Supplementary Materials for 'Discovering Model Structure for Partially Linear Model'

Xin He[†] and Junhui Wang[‡]

† School of Statistics and Management Shanghai University of Finance and Economics

> [‡] Department of Mathematics City University of Hong Kong

1 Updating g and H

1.1 Update g

Denote $g_l(\mathbf{x}) = \sum_{i=1}^n \alpha_i^l K(\mathbf{x}_i, \mathbf{x}) = \boldsymbol{\alpha}_l^T \mathbf{K}_{\mathbf{x}}$, where $\boldsymbol{\alpha}_l = (\alpha_1^l, ..., \alpha_n^l)^T \in \mathcal{R}^n$. Let $\boldsymbol{\alpha} = (\boldsymbol{\alpha}_1^T, ..., \boldsymbol{\alpha}_p^T)^T \in \mathcal{R}^{np}$, we have $\mathbf{g}(\mathbf{x}) = (g_1(\mathbf{x}), ..., g_p(\mathbf{x}))^T = (\boldsymbol{\alpha}_1^T \mathbf{K}_{\mathbf{x}}, ..., \boldsymbol{\alpha}_p^T \mathbf{K}_{\mathbf{x}})^T = \boldsymbol{\alpha}^T \mathbf{I}_p \otimes \mathbf{K}_{\mathbf{x}}$ and $\lambda_0 \sum_{l=1}^p \|g_l\|_{\mathcal{H}_K}^2 = \lambda_0 \boldsymbol{\alpha}^T \mathbf{I}_p \otimes \mathbf{K} \boldsymbol{\alpha}$, where \mathbf{I}_p is the p-dimensional identity matrix. Assuming the current iteration time is t, then minimizing (4) in the main paper is equivalent to solve

$$0 = \nabla_{\boldsymbol{\alpha}} \left(\mathcal{E}_{\mathcal{Z}^n}(\mathbf{g}, \mathbf{H}^t) + \lambda_0 \sum_{l=1}^p \|g_l\|_{\mathcal{H}_K}^2 \right)$$

$$= \frac{2}{n(n-1)} \sum_{i,j=1}^n w_{ij} \left(\left(\mathbf{I}_p \otimes \mathbf{K}_{\mathbf{x}_i}(\mathbf{x}_i - \mathbf{x}_j) \right) \left(\mathbf{I}_p \otimes \mathbf{K}_{\mathbf{x}_i}(\mathbf{x}_i - \mathbf{x}_j) \right)^T \right) \boldsymbol{\alpha} + 2\lambda_0 \mathbf{I}_p \otimes \mathbf{K} \boldsymbol{\alpha}$$

$$+ \frac{2}{n(n-1)} \sum_{i,j=1}^n w_{ij} \left(y_i - y_j + \frac{1}{2} (\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{H}^t(\mathbf{x}_i) (\mathbf{x}_i - \mathbf{x}_j) \right) \mathbf{I}_p \otimes \mathbf{K}_{\mathbf{x}_i}(\mathbf{x}_j - \mathbf{x}_i).$$

Then we get the explicit solution for α as

$$\boldsymbol{\alpha}^{t+1} = \left(\frac{1}{n(n-1)} \sum_{i,j=1}^{n} w_{ij} \left((\mathbf{I}_p \otimes \mathbf{K}_{\mathbf{x}_i} (\mathbf{x}_i - \mathbf{x}_j)) (\mathbf{I}_p \otimes \mathbf{K}_{\mathbf{x}_i} (\mathbf{x}_i - \mathbf{x}_j))^T \right) + \lambda_0 \mathbf{I}_p \otimes \mathbf{K} \right)^{-1}$$

$$\left(\frac{1}{n(n-1)} \sum_{i,j=1}^{n} w_{ij} \left(y_i - y_j + \frac{1}{2} (\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{H}^t (\mathbf{x}_i) (\mathbf{x}_i - \mathbf{x}_j) \right) \mathbf{I}_p \otimes \mathbf{K}_{\mathbf{x}_i} (\mathbf{x}_i - \mathbf{x}_j) \right).$$

1.2 Update H

For the one-homogeneous functional $\Omega(\cdot)$, $\Omega(\vartheta \mathbf{H}) = \vartheta \Omega(\mathbf{H})$ for $\vartheta > 0$ and $\mathbf{H} \in \mathcal{H}_K^{p \times p}$, the equivalent relationship between the proximal operator and the projection operator is given by the Moreau identity (Combettes and Wajs, 2005),

$$\operatorname{prox}_{\mu\Omega} = I - \pi_{\mu C_n},\tag{S1}$$

where $C_n = (\nabla \Omega(\mathbf{0}))$ is the subdifferential of Ω at the origin, and $\pi_{\mu C_n} : \mathcal{H}_K^{p \times p} \to \mathcal{H}_K^{p \times p}$ is a projection on μC_n . Furthermore, applying the Proposition 2 of Rosasco et al. (2009) and the identity (S1), the proximal operator can be computed as

$$[I - \pi_{\mu C_n}(\mathbf{H})]_{ll'} = [\mathbf{H}]_{ll'} - \min\{\mu \lambda_{ll'}, \|[\mathbf{H}]_{ll'}\|_{\mathcal{H}_K}\} \frac{[\mathbf{H}]_{ll'}}{\|[\mathbf{H}]_{ll'}\|_{\mathcal{H}_K}} = \frac{[\mathbf{H}]_{ll'}}{\|[\mathbf{H}]_{ll'}\|_{\mathcal{H}_K}} (\|[\mathbf{H}]_{ll'}\|_{\mathcal{H}_K} - \mu \lambda_{ll'})_+,$$

