |≤knj

∆(sj ,µj , ej)| ≤
√

∆(sj ,µj)knj ln p)

)
> 1− ω2n, (III)

where ω1n and ω2n will be given later. Then, condition A4, (I), (II) and (III) imply that

P
(
∆(sj ,yj)−∆(s0j , ej) = C∆(sj ,µj), for all sj : |sj | ≤ knj

)
> 1− ω[2]

n , (14)

where ω
[2]
n = ω1n + ω2n + 1

(ln p) Dn
, Dn = minj Dnj . It then follows from (13) and (14) that

T1 = n ln

(
1 +

C∆(sj ,µj)

n

)
, (15)

uniformly for all sj such that |sj | ≤ knj with probability greater than 1−ωn where ωn = ω
[1]
n +ω

[2]
n .

Inequalities (II) and (III) are verified in the following. Let d > 1 be a constant and mj =

2dknj [ln p+ln(dknj ln p)]. Since e>j H(sj)ej follows a χ2-distribution with degrees of freedom l = |sj |.

Let Sl be the class of models consisting of exactly l covariates. Denote by τ(Sl) the size of Sl, i.e.,

τ(Sl) =
(
p
l

)
. By the Bonferroni inequality, we have

P ( max
sj ,|sj |≤knj

e>j H
x(sj)ej ≥ mj)

=P (max{χ2
l (s) : s ∈ Sl, l ≤ knj} ≥ mj) ≤

knj∑
l=1

τ(Sl)P (χ2
l ≥ mj).

There is a constant C close to 1, not depending on j for j ≤ knj , such that

τ(Sl)P (χ2
l ≥ mj) ≈

C

2l/2−1Γ(l/2)

τ(Sl)
p
dknj
n

(dknj ln pn)−knjm
l/2−1
j

≤ C

mjpd−1
(knj ln p)−lm

l/2
j =

C

mjpd−1

[√
mj

(dknj ln p)2

]l
=

C

mjpd−1
ρln, say,

where

ρn =

√
mj

(dknj ln p)2
=

√
2d[knj ln p+ knj ln(dknj ln p)]

(dknj ln p)2
(1 + o(1)) ≤ ρ,
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for some ρ between 0 and 1, when n is large enough, since ρn → 0. Thus

P

(
max

sj ,|sj |≤knj

e>j H
x(sj)ej ≥ mj

)
≤ C

mjpd−1

knj∑
l=1

ρl ≤ C

mjpd−1

ρ

1− ρ
; (16)

that is,

P

(
max

sj ,|sj |≤kn
ε>j H

x(sj)εj ≤ Ckn ln p

)
> 1− C

mjpd−1
,

which establishes (II) with ω1n = C
p0jpd−1 ln p

.

Furthermore, we can express

∆(sj ,µj , ej) =
√

∆(sj ,µj)Z(sj),

where Z(sj) ∼ N(0, 1). For any sj with |sj | ≤ knj ,

|∆(sj ,µj , ej)| ≤
√

∆(sj ,µj) max{|Z(s)| : |s| ≤ knj}.

Let mj be the same as above. We have

P (max{|Z(s)| : |s| ≤ knj} ≥
√
mj) =P (max{|Z(s)| : s ∈ Sl, l ≤ knj} ≥

√
mj)

≤
knj∑
l=1

τ(Sl)P (Z(s) ≥ √mj) =

knj∑
l=1

τ(Sl)P (χ2
1 ≥ mj)

≤
knj∑
l=1

τ(Sl)P (χ2
l ≥ mj).

Thus, (III) follows with ω2n = ω1n. Eventually, we have that, with probability greater than 1− ωn,

for all sj such that |sj | ≤ knj ,

EBICγ(s)− EBICγ(s0j)

=n ln

(
1 +

C∆(sj , µj)

n

)
+ (|sj | − p0j)(lnn+ 2γ ln p)

≥n ln[1 + Cp0j ln p/n]− p0j(lnn+ 2γ ln p),

for an arbitrarily large C, when n is large enough, by condition A4. Then by choosing C > 1 + 2γ,

the difference goes to infinity as n→∞.

