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Supplementary Material: proofs and additional tables

Appendix A. Notations

For any real-valued function f on [0,1], let ‖f‖∞ = supx∈[0,1] |f(x)|. Let ‖ · ‖2 be the L2

norm for functions and l2 norm for vectors. For any matrix A, ‖A‖ denotes the modulus of

the largest singular value of A. We use c, c1, c2 to denote generic positive constants which

can take different values at different places. Note that by Condition (C3) and the result of

De Boor (2001) (P. 149), there exists a constant c such that

sup
t∈[0,1]

|αl(t)−BT
l (t)γ0

l | ≤ chr, l = 1, . . . , p, (S.1)

where γ0
l can be viewed as the best approximation coefficient vector for αl(t).

Let γ0 = (γ0T
1 , . . . ,γ0T

p ), µ0
i = (µ0

i1, . . . , µ
0
imi

)T with µ0
ij = XT

ijα(tij) and εi = yi − µ0
i .

Denote Sk(γ) = 1
n

∑n
i=1 Sik(γ), where Sik(γ) = UT

i ΓiMkiψτ (yi −Uiγ).

Similarly write S0(γ) = (S0T
1 (γ), . . . ,S0T

υ (γ))T with S0
k(γ) = 1

n

∑n
i=1 S

0
ik(γ), where

S0
ik(γ) = S0

ik1 + S0
ik2 + S0

ik3(γ), S0
ik1 = UT

i ΓiMkiψτ (εi),

S0
ik2 = UT

i ΓiMkiΓi(µ
0
i −Uiγ0), S0

ik3(γ) = UT
i ΓiMkiΓi(Uiγ0 −Uiγ).

Then we denote

S0
k1 =

1

n

n∑
i=1

S0
ik1, S

0
k2 =

1

n

n∑
i=1

S0
ik2 and S0

k3(γ) =
1

n

n∑
i=1

S0
ik3(γ).
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Define the set Θn(C) = {γ : ‖BT (γ − γ0)‖2 = C/
√
nh} for a sufficiently large constant

C, where B(t) = (BT
1 (t), . . . ,BT

p (t))T and

‖BT (γ − γ0)‖2 =

(∫
[

p∑
l=1

Kl∑
k=1

Blk(t)(γlk − γ0
lk)]

2dt

)1/2

.

Let

Σkk′ (γ) =
1

n

n∑
i=1

Sik(γ)ST
ik′

(γ) and Σ0
kk′

=
1

n

n∑
i=1

S0
ik1S

0T
ik′1

be the (k, k
′
)-block of

Σn(γ) = {Σkk′ (γ)}υ
k,k′=1

and Σ0
n = {Σ0

kk′
}υ
k,k′=1

, (S.2)

respectively. Finally, we define

Q0
n(γ) = n(S0(γ))T{Σ0

n}−1S0(γ). (S.3)

Appendix B. Lemmas

The following lemmas are needed in preparation for the proof of the theorems.

Lemma 1. Assume Conditions (C1), (C3), (C5) and (C6) hold. There exist two constants

0 < c1 ≤ c2, such that, except in an event whose probability tends to zero as n→∞,

c1‖γ‖2
2 ≤ ‖BTγ‖2

2 ≤ c2‖γ‖2
2,

for any vector γ with length
∑p

l=1 Jl, where ‖BTγ‖2
2 =

∫
(
∑p

l=1

∑Kl

k=1 Blk(t)γlk)
2dt. Fur-

thermore, there also exist two constants 0 < c′1 ≤ c′2, such that, except in an event whose

probability tends to zero as n→∞,

c′1‖γ‖2
2 ≤ ‖BTγ‖2

n ≤ c′2‖γ‖2
2,

where ‖BTγ‖2
n = 1

n

∑n
i=1

1
mi

∑mi

j=1(BT (tij)γ)2.

