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Supplementary Material: proofs and additional tables

Appendix A. Notations

For any real-valued function f on [0,1], let [|f|lcc = sup,eoq [f(2)[- Let [| - [|2 be the Ly
norm for functions and [y norm for vectors. For any matrix A, || A|| denotes the modulus of
the largest singular value of A. We use ¢, ¢, ¢y to denote generic positive constants which
can take different values at different places. Note that by Condition (C3) and the result of
De Boor| (2001) (P. 149), there exists a constant ¢ such that

sup |ay(t) — Bl (x| < ch”, I=1,....p, (5.1)

t€[0,1]
where ~} can be viewed as the best approximation coefficient vector for ay(t).

Let vo = (W7, o)y 1d = (1o 1g,) " with pfy = XTa(ty;) and & = y; — .
Denote Si(vy) = %Z?:l Si1(v), where Sin(v) = UIT; My, (y; — Uiy).

Similarly write S°(y) = (SY (), ..., S0 (v))" with SP(v) = 237", S5.(v), where
Szok( ) Szokl + S'LOkZ + Szk?)( )7 S’Lkl UZTFZMk’Z,lvDT(eZ)?
Sike = U TiMyLi(i — Urmo),  Ss(y) = U/ TiMuLy(Uivo — Upy).

Then we denote

1 n
Sk = n Z Sh1, Spa = Z S and  Sps(y Z Sia (v
i=1



Define the set ©,,(C) = {v : || BT (¥ — 70)||l2 = C/v/nh} for a sufficiently large constant
C, where B(t) = (B (t),...,B/}(t))" and

K,

» 1/2
BT (v — ¥0)|l2 = (/[Z S~ Bult) (v — fVlOk)Pdt) .

=1 k=1

Let

n

1 n
B (1) = 5 3 Su(MS(7) and B = 57 %S
i=1

=1

be the (k,k')-block of

Z0(Y) = B (VYo and 20 ={Z) 3, (S.2)

respectively. Finally, we define

Q,(v) =n(S° () {Zn} S (7). (5.3)

Appendix B. Lemmas

The following lemmas are needed in preparation for the proof of the theorems.

Lemma 1. Assume Conditions (C1), (C3), (C5) and (C6) hold. There exist two constants

0 < ¢1 < ¢, such that, except in an event whose probability tends to zero as n — oo,

allvl3 < 1B |5 < el

for any vector 4 with length 37 J;, where |BTv[3 = [(3F, S50, Bi(t)yi)?dt. Fur-
thermore, there also exist two constants 0 < ¢} < ¢, such that, except in an event whose

probability tends to zero as n — oo,
AllvIE < 1B < 13,
where || BTy|[; = 5 370 - 3000 (BT (1))

Proof. The results can be proved along the lines of Lemmas 3 and 6 in Xue et al.| (2010). O



Lemma 2. Assume that Conditions (C1)-(C7) hold, then one has
1Sk1ll2 = Op(1/v/n), [Siall2 = Op(hT).

Furthermore, there exist two constants 0 < ¢; < ¢ such that for any v € ©,,(C),
a1C/Vnh < ||Si5()|l2 < ¢2C/Vnh,

except in an event whose probability goes to 0 as n — oo.

Proof. By (C2), (C4) and (C7), we have

E(Sy) =0 and tr(E(S),S0)) = tr (BU/ T: My, (€)¢] (e;) MLTU;)) = O(1).

Therefore, we obtain E|SY |3 = tr(E(S%,S%))/n = O(1/n) which implies ||S, |2 =
0,(1/V).
For SY,, by Lemma 1, equation (S.1]) and the Conditions (C4) and (C7), applying the

Cauchy-Schwartz inequality, we have

‘VTS](C]Q‘

|5 i VU M T () — Uﬂo)|

(7 22 VTUz‘TFiMkiMIZFiUi’/)W (5 22i(w) = Uryo) ' TiT (1) — Uirmo))
c(VTv) | BT (v — ex(t)

ch’.

1/2

IAIA A

It follows that [|SP,|l2 = O,(R").

Similarly, by the Cauchy-Schwartz inequality, on the set ©,,(C'), we can prove that there
exist a constant ¢y such that || Sps(v)|l2 < c2C/Vnh.

On the other hand, taking v = (v —~0)/||7 — Yl|2, Conditions (C4)-(C7) and Lemma 1
entail that there exists a positive constant ¢; such that |07 S ()| > ¢;C/vnh. Therefore,
we obtain ||SY%(v)|l2 > ¢1C/v/nh. This completes the proof. O

Lemma 3. Assume that Conditions (C1)-(C7) hold, the eigenvalues of X2 are bounded from
0 and infinity with probability approaching 1. And, on the set ©,,(C), we have ||S°(v)|2 =

Op(1/v/nh) and @3 (v) = Oy(1/h).

