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Abstract
We propose a kernel estimator of a hazard ratio that is based on a modification of Ćwik
and Mielniczuk (Commun Stat-Theory Methods 18(8):3057–3069, 1989)’s method.
A naive nonparametric estimator isWatson and Leadbetter (Sankhyā: Indian J Stat Ser
A 26(1):101–116, 1964)’s one, which is naturally given by the kernel density estimator
and the empirical distribution estimator. We compare the asymptotic mean squared
error (AMSE) of the hazard estimators, and then, it is shown that the asymptotic
variance of the new estimator is usually smaller than that of the naive one. We also
discuss bias reduction of the proposed estimator and derived somemodified estimators.
While the modified estimators do not lose nonnegativity, their AMSE is small both
theoretically and numerically.

Keywords Kernel estimator · Hazard ratio · Nonparametric estimator · Mean squared
error

1 Introduction

Rosenblatt (1956) proposed a kernel smoothed estimator of the probability density
function f (·). Many researchers have since developed various nonparametric esti-
mators for probability distribution, regression function, hazard ratio, etc. Most of the
kernel estimators are inferior in convergence rate, andmany researchers have attempted
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to reduce the asymptotic mean squared error (AMSE). Although there are many bias
reduction methods (e.g., Ruppert and Cline 1994’s transformation, Jones et al. 1995’s
extrapolation, Terrell and Scott 1980’s extrapolation for density estimation, which we
will discuss in Sect. 4), variance reduction is quite difficult. In density ratio estimation,
Ćwik andMielniczuk (1989) proposed a kernel estimator that they called ‘direct.’ The
AMSE of the direct estimator is different from the AMSE of the naive nonparametric
estimator. In this paper, we devise a ‘direct’ estimator of the hazard ratio by modifying
Ćwik and Mielniczuk (1989)’s method, and discuss its AMSE .

First, we will describe the direct estimator of the density ratio. Let X1, X2, . . . , Xn

be independently and identically distributed (i .i .d.) random variables with a distribu-
tion function F(·), and Y1,Y2, . . . ,Yn be i .i .d. random variables with a distribution
functionG(·). f (·) and g(·) are the density functions of F(·) andG(·), and we assume
that g(x0) �= 0 (x0 ∈ R). A naive estimator of the density ratio f (x0)/g(x0) at the
point x0 is given by ̂f (x0)/ĝ(x0) where

̂f (x0) = 1

h

∫ ∞

−∞
K

(

x0 − w

h

)

dFn(w)

and

ĝ(x0) = 1

h

∫ ∞

−∞
K

(

x0 − z

h

)

dGn(z).

K (·) is a kernel function, h is a bandwidth that satisfies h → 0 andnh → ∞ (n → ∞),
and Fn(·) and Gn(·) are the empirical distribution functions of X1, . . . , Xn and
Y1, . . . ,Yn , respectively. We call ̂f (x0)/ĝ(x0) an ‘indirect’ estimator. Ćwik andMiel-
niczuk (1989) proposed a direct estimator, given by

̂f

g
(x0) = 1

h

∫ ∞

−∞
K

(

Gn(x0) − Gn(w)

h

)

dFn(w).

Chen et al. (2009) obtained an explicit form of its AMSE .
In this paper, we develop a new ‘direct’ estimator of the hazard ratio function

by modifying Ćwik and Mielniczuk (1989)’s method and investigate its AMSE (in
Sect. 2).We compare the naive and direct estimators (in Sect. 3) and find that our direct
estimator performs asymptotically better especially in exponential or gamma cases,
which play a central role in survival analysis. Although the bias of the direct estimator
is large in some cases, the asymptotic variance is always small when both bandwidth
parameters are the same. Asmentioned before, there aremany bias reductionmethods;
we discuss them in Sect. 4. We derived some modified estimators, and it is shown that
the modified estimators performs well both theoretically and numerically. Proofs of
the theorems herein are given in the ‘Appendices’.
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2 Hazard ratio estimators and their asymptotic properties

2.1 Hazard ratio estimators

Let us assume that the density function f (·) of Xi satisfies f (x0) �= 0 (x0 ∈ R). The
hazard ratio function is a type of relative risk and is defined as

H(x0) = f (x0)

1 − F(x0)
.

The meaning of H(x)dx is the conditional probability of ‘death’ in [x, x + dx] given
survival to x , and this is a fundamental measure of the difference between several risk
groups. The hazard ratio also uniquely determines the ‘survival function,’ as follows:

S(x) = exp

(∫ x

−∞
H(u)du

)

,

which gives the probability that a person survives longer than x . These estimators have
been extensively discussed over the years, and the Kaplan–Meier and Nelson–Aalen
estimators are widely known. Though they are discrete, we can construct a smoothed
hazard estimator by using the kernel method. If there is no censoring, the smoothed
hazard estimator coincides with the naive estimator, which we will define later.

The estimator of H is useful for describing and testing the effects of medicine,
covariates, and so on. Actuaries call it the ‘force of mortality’ and use it to estimate
insurance payouts. In reliability theory, it is called the ‘intensity function’ and used to
evaluate tolerance. The gamma and Weibull forms are typical models of the intensity
function, and they describe various random behaviors. In extreme value theory, the
hazard ratio determines the form of the extreme value distribution (see Gumbel 1958),
which is defined as

Gγ (x) = exp
(

−(1 + γ x)−1/γ
)

(1 + γ x > 0)

where γ is real and called the extreme value index. Let F be a distribution function
and x∗ be its right endpoint. Under some regularity conditions, if

lim
x↑x∗

(

1

H(x)

)′
= γ

holds, then F is in the domain of attraction of Gγ [i.e. the distribution of a suitably
standardized sample maximum converges to Gγ (see De Haan and Ferreira 2007)].

There are also many parametric models describing the dependency of covariates;
the most popular one is Cox’s proportional hazard model. For the sake of simplicity,
we will not consider covariates and instead focus on nonparametric estimation of the
baseline hazard. The naive nonparametric estimator of H(x0) is given by Watson and
Leadbetter (1964)
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˜H(x0) = ̂f (x0)

1 − Fn(x0)
,

where

̂f (x0) = 1

h

∫ ∞

−∞
K

(

x0 − w

h

)

dFn(w),

K (·) is the kernel function, and Fn(·) is the empirical distribution function. By using
the properties of the kernel density estimator, Murthy (1965) proved the consistency
and asymptotic normality of ˜H(x0). Tanner and Wong (1983) proved these properties
in the random censorship model by using Hájek’s projection method. Patil (1993)
gave its mean integrated squared error (MI SE) and discussed the cross-validation
method for selecting the optimal bandwidth in both uncensored and censored settings.
Müller andWang (1994) discussed reduction of boundary bias by using varying kernels
methods for nonnegative data. For dependent data, Quintela-del Río (2007) obtained
the MSE of the indirect estimator. By using Vieu (1991b)’s results, he obtained a
modified MI SE that avoids any chance of the denominator being equal to 0. In this
paper, we assume that the support of the kernel K (·) is given by a closed interval and
there is no censoring.

