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Abstract
In this article, we deal with sparse high-dimensional multivariate regression models.
The models distinguish themselves from ordinary multivariate regression models in
two aspects: (1) the dimension of the response vector and the number of covariates
diverge to infinity; (2) the nonzero entries of the coefficient matrix and the precision
matrix are sparse. We develop a two-stage sequential conditional selection (TSCS)
approach to the identification and estimation of the nonzeros of the coefficient matrix
and the precision matrix. It is established that the TSCS is selection consistent for the
identification of the nonzeros of both the coefficient matrix and the precision matrix.
Simulation studies are carried out to compare TSCS with the existing state-of-the-
art methods, which demonstrates that the TSCS approach outperforms the existing
methods. As an illustration, the TSCS approach is also applied to a real dataset.

Keywords Conditional models · Multivariate regression · Precision matrix ·
Selection consistency · Sequential procedure · Sparse high-dimensional model

1 Introduction

Consider the following model:
Y = XB + E, (1)
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where Y is a n×q matrix of n independent observations on a q-dimensional response
vector, X is a n × p matrix of observations on p covariates, B is a p × q matrix
of unknown regression coefficients and E is a n × q matrix of random variables
whose rows are independent identically distributed as a q-variate normal distribution
Nq(0, �). The inverse matrix� = �−1, which is of more practical interest, is usually
referred to as the precision matrix. It is assumed that p and q are large; that in the
asymptotic setting, they are allowed to diverge to infinity in a certain order of the sample
size n; and that B and � are sparse, that is, only a few of their entries are nonzero.
The nature of high dimensionality and sparsity distinguish model (1) from traditional
multivariate regression models. We refer to model (1) as a sparse high-dimensional
multivariate (SHM) regression model.

The SHM regression model arises in many important scientific fields such as
genetics,medicine and econometrics.A fewexamples follow. In genetic studies, exper-
iments have now been routinely carried out to obtain both geneticmarker data and gene
expression data on the same subjects. Both the number of markers and the number of
genes are much larger than the number of subjects. The geneticists are interested in
identifying the markers which regulate the gene expression levels, which is referred
to as eQTL mapping in genetic studies, as well as identifying the conditional depen-
dency among the genes. The data can be well modeled by the SHM regression model.
The gene expression levels are treated as multi-response values and the genotypes of
the markers are treated as covariates. The precision matrix describes the conditional
relationship among the genes. Two genes are conditionally dependent if and only if
the corresponding entry in the precision matrix is nonzero. Since the markers which
regulate a particular gene are few and the number of genes which are conditionally
dependent with a particular gene is also small, the matrices B and � in the regression
model describing the data are sparse. In cancer research, the medical scientists are
interested in investigating the influence of DNA copy numbers on RNA transcript
levels to identify biomarkers for clinical purpose. The data of DNA copy number and
RNA transcript level have the same structure and nature as in the above example. In
financial econometrics, the future returns of stocks are predicted from the basis of
their historical performance. The data are usually analyzed by a vector autoregressive
model. Given the nature of the stock data, the model is a special case of the SHM
regression model. Because of the wide range of its application, the SHM regression
model has attracted the attention of many researchers. For recent developments of the
research on the SHM regression model, see, to name but a few, Turlach et al. (2005),
Yuan et al. (2007), Peng et al. (2010), Rothman et al. (2010), Obozinski et al. (2011),
Yin and Li (2011), Chen and Huang (2012), Lee and Liu (2012), Wang (2015), etc.

In practical problems, there are two major purposes of using the SHM regres-
sion model: (i) to identify variables which are causal factors of the variation in the
response variables, this amounts to identifying and estimating the nonzero entries of
the coefficient matrixB; (ii) to detect the inter-relationmechanism among the response
variables, this amounts to identifying and estimating the nonzero entries of the preci-
sion matrix. In a particular problem, the emphasis is either one of the two purposes
or both. The methods available in the literature for dealing with the SHM regression
model can be roughly classified into two categories. The methods in the first category
concentrate on the inference of B, ignoring �. The methods in the second category
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deal with simultaneously the inference of B and �. In the following, we give a brief
review on these methods.

In the first category, a naive approach is to apply well-developed regularized meth-
ods for univariate regression models to each marginal model of (1) such as the least
absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996)
and its variants, the smoothly clipped absolute derivation (SCAD) proposed by Fan
and Li (2001) and so on.More sophisticated approaches are the multivariate version of
the regularized methods. Essentially, the multivariate regularized methods aim to min-
imize Tr[(Y − XB)�(Y − XB)] by imposing some constraints on B such as C(B) ≤ c
for some constant c, whereC(B) is a function ofB. In the dimension reductionmethod
proposed in Yuan et al. (2007), C(B) = ∑min(p,q)

j=1 σ j (B) where σ j (B) is the j th sin-
gular value of B. In the reduced rank method proposed in Chen and Huang (2012),
C(B) = rank(B). Turlach et al. (2005) considers a penalized least squares approach,
which is equivalent to taking C(B) = ∑p

j=1 ‖β j‖∞, where β j is the j th row of B.
Obozinski et al. (2011) considers a version of grouped LASSO which they referred to
as support union recovery, which is equivalent to taking C(B) = ∑p

j=1 ‖β j‖2. Peng
et al. (2010) uses the sparse group LASSO penalty λ1

∑p
j=1 ‖β j‖1+λ2

∑p
j=1 ‖β j‖2,

which is equivalent to taking C(B) = (
∑p

j=1 ‖β j‖1,
∑p

j=1 ‖β j‖2) and c = (c1, c2).
The methods in the first category have an advantage that the assumption of normality
is not required. However, since these methods do not make use of the information con-
tained in the correlation among the response variables, they lose a certain efficiency
by the principle of sufficiency.