Case II: s0j ⊂ sj . In this case, ∆(sj ,yj) = ∆(sj , ej) and

∆(s0j , ej)−∆(sj , ej) = eTj {Hx(sj)−Hx(s0j)}ej ≡ χ2
l (sj),
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where χ2
l (sj) is a χ2 random variable depending on sj with degrees of freedom l = |sj | − p0j . We

express

−T1 = n log

(
∆(s0j , ej)

∆(sj , ej)

)
= n log

{
1 +

χ2
l (s)

∆(s0j , ej)− χ2
l (s)

}
≤

nχ2
j (s)

∆(s0j , ej)− χ2
j (s)

.

Let S̃j = {s : s ∈ Sj+p0j , s0 ⊂ s} and ml = 2dl[ln p + ln(dl ln p)]. By a similar argument leading to

(16), we have

P

(
max

1≤l≤knj−p0j

max{χ2
l (s) : s ∈ S̃l}
ml

≥ 1

)
≤ C

pd−1 ln p
. (17)

Combining (13) and (17), we have, with probability greater than 1− C[n−(1−δ) + 1/(pd−1 ln p)],

−T1 ≤
nml

n−ml
≤ ml(1 + o(1)) = 2d(|sj | − p0j) ln p(1 + o(1)),

uniformly for all sj such that |sj | ≤ knj and s0j ⊂ sj . Thus

T1 ≥ −2d(|sj | − p0j) ln p(1 + o(1)).

Finally we have

EBICγ(sj)− EBICγ(s0j)

≥(|sj | − p0j)[lnn+ 2γ ln p]− 2d(|sj | − p0j) ln p(1 + o(1)) > 0,

uniformly for all sj with |sj | ≤ kn and s0j ⊂ sj , if n is big enough, when γ > d− lnn
2 ln p .

Let rn = ωn + C[n−(1−δ) + 1/(pd−1 ln p)]. Summarizing Case I and II, we conclude that

P ( min
sj ,|sj |≤kp0j

EBIC(sj) > EBIC(s0j)) ≥ 1− rn.

It is easy to see that rn is of the order 1/(Rn ln p) where Rn →∞. Then, by Bonferroni inequality,

Lemma s3 holds with r3n = q
Rn ln p .

Proof of Lemma s4

Proof. For convenience, denote Bj− by Bj and (Yj− −XBj−) by Z(Bj). Thus ỹj = yj − Z(Bj)ξj .

Let ŷj = yj − Z(B̂j)ξ̂j , where B̂j and ξ̂j are the estimates from the previous iteration. Now write

ŷj = yj − Z(Bj)ξj + Z(Bj)ξj − Z(B̂j)ξ̂j = ỹ − Z(B̂j)(ξ̂j − ξj) +X(B̂j − Bj)ξj .
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By an abuse of notation, denote 1
nx
>
l [In − Hx(s∗jk)]ŷj still by γ̂j(l, s

∗
jk). Decompose γ̂j(l, s

∗
jk) as

follows.

γ̂j(l, s
∗
jk) = γj(l, s

∗
jk) +

1

n
x>l [In −Hx(s∗jk)]εj +

1

n
x>l [In −Hx(s∗jk)]Z(B̂j)(ξ̂j − ξj)

+
1

n
x>l [In −Hx(s∗jk)]X(B̂j − Bj)ξj . (18)

We only need to show that γj(l, s
∗
jk) dominates all the other components of γ̂j(l, s

∗
jk). Replacing ej

in the proof of Lemma 1 by εj , we have

P

(
max
l∈s∗cjk

1

n
x>l [I −Hx(s∗jk)]εj ≥ C1/2

jn n−1/2 ln p

)
≤ 2τj

C
1/2
jn ln p

exp

{
− (ln p)2

2
+ ln p

}
. (19)

We still have

max
l∈s∗−jk

|γj(l, s∗jk)| ≥ Cjnn−1/2 ln p,

where Cjn → ∞. It suffices to verify that the third and fourth component in (18) are less than

Cn−1/2 ln p for some constant C. Let the the third and fourth component be denoted respectively

by U1n and U2n. Let Hz(B̂j) and H(X) be the projection matrices of Z(B̂j) and X respectively.