where $\lambda_{ll'} = \lambda_1 \pi_{ll'}$. In our algorithm, we set $\mu = 1/D$, where D is the Lipschitz constant. Then following (S1), the proximal operator at the t-th iteration can be expressed explicitly as

$$[\mathbf{H}^{t+1}]_{ll'} = \frac{[\bar{\mathbf{H}}^t]_{ll'}}{\|[\bar{\mathbf{H}}]_{ll'}\|_{\mathcal{H}_K}} (\|[\bar{\mathbf{H}}]_{ll'}\|_{\mathcal{H}_K} - \frac{\lambda_{ll'}}{D})_+,$$

where $\bar{\mathbf{H}}^{t+1} = \widetilde{\mathbf{H}}^t - \frac{1}{D} \nabla_{\mathbf{H}} \mathcal{E}_{\mathcal{Z}^n}(\mathbf{g}^{t+1}, \widetilde{\mathbf{H}}^t), \widetilde{\mathbf{H}}^t = \mathbf{H}^t + \frac{t-1}{t+2} (\mathbf{H}^t - \mathbf{H}^{t-1})$ and

$$\nabla_{\mathbf{H}} \mathcal{E}_{\mathcal{Z}^n}(\mathbf{g}^{t+1}, \mathbf{H}^t) = \frac{1}{n(n-1)} \sum_{i,j=1}^n w_{ij} \left(y_i - y_j - \mathbf{g}^{t+1}(\mathbf{x}_i)^T (\mathbf{x}_i - \mathbf{x}_j) + \frac{1}{2} (\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{H}^t(\mathbf{x}_i) (\mathbf{x}_i - \mathbf{x}_j) \right)$$

$$\mathbf{K}_{x_i}\Big(\big((\mathbf{x}_i-\mathbf{x}_j)\otimes\mathbf{1}_p\big)^T\odot \big(\mathbf{1}_p^T\otimes (\mathbf{x}_i-\mathbf{x}_j)^T\big)\Big).$$

Here \odot denotes the componentwise product and $\mathbf{1}_p$ is a *p*-vector with all ones.

2 Technical proofs

Proposition 1. Assume $\mathbf{g}^* \in \mathcal{H}_K^p$ and $\mathbf{H}^* \in \mathcal{H}_K^{p \times p}$. Let $\varphi_1(\mathcal{Z}^n) = \mathcal{E}(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) - \mathcal{E}_{\mathcal{Z}^n}(\widehat{\mathbf{g}}, \widehat{\mathbf{H}})$, $\varphi_2(\mathcal{Z}^n) = \mathcal{E}_{\mathcal{Z}^n}(\mathbf{g}^*, \mathbf{H}^*) - \mathcal{E}(\mathbf{g}^*, \mathbf{H}^*)$ and $\Lambda(\lambda_0, \lambda_1, \mathbf{K}) = \mathcal{E}(\mathbf{g}^*, \mathbf{H}^*) + \lambda_0 \sum_{l=1}^p \|g_l^*\|_{\mathcal{H}_K}^2 + \lambda_1 \sum_{l,l'=1}^p \pi_{ll'} \|H_{ll'}^*\|_{\mathcal{H}_K}$. Then the following inequality holds

$$\mathcal{E}(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) + J(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) \le \varphi_1(\mathcal{Z}^n) + \varphi_2(\mathcal{Z}^n) + \Lambda(\lambda_0, \lambda_1, \mathbf{K}).$$

Proof of Proposition 1. Simple algebra yields that

$$\begin{split} &\mathcal{E}(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) + J(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) \\ &= \mathcal{E}(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) + \mathcal{E}_{\mathcal{Z}^{n}}(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) - \mathcal{E}_{\mathcal{Z}^{n}}(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) + J(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) \\ &\leq \mathcal{E}(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) - \mathcal{E}_{\mathcal{Z}^{n}}(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) + \mathcal{E}_{\mathcal{Z}^{n}}(\mathbf{g}^{*},\mathbf{H}^{*}) + J(\mathbf{g}^{*},\mathbf{H}^{*}) \\ &= \mathcal{E}(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) - \mathcal{E}_{\mathcal{Z}^{n}}(\widehat{\mathbf{g}},\widehat{\mathbf{H}}) + \mathcal{E}_{\mathcal{Z}^{n}}(\mathbf{g}^{*},\mathbf{H}^{*}) + \mathcal{E}(\mathbf{g}^{*},\mathbf{H}^{*}) - \mathcal{E}(\mathbf{g}^{*},\mathbf{H}^{*}) + J(\mathbf{g}^{*},\mathbf{H}^{*}) \\ &= \mathcal{G}_{1}(\mathcal{Z}^{n}) + \mathcal{G}_{2}(\mathcal{Z}^{n}) + \mathcal{E}(\mathbf{g}^{*},\mathbf{H}^{*}) + \lambda_{0} \sum_{l=1}^{p} \|g_{l}^{*}\|_{\mathcal{H}_{K}}^{2} + \lambda_{1} \sum_{l'=1}^{p} \pi_{ll'} \|H_{ll'}^{*}\|_{\mathcal{H}_{K}}, \end{split}$$

where the inequality comes from the definition of $(\hat{\mathbf{g}}, \hat{\mathbf{H}})$. Next, we consider the following function space

$$\mathcal{F}_{r_n} = \{ \mathbf{g} \in \mathcal{H}_K^p, \mathbf{H} \in \mathcal{H}_K^{p \times p} : \lambda_0 \sum_{l=1}^p \|g_l\|_{\mathcal{H}_K} \le r_n, \lambda_1 \sum_{l,l'=1}^p \pi_{ll'} \|H_{ll'}\|_{\mathcal{H}_K} \le r_n \},$$