By extending the idea of Ćwik and Mielniczuk (1989), we develop a new ‘direct’
estimator of the hazard ratio function, as follows:

̂H(x0) = 1

h

∫ ∞

−∞
K

(

Mn(x0) − Mn(w)

h

)

dFn(w),

where

Mn(w) = w −
∫ w

−∞
Fn(u)du = 1

n

n
∑

i=1

w − (w − Xi )+

and (x)+ = x (for x ≥ 0), = 0 (for x ≤ 0). Though the proposed estimator is not a
ratio in appearance, ̂H(x0) coincides with the following statistic:

̂H(x0) = ̂fMn(X)(x0)

M ′
n(x0)

= ̂fMn(X)(x0)

1 − Fn(x0)
,

where ̂fMn(X) denotes a kernel density estimator for X , which uses an ‘empirical
transformation’ (X �→ Mn(X)) (see Ruppert and Cline 1994). Therefore, the differ-
ence between ̂H and ˜H is whether we use a transformation or not in kernel density
estimation. Since

̂fMn(X)(x0) = M ′
n(x0)

h

∫ ∞

−∞
K

(

Mn(x0) − Mn(w)

h

)

dFn(w),
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New kernel estimators of the hazard ratio 191

the proposed estimator is no longer ratio. Since the asymptotic variance of the proposed
estimator is

V [̂H(x0)] ≈ (nh)−1A2,0H(x0),

the asymptotic variance of ̂H(x0) is much smaller when H(x0) is large. Ruppert and
Cline (1994) recommended transforming X to an (asymptotically) uniform random
variable (X �→ ̂F(X)) so that the transform-kernel density estimator reduces the
asymptotic bias. In fact, the hazard estimator

̂HRC (x0) =
̂f
̂F(X)(x0)

1 − Fn(x0)

has an improved convergence rate; however, the finite sample performance is not stable
and rather poor in many cases as shown in Sect. 4.

Asymptotic properties of the proposed estimator ̂H(·) is discussed below.

2.2 Asymptotic properties

For the sake of simplicity, we will use the notation,

Ai, j =
∫ ∞

−∞
Ki (u)u jdu.

The proofs of the theorems are in the ‘Appendices.’ In hazard ratio estimation, the
following holds for fixed x0 under some regularity conditions:

E

[

(

Ȟ(x0) − H(x0)
)2
]

≈
(

1

1 − F
(x0)E

[

f̌ (x0) − f (x0)
]

)2

+ 1

(1 − F)2
(x0)V [ f̌ (x0)], (1)

where

Ȟ(x0) = f̌ (x0)

1 − Fn(x0)
.

For the transformed density estimator ̂fM(X)(x0), we have the following AMSE :

E
[

(

̂fM(X)(x0) − f (x0)
)2
]

= h4

4

A2
1,2

m6(x0)

[

f ′′(x0) − f m′′

m
(x0) − 3

f ′m′

m
(x0) + 3

f (m′)2

m2 (x0)

]2

+ A2,0

nh
f (x0)m(x0),
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where M(x) = x − ∫ x
−∞ F(u)du and m(x) = M ′(x) = 1 − F(x). For the direct

hazard estimator ̂H , we have the following AMSE .

Theorem 1 Let us assume that (i) f (·) is three-times differentiable at x0 and f (3)(x0)
is bounded, (ii) K is symmetric and the support is given by a closed interval, (iii) K (3)

is bounded, and (iv) A1,4 and A2,0 are bounded. Then, the MSE of ̂H(x0) is given
by

E
[

(

̂H(x0) − H(x0)
)2
]

= h4

4
A2
1,2

[ {(1 − F){(1 − F) f ′′ + 4 f f ′} + 3 f 3}2
(1 − F)10

]

(x0) + A2,0

nh
H(x0)

+ O

(

h6 + 1

nh1/2

)

. (2)

Remark 1 In order to get the above approximations, we perform a Taylor expansion of
the integral. We can divide the integral at discrete points, so we do not need to worry
about the differentiability of the density function at finite points.

On the other hand, under some regularity conditions, Patil (1993) gave the MSE
of ˜H(x0), as follows:

E
[

(

˜H(x0) − H(x0)
)2
]

= h4

4
A2
1,2

[

( f ′′)2

(1 − F)2

]

(x0) + A2,0

nh

[

H

1 − F

]

(x0)

+ O

(

h6 + 1

nh1/2

)

. (3)

The asymptotic variances are the second terms on the right hand side of (2) and (3),
and the direct estimator has a small variance because of 0 < 1−F(x0) < 1 when both
bandwidth parameters are the same. By minimizing the leading terms in the AMSE ,
we have an optimal bandwidth h = h∗ of ̂H(x0), where

h∗ = n−1/5

(

A2,0

A2
1,2

[

(1 − F)9 f

{(1 − F){(1 − F) f ′′ + 4 f f ′} + 3 f 3}2
]

(x0)

)1/5

.

In the same way, the optimal bandwidth h = h∗∗ of ˜H(x0) is given by

h∗∗ = n−1/5

(

A2,0

A2
1,2

f

( f ′′)2
(x0)

)1/5

.

Furthermore, we can show the asymptotic normality of the direct ̂H .

123
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Theorem 2 Suppose that Theorem 2.1 holds. When h = cn−ξ (0 < c, 1
5 ≤ ξ < 1

2 ),
the following asymptotic normality of ̂H(x0) holds:

√
nh

(

̂H(x0) − H(x0)
) d−→ N (B, V1),

where B = limn→∞(nh5)1/2B1,

B1 = A1,2

2

[

(1 − F){(1 − F) f ′′ + 4 f f ′} + 3 f 3

(1 − F)5

]

(x0)

and

V1 = A2,0H(x0).

Remark 2 If h = o(n−1/5), B = 0.

The asymptotic normality of the indirect estimator is easily obtained by using the
Slutsky’s theorem.

The direct estimator is superior in the sense of the asymptotic variance, but the
bias is large. We will consider the bias reduction in Sect. 4. We have the following
higher-order asymptotic bias.

Theorem 3 Let us assume that (i′) f (·) is six-times differentiable at x0, f (6)(x0) is
bounded, (ii′) K is symmetric and the support is given by a closed interval, (iii) K (3) is
bounded, and (iv′) A1,6 is bounded. Then, the higher-order asymptotic bias of ̂H(x0)
is

E
[

̂H(x0) − H(x0)
] = h2B1(x0) + h4B2(x0) + O(h6 + n−1),

where

B2(x0) = A1,4

24

[− 60m2(m′)2m′′′ + 15m3m′′m′′′ + 11m3m′m(4) − m4m(5)

m9

+ 210m(m′)3m′′ − 73m2m′(m′′)2 − 105(m′)5

m9

]

(x0).