Let v2
1 = x>l [I −Hx(s∗jk)]Hz(B̂j)[I −Hx(s∗jk)]xl and Zn = 1

v1
x>l [In −Hx(s∗jk)]Z(B̂j)(ξ̂j − ξj).

We can express U1n = v1
n Zn. By Theorem 4 of Luo and Chen (2014) and Sluskey’s theorem, Zn has

an asymptotic normal distribution with mean zero and variance τ2
j , and Zn/ ln p converges to zero

in probability. Note that v2
1 ≤ x>l xl = n. Thus, there is constant C such that

|U1n| =
v1

n
ln p(|Zn|/ ln p) ≤ C ln p/

√
n. (20)

Let v2
2 = x>l [I − Hx(s∗jk)]H(X)[I − Hx(s∗jk)]xl and Zni = 1

v2
x>l [I − Hx(s∗jk)]X(β̂i − βi).

Similarly, Zni has an asymptotic normal distribution with mean zero and variance σ2
i and v2

2 ≤ n.

We then have

|U2n| =
v2

n

∣∣∣∣∣∣
∑

1≤i≤q,i6=j

ξjlZni

∣∣∣∣∣∣ ≤ ln p

q
√
n

∑
1≤i≤q,i6=j

|ξji|
∣∣∣∣ qln p

Zni

∣∣∣∣ ≤ C ln p/
√
n, (21)

for some constant C. Note that q/ ln p → 0. Combining (19) – (21), we have that the probability

in Lemma s4 converges to 1. It should be noted that (20) and (21) hold on a set with probability
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converging to 1 since B̂j and ξ̂j are estimates from stage 1. This affects the convergence rate of the

probability in Lemma s4 but not the convergence.

Theorem 2. Assume conditions B1−B4. Let T̂0 be the index set of the identified nonzero entries

of Ω in a Ω-step. Then

P (T̂0 = T0)→ 1, as n→∞.

To show Theorem 2, we need Lemma 1 which is re-stated below.

Lemma 1. Assume that the correlations σjk/(σjσk) are bounded by a constant less than 1, and

the variances σ2
j are bounded. Then

P ( max
1≤j,k≤q

| 1
n
z>j zk − σjk| > n−1/3c0)→ 0,

where c0 is a fixed constant.

Once Lemma 1 is established, by following the same arguments in Jiang and Chen (2016),

conditions B2−B4 can be transfered into empirical versions in terms of Z similar to A2−A4. The

remainder of the proof will be exactly the same as that in Jiang and Chen (2016), and hence will be

omitted. Therefore, we only give the proof of lemma 1 in the following.

Proof of Lemma 1

Proof. Recall that zj = [I −HX(ŝ0j)]yj . By theorem 1, P (ŝ0j = s0j , j = 1, . . . , q)→ 1. Therefore,

in the proof, we can replace ŝ0j with s0j . Thus, we have

zj = [I −HX(s0j)]yj = [I −HX(s0j)][X(s0j)βj(s0j) + εj ] = [I −HX(s0j)]εj ,

and

1

n
z>j zk =

1

n
ε>j [I −HX(s0j)][I −HX(s0k)]εk

=
1

n
ε>j εk −

1

n
ε>j H

X(s0k)εk −
1

n
ε>j H

X(s0j)εk +
1

n
ε>j H

X(s0j)H
X(s0k)εk.

12



By Chebyshev’s inequality,

P (| 1
n
ε>j H

X(s0j)εk| > n−1/3) ≤ n1/3E
1

n
ε>j H

X(s0j)εk = n1/3p0jσjk/n ≤ n−2/3 max
j
p0j max

j,k
σjσk.

Similarly, we can show

P (| 1
n
ε>j H

X(s0j)εk| > n−1/3) ≤ n−2/3 max
j
p0j max

j,k
σjσk;

P (| 1
n
ε>j H

X(s0j)H
X(s0k)εk| > n−1/3) ≤ n−2/3 max

j
p0j max

j,k
σjσk.