for some positive $r_n \geq \frac{1}{n(n-1)} \sum_{i,j=1}^n (y_i - y_j)^2$. By the definition of $(\widehat{\mathbf{g}}, \widehat{\mathbf{H}})$, $\mathcal{E}_{\mathcal{Z}^n}(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) + J(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) \leq \mathcal{E}_{\mathcal{Z}^n}(\mathbf{0}, \mathbf{0}) + J(\mathbf{0}, \mathbf{0}) \leq \frac{1}{n(n-1)} \sum_{i,j=1}^n (y_i - y_j)^2$, implying that $(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) \in \mathcal{F}_{r_n}$. Denote

$$S(\mathcal{Z}^n, r_n) = \sup_{(\mathbf{g}, \mathbf{H}) \in \mathcal{F}_{r_n}} |\mathcal{E}(\mathbf{g}, \mathbf{H}) - \mathcal{E}_{\mathcal{Z}^n}(\mathbf{g}, \mathbf{H})|.$$

By McDiarmid's inequality (McDiarmid, 1989), we obtain the upper bound of $S(\mathbb{Z}^n, r_n)$.

Lemma 1. Suppose that Assumption 3 is met. If $|y| \leq M_n$ then for any $\epsilon > 0$,

$$P(|S(\mathcal{Z}^n, r_n) - E(S(\mathcal{Z}^n, r_n))| \ge \epsilon) \le 2 \exp\left(-\frac{n\epsilon^2}{32\left(M_n + c_{\mathbf{x}}\kappa \left(pr_n\lambda_0^{-1}\right)^{1/2} + c_{\mathbf{x}}^2\kappa r_n\lambda_1^{-1}c_2^{-1}\right)^4}\right),$$

where $c_{\mathbf{x}} = \max_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x}\|_{\infty}$ and $\kappa = \sup_{x \in \mathcal{X}} (K(\mathbf{x}, \mathbf{x}))^{1/2}$. **Proof of lemma 1.** Denote $\mathcal{Z}^{n'}$ as a sample that is the same as \mathcal{Z}^n except the *i*-th entry replaced by (x_i', y_i') , then we have

$$S(\mathcal{Z}^{n}, r_{n}) - S(\mathcal{Z}^{n'}, r_{n}) = \sup_{(\mathbf{g}, \mathbf{H})} |\mathcal{E}(\mathbf{g}, \mathbf{H}) - \mathcal{E}_{\mathcal{Z}^{n}}(\mathbf{g}, \mathbf{H})| - \sup_{(\mathbf{g}, \mathbf{H})} |\mathcal{E}(\mathbf{g}, \mathbf{H}) - \mathcal{E}_{\mathcal{Z}^{n'}}(\mathbf{g}, \mathbf{H})|$$

$$\leq \sup_{(\mathbf{g}, \mathbf{H})} (|\mathcal{E}(\mathbf{g}, \mathbf{H}) - \mathcal{E}_{\mathcal{Z}^{n}}(\mathbf{g}, \mathbf{H})| - |\mathcal{E}(\mathbf{g}, \mathbf{H}) - \mathcal{E}_{\mathcal{Z}^{n'}}(\mathbf{g}, \mathbf{H})|)$$

$$\leq \sup_{(\mathbf{g}, \mathbf{H})} |\mathcal{E}_{\mathcal{Z}^{n}}(\mathbf{g}, \mathbf{H}) - \mathcal{E}_{\mathcal{Z}^{n'}}(\mathbf{g}, \mathbf{H})|,$$

where the first inequality is trivial and the second inequality follows from the triangle inequality. Now we decompose $\mathcal{E}_{\mathcal{Z}^n}(\mathbf{g}, \mathbf{H})$ as

$$\mathcal{E}_{\mathcal{Z}^n}(\mathbf{g}, \mathbf{H}) = \frac{1}{n(n-1)} \Big(\sum_{t \neq i, j \neq i}^n h(\mathbf{z}_t, \mathbf{z}_j) + \sum_{j=1, j \neq i}^n h(\mathbf{z}_i, \mathbf{z}_j) + \sum_{t=1, t \neq i}^n h(\mathbf{z}_t, \mathbf{z}_i) \Big),$$

where
$$h(\mathbf{z}_i, \mathbf{z}_j) = w_{ij} (y_i - y_j - \mathbf{g}(\mathbf{x}_i)^T (\mathbf{x}_i - \mathbf{x}_j) + \frac{1}{2} (\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{H}(\mathbf{x}_i) (\mathbf{x}_i - \mathbf{x}_j))^2$$
 and $\mathbf{z}_i = (\mathbf{x}_i, y_i)$.