3 Comparison of kernel hazard estimators

Here, we investigate the AMSE of the direct ̂H(x0) and indirect ˜H(x0) in certain
special cases. We show that the new estimator ̂H(x0) performs asymptotically better
when F(·) is an exponential or gamma distribution.

Here, we will suppose that F(·) is an exponential, uniform, gamma, Weibull, or
beta distribution. The cumulative distribution function of the exponential distribu-
tion Exp(1/λ) is F(x) = 1 − exp(− λx), and the hazard ratio is constant; that is,
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H(x) = λ. This is one of the most common models of survival analysis. When F(·)
is exponential, the AMSEs are given by

AMSE
[

̂H(x0)
] = λ

nh
A2,0

AMSE
[

˜H(x0)
] = h4

4
A2
1,2λ

6 + λ

nh
exp(λx0)A2,0.

Since the squared bias is positive, AMSE of the new estimator is asymptotically
smaller regardless of the parameter λ and the point x0 if h = o(n−1/9).

Next, let us assume that F(·) is a uniform distribution [F(x) = x/b (0 < x < b)].
The hazard ratio in this case is H(x) = (b−x)−1. The hazard ratio increases drastically
in the tail area of this model. The above AMSEs are given by

AMSE
[

̂H(x0)
] = h4

4
A2
1,2

9b4

(b − x0)10
+ 1

nh

1

b − x0
A2,0

AMSE
[

˜H(x0)
] = 1

nh

b

(b − x0)2
A2,0.

We find that the asymptotic bias of ˜H(x0) vanishes and the variance of ̂H(x0)
decreases. Their asymptotic performance depends on x0 and b, but the AMSE of
the new ̂H(x0) is smaller when the life span b is large.

Lastly, let us suppose that F is a gamma Γ (p, 100), Weibull W (q, 100), or beta
distribution (100×B(r , s)), where p,q, r and s are their shape parameters. Their scales
(σ = 100) aremoderate.Γ (p, σ ) is the distributionof the sumof p(∈ N) i .i .d. random
variables of Exp(σ ); hence, it is one of most important cases. Its asymptotic squared
bias, variance, and AMSE for some fixed points x0 are listed in Table 1, wherewe have
omitted terms in powers of h. ̂H and ˜H represent those values of ̂H(x0) and ˜H(x0),
and every x0 is each εth quantile ofΓ (p, 100). The kernel is an Epanechnikov onewith
A1,2 = 1/5, A2,0 = 3/10, and h = n−1/5. The coefficients n−4/5 have been omitted.

TheWeibull distributionW (q, σ ) is also important in survival analysis because the
hazard ratio is proportional to the polynomial degree (q−1); that is, H(x) = qσ q xq−1.
W (1, σ ) is the exponential distribution. The beta distribution is often used to describe
a distribution whose support is finite, and it has plentiful shapes. Tables 2, 3 and 4
give the least AMSE values using h∗ or h∗∗ (in Sect. 2.2), where ̂H and ˜H stand for
the AMSE values of ̂H(x0) and ˜H(x0). Every x0 is each εth quantile of Γ (p, 100),
W (q, 100), or (100× B(r , s)). The tables demonstrate that the proposed estimator ̂H
performs asymptotically better in most cases of the gamma Γ (p, 100). Moreover, the
asymptotic performance of our estimator in the Weibull distribution cases is good and
comparable to that of the beta cases.

4 Bias reduction and simulation study

As discussed in Sect. 3, the direct estimator performs well; in particular, it has a small
variance. If we could reduce the bias, we can get a better estimator. As we can see
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Table 2 AMSE values with h = h∗ or h∗∗ in gamma case

p = 1/2 ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5

̂H 7.44× 10−2 1.14× 10−2 1.06× 10−3 1.97× 10−4

˜H 7.65× 10−2 1.21× 10−2 1.25× 10−3 3.09× 10−4

p = 1/2 ε = 0.75 ε = 0.9 ε = 0.95 ε = 0.975

̂H 7.40× 10−5 2.11× 10−5 7.26× 10−5 1.21× 10−4

˜H 2.08× 10−4 2.82× 10−4 4.23× 10−4 6.73× 10−4

p = 10 ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5

̂H 4.48× 10−7 6.45× 10−7 1.11× 10−6 2.26× 10−6

˜H 3.31× 10−7 3.61× 10−7 1.50× 10−6 3.29× 10−6

p = 10 ε = 0.75 ε = 0.9 ε = 0.95 ε = 0.975

̂H 5.39× 10−6 1.34× 10−5 2.51× 10−5 4.57× 10−5

˜H 2.32× 10−6 2.25× 10−5 5.34× 10−5 1.13× 10−4

Table 3 AMSE values h = h∗ or h∗∗ in Weibull case

q = 1/2 ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5

̂H 4.11× 10−2 5.68× 10−3 3.85× 10−4 4.25× 10−5

˜H 4.23× 10−2 6.01× 10−3 4.47× 10−4 6.05× 10−5

q = 1/2 ε = 0.75 ε = 0.9 ε = 0.95 ε = 0.975

̂H 9.22× 10−6 3.31× 10−6 3.59× 10−7 2.67× 10−6

˜H 1.84× 10−5 1.14× 10−5 1.08× 10−5 1.17× 10−5

q = 10 ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5

̂H 1.20× 10−4 2.65× 10−4 9.00× 10−4 3.40× 10−3

˜H 1.08× 10−4 2.08× 10−4 2.11× 10−4 2.58× 10−3

q = 10 ε = 0.75 ε = 0.9 ε = 0.95 ε = 0.975

̂H 1.38× 10−2 5.49× 10−2 0.135 0.309

˜H 1.09× 10−2 1.89× 10−2 9.97× 10−2 0.319

(1) in Sect. 2.2, the asymptotic bias of the proposed hazard estimator ̂H(·) comes
from its numerator ̂fMn(X)(·). We need to apply bias reduction methods to the density
estimator ̂fMn(X)(·).