The methods in the second category are based on the assumption of multivari-
ate normal distribution of the response variables. A penalized likelihood method is
investigated by Rothman et al. (2010) and Yin and Li (2011). The method minimizes

− 2 log L(B,�) + λ1
∑

j �=k

|ω jk | + λ2

p∑

j=1

q∑

k=1

|b jk |, w.r.t. B and �, (2)

where L(B,�) is the joint likelihood function of B and �. The method is referred
to as multivariate regression with covariance estimation (MRCE) in Rothman et al.
(2010) and as conditional Gaussian graphical model (cGGM) in Yin and Li (2011).
In the graphical model literature, the SHM model with B = 0 is called a Gaussian
graphical model (GGM) where � represents a graph with the response variables as
nods. The name cGGM reflects the fact that � represents the conditional graph given
the covariates. Lee and Liu (2012) considered an extension of the penalized likelihood
method by imposing certain weights on the L1 penalties in (2). They considered three
versions of the extension: plug-in weighted Lasso (PWL), plug-in weighted graphical
Lasso (PWGL) and doubly penalized maximum likelihood (DML). In the first two
versions, a given estimator of one of B and � is plugged-in and (2) is minimized with
respect to the other. In the third version, (2) is minimized simultaneously with respect
to B and �. Note that, without the penalty on B, the estimate of B is the ordinary least
squares estimate which does not depend on �. By imposing a penalty on B, it effects
a shrinkage of the ordinary least squares estimate. The � enters the scene in a role to
affect the shrinkage, see formula (2.2) in Rothman et al. (2010). However, how this
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effect on shrinkage improves the inference on B is not theoretically nor intuitively
clear. Wang (2015) treated the simultaneous estimation of B and � in a conditional
framework and proposed a method called aMCR (multivariate conditional regression
with adaptive Lasso). For each j , the aMCR method estimates simultaneously the
j th column β j of B and the j th column ξ j of a matrix � which has a one-to-one
correspondence with � by minimizing

‖ y j − Xβ j − (Y j− − XB j−)ξ j‖22 + λ1

p∑

k=1

u jk |βk j | + λ2
∑

k �= j

v jk |ξk j |, (3)

where y j is the j th column of Y , Y j− and B j− are matrices obtained from Y and B,
respectively, by omitting the j th column of the original matrix, and u jk and v jk are
certain weights. Ideally, the information on� should be fully usedwhenB is estimated
and vice versa. However, the above approach does not fully use the information of �

for the estimation of B and does not fully use the information of B for the estimation
of � either. Further discussion on this point will be given later.

In this article, we propose a two-stage alternative sequential conditional selection
(TSCS) procedure. The main consideration of the procedure is to make use of the
correlation information fully to enhance the efficiency for the identification and esti-
mation of the nonzeros of B and �. In the first stage, a sequential Lasso (SLasso)
approach developed in Luo and Chen (2014b) is applied to each marginal model of
(1) to yield the set of nonzeros of B. The nonzero set is used to fit a regression model
to the response matrix Y and to obtain a residual matrix. The residual matrix is treated
as the response matrix of a Gaussian graphical model, and a GGM approach is applied
to obtain an initial estimate of �. In the second stage, the correlation information is
incorporated into the procedure by using the initial estimates obtained in the first stage
for the conditional models on B, the SLasso is applied to the conditional models to
produce a updated estimate of B, and the second step of the first stage is repeated
with the updated estimate of B to give an updated estimate of �. We carry out the-
oretical and simulation studies to investigate whether or not the proposed approach
can achieve selection consistency for both B and � and whether or not it can perform
better than correlation-unadjusted approaches. The selection consistency for both B
and � is rigorously established. A theoretical result suggesting the efficiency of the
TSCS procedure over correlation-unadjusted approaches is derived. In a comprehen-
sive simulation study, the TSCS is compared with the state-of-the-art methods in the
literature, which demonstrates that the TSCS outperforms those existing methods.

The selection consistency of SLasso for an univariate high-dimensional regression
model is established in Luo and Chen (2014b). In the TSCS procedure, to establish the
selection consistency for�, the uniform selection consistency for a group of univariate
models with group size diverging to infinity is required. In order to establish this
uniform selection consistency, convergence rates must be determined for each single
model,which is not trivial. Though the estimationof the precisionmatrix iswell studied
in the field of Gaussian graphical models, satisfactory methods for the case that the
response variables depend on regression means are yet to be developed. The major
contribution of this article is threefold: (i) the use of the conditional mechanism of
multivariate normal distribution to enhance the efficiency of the estimation ofB, (ii) the
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justification of using the residual matrix to estimate � in the framework of a Gaussian
graphical model and (iii) the establishment of the theoretical results mentioned in the
last paragraph.

The rest of the article is arranged as follows. The details of the development of
the TSCS procedure are given in Sect. 2. The theoretical properties of TSCS are
established in Sect. 3. Simulation studies are reported in Sect. 4. A real data example
is provided in Sect. 5. Technical details are provided in a supplementary document.

2 The two-stage alternative sequential conditional selection
procedure

Wefirst give the notations to facilitate our discussion. Capital letters are used to denote
matrices of random variables or covariates, e.g., Y , X . Bold lowercase letters are used
to denote vectors, e.g., y, x. Scripted or roman letters are used to denote parameters,
e.g., B, �, β. A matrix with its j th column deleted is denoted by the notation of that
matrix with a subscript j−, e.g., Y j− , B j− . An index set consists of a single j which
is simply denoted by j . An index set consists of all indices but j is simply denoted
by j−. Let s be a general index set; the submatrix consists of the columns of a matrix
with indices in s which is denoted by the notation of that matrix followed by (s),
e.g., X(s), R(s). Let s and t be two index sets; the submatrix consists of the rows
with indices in s and columns with indices in t of a matrix which is denoted by the
notation of that matrix subscripted by st , e.g., � j j− . The projection matrix formed
by the columns of a matrix with indices in s is denoted by H(s) with the notation of
that matrix as its superscript, e.g., HX (s) = X(s)[X(s)�X(s)]−1X(s)�. Let Y , X ,B
and E be as given in (1). Denote by y j , x j ,β j and e j , respectively, the j th column
of Y , X ,B and E . Let s0 j be the index set of the nonzero components of β j , i.e.,
s0 j = {k : 1 ≤ k ≤ p, β jk �= 0}. Denote the size of a set s by |s|. Let p0 j =
|s0 j |.

The two-stage alternative sequential conditional selection (TSCS) procedure is
motivated by the following consideration. We mentioned in the previous section that
the naive approach for identifying and estimating the nonzeros of B is to apply the
methods for univariate models to the marginal models of (1) given as follows:

y j = Xβ j + e j , e j ∼ N (0, σ 2
j I ), j = 1, . . . , q, (4)

where σ 2
j is the j th diagonal entry of �. The naive approach is not efficient because it

does notmake use of the correlation information among y j ’s. The variation of the error
term in a marginal model can be attributed to two sources: the pure random errors and
the correlation of the response vector with the other response vectors. If the variation
caused by the correlation with the other response vectors is eliminated, the error
variance will be reduced, and a better identification and estimation of the nonzeros
of B can be achieved. It is then natural to consider, for a fixed j , the conditional
model of y j given the other response vectors. By the theory of multivariate normal
distributions, y j has a conditional normal distribution with mean Xβ j + (Y j− −
XB j−)�−1

j− j−� j− j and variance τ 2j I where τ 2j = σ 2
j − � j j−�−1

j− j−� j− j . Let ỹ j =
y j − (Y j− − XB j−)�−1

j− j−� j− j . Then, we have the following models:
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ỹ j = Xβ j + ε j , ε j ∼ N (0, τ 2j I ), j = 1, . . . , q. (5)

Obviously, τ 2j ≤ σ 2
j , the equality holds if and only if the response variables are

independent. If we have initial estimates of � (hence of �) and B, we can substitute
the initial estimates of � and B into ỹ j , a better identification and estimation of β j
based on (5) can be expected.