Then

$$\begin{aligned} &|\mathcal{E}_{\mathcal{Z}^{n}}(\mathbf{g}, \mathbf{H}) - \mathcal{E}_{\mathcal{Z}^{n'}}(\mathbf{g}, \mathbf{H})| \\ &= \frac{1}{n(n-1)} \left| \sum_{j=1, j \neq i}^{n} h(\mathbf{z}_{i}, \mathbf{z}_{j}) - \sum_{j=1, j \neq i'}^{n} h(\mathbf{z}_{i'}, \mathbf{z}_{j}) + \sum_{t=1, t \neq i}^{n} h(\mathbf{z}_{t}, \mathbf{z}_{i}) - \sum_{t=1, t \neq i'}^{n} h(\mathbf{z}_{t}, \mathbf{z}_{i'}) \right| \\ &\leq \frac{4}{n} \left(M_{n} + c_{\mathbf{x}} \sum_{l=1}^{p} ||g_{l}(\mathbf{x})||_{\infty} + c_{\mathbf{x}}^{2} \sum_{l, l'} ||H_{ll'}(\mathbf{x})||_{\infty} \right)^{2} \\ &\leq \frac{8}{n} \left(M_{n} + c_{\mathbf{x}} \sum_{l=1}^{p} \langle g_{l}, \mathbf{K}_{x} \rangle_{\mathcal{H}_{K}} + c_{\mathbf{x}}^{2} \sum_{l, l'=1}^{p} \langle H_{ll'}, \mathbf{K}_{x} \rangle_{\mathcal{H}_{K}} \right)^{2} \\ &\leq \frac{8}{n} \left(M_{n} + c_{\mathbf{x}} \kappa \sum_{l=1}^{p} ||g_{l}||_{\mathcal{H}_{K}} + c_{\mathbf{x}}^{2} \kappa \sum_{l, l'=1}^{p} ||H_{ll'}||_{\mathcal{H}_{K}} \right)^{2} \\ &\leq \frac{8}{n} \left(M_{n} + c_{\mathbf{x}} \kappa \left(pr_{n} \lambda_{0}^{-1} \right)^{1/2} + c_{\mathbf{x}}^{2} \kappa r_{n} \lambda_{1}^{-1} c_{2}^{-1} \right)^{2}, \end{aligned}$$

where the first inequality is trivial, the second inequality follows from the property of RKHS, and the last two inequalities follow from Cauchy-Schwartz inequality, the definition of the \mathcal{F}_{r_n} and Assumption 3. Therefore, we have

$$\left| \mathcal{E}_{\mathcal{Z}^n}(\mathbf{g}, \mathbf{H}) - \mathcal{E}_{\mathcal{Z}^{n'}}(\mathbf{g}, \mathbf{H}) \right| \leq \frac{8}{n} \left(M_n + c_{\mathbf{x}} \kappa \left(p r_n \lambda_0^{-1} \right)^{1/2} + c_{\mathbf{x}}^2 \kappa r_n \lambda_1^{-1} c_2^{-1} \right)^2.$$

Finally, by McDiarmid's Inequality, we have

$$P(|S(\mathcal{Z}^n, r_n) - E(S(\mathcal{Z}^n, r_n))| \ge \epsilon) \le 2 \exp\left(-\frac{n\epsilon^2}{32\left(M_n + c_{\mathbf{x}}\kappa\left(pr_n\lambda_0^{-1}\right)^{1/2} + c_{\mathbf{x}}^2\kappa r_n\lambda_1^{-1}c_2^{-1}\right)^4}\right).$$

This completes the proof of the desired lemma.

Lemma 2. If $|y| \leq M_n$, there exists a constant $b_{\kappa,\mathbf{x}}$ such that

$$\mathbb{E}\left(S(\mathcal{Z}^n, r_n)\right) \le b_{\kappa, \mathbf{x}} n^{-1/2} \left(M_n + \left(p r_n \lambda_0^{-1}\right)^{1/2} + r_n \lambda_1^{-1}\right)^2.$$

Proof of Lemma 2. For simplicity, denote

$$\xi(\mathbf{x}, y, \mathbf{u}, v) = w(\mathbf{x} - \mathbf{u}) \left(y - v - \mathbf{g}(\mathbf{x})^T (\mathbf{x} - \mathbf{u}) + \frac{1}{2} (\mathbf{x} - \mathbf{u})^T \mathbf{H}(\mathbf{x}) (\mathbf{x} - \mathbf{u}) \right)^2,$$

where (\mathbf{u}, v) is an independent copy of (\mathbf{x}, y) . Then

$$\begin{split} &S(\mathcal{Z}, r_n) = \sup_{(\mathbf{g}, \mathbf{H}) \in \mathcal{F}_{r_n}} \left| \mathcal{E}_{\mathcal{Z}}(\mathbf{g}, \mathbf{H}) - \mathcal{E}(\mathbf{g}, \mathbf{H}) \right| \\ &\leq \sup_{(\mathbf{g}, \mathbf{H}) \in \mathcal{F}_{r_n}} \left| \mathcal{E}(\mathbf{g}, \mathbf{H}) - \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{\xi}(\mathbf{x}, y, \mathbf{x}_j, y_j) \right| + \sup_{(\mathbf{g}, \mathbf{H}) \in \mathcal{F}_{r_n}} \left| \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{\xi}(\mathbf{x}, y, \mathbf{x}_j, y_j) - \mathcal{E}_{\mathcal{Z}}(\mathbf{g}, \mathbf{H}) \right| \\ &\leq \sup_{(\mathbf{g}, \mathbf{H}) \in \mathcal{F}_{r_n}} \mathbb{E}_{(\mathbf{x}, y)} \left| \mathbb{E}_{(\mathbf{u}, v)} \xi(\mathbf{x}, y, \mathbf{u}, v) - \frac{1}{n} \sum_{j=1}^{n} \xi(\mathbf{x}, y, \mathbf{x}_j, y_j) \right| \\ &+ \sup_{(\mathbf{g}, \mathbf{H}) \in \mathcal{F}_{r_n}} \frac{1}{n} \sum_{j=1}^{n} \left| \mathbb{E}_{(\mathbf{u}, v)} \xi(\mathbf{x}, y, \mathbf{u}, v) - \frac{1}{n} \sum_{j=1}^{n} \xi(\mathbf{x}, y, \mathbf{x}_j, y_j) \right| \\ &\leq \mathbb{E}_{(\mathbf{x}, y)} \sup_{(\mathbf{g}, \mathbf{H}) \in \mathcal{F}_{r_n}} \left| \mathbb{E}_{(\mathbf{u}, v)} \xi(\mathbf{x}, y, \mathbf{u}, v) - \frac{1}{n} \sum_{j=1}^{n} \xi(\mathbf{x}, y, \mathbf{x}_j, y_j) \right| \\ &+ \sup_{(\mathbf{g}, \mathbf{H}) \in \mathcal{F}_{r_n}} \frac{1}{n} \sum_{j=1}^{n} \sup_{(\mathbf{u}, v) \in \mathcal{X}} \left| \mathbb{E}_{(\mathbf{x}, y)} \xi(\mathbf{x}, y, \mathbf{u}, v) - \frac{1}{(n-1)} \sum_{i \neq j}^{n} \xi(\mathbf{x}_i, y_i, \mathbf{u}, v) \right| \\ &\stackrel{\text{def}}{=} S_1(\mathcal{Z}) + S_2(\mathcal{Z}), \end{split}$$