A trivial argument yields that

P (
1

n
|ε>j HX(s0k)εk + ε>j H

X(s0j)εk − ε>j HX(s0j)H
X(s0k)εk| > 3n−1/3) ≤ cn−2/3 max

j
p0j ,

for a generic constant c. By Bonferroni’s inequality,

P (max
ij

1

n
|ε>j HX(s0k)εk + ε>j H

X(s0j)εk − ε>j HX(s0j)H
X(s0k)εk| > 3n−1/3) ≤ cq2n−2/3 max

j
p0j .

If we take q = O(nc) with c ≤ 1/4, the above probability converges to zero. Thus, we have

max
1≤j,k≤q

| 1
n
z>j zk − σjk| = max

1≤j,k≤q
| 1
n
ε>j εk − σjk|+Op(n

−1/3).

Hence

P ( max
1≤j,k≤q

| 1
n
z>j zk − σjk| > n−1/3c0) = P ( max

1≤j,k≤q
| 1
n
ε>j εk − σjk| > n−1/3c),

for a generic constant c. If c is chosen such that c ≥ σmax where σmax = maxj,k
√

Var(εjεk), the

lemma follows from Lemma 1 of Luo and Chen (2014).

2 Miscellaneous materials

2.1 Some details for simulation study I

Types of design matrix X and s0j’s:

• Type I. The rows of X are generated as i.i.d. observations from Np(0, I). Each s0j is taken as

a random sample of size p0 from {1, . . . , p}.
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• Type II. The rows of X are generated as i.i.d. observations from Np(0,ΣX), where the (i, j)th

entry of ΣX is 0.5|i−j|, i.e., ΣX is a correlation matrix of power decay with ρ = 0.5. Each s0j is

generated as (j∗, j∗+1, . . . , j∗+p0−1) where j∗ is chosen at random from {1, 2, . . . , p−p0 +1}.

• Type III. The rows of X are generated as i.i.d. observations of the random vector (X>1 ,X
>
2 )>,

where X1 is of dimension p1 = [p2 ] and distributed as Np1(0, I) and X2 is distributed as

Np2(0,ΣX2
), where p2 = p− p1 and ΣX2

is of power decay with ρ = 0.5. Each s0j consists of

p01 = [p02 ] random numbers from {1, . . . , p1} and a random segment of length p0 − p01 from

{p1 + 1, . . . , p}.

• Type IV. The rows of X are generated as i.i.d. observations of the random vector (X>1 ,X
>
2 )>,

where X1 is distributed as Np01(0,ΣX1
), ΣX1

being of power decay with ρ = 0.5, and the

components of X2 are given by

X2j = tj +

∑p01
k=1Xk

p01
,

where tj ’s are i.i.d. N(0, 0.08). Each s0j consists of {1, . . . , p01} and a random set of size ϕj

from {p01 + 1, . . . , p} , where ϕj is chosen at random from {1, . . . , p01}.

Generation of βj’s

For each j, βj is generated as follows. Let u follow Bernoulli(0.4), z be a normal random variable

with mean 0 and satisfying that P (|z| ≥ 0.1) = 0.25. The components of βj are first independently

generated from the random variable (−1)u(4n−0.15 + |z|) and then scaled such that
β>j ΣXβj

β>j ΣXβj+σ2
j

= h

for a fixed h, where σ2
j is the variance of the Yj . The number h determines the proportion of the

variation of Yj attributable to the covariates.

2.2 Network graph of the real example

Figure 1 visualizes the network graph of the 20 microRNAs detected by TASCS. There are 22

edges in the graph, that is, the TASCS identified 44 non-zero entries of the precision matrix Ω.
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Figure 1: The graphical networks of the twenty selected microRNAs based on sparsity of the esti-
mated precision matrix

It is worth noting that two microRNAs, ”hsa.miR.136” and ”hsa.miR.377”, are included in the

previous analyses; however, they are excluded in our study due to their small MAD values and are

replaced by another two microRNAs, ”hsa.miR.9” and ”hsa.miR.127”. Except the edges connected

to ”hsa.miR.9” and ”hsa.miR.127”, most of the rest edges detected by TASCS are also detected by

DML and aMCR. Moreover, the graph in Figure 1 has less edges then those detected by DML and

aMCR.
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