For the inference on�, if Y −XB is observable, i.e.,B is known, a naive estimate of
� is given by the sample covariance matrix Sn = 1

n (Y − XB)�[I −11�/n](Y − XB),
where 1 is a vector of all elements 1, and an estimate of � might be given by S−1

n .
However, in the high-dimensional case where q is larger than n, Sn is non-invertible.
The estimation of � becomes a challenging problem. The estimation of � in this con-
text constitutes the analysis of the so-called Gaussian graphical models (GGM). There
are roughly two major methodologies for GGM in the literature. The first one, which
was initiated inMeinshausen and Bühlmann (2006), is called neighborhood detection.
This methodology transfers the inference on � to the inference on the coefficients of
q conditional univariate regression models. Various methods for univariate regression
models including LASSO, scaled LASSO, Dantzig selector and sequential Lasso have
been applied in this context, see Meinshausen and Bühlmann (2006), Yuan (2010),
Sun and Zhang (2012), Peng et al. (2009) and Luo and Chen (2014a). The second
methodology is to maximize a penalized profile likelihood function of � with various
penalty functions, which results in the methods called GLasso (Friedman et al. 2008),
G-Scad (Fan et al. 2009) and adaptive GLasso (Zhou et al. 2009), etc. In a GGM,
the response matrix is assumed to have mean zero or a constant mean. In order to
enable these methods to be used in our current context, the response matrix Y must be
adjusted by its regression mean XB. If Y is properly adjusted by taking into account
its regression mean, then the GGM methods can be applied to the adjusted matrix.

The TSCS procedure consists of two stages. In the first stage, a naive approach
is applied to the marginal (unconditional) models (4) to identify the nonzeros of B,
the nonzero set is used to fit a regression model to the response matrix Y and to
obtain a residual matrix, and then a GGM method is applied to the residual matrix to
obtain an initial estimate of �; in the second stage, the initial estimates are substituted
into the ỹ j ’s in the conditional models (5) and an more efficient estimate of B is
obtained from the conditional models; further, the procedure for estimating � in the
first stage is repeated with an updated residual matrix to obtain a better estimate of
�. For the identification and estimation of the nonzeros of B, we adopt the approach
of SLasso proposed in Luo and Chen (2014b). For the estimation of �, we adopt the
neighborhood detection methodology and apply a pairwise version of SLasso dubbed
as SSPS considered in Jiang and Chen (2016). In the following, we give the details of
the TSCS procedure. For the sake of convenience, the estimation of B and � in both
stages is referred to as, respectively, a B-step and a �-step.

The method for B-step. For each j , let ŷ j denote the response vector. In the first stage,

ŷ j = y j , in the second stage, ŷ j = y j − (Y j− − X B̂ j−)�̂−1
j− j−�̂ j− j ≡ ŷ j (B̂ j− , ξ̂ j ),

where B̂ j− and ξ̂ j = �̂−1
j− j−�̂ j− j are initial estimates. The SLasso is used for each of

the following models separately:
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ŷ j = Xβ j + ε j , j = 1, . . . , q.

The SLasso is a sequential procedure for univariate high-dimensional linear models
which is equivalent to the procedure as follows. At each step, a current residual vector
is obtained by fitting a linear model to the covariates which have already been selected,
among the remaining covariates, the one having the largest correlation with the current
residual is taken for the consideration of selection and is evaluated by EBIC (Chen and
Chen 2008). For details of SLasso, the reader is referred to Luo and Chen (2014b). In
the following, we describe the algorithm of the SLasso for theB-step. Let the columns
of X be standardized to have mean zero and squared norm n. Let S = {1, . . . , p} and
s be any subset of S. Denote the algorithm by B(Ŷ , X) where Ŷ and X are its inputs.
The algorithm is as follows.

Algorithm B(Ŷ , X)

For j = 1, . . . , q, do

Step 1: Compute x�
k ŷ j for k ∈ S and identify stemp = {k : |x�

k ŷ j | =
maxl∈S |x�

l ŷ j |}. Let s∗1 = stemp and compute EBIC(s∗1).
Stepm (m ≥ 2):Compute x�

k ε̂ for k ∈ sc∗m−1, where ε̂ = [I−HX (s∗m−1)] ŷ j ,
and identify stemp = {k : |x�

k ε̂| = maxl∈sc∗m−1
|x�

l ε̂|}. Let s∗m = s∗m−1 ∪
stemp, and compute EBIC(s∗m). If EBIC(s∗m) > EBIC(s∗m−1), stop and set
ŝ0 j = s∗m−1; otherwise, continue.

Output ŝ0 j , j = 1, . . . , q.

The form of the EBIC in the above algorithm will be given and discussed later.
The method for the �-step. Let Z̃ = Y − XB and denote by z̃ j the j th column of Z̃ .
By the theory of multivariate normal distribution, z̃ j follows the conditional model
below:

z̃ j = Z̃ j−ξ j + ε j , j = 1, . . . , q, (6)

where ξ j = �−1
j− j−� j− j . Let � = (ξ1, . . . , ξq). Denote by ω jk and ξ jk , respectively,

the ( j, k)th entry of � and �. It is well-known that

ξ jk = −ω jkτ
2
j , or ω jk = −ξ jk/τ

2
j . (7)

The above relationship implies that the identification and estimation of the nonzeros of
� are equivalent to the identification and estimation of the nonzeros of� in model (6).
The inference on � through the inference on � is referred to as the methodology of
neighborhood detection.