where the first inequality follows from the triangle inequality, and the next two inequalities follow from the definition of $\mathcal{E}(\mathbf{g}, \mathbf{H})$ and Jensen's inequality, respectively.

Next, we use Rademacher complexity (Bartlett and Mendelson, 2002) to get the upper bounds of $E(S_1)$ and $E(S_2)$. In fact, there holds

$$\mathbb{E}[S_{1}(\mathcal{Z})] = \mathbb{E}_{\mathcal{Z}}\mathbb{E}_{(\mathbf{x},\mathbf{y})} \sup_{(\mathbf{g},\mathbf{H})\in\mathcal{F}_{r_{n}}} \left| \mathbb{E}_{(\mathbf{u},v)}\xi(\mathbf{x},y,\mathbf{u},v) - \frac{1}{n} \sum_{j=1}^{n} \xi(\mathbf{x},y,\mathbf{x}_{j},y_{j}) \right| \\
\leq 2\mathbb{E}_{(\mathbf{x},\mathbf{y})}\mathbb{E}_{\mathcal{Z},\sigma} \left(\sup_{(\mathbf{g},\mathbf{H})\in\mathcal{F}_{r_{n}}} \left| \frac{1}{n} \sum_{j=1}^{n} \sigma_{j}\xi(\mathbf{x},y,\mathbf{x}_{j},y_{j}) \right| \right) \\
\leq 4 \left(M_{n} + c_{\mathbf{x}}\kappa \left(pr_{n}\lambda_{0}^{-1}c_{2}^{-1} \right)^{1/2} + c_{\mathbf{x}}^{2}\kappa r_{n}\lambda_{1}^{-1}c_{2}^{-1} \right) \mathbb{E}_{(\mathbf{x},\mathbf{y})}\mathbb{E}_{\mathcal{Z},\sigma} \left(\sup_{(\mathbf{g},\mathbf{H})\in\mathcal{F}_{r_{n}}} \left| \frac{1}{n} \sum_{j=1}^{n} \sigma_{j} \left(y - y_{j} - \mathbf{g}(\mathbf{x})^{T}(\mathbf{x} - \mathbf{x}_{j}) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_{j})^{T}\mathbf{H}(\mathbf{x})(\mathbf{x} - \mathbf{x}_{j}) \right) \right| \right) \\
\leq 4 \left(M_{n} + c_{\mathbf{x}}\kappa \left(pr_{n}\lambda_{0}^{-1}c_{2}^{-1} \right)^{1/2} + c_{\mathbf{x}}^{2}\kappa r_{n}\lambda_{1}^{-1}c_{2}^{-1} \right) \left(\mathbb{E}_{(\mathbf{x},\mathbf{y})}\mathbb{E}_{\mathcal{Z},\sigma} \left(\sup_{(\mathbf{g},\mathbf{H})\in\mathcal{F}_{r_{n}}} \left| \frac{1}{n} \sum_{j=1}^{n} \sigma_{j} \right| \right) \right) \\
\leq 4 \left(\mathbf{g}(\mathbf{x})^{T}(\mathbf{x} - \mathbf{x}_{j}) - \frac{1}{2}(\mathbf{x} - \mathbf{x}_{j})^{T}\mathbf{H}(\mathbf{x})(\mathbf{x} - \mathbf{x}_{j}) \right) + 2n^{-1/2}M_{n} \right) \\
\leq \frac{b_{\kappa,\mathbf{x}}}{2} n^{-1/2} \left(M_{n} + \left(pr_{n}\lambda_{0}^{-1} \right)^{1/2} + r_{n}\lambda_{1}^{-1} \right)^{2},$$

where σ_j 's are a sequence of Rademacher variables. Similarly, we have

$$\mathbb{E}S_2(\mathcal{Z}) \le \frac{b_{\kappa, \mathbf{x}}}{2} n^{-1/2} \left(M_n + \left(p r_n \lambda_0^{-1} \right)^{1/2} + r_n \lambda_1^{-1} \right)^2,$$

which implies the desired inequality.

Proposition 2. If $|y| \leq M_n$ and $\frac{1}{n(n-1)} \sum_{i,j=1}^n (y_i - y_j)^2 \leq M_0$, there exists a constant b_1 such that with probability at least $1 - \frac{\delta_n}{2}$,

$$\varphi_1(\mathcal{Z}^n) \le b_1 \left(\frac{1}{n} \log \frac{4}{\delta_n}\right)^{1/2} \left(M_n + \left(pM_0\lambda_0^{-1}\right)^{1/2} + M_0\lambda_1^{-1}\right)^2.$$

Proof of Proposition 2. Since $\frac{1}{n(n-1)}\sum_{i,j=1}^n(y_i-y_j)^2\leq M_0$, it implies that $(\widehat{\mathbf{g}},\widehat{\mathbf{H}})\in\mathcal{F}_{M_0}$. By Lemma 1, we have with probability at least $1-\frac{\delta_n}{2}$,

$$\varphi_1(\mathcal{Z}^n) \le E[S(\mathcal{Z}^n, r_n)] + \left(\frac{32}{n} \log \frac{4}{\delta_n}\right)^{1/2} \left(M_n + c_{\mathbf{x}} \kappa \left(pM_0 \lambda_0^{-1}\right)^{1/2} + c_{\mathbf{x}}^2 \kappa M_0 \lambda_1^{-1} c_2^{-1}\right)^2.$$

The desired inequality follows immediately after Lemma 2.