Proof. By Lemma 1 and the definition of 3% in (S.2)), we can easily conclude that X has
eigenvalues bounded away from 0 and infinity. In addition, S°(v) = O,(1/vnh) follows
directly from Lemma 2, and Q% (vy) = O,(1/h) follows from the above two results. O



Lemma 4. Assume that Conditions (C1)-(C7) hold. On the set 6,,(C) for some C' suffi-

ciently large, we have

sup [|S(y) = S°(¥) 2 = 0,(1/Vnh), (S4)
Y€O,(C)

sup  [Qnu(y) — @ (7)| = 0,(1/h). (S.5)
€O, (C)

Proof. We only need to consider the components Sy,(y)—S}(v) of S(v)—S°(v), k=1,...,v.

For any v € REE=1 K with Ty = 1, we write

v (Sk(v) = Si(v)) = v'¢ +, (S.6)

where

n

¢= %Z U/ Ti My {¢:(yi — Uiy) — ¥-(&) + [F(Uiry — i) = Fi0)]},

=1

1 n
n=_ > VIUITi My {~T(uf — Ury) — [F(Ury — pf) — F(0)]}
i=1

and Fy(Upy — p)) = (Fa(Ujiy — 1)), - -+, Fim, (UL, v — 11d,.))" with Fjj(-) being the condi-

1 my

tional cdf of €;;.

Since |u); — Uj~y| = Op(1/v/nh) on the set ©,(C), by the Taylor expansion, we get

Fy(Uiy — ) = Fi(0) = =Ti(p — Uy) + O,(1/(nh)). (5.7)

By Lemma 6.2 of He and Shi (1996) together with Condition (C4), we have
sup [[U;]| = Op(h™"2). (S.8)

1<i<n

Applying Lemma 19.24 of [Van der Vaart| (2000), we have

n

s |23 el — Uiy) = elen) + IR~ ) = FO)}| = oy(n 7). (59)

Therefore, by Conditions (C2) and (C7) together with (S.8)), we obtain

sup  vT¢ = 0,(h7Y?) x 0,(n™Y?) = 0,(1/Vnh). (S.10)

vTr=1,v€0,(C)



On the other hand, for the term 7 in (S.6), by (S.7)) and (S.8]), we get
swp ol = Op(h™72) x Oy(1/(nh)) = 0y(1/Vnh). (s.11)

vTv=1,v€0,(C)

Hence, combining ([S.6))-(S.11]), we obtain

sup  wT(Si(v) = SY(v)) = 0p(1/Vnh),

vTy=1,v€0,(C)
and it follows that (S.4) holds.
Next, we prove (S.5)). Notice that

IZ20 ) —{Z0 7 = 12 () [Ba(y) = a0l
< IESIMNZEa(y) = ZRII{E -

Consider the (k, k’)-block of {2, (v) — X%}, by the definitions of ¥ (v) and XY,,, as in the

proof of the first part of the lemma, by some careful calculations, we can show that

1S5 () = S| = 0,(1).

Therefore, we have
120 (7) = 250 = 0,(1).

Based on Lemma 3, the eigenvalues of X2 are bounded from 0 and infinity, therefore
we can conclude that the eigenvalues of X, («) are also bounded from 0 and infinity, which

leads to
12,1 () = {Z0) 7l = op(1). (S.12)

Finally, by the definitions of @, (v) and Q%(~), (S.5) holds by (S.4)), (S.12)) and Lemma
2. [

Lemma 5. For any small positive ¢, there exist constants ¢ and C such that

76971(0) h

P{ inf Q2(7)>Q2(70)+g}>1—6,

for n large enough.



Proof. Let A(y) = 8°(«) — S%(yo). Then we can write
Q) -~ QA(0)} = AT()(Z) " A) + 247 (4)(55) S (0)

According to the definitions of S%(«) and S°(v), one has A(v) = SP;(v). By Lemma
3, the eigenvalues of {3%}~1 are bounded, hence on the set ©,,(C)

[AT)ED TS ()] = Op (ke 1SVl (1SR 112 + 1183512))
= 0,(C/(nh)),

by Lemma 2.
On the other hand,

v 02
ATE) A = (ISl =
k=1

again by Lemma 2. Choosing C' sufficiently large, we can obtain the desired result. This
completes the proof. O

Lemma 6. For any € > 0, there exists C' such that

P{ inf Qn(vy) > Qn(%)} >1-—e.