Proof. The results can be proved along the lines of Lemmas 3 and 6 in Xue et al. (2010).
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Lemma 2. Assume that Conditions (C1)-(C7) hold, then one has

‖S0
k1‖2 = Op(1/

√
n), ‖S0

k2‖2 = Op(h
r).

Furthermore, there exist two constants 0 < c1 ≤ c2 such that for any γ ∈ Θn(C),

c1C/
√
nh ≤ ‖S0

k3(γ)‖2 ≤ c2C/
√
nh,

except in an event whose probability goes to 0 as n→∞.

Proof. By (C2), (C4) and (C7), we have

E(S0
k1) = 0 and tr

(
E(S0

ik1S
0T
ik1)
)

= tr
(
EUT

i ΓiMkiψτ (εi)ψ
T
τ (εi)M

T
kiΓiUi)

)
= O(1).

Therefore, we obtain E‖S0
k1‖2

2 = tr(E(S0
ik1S

0T
ik1))/n = O(1/n) which implies ‖S0

k1‖2 =

Op(1/
√
n).

For S0
k2, by Lemma 1, equation (S.1) and the Conditions (C4) and (C7), applying the

Cauchy-Schwartz inequality, we have

|νTS0
k2| =

∣∣ 1
n

∑n
i=1 ν

TUT
i ΓiMkiΓi(µ

0
i −Uiγ0)

∣∣
≤
(

1
n

∑
i ν

TUT
i ΓiMkiM

T
kiΓiUiν

)1/2 ( 1
n

∑
i(µ

0
i −Uiγ0)TΓiΓ

T
i (µ0

i −Uiγ0)
)1/2

≤ c
(
νTν

)1/2 ‖BT (t)γ0 −α(t)‖∞
≤ chr.

It follows that ‖S0
k2‖2 = Op(h

r).

Similarly, by the Cauchy-Schwartz inequality, on the set Θn(C), we can prove that there

exist a constant c2 such that ‖S0
k3(γ)‖2 ≤ c2C/

√
nh.

On the other hand, taking ν = (γ−γ0)/‖γ−γ0‖2, Conditions (C4)-(C7) and Lemma 1

entail that there exists a positive constant c1 such that |νTS0
k3(γ)| ≥ c1C/

√
nh. Therefore,

we obtain ‖S0
k3(γ)‖2 ≥ c1C/

√
nh. This completes the proof.

Lemma 3. Assume that Conditions (C1)-(C7) hold, the eigenvalues of Σ0
n are bounded from

0 and infinity with probability approaching 1. And, on the set Θn(C), we have ‖S0(γ)‖2 =

Op(1/
√
nh) and Q0

n(γ) = Op(1/h).

Proof. By Lemma 1 and the definition of Σ0
n in (S.2), we can easily conclude that Σ0

n has

eigenvalues bounded away from 0 and infinity. In addition, S0(γ) = Op(1/
√
nh) follows

directly from Lemma 2, and Q0
n(γ) = Op(1/h) follows from the above two results.

3



Lemma 4. Assume that Conditions (C1)-(C7) hold. On the set Θn(C) for some C suffi-

ciently large, we have

sup
γ∈Θn(C)

‖S(γ)− S0(γ)‖2 = op(1/
√
nh), (S.4)

sup
γ∈Θn(C)

|Qn(γ)−Q0
n(γ)| = op(1/h). (S.5)

Proof. We only need to consider the components Sk(γ)−S0
k(γ) of S(γ)−S0(γ), k = 1, . . . , υ.

For any ν ∈ R
∑p

l=1Kl with νTν = 1, we write

νT (Sk(γ)− S0
k(γ)) = νTζ + η, (S.6)

where

ζ =
1

n

n∑
i=1

UT
i ΓiMki

{
ψτ (yi −Uiγ)− ψτ (εi) + [Fi(Uiγ − µ0

i )− Fi(0)]
}
,

η =
1

n

n∑
i=1

νTUT
i ΓiMki

{
−Γi(µ

0
i −Uiγ)− [Fi(Uiγ − µ0

i )− Fi(0)]
}
,

and Fi(Uiγ − µ0
i ) = (Fi1(UT

i1γ − µ0
i1), . . . , Fimi

(UT
imi
γ − µ0

ini
))T with Fij(·) being the condi-

tional cdf of εij.