Now we derive the upper bound of $\mathcal{E}(\mathbf{g}^*, \mathbf{H}^*)$. By Assumption 1, for some positive constant b_2 we have

$$\mathcal{E}(\mathbf{g}^*, \mathbf{H}^*) - 2\sigma_s^2 \le \iint w(\mathbf{x}, \mathbf{u}) c_0^2 \|\mathbf{x} - \mathbf{u}\|_2^6 d\rho_{\mathbf{x}} d\rho_{\mathbf{u}} \le b_2 s^{p+6} \int e^{-\mathbf{t}^T \mathbf{t}} \mathbf{t}^T \mathbf{t} d\mathbf{t},$$

where $b_2 = c_0^2 c_4$, $\mathbf{t} = (\mathbf{u} - \mathbf{x})/s$, and the inequalities directly follow from Assumptions 1 and 2.

Lemma 3. Suppose that the assumptions of Theorem 1 are met. If $|y_n| \le M_n$ and $\frac{1}{n(n-1)} \sum_{i,j=1}^n (y_i - y_j)^2 \le M_0$, there exists $b_3 > 0$ such that with probability at least $1 - \delta_n$,

$$\mathcal{E}(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) + J(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) - 2\sigma_s^2 \le b_3 \left(\log \frac{4}{\delta_n} \right)^{1/2} \left(n^{-1/2} M_n^2 + n^{-1/2} M_0 \lambda_0^{-1} + n^{-1/2} M_0^2 \lambda_1^{-2} + s^{p+6} + \lambda_0 + \lambda_1 \right).$$

Proof of Lemma 3. By Proposition 1, we have

$$\Lambda(\lambda_0, \lambda_1, \mathbf{K}) - 2\sigma_s^2 = \mathcal{E}(\mathbf{g}^*, \mathbf{H}^*) - 2\sigma_s^2 + \lambda_0 \sum_{l=1}^p \|g_l^*\|_{\mathcal{H}_K}^2 + \lambda_1 \sum_{l,l'}^p \pi_{ll'} \|H_{ll'}^*\|_{\mathcal{H}_K}
\leq b_2 s^{p+6} \int e^{-\mathbf{t}^T \mathbf{t}} \mathbf{t}^T \mathbf{t} d\mathbf{t} + \lambda_0 \sum_{l=1}^p \|g_l^*\|_{\mathcal{H}_K}^2 + \lambda_1 \sum_{l,l'}^p \pi_{ll'} \|H_{ll'}^*\|_{\mathcal{H}_K}
\leq b_4 (s^{p+6} + \lambda_0 + \lambda_1),$$

where $b_4 = \max\{b_2 \int e^{-\mathbf{t}^T \mathbf{t}} \mathbf{t}^T \mathbf{t} d\mathbf{t}, \sum_{l=1}^p \|g_l^*\|_{\mathcal{H}_K}^2, \sum_{l,l'=1}^p \pi_{ll'} \|H_{ll'}^*\|_{\mathcal{H}_K}\}$. Following a similar proof of Lemma 1, we have with probability at least $1 - \frac{\delta_n}{2}$,

$$\varphi_{2}(\mathcal{Z}^{n}) \leq \left(\frac{32}{n}\log\frac{4}{\delta_{n}}\right)^{1/2} \left(M_{n} + c_{\mathbf{x}}\kappa\sum_{l=1}^{p} \|g_{l}^{*}\|_{\mathcal{H}_{K}} + c_{\mathbf{x}}^{2}\kappa\sum_{l,l'=1}^{p} \|H_{ll'}^{*}\|_{\mathcal{H}_{K}}\right)^{2}$$

$$\leq 4\left(\frac{32}{n}\log\frac{4}{\delta_{n}}\right)^{1/2} M_{n}^{2},$$

where the second inequality follows from the fact that $||g_l^*||_{\mathcal{H}_K}$ and $||H_{ll'}^*||_{\mathcal{H}_K}$ are smaller than M_n when n is sufficient large. Together with Lemma 2 and Proposition 2, there exists a constant b_5 such that with probability at least $1 - \delta_n$,

$$\mathcal{E}(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) + J(\widehat{\mathbf{g}}, \widehat{\mathbf{H}}) - 2\sigma_s^2 \le \varphi_1(\mathcal{Z}^n) + \varphi_2(\mathcal{Z}^n) + \Lambda_n(\lambda_0, \lambda_1, \mathbf{K}) - 2\sigma_s^2$$

$$\le b_5 \left(\log \frac{4}{\delta_n} \right)^{1/2} \left(n^{-1/2} M_n^2 + n^{-1/2} p M_0 \lambda_0^{-1} + n^{-1/2} M_0^2 \lambda_1^{-2} c_2^{-2} + s^{p+6} + \lambda_0 + \lambda_1 \right),$$

which immediately leads to the desired upper bound with some constant b_3 .