In this section, we discuss some bias reduction methods. The bias term is compli-
cated, but if we use a 4th order kernel, we have A1,2 = 0. Thus, we can reduce the
convergence order of the bias from O(h2) to O(h4). A simple way to construct the
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Table 4 AMSE values h = h∗ or h∗∗ in beta case

r = 1/2, s = 1/2 ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5

̂H 7.61× 10−3 1.20× 10−3 1.42× 10−4 1.46× 10−4

˜H 7.82× 10−3 1.27× 10−3 1.61× 10−4 1.11× 10−4

r = 1/2, s = 1/2 ε = 0.75 ε = 0.9 ε = 0.95 ε = 0.975

̂H 2.35× 10−3 0.167 4.57 127

˜H 1.45× 10−3 0.103 2.82 78.3

r = 2, s = 5 ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5

̂H 1.55× 10−4 2.70× 10−4 5.35× 10−4 1.15× 10−3

˜H 2.15× 10−4 2.68× 10−4 3.49× 10−4 3.34× 10−4

r = 2, s = 5 ε = 0.75 ε = 0.9 ε = 0.95 ε = 0.975

̂H 3.09× 10−3 1.01× 10−2 2.41× 10−2 5.70× 10−2

˜H 2.14× 10−3 8.82× 10−3 2.30× 10−2 5.74× 10−2

r = 5, s = 2 ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5

̂H 7.18× 10−5 1.38× 10−4 4.20× 10−4 1.72× 10−3

˜H 6.36× 10−5 1.09× 10−4 2.38× 10−4 3.34× 10−4

r = 5, s = 2 ε = 0.75 ε = 0.9 ε = 0.95 ε = 0.975

̂H 9.66× 10−3 6.68× 10−2 0.261 0.981

˜H 3.14× 10−3 2.17× 10−2 7.76× 10−2 0.260

4th order kernel was proposed by Jones and Signorini (1997); however, the estimator
takes a negative value in some cases.

By applyingRuppert andCline (1994)’s transformation (X �→ ̂F(X)) to the denom-
inator ̂f (·) instead of the proposed transformation (X �→ Mn(X)), the following
hazard estimator ̂HRC is derived (see Sect. 2):

̂HRC (x0) =
̂f
̂F(X)(x0)

1 − Fn(x0)
.

The MSE of the density estimator ̂f
̂F(X)(x0) was obtained by Ruppert and Cline

(1994), and so the following optimal convergence rate of MSE of ̂HRC (x0) is given
by using (1):

E
[

(

̂HRC (x0) − H(x0)
)2
]

= O(n−8/9),

where h = O(n−1/9).
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Nielsen (1998) applied a multiple bias correction in hazard estimation, which was
proposed by Jones et al. (1995) in kernel density estimation. The hazard estimator in
this setting is given by

˜HN (x0) = ˜H(x0)

nh

n
∑

i=1

1
˜H(Xi )

K

(

x0 − Xi

h

)

I (Xi ≥ x0),

where I (·) is the indicator function I (A) = 1 (if A occurs), = 0 (if A fails). The
MSE and asymptotic properties were given by Nielsen (1998). By applying Nielsen
(1998)’s bias reduction method to the proposed estimator ̂H(·), we have

̂HN (x0) = ̂H(x0)

nh

n
∑

i=1

1
̂H(Xi )

K

(

Mn(x0) − Mn(Xi )

h

)

.

The following MSE is obtained by a similar argument as Jones et al. (1995).

Theorem 4 Suppose that Theorem 1 holds. Then, the MSE is given by

E
[

̂HN (x0) − H(x0)
]2

= h8H2(x0)

[

C ′′
1

2m3 (x0) − C1m′′

2m4 (x0) − 3
C ′
1m

′

2m4 (x0) + 3
C1(m′)2

2m5
(x0)

]2

+ H(x0)

nh

∫

{2K (u) − K ∗ K (u)}2du + o

(

h8 + 1

nh

)

,

where C1(x0) = B1(x0)/H(x0).

As we see from the theorem, the asymptotic order of the variance is the same as the
original ̂H . The order of the optimal bandwidth is n−1/9, and the optimal convergence
rate is n−8/9.

Terrell and Scott (1980)’s method reduces the asymptotic bias of the kernel density
estimator ̂f (·)without losing the nonnegativity property. Many researchers have since
applied the method to kernel smoothed function estimators. Hirukawa and Sakudo
(2014) applied Terrell and Scott (1980)’s method to asymmetric kernel density esti-
mation for nonnegative data. Funke and Kawka (2015) discussed Terrell and Scott
(1980)’s bias reduction method in multivariate asymmetric kernel density estimation.

McCune and McCune (1987) proposed the following modified naive hazard esti-
mator:

˜H†(x0) = ̂f †(x0)

1 − Fn(x0)
= {̂fh(x0)}4/3{̂f2h(x0)}−1/3

1 − Fn(x0)
,

where ̂fh(·) and ̂f2h(·) are kernel density estimators with bandwidth parameters h and
2h, respectively. We propose the following modified direct hazard estimators:

̂H†(x0) = {̂Hh(x0)} 4
3 {̂H2h(x0)}− 1

3 =
̂f †Mn(X)(x0)

1 − Fn(x0)
,
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Table 5 MSE values with LCV bandwidths in Exp(1) case

n = 50 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 5.63× 10−2 2.26× 10−2 4.34× 10−2 0.125

(sd) 5.34× 10−2 2.10× 10−2 2.16× 10−2 4.14× 10−2

̂HRC 7.83× 10−2 4.95× 10−2 8.97× 10−2 0.279

(sd) 0.106 8.31× 10−2 0.146 0.427

̂HN 6.44× 10−2 1.83 × 10−2 4.37× 10−2 0.222

(sd) 6.45× 10−2 8.69× 10−3 1.56× 10−2 4.18× 10−2

̂H† 4.29 × 10−2 2.14× 10−2 2.55 × 10−2 0.107

(sd) 4.90× 10−2 1.30× 10−2 1.43× 10−2 4.16× 10−2

˜H 7.32× 10−2 5.11× 10−2 8.37× 10−2 0.357

(sd) 6.53× 10−2 5.23× 10−2 0.229 1.07

n = 200 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 4.31× 10−2 1.90× 10−2 4.07× 10−2 0.111

(sd) 2.54× 10−2 7.60× 10−3 9.76× 10−3 2.04× 10−2

̂HRC 3.27× 10−2 1.29 × 10−2 4.30× 10−2 0.151

(sd) 3.54× 10−2 1.70× 10−2 3.70× 10−2 8.63× 10−2

̂HN 5.01× 10−2 2.35× 10−2 4.53× 10−2 0.228

(sd) 3.21× 10−2 1.23× 10−3 7.80× 10−3 1.92× 10−2

̂H† 2.60 × 10−2 2.50× 10−2 2.08 × 10−2 0.110

(sd) 2.20× 10−2 5.02× 10−3 7.28× 10−3 2.46× 10−2

˜H 5.98× 10−2 3.70× 10−2 3.04× 10−2 5.33 × 10−2

(sd) 3.34× 10−2 2.59× 10−2 2.91× 10−2 0.115

where ̂f †Mn(X)(·) denotes the following bias-corrected transformed density estimator
by Terrell and Scott (1980)’s method:

̂f †Mn(X)(x0) = {

̂fMn(X),h(x0)
}4/3 {

̂fMn(X),2h(x0)
}−1/3

,

where ̂f †Mn(X),h(·) and ̂f †Mn(X),2h(·) are transformed density estimators with bandwidth
parameters h and 2h, respectively.