In the �-step, we replace z̃ j by z j = y j − X(ŝ0 j )β̂ j (ŝ0 j ). Denote by Z the matrix
consisting of the columns z j ’s. For any pair ( j, k), the relationship between z j and zk
mimics that between z̃ j and z̃k . In particular, σ̂ jk = 1

n E(z�j zk) → 1
n E( z̃�j z̃k) = σ jk

uniformly, and σ̂ jk = 0 if and only if σ jk = 0. Thus, we can approximate model (6)
by replacing Z̃ with Z and identify the nonzeros of � using the approximated model.
The rigorous justification is delayed to the next section.
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There is an intrinsic symmetry in the entries of�, that is, sign(ξ jk) = sign(ξk j ). The
SSPS is a procedurewhich takes this symmetry into account for the identification of the
nonzeros of �. The procedure is as follows. First, each z j is scaled with its estimated
conditional variance obtained by using a scaled Lasso algorithm proposed in Sun and
Zhang (2013). The q models in (6) are combined into a single model with design
matrix Z = Diag(Z1− , . . . , Zq−) and response vector (z�1 /τ̂1, . . . , z�q /τ̂q)

�, where
τ̂ j is the square root of the estimated variance for the j th model in (6). The column
of Z j− corresponding to ξ jk is paired off with the column of Zk− corresponding to
ξk j and the pairs are sequentially selected. At each step of the procedure, the response
vector is fitted to the columns ofZ which have already been selected to obtain a current
residual vector, and the residual vector is projected onto the space spanned by each
pair of the remaining column pairs, the pair which results in the largest L2-norm of
the projection is selected next. The EBIC is used as the stopping rule of the procedure.
For more details, the reader is referred to Jiang and Chen (2016). Let T be a subset of
{( j, k) : k �= j, 1 ≤ j, k ≤ q} and T c its complement. Suppose T is symmetric in the
sense that if ( j, k) ∈ T then (k, j) ∈ T . Let t j = {k : ( j, k) ∈ T } = {k : (k, j) ∈ T }.
For any pair ( j, k) ∈ T c, define

r2jk(T ) = [z�k [I − HZ (t j )]z j ]2
τ̂ 2j z

�
k zk

+ [z�j [I − HZ (tk)]zk]2
τ̂ 2k z

�
j z j

. (8)

The r2jk(T ) defined above is in fact the squared L2-norm of the projection of the resid-
ual vector determined by T onto the space spanned by the columns corresponding to
the j th column in Zk− and the kth column in Z j− . Denote the algorithm for imple-
menting the above procedure by �(Z) where Z is its input. The algorithm is given as
follows.

Algorithm �(Z)

Initial step: Set T = ∅.
Selection step: For ( j, k) ∈ T c, compute r2jk(T ) and identify

Ttemp = {
( j, k) : r2jk(T ) = max

(l,m)∈T c
r2lm(T )

}

Let Tnew = T ∪ Ttemp. Compare EBIC(Tnew) with EBIC(T ). If EBIC(Tnew) <

EBIC(T ), go to the updating step; otherwise, output T .
Updating step: Update T to T = Tnew, go to the selection step.
Final step: Compute �̂ = argmaxω jk=0:( j,k)∈T c L(Y ,�), where L(Y ,�) is the
profile likelihood of � while B is confined to the identified nonzeros.

The general form of the EBIC for a particular model M developed in Chen and
Chen (2008) is given by

EBIC(M) = −2 log Ln(M̂) + |M | ln n + 2γ ln τ(SM ),

where Ln(M̂) is themaximum likelihoodof themodel, |M | is the number of parameters
of the model and τ(SM ) is the size of the class of models containing M . For the
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EBIC(s) in the B-step, M = s and τ(SM ) = ( p
|s|

)
. For small |s| (relative to p),

( p
|s|

)
is

approximated by p|s|. This gives the form of EBIC(s) as

EBIC(s) = n ln(‖[I − HX (s)] ŷ j‖22) + |s| ln n + 2|s|γ ln p. (9)

For the EBIC(T ) in the �-step, M = T and τ(SM ) = (q(q−1)/2
|T |/2

)
which is approxi-

mated by q |T |. This yields the of form of EBIC(T ) as

EBIC(T ) = n
q∑

j=1

ln(‖[I − HR(t j )]z j‖22/τ̂ 2j ) + |T | ln n + 2γ |T | ln q. (10)

In the theory of EBIC, there is a range of γ so that the EBIC is selection consistent.
In the context of (9), the lower bound of the range is 1− ln n

2 ln p . In the context of (10),

the lower bound of the range is 1 − ln n
2 ln[q(q−1)/2] ≈ 1 − ln n

4 ln q . It is recommended in
Luo and Chen (2014b) to choose the value of γ slightly bigger than its lower bound.
For the rationale of the recommendation, see page 1234 of Luo and Chen (2014b).
But in a finite sample problem, it is as good to choose the lower bound as to choose
a slightly larger value. Therefore, in our algorithms above, we simply take γ to be its
lower bound.

We now give the complete algorithm for the TSCS procedure below.

TSCS algorithm

Stage I:

(Ia) Call algorithm B(Y , X) and extract the output ŝ0 j , j = 1, . . . , q.
(Ib) For j = 1, . . . , q, compute β̂ j = (β̂ j (ŝ0 j )

�, 0�)�, where β̂ j (ŝ0 j ) =
[X(ŝ0 j )�X(ŝ0 j )]−1X(ŝ0 j )� y j , and compute the residual matrix Z .

(Ic) Call algorithm �(Z) and extract the output �̂.

Stage II:

(IIa) Compute ξ̂ j ’s from �̂ and Ŷ = ( ŷ1, . . . , ŷq) where ŷ j = ŷ(B̂ j− , ξ̂ j ). Call

algorithm B(Ŷ , X) and extract the output ŝ0 j , j = 1, . . . , q.
(IIb) Repeat (Ib).
(IIc) Repeat (Ic).

We make some remarks to end this section. (i) It seems intuitively that if the second
stage of the TSCS algorithm is further iterated then better estimates of B and � could
be obtained. However, this is not the case. The second stage improves the first stage
because the variances of the response variables are reduced from σ 2

j to τ 2j . But further
iteration of the second stage will not do any better from a theoretical point of view.
In fact, in our original simulation studies, we compared the two-stage algorithm with
the version that further iterates the second stage and found that the further iterations,
which result in similar results to the two-stage algorithm, do not really help. (ii) The
TSCS algorithm and the aMCR method of Wang (2015) are common in using the
conditional framework. However, there is an important difference. For estimating B
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or �, the TSCS algorithm makes a full adjustment for the effect of one on the other,
while the aMCR only makes a partial adjustment. For example, for the estimation of
�, the responses are adjusted for all the nonzero components of B in TSCS. But, in
aMCR, they are adjusted for only a part of the nonzero components of B, because, at
fixed values of the penalty parameters, the active set of the penalized likelihood does
not contain all the nonzero components of B, the responses are only adjusted for those
nonzero components which are in the active set. The lack of a full adjustment for the
effect of one on the other makes aMCR inferior to TSCS, which is demonstrated in
the simulation studies reported in Sect. 4.