Lemma 4. Suppose that Assumption 1 is met, $g^* \in \mathcal{H}_K^p$ and $\mathbf{H}^* \in \mathcal{H}_K^{p \times p}$. There exists some constant b_6 such that for any $g \in \mathcal{H}_K^p$ and $\mathbf{H} \in \mathcal{H}_K^{p \times p}$,

$$\int_{\mathcal{X}_s} \|\mathbf{H}(\mathbf{x}) - \mathbf{H}^*(\mathbf{x})\|_F^2 d\rho_{\mathbf{x}} \le b_6 \left(s + s^{-(p+5)} (\mathcal{E}(\mathbf{g}, \mathbf{H}) - 2\sigma_s^2)\right),$$

where $\mathcal{X}_s = \{ \mathbf{x} \in \mathcal{X} : d(\mathbf{x}, \partial \mathcal{X}) > s, p(\mathbf{x}) > s + c_1 s^{\theta} \}.$

Proof of Lemma 4. Let $M_1(\mathbf{x}, \mathbf{u}) = f^*(\mathbf{x}) - f^*(\mathbf{u}) - \mathbf{g}^*(\mathbf{x})^T(\mathbf{x} - \mathbf{u}) + \frac{1}{2}(\mathbf{x} - \mathbf{u})^T \mathbf{H}^*(\mathbf{x})(\mathbf{x} - \mathbf{u})$, and $M_2(\mathbf{x}, \mathbf{u}) = (\mathbf{g}(\mathbf{x}) - \mathbf{g}^*(\mathbf{x}))^T (\mathbf{x} - \mathbf{u}) - \frac{1}{2}(\mathbf{x} - \mathbf{u})^T (\mathbf{H}(\mathbf{x}) - \mathbf{H}^*(\mathbf{x}))(\mathbf{x} - \mathbf{u})$. Then we have

$$\mathcal{E}(\mathbf{g}, \mathbf{H}) - 2\sigma_s^2 = \iint w(\mathbf{x}, \mathbf{u}) \left(M_1(\mathbf{x}, \mathbf{u}) - M_2(\mathbf{x}, \mathbf{u}) \right)^2 d\rho_{\mathbf{u}} d\rho_{\mathbf{x}}$$

$$\geq \iint w(\mathbf{x}, \mathbf{u}) (M_2(\mathbf{x}, \mathbf{u}))^2 \rho_{\mathbf{u}} \rho_{\mathbf{x}} - 2 \iint w(\mathbf{x}, \mathbf{u}) M_1(\mathbf{x}, \mathbf{u}) M_2(\mathbf{x}, \mathbf{u}) d\rho_{\mathbf{u}} d\rho_{\mathbf{x}}.$$

By Assumption 1, we have $|M_1(\mathbf{x}, \mathbf{u})| \le c_0 ||\mathbf{x} - \mathbf{u}||^3$, and then

$$\iint w(\mathbf{x}, \mathbf{u}) (M_1(\mathbf{x}, \mathbf{u}))^2 d\rho_{\mathbf{u}} d\rho_{\mathbf{x}} \leq \iint w(\mathbf{x}, \mathbf{u}) c_0^2 \|\mathbf{x} - \mathbf{u}\|^6 d\rho_{\mathbf{u}} d\rho_{\mathbf{x}} \leq b_7^2 s^{p+6},$$

for some constant b_7 . This inequality, together with Cauchy-Schwarz inequality, yields that

$$\iint w(\mathbf{x}, \mathbf{u}) M_{1}(\mathbf{x}, \mathbf{u}) M_{2}(\mathbf{x}, \mathbf{u}) d\rho_{\mathbf{u}} d\rho_{\mathbf{x}}$$

$$\leq \left(\iint w(\mathbf{x}, \mathbf{u}) (M_{1}(\mathbf{x}, \mathbf{u}))^{2} d\rho_{\mathbf{u}} d\rho_{\mathbf{x}} \right)^{1/2} \left(\iint w(\mathbf{x}, \mathbf{u}) (M_{2}(\mathbf{x}, \mathbf{u}))^{2} d\rho_{\mathbf{u}} d\rho_{\mathbf{x}} \right)^{1/2}$$

$$\leq b_{7} s^{p/2+3} \left(\iint w(\mathbf{x}, \mathbf{u}) (M_{2}(\mathbf{x}, \mathbf{u}))^{2} d\rho_{\mathbf{u}} d\rho_{\mathbf{x}} \right)^{1/2}.$$

Next, we turn to bound $\iint w(\mathbf{x}, \mathbf{u}) (M_2(\mathbf{x}, \mathbf{u}))^2 d\rho_{\mathbf{u}} d\rho_{\mathbf{x}}$. Specifically,

$$Q(\mathbf{g}, \mathbf{H}) = \iint w(\mathbf{x}, \mathbf{u}) (M_2(\mathbf{x}, \mathbf{u}))^2 d\rho_{\mathbf{x}} d\rho_{\mathbf{u}}$$

$$\geq \frac{1}{4} \int_{\mathcal{X}_s} \int_{\|\mathbf{u} - \mathbf{x}\| < s} w(\mathbf{x}, \mathbf{u}) \left((\mathbf{x} - \mathbf{u})^T (\mathbf{H}(\mathbf{x}) - \mathbf{H}^*(\mathbf{x})) (\mathbf{x} - \mathbf{u}) \right)^2 p(\mathbf{u}) d\mathbf{u} d\rho_{\mathbf{x}} +$$

$$\int_{\mathcal{X}_s} \int_{\|\mathbf{u} - \mathbf{x}\| < s} w(\mathbf{x}, \mathbf{u}) \left((\mathbf{g}(\mathbf{x}) - \mathbf{g}^*(\mathbf{x}))^T (\mathbf{x} - \mathbf{u}) \right)^2 p(\mathbf{u}) d\mathbf{u} d\rho_{\mathbf{x}} +$$