Since |µ0
ij −UT

ijγ| = Op(1/
√
nh) on the set Θn(C), by the Taylor expansion, we get

Fi(Uiγ − µ0
i )− Fi(0) = −Γi(µ

0
i −Uiγ) +Op(1/(nh)). (S.7)

By Lemma 6.2 of He and Shi (1996) together with Condition (C4), we have

sup
1≤i≤n

‖Ui‖ = Op(h
−1/2). (S.8)

Applying Lemma 19.24 of Van der Vaart (2000), we have

sup
γ∈Θn(C)

∣∣∣∣∣ 1n
n∑
i=1

{
ψτ (yi −Uiγ)− ψτ (εi) + [Fi(Uiγ − µ0

i )− Fi(0)]
}∣∣∣∣∣ = op(n

−1/2). (S.9)

Therefore, by Conditions (C2) and (C7) together with (S.8), we obtain

sup
νT ν=1,γ∈Θn(C)

νTζ = Op(h
−1/2)× op(n−1/2) = op(1/

√
nh). (S.10)
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On the other hand, for the term η in (S.6), by (S.7) and (S.8), we get

sup
νT ν=1,γ∈Θn(C)

|η| = Op(h
−1/2)×Op(1/(nh)) = op(1/

√
nh). (S.11)

Hence, combining (S.6)-(S.11), we obtain

sup
νT ν=1,γ∈Θn(C)

νT (Sk(γ)− S0
k(γ)) = op(1/

√
nh),

and it follows that (S.4) holds.

Next, we prove (S.5). Notice that

‖Σ−1
n (γ)− {Σ0

n}−1‖ = ‖Σ−1
n (γ)[Σn(γ)−Σ0

n]{Σ0
n}−1‖

≤ ‖Σ−1
n (γ)‖‖Σn(γ)−Σ0

n‖‖{Σ0
n}−1‖.

Consider the (k, k′)-block of {Σn(γ)−Σ0
n}, by the definitions of Σkk′(γ) and Σ0

kk′ , as in the

proof of the first part of the lemma, by some careful calculations, we can show that

‖Σkk′(γ)−Σ0
kk′‖ = op(1).

Therefore, we have

‖Σn(γ)−Σ0
n‖ = op(1).

Based on Lemma 3, the eigenvalues of Σ0
n are bounded from 0 and infinity, therefore

we can conclude that the eigenvalues of Σn(γ) are also bounded from 0 and infinity, which

leads to

‖Σ−1
n (γ)− {Σ0

n}−1‖ = op(1). (S.12)

Finally, by the definitions of Qn(γ) and Q0
n(γ), (S.5) holds by (S.4), (S.12) and Lemma

2.

Lemma 5. For any small positive ε, there exist constants % and C such that

P

{
inf

γ∈Θn(C)
Q0
n(γ) > Q0

n(γ0) +
%

h

}
> 1− ε,

for n large enough.
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Proof. Let ∆(γ) = S0(γ)− S0(γ0). Then we can write

1

n

{
Q0
n(γ)−Q0

n(γ0)
}

= ∆T (γ)(Σ0
n)−1∆(γ) + 2∆T (γ)(Σ0

n)−1S0(γ0).

According to the definitions of S0(γ) and S0(γ0), one has ∆(γ) = S0
k3(γ). By Lemma

3, the eigenvalues of {Σ0
n}−1 are bounded, hence on the set Θn(C)

|∆T (γ)(Σ0
n)−1S0(γ0)| = Op (

∑υ
k=1 ‖S0

k3(γ)‖2 (‖S0
k1‖2 + ‖S0

k2‖2))

= Op(C/(nh)),

by Lemma 2.