3 Theoretical properties of TSCS

In the theoretical setting, we allow p, the total number of covariates, and p0 j , the
number of nonzero components of β j , as well as q, the dimension of the response
vector, and q0 j , the number of nonzero entries in the j th row of �, diverge to infinity
in certain orders of n. In the analysis of the SHM regression models, it is desirable to
establish the selection consistency for the identification of the nonzeros of B and �.
We first show that, in the TSCS procedure, the identification of the nonzeros of B is
uniformly selection consistent in q. Then by using this uniform selection consistency,
we establish the selection consistency for the identification of the nonzeros of� under
usual conditions for GGM models. Finally, we provide a proposition which suggests
that the second stage of the TSCS procedure is potentially more efficient than its first
stage from a theoretical viewpoint.

We start with the properties of the TSCS procedure for the inference on B. Let s j
by any subset of s0 j . Define

γ j
(
k, s j

) = 1

n
x�
k

[
In − Hx (

s j
)]

Xβ j .

The following conditions are assumed.

A1 ln p = O(nκ), where 0 < κ < 1/3; max j p0 j = O(nc), for some 0 < c < 1/6;
A2 For any s j ⊂ s0 j but s j �= s0 j , maxk∈s0 j\s j |γ j (k, s j )| > maxk /∈s0 j |γ j (k, s j )|;
A3 min1≤ j≤q

{
λmin[ 1n X�(s0 j )X(s0 j )]mink∈s0 j |β jk |

} ≥ Cn−1/6+δ, where δ is an
arbitrary small positive number.

A4 limn→∞ min1≤ j≤q mins j :s0 j �⊂s j ,|s j |≤kp0 j
�(s j ,μ j )

p0 j ln p → ∞, where �(s j ,μ j ) =
μ�

j [I − Hx(s j )]μ j , μ j = Xβ j , and k > 1 is a fixed constant.

Condition A1 is simply a quantification of the high dimensionality and sparsity.
Condition A2 is a natural requirement. Note that [I − HX (s j )]Xβ j is the residual of
the regression mean which are not explained by the covariates in s j . Condition A2
requires that the maximum of the correlations of the remaining relevant covariates
with the residual is larger than the maximum of the correlations of the remaining
irrelevant covariates. This condition is actually weaker than the well-known irrepre-
sentability condition required of the Lasso for selection consistency. For the argument
of this and some examples, the reader is referred to Luo and Chen (2014b). Condition
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A3 is imposed to guard against a fast increase in collinearity of the columns of the
design matrix of the relevant covariates and a fast decay of the size of the correspond-
ing regression coefficients when the number of relevant covariates diverges with the
sample size. This condition is weaker than conditions (A2) and (A3) in Wang (2015)
and condition (C) in Yin and Li (2011). Condition A4 is required for the selection
consistency property of the EBIC. This condition is weaker than the so-called sparse
Riesz condition assumed by other authors, e.g., Wainwright (2009) and Yin and Li
(2011), see Chen and Chen (2008).

Let ŝm0 j and ŝ
c
0 j be the sets of nonzeros for the j th columnofB obtained, respectively,

in the first and second stage of TSCS. Let T0 = {( j, k) : ω jk �= 0}. Denote by T̂ m
0 the

estimate of T0 obtained in the first stage.

Theorem 1 We have

(i) Assume conditions A1–A4,

P
(
ŝm0 j = s0 j , j = 1, . . . , q

)
→ 1

as n → ∞.
(ii) In addition, suppose P(T̂ m

0 = T0) → 1. Then

P
(
ŝc0 j = s0 j , j = 1, . . . , q

)
→ 1

as n → ∞.

Parts (i) and (ii) of the theorem state, respectively, the uniform selection consistency
of TSCS for identifying the nonzeros of B in the first and second stage. The condition
P(T̂ m

0 = T0) → 1 is ensured by (i) and conditions B1–B4 to be stated later. The
theorem does not reveal whether or not the identification in the second stage is more
efficient than in the first stage. A rigorous theoretical proof for the efficiency of the
second stage over the first stage is difficult. However, we will provide at the end of
this section a result which suggests the efficiency of the second stage from a theoret-
ical viewpoint. The actual efficiency of the second stage over the first stage will be
demonstrated in the simulation studies reported in Sect. 4.

The outline of the proof is as follows. Let s∗m
j1 ⊂ · · · ⊂ s∗m

jk ⊂ · · · be the sequence
of the nonzero sets for the j th marginal model of (1) obtained in the first stage of
TSCS. We first show that s0 j , the true nonzero set for the j th model, is a member
of the sequence having a probability with an uniform lower bound converging to 1.
Second, we show that the EBIC sequence, EBIC(s∗m

j1 ),EBIC(s∗m
j2 ), . . ., is decreasing

until it reaches the true nonzero set having a probability with an uniform lower bound
converging to 1. Third, we show that the EBIC is uniformly selection consistent in q
with a lower bound of the convergence rate. Part (i) is implied by these results. For
the sequence obtained in the second stage, the proof is similar.

We now turn to the properties of the TSCS for the inference on �. Recall that
T0 = {( j, k) : ω jk �= 0}. Let t0 j = {k : ( j, k) ∈ T0} and q0 j = |t0 j |. Denote by
T any subset of T0 and let t j = {k : ( j, k) ∈ T }. Note that t j ⊂ t0 j . For any pair
( j, k) ∈ T c, define
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ρ2
jk(T ) =

[(
�k j− − �kt j �

−1
t j t j �t j j−

)
ξ j

]2

τ 2j σ
2
k

+
[(

� jk− − � j tk�
−1
tk tk�tkk−

)
ξ k

]2

τ 2k σ 2
j

(11)
Note that the r2jk(T ) defined in (8) for the �-step is the empirical form of (11). The
following conditions are assumed.

B1 q = o(ln p); max j q0 j = O(nδ), for some δ < 1/6 .
B2 For any T ⊂ T0 but T �= T0, max( j,k)∈T0\T ρ2

jk(T ) > max( j,k)/∈T0 ρ2
jk(T ) ;

B3 limn→∞ min1≤ j≤q
{
λmin(�t0 j t0 j )mink∈t0 j |ξ jk |

} ≥ Cn−1/6+δ, where δ is an
arbitrary small positive number.