By usingTerrell andScott (1980)’s result, we can get the asymptotic bias of ̂H†(x0):

E[̂H†(x0) − H(x0)] = 2B2
1 (x0) − 4B2(x0)H(x0)

H(x0)
h4,
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Table 6 MSE values with LCV bandwidths in Γ (1/2, 1) case

n = 50 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 0.762 8.66× 10−2 3.44× 10−2 9.22× 10−2

(sd) 0.675 9.77× 10−2 1.96× 10−2 3.73× 10−2

̂HRC 1.04 0.259 0.196 0.630

(sd) 1.77 0.512 0.770 2.12

̂HN 0.748 4.89 × 10−2 3.08 × 10−2 0.157

(sd) 0.690 7.82× 10−2 1.08× 10−2 3.53× 10−2

̂H† 0.882 5.82× 10−2 3.59× 10−2 8.02 × 10−2

(sd) 0.725 7.99× 10−2 1.27× 10−2 2.28× 10−2

˜H 0.704 0.183 0.178 0.553

(sd) 0.725 0.203 0.615 1.66

n = 200 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 0.750 7.58× 10−2 3.24 × 10−2 0.111

(sd) 0.343 4.36× 10−2 8.19× 10−3 1.68× 10−2

̂HRC 0.293 5.70× 10−2 3.78× 10−2 9.19× 10−2

(sd) 0.358 9.02× 10−2 5.59× 10−2 0.158

̂HN 0.688 2.47 × 10−2 3.38× 10−2 0.162

(sd) 0.344 2.34× 10−2 6.59× 10−3 1.90× 10−2

̂H† 0.815 3.89× 10−2 4.09× 10−2 7.72 × 10−2

(sd) 0.363 2.68× 10−2 5,73× 10−3 1.14× 10−2

˜H 0.596 0.114 4.76× 10−2 8.35× 10−2

(sd) 0.383 9.13× 10−2 5.46× 10−2 0.221

where B1(x0) and B2(x0) are as given in Theorem 3. On the other hand, the variance
is given by

V [̂H†(x0)] = V

[

4

3
̂Hh(x0) − 1

3
̂H2h(x0)

]

+ O(n−1)

= 16

9
V

[

̂Hh(x0)

]

+ 1

9
V

[

̂H2h(x0)

]

− 8

9
Cov

[

̂Hh(x0), ̂H2h(x0)

]

+ O(n−1).

Then, we have the following asymptotic variance and MSE of ̂H†(x0).

Theorem 5 Suppose that Theorem 1 holds. Then, the asymptotic variance of ̂H†(x0)
is given by

V [̂H†(x0)] = 1

nh
H(x0)

∫

{

2K 2(u) + K (2u)K (u)
}

du + O

(

1

nh1/2

)

,
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Table 7 MSE values with LCV bandwidths in Γ (10, 1) case

n = 50 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 5.36× 10−4 1.95× 10−3 8.09 × 10−3 2.57 × 10−2

(sd) 3.00× 10−4 1.13× 10−3 3.50× 10−3 8.69× 10−3

̂HRC 4.01× 10−3 7.96× 10−3 2.08× 10−2 6.17× 10−2

(sd) 4.62× 10−3 1.08× 10−2 2.64× 10−2 9.50× 10−2

̂HN 5.61× 10−4 1.45 × 10−3 8.14× 10−3 2.86× 10−2

(sd) 3.24× 10−4 7.38× 10−4 3.78× 10−3 1.03× 10−2

̂H† 4.37 × 10−4 1.61× 10−3 8.16× 10−3 2.86× 10−2

(sd) 1.92× 10−4 8.17× 10−4 3.49× 10−3 9.35× 10−3

˜H 1.37× 10−3 3.33× 10−3 1.02× 10−2 8.00× 10−2

(sd) 1.14× 10−3 3.15× 10−3 4.17× 10−2 0.270

n = 200 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 6.74× 10−4 1.92× 10−3 7.88× 10−3 2.33× 10−2

(sd) 1.32× 10−4 4.84× 10−4 1.67× 10−3 4.35× 10−3

̂HRC 1.86× 10−3 2.62× 10−3 1.00× 10−2 3.52× 10−2

(sd) 1.91× 10−3 3.19× 10−3 1.01× 10−2 2.62× 10−2

̂HN 6.25× 10−4 1.53 × 10−3 8.06× 10−3 2.45× 10−2

(sd) 1.31× 10−4 3.32× 10−4 1.97× 10−3 5.71× 10−3

̂H† 4.72 × 10−4 1.73× 10−3 8.26× 10−3 2.49× 10−2

(sd) 8.67× 10−5 3.84× 10−4 1.74× 10−3 4.80× 10−3

˜H 1.03× 10−3 2.13× 10−3 3.63 × 10−3 1.05 × 10−2

(sd) 5.70× 10−4 1.51× 10−3 3.47× 10−3 2.69× 10−2

and so, the MSE is as follows:

E
[

̂H†(x0) − H(x0)
]2

= 2B2
1 (x0) − 4B2(x0)H(x0)

H(x0)
h8

+ 1

nh
H(x0)

∫

{

2K 2(u) + K (2u)K (u)
}

du + O

(

h10 + 1

nh1/2

)

.

Aswe see fromTheorem5, the asymptotic bias is reduced, and the optimal convergence
rate is n−8/9.

In practice, to find optimal bandwidth parameters of the proposed estimators is a
important problem. By estimating their AMSE which depend on unknown functions,
we can obtain theoretically optimal bandwidth parameters (plug-inmethod). However,
the nonparametric estimators of the AMSE of the proposed estimator require us
to choose more bandwidth parameters. In this paper, we consider so-called cross-
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Table 8 MSE values with LCV bandwidths in W (1/2, 1) case

n = 50 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 0.191 1.60× 10−2 1.69× 10−3 7.52× 10−4

(sd) 0.197 1.65× 10−2 1.27× 10−3 3.06× 10−4

̂HRC 0.337 3.86× 10−2 2.83× 10−2 2.53× 10−2

(sd) 0.583 7.92× 10−2 1.84× 10−2 8.60× 10−3

̂HN 0.176 1.27 × 10−2 1.33× 10−3 1.03× 10−3

(sd) 0.192 1.47× 10−2 6.10× 10−4 3.10× 10−4

̂H† 0.199 1.45× 10−2 1.05 × 10−3 4.61 × 10−4

(sd) 0.204 1.65× 10−2 8.92× 10−4 1.95× 10−4

˜H 0.199 2.66× 10−2 1.17× 10−2 4.50× 10−2

(sd) 0.222 3.38× 10−2 3.79× 10−2 0.158

n = 200 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 0.183 1.56× 10−2 1.89× 10−3 6.55× 10−4