€0, (C)

Proof. Note that we can write

Q.(Y) — Qu(v0) = Qu(v) — Q0(Y) + Qn(v) — Q) (7o) + Q0 (Y0) — Qu(0)-

The result follows from

sup  |Qu(v) — Qu(¥)| = 0,(1/h)

€0, (C)
and
Qi (70) — Qu(v0)| = 0,(1/h),
together with Lemma 5. [



Appendix C. Proofs of Theorems

Proof of Theorem 1
Proof. The theorem follows directly from Lemma 1 and Lemma 6. O
Proof of Theorem 2

Proof. Consider
& _ IR ~1/2091/2
Si(v) _E{E;Sik('y—{'(nh) Q776) o

Let 8 = vVnh(y — o). By the Taylor expansion, for all ||@|| < C' with some finite

constant C', we get

VnhSi(vo + 8/vnh) = VnhSi(v0) + Si.(70)0 + 0,(1).

By in Section 2.3, we get S’,’C('yo) = —% > UIT M, B,U;, where E; is an m; X m;
T
diagonal matrix with elements (5;);; = ¢ (x/nhW) ‘ii]h Denote a;; = Ulvo — pf),
then (5;);; = ¢ (\/nh”;#) @ Furthermore, through calculating the expection and
i ij

variance of the each element of S} (vo), we obtain

St (o) = —— Z U'T, M AU; + 0,(1), (S.13)

fz‘j*aij> Vnh

7"1]

where A; is an m; X m; diagonal matrix with elements E., ;¢ (\/ nh

rij

Note that
B, (Vahsts ) S =[Sy () p)dr
_ f¢ fw<“ t+a”)dt
= Jo0) fy(O)dt + 35 [ 6(1)f(0°) (1 + 4ay ) .

where 0* lies between 0 and -t +a;;. Since a;; = O, (k") and r;; = O,(|Uy]|) = O,(h~1/2),

Vnh
by Condition (C2),
< i /\z|¢ dt+a”) —0

sz m
oy ( v, )dt




as n — 0o. Therefore, we obtain E, ¢ (\/ nh@) ‘iﬁ = fi;(0) + 0,(1).
Denote G, = %Zl U!T,M;;T;U; and G = (GT,...,GT)T. Then, we have

VnhS (v 4 0/vVnh) = VnhS(v,) — GO + 0,(1). (S.14)

On the other hand, it is not difficult to see from the previous proofs for the unsmoothed

case that

VnhS(vo 4 0/vVnh) = VnhS(v,) — GO + 0,(1). (S.15)

Therefore, if the following equation
Vnh||S(v0) = S(v0)[l2 = 0 (S.16)

holds in probability, then by (S.14)) and (S.15)), we have
sup  [|S(v) = S(¥)ll2 = 0,(1/Vnh)

lv="oll2<C/vnh

for given C. And, by the similar proof line of Lemma 4, we can get

sup [[Q(Y) = Q)2 = 0,(1/h).

[y=0ll2<C/Vnh
Similar to the proof of Lemma 5, Lemma 6 and Theorem 1, we can obtain the desired

result.

The proof of (S.16)) can be done directly by calculating its expectation and variance and

we omit it here. O
Proof of Theorem 3

Proof. Let L,(v) = Qun(v) +n > 1_, o (Ivllm,). We next prove that for large n and any

€ > 0, there exists a constant C' large enough such that

P < inf Ln(7y) > Ln('Yo)) >1-—c. (S.17)
¥:[| BT (v=7°)[|2=C/v/nh

As a result, ([S.17) implies that L, (-) has a local minimum in the ball {~ : || BT (v —¥0)l|2 =
C/+v/nh}, which will imply the desired result.



To prove (S.17)), using py,(0) = 0 and p,,(0) > 0, we have

La() = Ln(70) = @u(¥) = @u(70) + 1 >_{px (Illen) — pa (17711 8)}- (S.18)

It is easy to see that for any ~ satisfying || BT (v —0)||2 = O,(1/vnh), both |y||m, > aX;
and [|4?|| &, > a\ hold when n is sufficiently large if \; — 0. Hence, by the property of the
SCAD penalty function, we have

> {onlle) = o (1)} = 0 (5.19)

when n is sufficiently large.

By Lemma 6, on the set © = {~v : | BT (v — v0)||2 = C/v/'nh}, we have

P( inf Qn('Y) - Qn<’)’0) > 0) >1—e (8'20)

~€EO

for any small € > 0 when n is sufficiently large, which implies (S.17)).

Proof of Theorem 4

Proof. We prove the sparsity by contradiction. Suppose that there exists a (dg+1) <1 <p
such that & # 0. Let 4* be the vector obtained from 4 with I-th component 4{" being
replaced by 0. It will be shown that

La(¥") > La(v"), (S.21)

which is a contradiction.

Note that
Ln(¥") = La(v") = Qu(3") = Qu(v") + npx (I3 |1 11,)- (S.22)

For the penalty term npy, (|9 ||z,) in (S.22)), since |5 ||m, = O,(1/v/nh) = o(\), by
the expression of the SCAD penalty, we have

mox (1% 1) = ]l | m

with probabity approaching 1.