B4 limn→∞ min1≤ j≤q min
{

�n(t j )−�n(t j∪{l})
(max1≤ j≤q q0i )2 ln q

: t j �= t0 j , l ∈ tcj ∩ t0 j
}

= ∞, where,

for t ⊂ t0 j , �n(t) = ξ�
j [� j− j− − � j−t�

−1
t t �t j−]ξ j .

The above conditions are required for the selection consistency of aGaussian graphical
model, see Jiang and Chen (2016), that is, if in the�-step, Z̃ = Y −XBwere observed
and used, the above conditions ensure the selection consistency. But, instead of Z̃ ,
what was used is Z whose j th column z j equals y j − X(ŝ0 j )β̂ j (ŝ0 j ). To establish the
selection consistency of the �-step, the sample variance–covariance matrix of Z must
provide a good estimate of � in a certain sense. The uniform selection consistency
in the B-step endows the matrix Z with this desired property. We have the following
lemma.

Lemma 1 Assume that the correlations σ jk/(σ jσk) are bounded by a constant less
than 1, the variances σ 2

j are bounded, and P(ŝ0 j = s0 j , j = 1, . . . , q) → 1. Then,

P

(

max
1≤ j, k≤q

|1
n
z�j zk − σ jk | > n−1/3c0

)

→ 0,

where c0 is a fixed constant.

With Lemma 1, conditions B2–B4 can be transferred into empirical versions in terms
of Z similar to A2–A4. The following theorem can then be proved in exactly the same
way as that for Gaussian graphical models.

Theorem 2 Assume B1–B4 and the conditions for Lemma 1. Let T̂0 be the index set
of the identified nonzero entries of � in a �-step. Then,

P
(
T̂0 = T0

)
→ 1, as n → ∞.

We end this section by the following proposition. Suppose we could observe ỹ j =
y j − (Y j− − XB j−)�−1

j− j−� j− j . By replacing y j ’s with ỹ j ’s in the B-step, we obtain
a sequence, s̃∗

j1 ⊂ · · · ⊂ s̃∗
jk ⊂ · · · . Then, we have

Proposition 1 Let

Cn = min
1≤ j≤q

{ √
n

ln p
λmin

[
1

n
X�(s0 j )X(s0 j )

]

min
k∈s0 j

|β jk |
}
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Under conditions A1–A3, as n → ∞,

(i) P(s∗m
j1 ⊂ · · · ⊂ s∗m

jk ⊂ · · · ⊂ ŝ∗m
j p0 j

= s0 j , j = 1, . . . , q) > 1 − rn, where

rn = 2max1≤ j≤q σ j

C1/2
n ln p

exp

{

− (ln p)2

2
+ ln p + ln q + ln(max p0 j )

}

.

(ii) P(s̃∗
j1 ⊂ · · · ⊂ s̃∗

jk ⊂ · · · ⊂ s̃∗
j p0 j

= s0 j ; j = 1, . . . , q) > 1 − r̃n , where

r̃n = 2max1≤ j≤q τ j

C1/2
n ln p

exp

{

− (ln p)2

2
+ ln p + ln q + ln(max p0 j )

}

.

Since τ j < σ j , j = 1, . . . , q, 1− r̃n > 1−rn . Thus, the probability in (ii) has a higher
lower bound than that in (i). This justifies partially the incorporation of the correlation
information for identifying the nonzeros of B in the second stage of TSCS.

The detailed proofs for the results in this section are given in supplementary docu-
ment.

4 Simulation studies

We conducted two simulation studies. The first simulation study is a comparison of
TSCS with two representative existing methods, MRCE and aMCR, which deal with
B and � simultaneously. The second simulation study is a comparison of TSCS with
the naive approach which ignores the information of correlation in the identification
and estimation of the nonzeros of B.
Simulation study I

We set n = 100, 200, (p0, p) = ([4n0.16], [5en0.3 ]) and q = 50, 200. We adopt
a common practice in the literature of graphical models for the generation of the
covariance matrix of the response variable, that is, a graph is used to generate � and
it is then inverted to obtain �. The following four graphs are considered: AR(1), ER,
Tridiag and BA, see Luo and Chen (2014a) for the description of these graphs. The
design matrix X and the nonzero set s0 j are generated in four different types. The
vectors β j are generated to attain different signal-to-noise ratios. The details of the
types of X and s0 j and the generation of the β j are given in supplementary document.

For q = 50, we consider the settings that are the combinations of the graphs, n =
100 and 200, signal-to-noise ratio h = 0.8 and 0.6. For q = 200, we considered the
combinations of the graphs with only n = 100 and h = 0.8, but, for each combination,
two designs which we refer to as block design and noise design are considered for �.
In the block design, � is a diagonal block matrix with four identical diagonal blocks
which are precisely the precision matrix in the case of q = 50. In the noise design,
� is a diagonal block matrix consisting of two diagonal blocks, the first block is the
same as that in the block design and the second one is an identity matrix of dimension
150.

Under each setting, TSCS, MRCE and aMCR are applied to the same data, and the
simulation for each setting is replicated 100 times. The performances of the methods
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are evaluated by the average over the 100 replicates of each of the measures given in
the following. On �, the measures are positive discovery rate (PDR), false discovery
rate (FDR), the number of nonzero entries of �̂ (|�̂|), the spectral norm (‖�̂ − �‖S),
the matrix �1 norm (‖�̂ − �‖�1 ) and the Frobenius norm (‖�̂ − �‖F ). On B, the
measures are PDR, FDR and the predictive mean squares error (PMSE). The PDR,
FDR and PMSE are defined as follows:

PDR =
∣
∣
{
(i, j) : ci j �= 0 and ĉi j �= 0

}∣
∣

∣
∣
{
(i, j) : ci j �= 0

}∣
∣

, FDR =
∣
∣
{
(i, j) : ci j = 0 and ĉi j �= 0

}∣
∣

∣
∣
{
(i, j) : ĉi j �= 0

}∣
∣

,

where ci j = βi j or ωi j .