On the other hand,

∆T (γ)(Σ0
n)−1∆(γ) �

υ∑
k=1

∥∥S0
k3(γ)

∥∥2

2
� C2

nh
,

again by Lemma 2. Choosing C sufficiently large, we can obtain the desired result. This

completes the proof.

Lemma 6. For any ε > 0, there exists C such that

P

{
inf

γ∈Θn(C)
Qn(γ) > Qn(γ0)

}
> 1− ε.

Proof. Note that we can write

Qn(γ)−Qn(γ0) = Qn(γ)−Q0
n(γ) +Q0

n(γ)−Q0
n(γ0) +Q0

n(γ0)−Qn(γ0).

The result follows from

sup
γ∈Θn(C)

|Qn(γ)−Q0
n(γ)| = op(1/h)

and

|Qn(γ0)−Q0
n(γ0)| = op(1/h),

together with Lemma 5.
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Appendix C. Proofs of Theorems

Proof of Theorem 1

Proof. The theorem follows directly from Lemma 1 and Lemma 6.

Proof of Theorem 2

Proof. Consider

S̃k(γ) = E

{
1

n

n∑
i=1

Sik(γ + (nh)−1/2Ω1/2δ)

}
.

Let θ =
√
nh(γ − γ0). By the Taylor expansion, for all ‖θ‖ ≤ C with some finite

constant C, we get

√
nhS̃k(γ0 + θ/

√
nh) =

√
nhS̃k(γ0) + S̃′k(γ0)θ + op(1).

By (8) in Section 2.3, we get S̃′k(γ0) = − 1
n

∑
iU

T
i ΓiMkiΞiUi, where Ξi is an mi ×mi

diagonal matrix with elements (Ξi)jj = φ
(√

nh
yij−UT

ijγ0

rij

) √
nh
rij

. Denote aij = UT
ijγ0 − µ0

ij,

then (Ξi)jj = φ
(√

nh
εij−aij
rij

) √
nh
rij

. Furthermore, through calculating the expection and

variance of the each element of S̃′k(γ0), we obtain

S̃′k(γ0) = − 1

n

∑
i

UT
i ΓiMkiΛiUi + op(1), (S.13)

where Λi is an mi ×mi diagonal matrix with elements Eεijφ
(√

nh
εij−aij
rij

) √
nh
rij

.

Note that

Eεijφ
(√

nh
εij−aij
rij

) √
nh
rij

=
∫ √

nh
rij
φ
(√

nh
t−aij
rij

)
fij(t)dt

=
∫
φ (t) fij

(
rij√
nh
t+ aij

)
dt

=
∫
φ (t) fij(0)dt+

rij√
nh

∫
φ(t)f ′ij(o

∗)
(
t+

√
nh
rij
aij

)
dt,

where o∗ lies between 0 and
rij√
nh
t+aij. Since aij = Op(h

r) and rij = Op(‖Uij‖) = Op(h
−1/2),

by Condition (C2),∣∣∣∣∣ rij√nh
∫
φ(t)f ′ij(o

∗)

(
t+

√
nh

rij
aij

)
dt

∣∣∣∣∣ = Op

(
rij√
nh

∫
|t|φ(t)dt+ aij

)
−→ 0
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as n→∞. Therefore, we obtain Eεijφ
(√

nh
εij−aij
rij

) √
nh
rij

= fij(0) + op(1).

Denote Gk = 1
n

∑
iU

T
i ΓiMkiΓiUi and G = (GT

1 , . . . ,G
T
υ )T . Then, we have

√
nhS̃(γ0 + θ/

√
nh) =

√
nhS̃(γ0)−Gθ + op(1). (S.14)

On the other hand, it is not difficult to see from the previous proofs for the unsmoothed

case that

√
nhS(γ0 + θ/

√
nh) =

√
nhS(γ0)−Gθ + op(1). (S.15)

Therefore, if the following equation

√
nh‖S̃(γ0)− S(γ0)‖2 → 0 (S.16)

holds in probability, then by (S.14) and (S.15), we have

sup
‖γ−γ0‖2≤C/

√
nh

‖S̃(γ)− S(γ)‖2 = op(1/
√
nh)

for given C. And, by the similar proof line of Lemma 4, we can get

sup
‖γ−γ0‖2≤C/

√
nh

‖Q̃(γ)−Q(γ)‖2 = op(1/h).