For Q,.(A") — Q,.(v*), by the similar expansion used in Lemmas 4-6, we can prove

Qu(Y") = Qu(v)l = Oy (VEIF" = 7l2)
= O, (VElIAIlm) -

Since min; \;n™/ 1) — oo, the penalty term is the dominant term in (5.22), and (S.22)
0

is positive with probability approaching 1, which is a contradiction.

Appendix D. Some Tables
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Table 1: Mean and standard deviation of AIMSE (x100) with SCAD penalty for divergent

dimension p = [n'/?] in Example 2 .

Penalized estimate Oracle estimate
Model Error T WI QIF-CS QIF-AR WI QIF-CS QIF-AR
HM Normal-CS 0.25 3.7683 3.4452 3.6053 3.3133 1.6467 2.1449
2.0124 1.5938 2.1150 1.7800 0.8398 1.0814
0.5  3.2106 2.3316 2.9449 2.9836 1.3332 1.7782
1.6352 1.1282 1.4577 1.6389 0.5786 0.8623
Normal-AR  0.25  4.3749 4.3208 4.2865 3.4143 3.2041 2.4425
2.0746 2.5094 2.1002 1.4687 1.3536 1.0164
0.5  3.8609 3.8437 3.8255 3.0331 2.6918 2.2028
1.8659 2.5699 1.9876 1.3823 1.1313 1.0951
t-CS 0.25 5.9815 5.0874 5.7861 5.5239 2.7862 3.4634
3.1152 2.5283 3.3309 3.0939 1.6518 1.7747
0.5  3.7140 2.5541 3.1955 3.3510 1.5983 2.0209
1.8262 1.1476 1.6550 1.6078 0.7857 0.9673
t-AR 0.25  6.4317 6.1757 5.9001 5.4388 4.8993 4.0250
3.2455 3.5592 3.2448 2.6951 2.6941 1.9092
0.5  4.5197  4.4046 4.3651 3.4973 3.0396 2.3898
2.3046 3.1533 2.0071 1.7136 1.6474 1.1354
HT Normal-CS 0.25 9.1378 7.3080 9.0360 6.7065 4.0029 5.3356
4.5228 3.3541 4.4581 3.1707 1.9201 3.0351
0.5  7.6052 5.3813 7.2759 6.1978 3.1219 4.2959
3.6879 2.4015 3.6149 3.2437 1.3238 1.8428
Normal-AR 0.25 11.1713 10.3638  10.2541 7.5311 7.3759 6.2250
4.7264 5.2473 5.0741 3.0786 3.0901 2.6846
0.5  8.9280 8.8312 8.6933 6.7230 6.0828 5.3273
4.3854  4.8328 3.9472 2.9976 2.4674 2.5820
t-CS 0.25 18.1109 11.2549  16.2405 11.3302  6.6377 8.3862
9.3907 5.2600 8.2955 5.6889 3.7501 4.3779
0.5  8.8348 7.0418 8.0592 7.0082 3.7593 5.0501
4.3352 3.2325 4.7830 3.2100 1.8540 2.3530
t-AR 0.25 18.0460 17.1934 17.0211 12.0352 11.2474  9.9787
8.3855 9.6504 8.3061 5.4686 6.5977 4.6405
0.5 10.2997 10.0843  9.4915 7.5855 7.1556 6.0257
4.9041 5.2676 4.5249 3.4021 3.9304 3.0565
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Table 2: Variable selection results for Example 2 with divergent dimension p = [n'/?].

FNR FPR
Model Error T WI  QIF-CS QIF-AR WI  QIF-CS QIF-AR
HM Normal-CS 0.25 0 0 0 0.040  0.038 0.039
0.5 0 0 0 0.026  0.023 0.026
Normal-AR 0.25 0 0 0 0.042  0.039 0.040
0.5 0 0 0 0.028  0.027 0.027
t-CS 025 0 0 0 0.060  0.055 0.058
0.5 0 0 0 0.041 0.039 0.040
t-AR 025 0 0 0 0.076  0.075 0.077
0.5 0 0 0 0.050  0.045 0.047
HT Normal-CS 0.25 0 0 0 0.104  0.101 0.107
0.5 0 0 0 0.091 0.089 0.091
Normal-AR 0.25 0 0 0 0.124  0.121 0.127
0.5 0 0 0 0.100  0.095 0.099
t-CS 025 0 0.001 0.001 0.183  0.182 0.187
0.5 0 0 0 0.114  0.110 0.115
t-AR 025 0 0.002 0.002 0.193  0.192 0.193
0.5 0 0 0 0.124  0.123 0.125
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