$$\int_{\mathcal{X}_s} \int_{\|\mathbf{u} - \mathbf{x}\| < s} w(\mathbf{x}, \mathbf{u}) \left((\mathbf{x} - \mathbf{u})^T (\mathbf{H}^*(\mathbf{x}) - \mathbf{H}(\mathbf{x})) (\mathbf{x} - \mathbf{u}) \right) \left((\mathbf{g}(\mathbf{x}) - \mathbf{g}^*(\mathbf{x}))^T (\mathbf{x} - \mathbf{u}) \right) p(\mathbf{u}) d\mathbf{u} d\rho_{\mathbf{x}}$$

$$= Q_1(\mathbf{g}, \mathbf{H}) + Q_2(\mathbf{g}, \mathbf{H}) + Q_3(\mathbf{g}, \mathbf{H}).$$

Then we bound $Q_1(\mathbf{g}, \mathbf{H}), Q_2(\mathbf{g}, \mathbf{H})$ and $Q_3(\mathbf{g}, \mathbf{H})$ separately. Note that for any $\mathbf{x} \in \mathcal{X}_s$, it is clear that $\{\mathbf{u}; \|\mathbf{u} - \mathbf{x}\| < s\} \subset \mathcal{X}$. Moreover, for any $\mathbf{u} \in \{\mathbf{u}; \|\mathbf{u} - \mathbf{x}\| < s\}$, Assumption 2 implies that $p(\mathbf{u}) > p(\mathbf{x}) - c_1 \|\mathbf{x} - \mathbf{u}\|_2^{\theta} > s + c_1 s^{\theta} - c_1 s^{\theta} = s$. For $Q_1(\mathbf{g}, \mathbf{H})$, there exists some constant b_8 such that

$$Q_{1}(\mathbf{g}, \mathbf{H}) \geq s^{p+5} \sum_{l,l'=1}^{p} \int_{\mathcal{X}_{s}} (H_{ll'}(\mathbf{x}) - H_{ll'}^{*}(\mathbf{x}))^{2} d\rho_{\mathbf{x}} \int_{\|\mathbf{t}\| < 1} e^{-\mathbf{t}^{T}\mathbf{t}} (t_{l}t_{l'})^{2} d\mathbf{t}$$

$$\geq b_{8} s^{p+5} \sum_{l,l'=1}^{p} \int_{\mathcal{X}_{s}} (H_{ll'}(\mathbf{x}) - H_{ll'}^{*}(\mathbf{x}))^{2} d\rho_{\mathbf{x}} = b_{8} s^{p+5} \int_{\mathcal{X}_{s}} \|\mathbf{H}(\mathbf{x}) - \mathbf{H}^{*}(\mathbf{x})\|_{F}^{2} d\rho_{\mathbf{x}},$$

where the first inequality follows from the fact that $\sum_{l,l',s\neq k}^{p} \int_{\|\mathbf{t}\|<1} e^{-\mathbf{t}^T \mathbf{t}} t_l t_{l'} t_s t_k d\mathbf{t} = 0$, and $\|\cdot\|_F$ is the Frobenius norm. Similarly, there exists some constant b_9 such that $Q_2(\mathbf{g}, \mathbf{H}) \geq b_9 s^{p+3} \int_{\mathcal{X}_s} \|\mathbf{g}(\mathbf{x}) - \mathbf{g}^*(\mathbf{x})\|^2 d\rho_{\mathbf{x}}$ and $Q_3(\mathbf{g}, \mathbf{H}) = 0$.

Since $\mathcal{E}(\mathbf{g}, \mathbf{H}) - 2\sigma^2 \geq Q(\mathbf{g}, \mathbf{H}) - 2b_7 s^{p/2+3} \left(Q(\mathbf{g}, \mathbf{H})\right)^{1/2}$, solving the inequality equation yields that $Q(\mathbf{g}, \mathbf{H}) \leq b_{10}(s^{6+p} + \mathcal{E}(\mathbf{g}, \mathbf{H}) - 2\sigma_s^2)$ for some positive constant b_{10} . As $Q(\mathbf{g}, \mathbf{H}) \geq Q_1(\mathbf{g}, \mathbf{H}) \geq b_8 s^{p+5} \int_{\mathcal{X}_s} \|\mathbf{H}(\mathbf{x}) - \mathbf{H}^*(\mathbf{x})\|_F^2 d\rho_{\mathbf{x}}$, combing these two inequalities yields that

$$\int_{\mathcal{X}_s} \|\mathbf{H}(\mathbf{x}) - \mathbf{H}^*(\mathbf{x})\|_F^2 d\rho_{\mathbf{x}} \le b_6 s^{-(p+5)} (s^{6+p} + \mathcal{E}(\mathbf{g}, \mathbf{H}) - 2\sigma_s^2).$$

This completes the proof of the desired lemma.

References

- [1] BARTLETT, P. AND MENDELSON, S. (2002). Rademacher and gaussian complexities: risk bounds and structural results. *Journal of Machine Learning Research*, **3**, 463–482.
- [2] COMBETTES, P. AND WAJS, V. (2005). Signal recovery by proximal forward-backward splitting. *Multiscale Modeling and Simulations*, **4**, 1168–1200.

- [3] MCDIARMID, C. (1989). On the method of bounded differences. *In Surveys in Combinatorics*, 148–188. Cambridge University Press.
- [4] ROSASCO, L., MOSCI, S., SANTORO, M., VERRI, A., AND VILLA, S. (2009). Iterative projection methods for structured sparsity regularization. *Computer Science and Artificial Intelligence Laboratory Technical Report*, MIT-CSAIL-TR-2009-050.