(sd) 0.101 8.33× 10−3 4.63× 10−4 1.36× 10−4

̂HRC 9.16 × 10−2 8.32 × 10−3 2.49× 10−2 2.69× 10−2

(sd) 0.114 1.33× 10−2 9.77× 10−3 3.92× 10−3

̂HN 0.152 1.07× 10−2 1.68× 10−3 9.74× 10−4

(sd) 9.54× 10−2 7.07× 10−3 3.11× 10−4 1.64× 10−4

̂H† 0.183 1.23× 10−2 1.11 × 10−3 3.63 × 10−4

(sd) 0.104 8.17× 10−3 2.90× 10−4 8.36× 10−5

˜H 0.151 1.47× 10−2 2.74× 10−3 5.76× 10−3

(sd) 0.112 1.32× 10−2 3.46× 10−3 1.50× 10−2

validationmethod instead. Although the cross-validationmethodmay also be effective
in the direct hazard estimation as Patil (1993) showed in the naive hazard function
estimation, the I MSE may sometimes diverge. Therefore, we consider a local cross-
validation method, which is introduced Vieu (1991a) in kernel smoothed regression
estimation. For a hazard estimator H̄h(·), it is given by

arg min
h>0

∫

{H̄h(x) − H(x)}2wn(x)dx,

wherewn is a (local) weight function. Let us define in(x0) := [x0−dn, x0+dn]where
the interval is the minimum which includes the closest realization value to x0 (say X́ ).
If we choose wn(x) = I (x ∈ in(x0)), it holds for large enough n that

arg min
h>0

∫

{

H̄h(x) − H(x)
}2

I (x ∈ in(x0))dx

≈ arg min
h>0

(

dn H̄
2
h (x0) − H̄h(X́)

n

1

1 − Fn(X́)

)

.
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Table 9 MSE values with LCV
bandwidths in W (10, 1) case

n = 50 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 0.137 1.58 11.2 53.7

(sd) 5.78× 10−2 0.784 5.57 24.0
̂HRC 0.218 1.55 11.1 172

(sd) 0.318 2.33 28.7 592
̂HN 0.100 1.25 10.8 54.6

(sd) 6.35× 10−2 0.730 6.25 28.4

̂H† 7.81 × 10−2 1.35 11.4 58.3

(sd) 3.85× 10−2 0.731 5.80 25.7
˜H 0.271 2.43 15.3 145

(sd) 0.241 2.16 26.0 398

n = 200 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.9

̂H 0.152 1.76 11.0 46.7

(sd) 2.84× 10−2 0.394 2.77 12.1

̂HRC 6.31 × 10−2 0.518 3.43 22.7

(sd) 8.33× 10−2 0.621 3.71 43.8
̂HN 0.101 1.20 10.0 43.1

(sd) 2.67× 10−2 0.354 3.20 15.2

̂H† 8.32× 10−2 1.36 11.2 48.8

(sd) 1.88× 10−2 0.364 2.94 13.1
˜H 0.198 1.65 8.14 26.1

(sd) 0.120 1.06 5.97 48.1

The approximate minimization problem does not include integration fortunately, and
so locally cross-validated (LCV ) bandwidth is much more easy to obtain.

Next, we compare proposed direct hazard estimators ̂H(·), ̂HRC (·), ̂HN (·), ̂H†(·)
and ˜H(·) by simulation study. We simulated MSE values of the hazard estimators
100,000 times. Tables 5, 6, 7, 8 and 9 shows each average, and we drew underlines
the minimum MSE values for each cases. All kernel function were the Epanechnikov
one. The bandwidth parameters were chosen by the local cross-validation and obtained
by simulation in advance. We first see that MSE values of both modified estimators
̂HN (·) and ̂H†(·) are smaller than those of ̂H(·) especially when n = 50. InW (10, 1)
cases, ̂HRC (·) especially seems to be quite precise as n increases, though the estimated
values are not stable as ‘sd’ (standard deviation of the MSE) values show. ‘sd’ also
shows us that the variance of the direct estimators are smaller than the naive ˜H(·), and
so the proposed estimators are numerically stable.

To sum up, we recommend ̂HN (·) and ̂H†(·) if the underlying distribution F seems
to be gamma or exponential. In Weibull (W (p, 1)) cases, ̂HN (·) and ̂H†(·) are still
recommended, but we recommend ̂HRC (·) if both n and p is large enough.
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Appendices: Proofs of Theorems

Proof of Theorem 1 For simplicity, we will use the following notation,

η(z) =
∫ z

−∞
F(u)du, γ (z) =

∫ z

−∞
η(u)du,

M(z) = z − η(z) and m(z) = M ′(z) = 1 − F(z).

To begin with, we consider the following stochastic expansion of the direct estimator:

̂H(x0)

= 1

h

∫

K

(

M(w) − M(x0)

h

)

dFn(w)

+ 1

h2

∫

K ′
(

M(w) − M(x0)

h

){

[η(w) − ηn(w)] − [η(x0) − ηn(x0)]
}

dFn(w)

+ 1

h3

∫

K ′′
(

M(w) − M(x0)

h

){

[η(w) − ηn(w)] − [η(x0) − ηn(x0)]
}2

dFn(w)

+ 1

h4

∫

K (3)
(

M∗
n (w) − M(x0)

h

){

[η(w) − ηn(w)] − [η(x0) − ηn(x0)]
}3

dFn(w)

= J1 + J2 + J3 + J ∗
4 (say),

where

ηn(w) =
∫ w

−∞
Fn(u)du = 1

n

n
∑

i=1

(w − Xi )+

and M∗
n (w) is a r.v. between Mn(w) and M(w) with probability 1.

The main term of the expectation of ̂H(x0) is given by J1, as we will show the later.
Since J1 is a sum of i .i .d. random variables, the expectation can be obtained directly:

E[J1] = E

[

1

h

∫

K

(

M(w) − M(x0)

h

)

dFn(w)

]

= 1

h

∫

K

(

M(w) − M(x0)

h

)

f (w)dw

=
∫

K (u)H(M−1(M(x0) + hu))du

= H(x0) + h2

2
A1,2

[

(1 − F){(1 − F) f ′′ + 4 f f ′} + 3 f 3

(1 − F)5

]

(x0) + O(h4).
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Combining the following second moment,

1

nh2

∫

K 2
(

M(w) − M(x0)

h

)

f (w)dw

= 1

nh

∫

K 2(u)H(M−1(M(x0) + hu))du

= A2,0

nh
H(x0) + O(n−1),

we get the variance,

V [J1] = 1

nh
H(x0)A2,0 + O(n−1).