PMSE = 1

n

∥
∥
∥Y

′ − X B̂
∥
∥
∥
2

F
,

where Y
′
is a new matrix of observation not used to obtain the estimate B̂. For the

method aMCR, since there is no explicit estimate of � given in Wang (2015), in the
computation of the losses in terms of the matrix norms, we used the same method as
in TSCS for the computation of the estimate of �, that is, the estimate is computed
as �̂ = argmaxω jk=0:( j,k)∈T c L(Y ,�), where L(Y ,�) is the profile likelihood of �

while B is confined to the identified nonzeros.
For the sake of clarity, we only report the results in two settings: (i) n = 100,

(p0, p) = ([4n0.16], [5en0.3 ]), q = 50, h = 0.8; (ii) n = 100, (p0, p) =
([4n0.16], [5en0.3 ]), q = 200, h = 0.8 and � is generated by the block design. The
results are given, respectively, in Tables 1 and 2. The results under other settings con-
vey similar messages which we are going to discuss in the following. The full results
can be found in Jiang (2015).

Now, we discuss the findings under the settings with q = 50. First, it is interesting
to notice from Table 1 that (a) the performances of each method for the estimation of
B differ significantly in different covariance structures of X ; however, with the same
covariance structure of X , the performances are quite comparable across different
response correlation structures; (b) the performances of eachmethod for the estimation
of � differ significantly in different response correlation structures and also differ
across different covariance structures of X . (Particularly, the performance is worse
when the corresponding estimation on B is worse.) It suggests that, for the methods
considered, their performance on the estimation of B is affected by the covariance
structure of X but is insensitive to the response correlation structure; on the other
hand, their performance on the estimation of � is mainly affected by the response
correlation structure and is affected by the covariance structure of X at a lesser extent.

Next, on the comparison of the three methods, it can be seen from Table 1 that
(a) the performances of TSCS and aMCR are better than MRCE across all settings in
terms of all the measures considered, i.e., higher PDR and lower FDR for both � and
B, smaller matrix norms in the estimation of � and smaller PMSE for the estimate
B̂; (b) the overall performance of TSCS is better than that of aMCR, the former has
comparable PDR and PMSE but much lower FDR than the latter, though aMCR has
slightly higher PDR and slightly smaller PMSE than TSCS in a few settings, its FDR
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Fig. 1 The plot of PDR + (1− FDR) for the identification of nonzeros of � and B in the 16 settings when
q = 50, n = 100 and h = 0.8

is too high to be acceptable when the identification of the nonzeros of B and � is of a
major concern, for example, in eQTL mapping problems.

Now turn to the case that q = 200. Comparing Table 2 with Table 1, it can be
found that both PDR and FDR for identifying the nonzeros of � become worse for all
methods under all settings, that is, the increase in the dimension of the response vector
increases the difficulty for the identification of the nonzeros of � and that the changes
in PDR and FDR for identifying the nonzeros of B are insignificant for all methods
under all settings, that is, the efficiency for identifying the nonzeros of B does not
seem to be affected too much by the increase in the dimension of the response vector.

On the comparison of the three methods, the findings found in Table 1 remain in
Table 2, that is, the relative performances of the three methods in the case of q = 200
are the same as those in the case of q = 50. But there is an additional point worthy of
mention. For the identification of the nonzeros of�, although the PDRs of both TSCS
and aMCR are reduced by about the same rate, the FDRs of TSCS remain almost the
same (even smaller in certain cases) and the FDRs of aMCR have, however, soared to
a large extent. (The minimum changed from 0.649 to 0.811; the maximum changed
from 0.846 to 0.919.) This indicates a obvious advantage of TSCS over aMCR.

To further illustrate the simulation results of the comparison, we take PDR+ (1−
FDR) as an overall measure of the performance, and this overall measure is plotted
for each method at the 16 settings reported in Tables 1 and 2, respectively, in Figs. 1
and 2.

Simulation study II
In this simulation study, we compare TSCS with the naive approach: separate iden-

tification and estimation of the nonzeros of β j in each of the marginal models by the
SLasso method. The purpose of this simulation study is to demonstrate the efficiency
gain by incorporating the information of correlation into the inference on B.
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Fig. 2 The plot of PDR + (1− FDR) for the identification of nonzeros of � and B in the 16 settings when
q = 200, n = 100 and h = 0.8

In the simulation settings, the observations on the p-dimensional covariate vector
are generated as normal vectors with mean 0 and covariance matrix�X . The�X takes
three forms— (i) Identity ( I): �X = Ip, (ii) Power Decay (PD): �X = (0.5|i− j |)p×p

and (iii) Equal Correlation (EC):�X = (σi j )p×p where σi j = 0.5 if i �= j , 1 if i = j .
The observations of the response vector are generated as follows. For each com-

ponent of the response vector, p0 covariates are randomly selected as its true features
except in the case of power decay where the true features are taken in the same way
as in the second type of simulation I. Note that, although the number p0 is the same
for each component, the p0 true features are different from component to component.
The β j ’s are generated in the same way as in simulation study I but without scaling.
The rows of the error matrix E are generated as i.i.d. samples from Nq(0, �), where
� is determined as follows. First, its j th diagonal element is determined as

σ 2
j = 1 − h

h
β�

j �Xβ j , j = 1, . . . , q,

where h is a specified signal-to-noise ratio. Let D = diag(σ1, . . . , σq) and R =
(ρi j )q×q be a correlation matrix. Then, � is taken as DRD. Four forms of R are
considered — (i) Identity (I): R = Ip, (ii) Band: ρi,i+1 = ρi+1,i = 0.5, (iii) Power
Decay (PD): ρi j = (0.8|i− j |) and (iv) Equal Correlation (EC): ρi j = 0.5, i �= j .

In this simulation study, we considered n = 100, p = [5en0.3] and 500, p0 =
[4n0.16], q = 10 and 20, h = 0.75 and 0.8. TSCS and the naive approach are applied
to each set of the simulated data. The PDR, FDR and PMSE of the two methods
are averaged over 200 replicated simulations. Since the results are similar across the
simulation settings, for the sake of clarity, we only report the results for the setting
that n = 100, p = [5en0.3 ] = 267, p0 = [4n0.16] = 8, q = 10 and h = 0.8, which is
given in Table 3. The following two points manifest themselves in Table 3. (i) In the
case of R = I , i.e., the response variables are indeed independent, the performances
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Table 3 Average (SD) of PDR, FDR and PMSE over 200 replications of the naive approach and the TSCS

in the simulation setting that n = 100, p = [5en0.3 ], q = 10 and h = 0.8

�X R Method PDR FDR PMSE

I I Naive 0.962 (0.048) 0.062 (0.029) 105.198 (11.679)

TSCS 0.970 (0.041) 0.077 (0.028) 105.140 (10.118)

Band Naive 0.971 (0.039) 0.056 (0.027) 103.184 (10.824)

TSCS 0.996 (0.018) 0.121 (0.042) 95.081 (7.138)