Similar to the proof of Lemma 5, Lemma 6 and Theorem 1, we can obtain the desired

result.

The proof of (S.16) can be done directly by calculating its expectation and variance and

we omit it here.

Proof of Theorem 3

Proof. Let Ln(γ) = Qn(γ) + n
∑p

l=1 pλl (‖γl‖Hl
). We next prove that for large n and any

ε > 0, there exists a constant C large enough such that

P

(
inf

γ:‖BT (γ−γ0)‖2=C/
√
nh
Ln(γ) > Ln(γ0)

)
≥ 1− ε. (S.17)

As a result, (S.17) implies that Ln(·) has a local minimum in the ball {γ : ‖BT (γ−γ0)‖2 =

C/
√
nh}, which will imply the desired result.
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To prove (S.17), using pλl(0) = 0 and pλl(0) ≥ 0, we have

Ln(γ)− Ln(γ0) ≥ Qn(γ)−Qn(γ0) + n

d0∑
l=1

{pλl(‖γl‖Hl
)− pλl(‖γ0

l ‖Hl
)}. (S.18)

It is easy to see that for any γ satisfying ‖BT (γ−γ0)‖2 = Op(1/
√
nh), both ‖γl‖Hl

≥ aλl

and ‖γ0
l ‖Hl

≥ aλl hold when n is sufficiently large if λl → 0. Hence, by the property of the

SCAD penalty function, we have

d0∑
l=1

{pλl(‖γl‖Hl
)− pλl(‖γ0

l ‖Hl
)} = 0 (S.19)

when n is sufficiently large.

By Lemma 6, on the set Θ = {γ : ‖BT (γ − γ0)‖2 = C/
√
nh}, we have

P ( inf
γ∈Θ

Qn(γ)−Qn(γ0) > 0) > 1− ε (S.20)

for any small ε > 0 when n is sufficiently large, which implies (S.17).

Proof of Theorem 4

Proof. We prove the sparsity by contradiction. Suppose that there exists a (d0 + 1) ≤ l ≤ p

such that α̂Pl 6= 0. Let γ∗ be the vector obtained from γ̂P with l-th component γ̂Pl being

replaced by 0. It will be shown that

Ln(γ̂P ) > Ln(γ∗), (S.21)

which is a contradiction.

Note that

Ln(γ̂P )− Ln(γ∗) = Qn(γ̂P )−Qn(γ∗) + npλl(‖γ̂Pl ‖Hl
). (S.22)

For the penalty term npλl(‖γ̂Pl ‖Hl
) in (S.22), since ‖γ̂Pl ‖Hl

= Op(1/
√
nh) = o(λl), by

the expression of the SCAD penalty, we have

npλl(‖γ̂Pl ‖Hl
) = nλl‖γ̂Pl ‖Hl

,

with probabity approaching 1.
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For Qn(γ̂P )−Qn(γ∗), by the similar expansion used in Lemmas 4-6, we can prove

|Qn(γ̂P )−Qn(γ∗)| = Op

(√
n
h
‖γ̂P − γ∗‖2

)
= Op

(√
n
h
‖γ̂Pl ‖Hl

)
.

Since minl λln
r/(2r+1) →∞, the penalty term is the dominant term in (S.22), and (S.22)

is positive with probability approaching 1, which is a contradiction.

Appendix D. Some Tables
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Table 1: Mean and standard deviation of AIMSE (×100) with SCAD penalty for divergent

dimension p = [n1/2] in Example 2 .