Next, we consider the following representation of J2

J2 = 1

n2h2

n
∑

i=1

n
∑

j=1

K ′
(

M(Xi ) − M(x0)

h

)

Q(Xi , X j ),

where

Q(xi , x j ) = [η(xi ) − (xi − x j )+] − [η(x0) − (x0 − x j )+].

Using the conditional expectation, we get the following equation:

E[J2] = 1

nh2

n
∑

j=1

E

[

K ′
(

M(Xi ) − M(x0)

h

)

Q(Xi , X j )

]

= 1

nh2
E

⎡

⎣K ′
(

M(Xi ) − M(x0)

h

)

E

⎡

⎣

n
∑

j=1

Q(Xi , X j )

∣

∣

∣ Xi

⎤

⎦

⎤

⎦

= 1

nh2
E

[

K ′
(

M(Xi ) − M(x0)

h

)

{

η(Xi ) − [

η(x0) − (x0 − Xi )+
]}

]

= 1

nh

∫

K ′ (u)
{

η(M−1(M(x0) + hu)) − η(x0) + (x0 − M−1(M(x0) + hu))+
}

× H(M−1(M(x0) + hu))du

= 1

nh

∫

K ′ (u) O(hu)H(x0)du = O

(

1

n

)

.
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Next, we have

J 22 = 1

n4h4

n
∑

i=1

n
∑

j=1

n
∑

s=1

n
∑

t=1

K ′
(

M(Xi ) − M(x0)

h

)

K ′
(

M(Xs) − M(x0)

h

)

× Q(Xi , X j )Q(Xs, Xt )

= 1

n4h4

n
∑

i=1

n
∑

j=1

n
∑

s=1

n
∑

t=1

Ξ(i, j, s, t) (say).

After taking the conditional expectation, we find that if all of the (i, j, s, t) are differ-
ent,

E[Ξ(i, j, s, t)] = E [E {Ξ(i, j, s, t)|Xi , Xs}] = 0,

and

E[Ξ(i, j, s, t)] = 0 (if i = j and all of (i, s, t) are different),

E[Ξ(i, j, s, t)] = 0 (if i = s and all of (i, j, t) are different),

E[Ξ(i, j, s, t)] = 0 (if i = t and all of (i, j, s) are different),

the term in which j = t and all of the (i, j, s) are different is the main term of E[J 22 ].
If j = t and all of the (i, j, s) are different, we have

E[Ξ(i, j, s, t)]
= n(n − 1)(n − 2)

n4h4
E

[

K ′
(

M(Xi ) − M(x0)

h

)

K ′
(

M(Xs) − M(x0)

h

)

× Q(Xi , X j )Q(Xs, X j )

]

.

Using the conditional expectation of Q(Xi , X j )Q(Xs, X j ) given Xi and Xs , we find
that

E
[

E
{

Q(Xi , X j )Q(Xs, X j )

∣

∣

∣ Xi , Xs

}]

= E
[

η(Xi )η(x0) + η(Xs)η(x0) − η2(x0) + 2γ (x0) − η(Xi )η(Xs)

− (x + Xi − 2min(x, Xi ))η(min(x, Xi )) − 2γ (min(x, Xi ))

− (x + Xs − 2min(x, Xs))η(min(x, Xs)) − 2γ (min(x, Xs))

+ (Xi + Xs − 2min(Xi , Xs))η(min(Xi , Xs)) + 2γ (min(Xi , Xs))
]

.
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Therefore, the entire expectation of the last row is

E

[

K ′
(

M(Xi ) − M(x0)

h

)

K ′
(

M(Xs) − M(x0)

h

)

× (Xi + Xs − 2min(Xi , Xs))η(min(Xi , Xs)) + 2γ (min(Xi , Xs))
]

=
∫ [∫ w

∞
K ′
(

M(z) − M(x0)

h

)

K ′
(

M(w) − M(x0)

h

)

×
{

(−z + w)η(z) + 2γ (z)

}

f (w)dz

+
∫ ∞

w

K ′
(

M(z) − M(x0)

h

)

K ′
(

M(w) − M(x0)

h

)

× {(z − w)η(w) + 2γ (w)} f (z)dz

]

f (w)dw.

Finally, we get

E

[

K ′
(

M(Xi ) − M(x0)

h

)

K ′
(

M(Xs) − M(x0)

h

)

× {Xi + Xs − 2min(Xi , Xs)}η(min(Xi , Xs)) + 2γ (min(Xi , Xs))
]

= −h2
∫

K ′
(

M(w) − M(x0)

h

)

f (w)dw

×
([

W

(

M(w) − M(x0)

h

)(

{η(x0) + (−x0 + w)F(x0)}
[

f

m2

]

(x0)

+ {(−x0 + w)η(x0) + 2γ (x0)}
[

f ′m − f m′

m3

]

(x0)

)

+O(h)

]

+
[ (

1 − W

(

M(w) − M(x0)

h

))

×
(

η(w)
f

m2 (x0) + {(x0 − w)η(w) + 2γ (w)}
[

f ′m − f m′

m3

]

(x0)

)

+ O(h)

] )

= h4
[

F f 2

m4 (x0) +
{

f ′m − f m′

m3

(

2η
f

m2 + 2γ
f ′m − f m′

m3

)]

(x0)

}

+ O(h5).

After similar calculations of the other terms, we find that if j = t and all of the (i, j, s)
are different,

E[Ξ(i, j, s, t)] = O

(

1

n

)

.

In addition, it is easy to see that the expectations of the other combinations of (i, j, s, t)
are o(n−1). As a result, we have
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E[J 22 ] = O(n−1) and V [J2] = O(n−1).

The moments of J3 can be obtained in a similar manner; we find that

E[J3] = O(n−1) and V [J3] = O(n−2).

Finally, wewill obtain upper bounds of |E[J ∗
4 ]| and E[(J ∗

4 )2]. From the assumption
of Theorem 1, we can see

∣

∣

∣

∣

E

[

1

h4
K (3)

(

M∗
n (Xi ) − M(x0)

h

)

{[η(Xi ) − ηn(Xi )] − [η(x0) − ηn(x0)]}3
]∣

∣

∣

∣

≤ maxu |K (3)(u)|
h4

E
[

{[η(Xi ) − ηn(Xi )] − [η(x0) − ηn(x0)]}3
]

= O

(

1

n2h4

)

.