PD Naive 0.965 (0.044) 0.057 (0.031) 104.223 (13.328)

TSCS 0.999 (0.006) 0.093 (0.038) 90.645 (8.580)

EC Naive 0.957 (0.054) 0.064 (0.032) 107.127 (13.788)

TSCS 0.992 (0.024) 0.078 (0.034) 95.810 (8.668)

PD I Naive 0.518 (0.085) 0.101 (0.048) 163.178 (19.150)

TSCS 0.525 (0.080) 0.128 (0.050) 163.742 (18.971)

Band Naive 0.520 (0.071) 0.095 (0.042) 165.151 (17.935)

TSCS 0.626 (0.100) 0.146 (0.048) 148.930 (19.042)

PD Naive 0.519 (0.072) 0.099 (0.051) 165.782 (21.468)

TSCS 0.812 (0.093) 0.127 (0.044) 121.127 (19.909)

EC Naive 0.525 (0.073) 0.100 (0.046) 164.442 (21.419)

TSCS 0.670 (0.079) 0.123 (0.046) 141.705 (20.325)

EC I Naive 0.545 (0.109) 0.136 (0.061) 173.987 (34.855)

TSCS 0.549 (0.113) 0.158 (0.064) 175.433 (34.924)

Band Naive 0.538 (0.110) 0.135 (0.058) 177.883 (33.385)

TSCS 0.697 (0.137) 0.159 (0.055) 152.361 (33.528)

PD Naive 0.546 (0.118) 0.135 (0.065) 174.281 (41.824)

TSCS 0.864 (0.104) 0.123 (0.053) 123.276 (35.208)

EC Naive 0.537 (0.116) 0.135 (0.060) 175.933 (37.885)

TSCS 0.714 (0.112) 0.126 (0.051) 146.438 (34.545)

of TSCS and the naive approach are comparable. This is expected since, in this case,
the conditional univariate models reduce to the unconditional marginal models. (ii)
In the cases, when R �= I , i.e., the response variables are correlated, however, TSCS
performs much better than the naive approach. The former has a much higher PDR,
a much smaller PMSE than and a comparable (though slightly higher) FDR with
the latter. This simulation study demonstrates the efficiency gain of TSCS for the
identification and estimation of B. TSCS does not cause any adverse effect even if the
response variables are indeed independent.

Wemake an analysis of the computation time to conclude this section. We recorded
the time of each method under the following settings: (i) n = 100, q = 50, h = 0.8;
(ii) n = 200, q = 50, h = 0.8; (iii) n = 100, q = 200, h = 0.8, with block precision
matrix; (iv) n = 100, q = 200, h = 0.8, with noise precision matrix. In all the
settings, (p0, p) = ([4n0.16], [5en0.3 ]). The computation time for each method in each
setting is averaged over the four graphs and the four X -structures with ten replicates.
The average times are given as follows:
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Time (in seconds)
Simulation MRCE aMCR TSCS

(i) 106 85 16
(ii) 314 178 45
(iii) 701 389 729
(iv) 1083 391 425

When q = 50, the computation time required by TSCS is much less than the other
two methods. When q = 200, TSCS requires more time than aMCR and less time
than MRCE on average. That TSCS requires more time when q = 200 is because
that more time is needed for obtaining τ̂ j ’s by using the scaled Lasso algorithm in the
�-step.

5 A real example

The TSCS approach is applied to the Glioblastoma multiforme (GBM) cancer data
which are available at https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. The data con-
sist of 11861 gene expression levels and 534 microRNA values from 202 subjects. It is
of interest to investigate how themicroRNA values are affected by the gene expression
levels and how they are related to each other. The data were previously analyzed by the
Cancer Genome Atlas (TCGA) Research Network (McLendon et al. 2008; Verhaak
et al. 2010), Lee and Liu (2012) and Wang (2015).

In order to make a comparison with the previous analyses, we follow the same
analysis process as in Wang (2015) and the references therein. Six subjects with
missing microRNA values are excluded. A pre-screening procedure is carried out on
the genes and the microRNAs based on their median absolute deviations (MAD). Five
hundred genes with the top largest MADs of expression levels and 20 microRNAs
with the top largest MADs of the microRNA values are extracted from the original
data for the analysis. Thus, the final data consist of 500 gene expression levels and
20 microRNA values of 196 subjects. The microRNA values and the gene expression
levels are modeled as follows:

y� = x�B + e�, (12)

where y is a vector of 20 microRNA values, x is a vector of 500 gene expression levels
and e is a multivariate normal vector distributed as N20(0,�−1). The final data are
randomly divided into a training dataset with 120 subjects and a testing dataset with the
remaining 76 subjects. The training dataset is used to estimate the coefficient matrix
B and the precision matrix �. The testing dataset is used to calculate the predictive
squared error (PSE) which is given by

PSE = 1

76 × 20

∑

i

‖ yi − B̂�xi‖22,
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Table 4 Average (standard deviation) of PSE and number of involved genes resulted from TSCS, CW,
PWL, DML and aMCR in the analysis of the Glioblastoma Multiforme Cancer Data

Method TSCS CW PWL DML aMCR

PSE 1.193 1.298 1.248 1.229 1.190

(0.009) (0.038) (0.032) (0.032) (0.012)

Num. Genes 43 500 17 78 65

(0.624) (0.000) (13.565) (32.151) (1.750)

where the sum is taken over the testing dataset. As in Wang (2015), we repeated the
above procedure 50 times and computed the average and standard deviation of the
PSE and the number of genes actually involved in model (12).

In Lee and Liu (2012), three different methods: Curds and Whey method (CW)
(Breiman and Friedman 1997), PWL and DML (Lee and Liu 2012), are applied to
analyze the data in a slightly different procedure and the average and standard deviation
are taken over ten replications. The PWL and DML methods are similar to MRCE
but impose the adaptive Lasso penalty on both B and �. For comparison, the average
and standard deviation of the PSE and the number of genes resulted from TSCS, CW,
PWL, DML and aMCR are reported together in Table 4. The values for CW, PWL and
DML are copied from Lee and Liu (2012), and those for aMCR are copied fromWang
(2015). As given in Table 4, the PSE of TSCS is almost the same as that of aMCR
which is the smallest. The difference of PSE between TSCS and aMCR is indeed
negligible (which is less than a third of their pooled standard deviation). However,
TSCS results in a much more parsimonious model than aMCR. The TSCS needs only
43 genes to achieve about the same PSE as aMCR that needs around 65 genes. The
network graph of the 20 microRNAs detected by TSCS is given in supplementary
document.
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