Penalized estimate Oracle estimate

Model Error τ WI QIF-CS QIF-AR WI QIF-CS QIF-AR

HM Normal-CS 0.25 3.7683 3.4452 3.6053 3.3133 1.6467 2.1449

2.0124 1.5938 2.1150 1.7800 0.8398 1.0814

0.5 3.2106 2.3316 2.9449 2.9836 1.3332 1.7782

1.6352 1.1282 1.4577 1.6389 0.5786 0.8623

Normal-AR 0.25 4.3749 4.3208 4.2865 3.4143 3.2041 2.4425

2.0746 2.5094 2.1002 1.4687 1.3536 1.0164

0.5 3.8609 3.8437 3.8255 3.0331 2.6918 2.2028

1.8659 2.5699 1.9876 1.3823 1.1313 1.0951

t-CS 0.25 5.9815 5.0874 5.7861 5.5239 2.7862 3.4634

3.1152 2.5283 3.3309 3.0939 1.6518 1.7747

0.5 3.7140 2.5541 3.1955 3.3510 1.5983 2.0209

1.8262 1.1476 1.6550 1.6078 0.7857 0.9673

t-AR 0.25 6.4317 6.1757 5.9001 5.4388 4.8993 4.0250

3.2455 3.5592 3.2448 2.6951 2.6941 1.9092

0.5 4.5197 4.4046 4.3651 3.4973 3.0396 2.3898

2.3046 3.1533 2.0071 1.7136 1.6474 1.1354

HT Normal-CS 0.25 9.1378 7.3080 9.0360 6.7065 4.0029 5.3356

4.5228 3.3541 4.4581 3.1707 1.9201 3.0351

0.5 7.6052 5.3813 7.2759 6.1978 3.1219 4.2959

3.6879 2.4015 3.6149 3.2437 1.3238 1.8428

Normal-AR 0.25 11.1713 10.3638 10.2541 7.5311 7.3759 6.2250

4.7264 5.2473 5.0741 3.0786 3.0901 2.6846

0.5 8.9280 8.8312 8.6933 6.7230 6.0828 5.3273

4.3854 4.8328 3.9472 2.9976 2.4674 2.5820

t-CS 0.25 18.1109 11.2549 16.2405 11.3302 6.6377 8.3862

9.3907 5.2600 8.2955 5.6889 3.7501 4.3779

0.5 8.8348 7.0418 8.0592 7.0082 3.7593 5.0501

4.3352 3.2325 4.7830 3.2100 1.8540 2.3530

t-AR 0.25 18.0460 17.1934 17.0211 12.0352 11.2474 9.9787

8.3855 9.6504 8.3061 5.4686 6.5977 4.6405

0.5 10.2997 10.0843 9.4915 7.5855 7.1556 6.0257

4.9041 5.2676 4.5249 3.4021 3.9304 3.0565
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Table 2: Variable selection results for Example 2 with divergent dimension p = [n1/2].

FNR FPR

Model Error τ WI QIF-CS QIF-AR WI QIF-CS QIF-AR

HM Normal-CS 0.25 0 0 0 0.040 0.038 0.039

0.5 0 0 0 0.026 0.023 0.026

Normal-AR 0.25 0 0 0 0.042 0.039 0.040

0.5 0 0 0 0.028 0.027 0.027

t-CS 0.25 0 0 0 0.060 0.055 0.058

0.5 0 0 0 0.041 0.039 0.040

t-AR 0.25 0 0 0 0.076 0.075 0.077

0.5 0 0 0 0.050 0.045 0.047

HT Normal-CS 0.25 0 0 0 0.104 0.101 0.107

0.5 0 0 0 0.091 0.089 0.091

Normal-AR 0.25 0 0 0 0.124 0.121 0.127

0.5 0 0 0 0.100 0.095 0.099

t-CS 0.25 0 0.001 0.001 0.183 0.182 0.187

0.5 0 0 0 0.114 0.110 0.115

t-AR 0.25 0 0.002 0.002 0.193 0.192 0.193

0.5 0 0 0 0.124 0.123 0.125
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