Similarly, it follows that

E[(J ∗
4 )

2]

= 1

h8
E

[

(∫

K (3)
(

M∗
n (w) − M(x0)

h

)

{[η(w) − ηn(w)] − [η(x0) − ηn(x0)]}3dFn(w)

)2
]

≤ maxu(K (3)(u))2

n2h8

n
∑

i=1

n
∑

j=1

E
[

{[η(Xi ) − ηn(Xi )] − [η(x0) − ηn(x0)]}3

×
{

[η(X j ) − ηn(X j )] − [η(x0) − ηn(x0)]
}3 ]

= O

(

1

n4h8

)

.

To sum up, we conclude that J2 + J3 + J ∗
4 is asymptotically negligible for fixed

x0. The main bias of ̂H(x0) comes from J1. From the Cauchy–Schwarz inequality,
we find that the main term of the variance coincides with V [J1]. Now, we can get the
AMSE of the direct estimator and prove Theorem 1. ��

Proof of Theorems 2 and 3 It follows from the above discussion that

√
nh

{

̂H(x0) − H(x0)
}

= √
nh
{

J1 − H(x0)
}+ oP (1)

= (
√
nhh2)B1 + √

nh
{

J1 − H(x0) − h2B1

}

+ oP (1).

Since J1 is a sum of i .i .d. random variables and the expectation of the second term is
o(1), asymptotic normality holds for Theorem 2. ��
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Furthermore, we can show that

E
[

̂H(x0)
] = E[J1] + O(n−1)

=
∫

K (u)H(M−1(M(x0) + hu))du + O(n−1),

and we can directly get Theorem 3 by taking a Taylor expansion. ��
Proof of Theorem 4 We follow the proof of Jones et al. (1995). ̂HN (x0) is written as

̂HN (x0) = ̂H(x0)̂α(x0) = H(x0)

{

1 + ̂H(x0) − H(x0)

H(x0)

}

{1 + (̂α(x0) − 1)}.

It follows from the asymptotic expansion that

α̂(x0) ≈ 1

n

n
∑

i=1

1

hH(Xi )
K

(

Mn(x0) − Mn(Xi )

h

)

×
[

1 − ̂H(Xi ) − H(Xi )

H(Xi )
+
{

̂H(Xi ) − H(Xi )

H(Xi )

}2
]

.

By taking the expectation of the i th term in this sum conditional on Xi , we have

E

[

1

hH(Xi )
K

(

Mn(x0) − Mn(Xi )

h

)

×
[

1 − ̂H(Xi ) − H(Xi )

H(Xi )
+
{

̂H(Xi ) − H(Xi )

H(Xi )

}2
]

∣

∣

∣

∣

Xi

]

= 1

hH(Xi )
K

(

M(x0) − M(Xi )

h

)

[

1 − h2B1(Xi ) + h4B2(Xi )

H(Xi )
+
(

h2B1(Xi )

H(Xi )

)2
]

+ OP ((nh)−1) + oP (h4).

Thus, we have

E [̂α(x0)] = 1 − h2
B1

H
(M−1(M(x0) + hu))

+ h4
[

− B2(x0)

H(x0)
+
(

B1(x0)

H(x0)

)2 ]

+O((nh)−1) + o(h4)

= 1 − h2C1(x0)

+ h4
[

− B2(x0)

H(x0)
+
(

B1(x0)

H(x0)

)2

+ C ′′
1

2m3 (x0) − C1m′′

2m4 (x0)

− 3
C ′
1m

′

2m4 (x0) + 3
C1(m′)2

2m5
(x0)

]

+ O((nh)−1) + o(h4).
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It follows that

E[̂HN (x0) − H(x0)]
= h2B1(x0) + h4[B2(x0) − B1(x0)C1(x0)] − h2H(x0)C1(x0)

+ h4H(x0)

[

− B2(x0)

H(x0)
+
(

B1(x0)

H(x0)

)2

+ C ′′
1

2m3 (x0) − C1m′′

2m4 (x0)

− 3
C ′
1m

′

2m4 (x0) + 3
C1(m′)2

2m5
(x0)

]

+O((nh)−1) + o(h4)

= h4H(x0)

[

C ′′
1

2m3 (x0) − C1m′′

2m4 (x0) − 3
C ′
1m

′

2m4 (x0) + 3
C1(m′)2

2m5
(x0)

]

+ O((nh)−1) + o(h4).

From the proof of Theorem 1, we can see that the following approximation holds:

̂HN (x0) = 1

n2h

n
∑

i=1

n
∑

j=1

K

(

Mn(x0) − Mn(Xi )

h

) K
(

Mn(x0)−Mn(X j )

h

)

∑n
�=1 K

(

Mn(X j )−Mn(X�)

h

)

≈ 1

n2h

n
∑

i=1

n
∑

j=1

K

(

M(x0) − M(Xi )

h

) K
(

M(x0)−M(X j )

h

)

∑n
�=1 K

(

M(X j )−M(X�)

h

)

=: HN (x0)

HN (x0) can be seen as a Jones et al. (1995)’s density estimate for the random variable
M(X) at the point M(x0). Then, the asymptotic variance is given by

V [̂HN (x0)] ≈ H(x0)

nh

∫ {

2K (u) − K ∗ K (u)

}2

du

(see Jones et al. 1995). ��
Proof of Theorem 5 To obtain the asymptotic variance of the modified estimator ̂H†,
we need to calculate the covariance term Cov[̂Hh(x0), ̂H2h(x0)] as shown in Sect. 4.
From the proof of Theorem 1, it is easy to see

Cov
[

̂Hh(x0), ̂H2h(x0)
]

= E
[

̂Hh(x0)̂H2h(x0)
]− E

[

̂Hh(x0)
]

E
[

̂H2h(x0)
]

= 1

2n2h2
E

⎡

⎣

n
∑

i=1

n
∑

j=1

K

(

M(Xi ) − M(x0)

h

)

K

(

M(X j ) − M(x0)

2h

)

⎤

⎦

−
{

H2(x0) + 5h2H(x0)B1(x0) + O(h4 + n−1)
}

+ O

(

1

nh1/2

)

.
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Consequently, we have

Cov
[

̂Hh(x0), ̂H2h(x0)
]

= 1

2nh2
E

[

K

(

M(X1) − M(x0)

h

)

K

(

M(X1) − M(x0)

2h

)]

− 1

n

{

H2(x0) + 5h2H(x0)B1(x0) + O(h4 + n−1)
}

+ O

(

1

nh1/2

)

= 1

nh
H(x0)

∫

K (2u)K (u)du + O

(

1

nh1/2

)

and the desired result. ��
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26(1), 101–116.

123


	New kernel estimators of the hazard ratio and their asymptotic properties
	Abstract
	1 Introduction
	2 Hazard ratio estimators and their asymptotic properties
	2.1 Hazard ratio estimators
	2.2 Asymptotic properties

	3 Comparison of kernel hazard estimators
	4 Bias reduction and simulation study
	Acknowledgements
	Appendices: Proofs of Theorems
	References




