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1 Updating g and H

1.1 Update g

Denote g;(x) = >, dlK(x;,x) = af Kx, where ay = (a},...,al)" € R". Leta =
(af,..,al)T € R™, we have 8(x) = (91(X), ..., gp(X))" = (a] Kx, ..., &) Kx)" = a'I, ® Kx
and Ao ") lg:1ll3,,. = "I, ® K a, where T,, is the p-dimensional identity matrix. Assuming

the current iteration time is ¢, then minimizing (4) in the main paper is equivalent to solve
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Then we get the explicit solution for ¢ as
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1.2 Update H

For the one-homogeneous functional Q(-), Q(YH) = JQ(H) for 9 > 0 and H € HY'?, the
equivalent relationship between the proximal operator and the projection operator is given by the
Moreau identity (Combettes and Wajs, 2005),

prox o = I — muc,, (S1)

where C,, = (VQ(0)) is the subdifferential of (2 at the origin, and 7,c, : HET — HYT is a
projection on puC),. Furthermore, applying the Proposition 2 of Rosasco et al. (2009) and the
identity (STJ), the proximal operator can be computed as

. H];y [H]y»
=7y, (H)lw = [H]w—min{pXw, [|[H]w |2 } = (I 205 — pAwr)
: 2= 172 EYP |11 = Y7 [EY% * "
where Ay = A7y In our algorithm, we set 4 = 1/D, where D is the Lipschitz constant. Then
following (STJ), the proximal operator at the ¢-th iteration can be expressed explicitly as
= - A
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where 't = 1 — %Vﬂﬁgn (g, ﬁt), H =H'+ Z—;(Ht —H"") and
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Here © denotes the componentwise product and 1, is a p-vector with all ones.

2 Technical proofs

Proposition 1. Assume 8* € H. and H* € H2P. Let p1(Z2") = £(8, H)—Ez (8, H), po(Z") =
Ezn (g*7 H*)_E(g*v H*> andA<)‘07 ALy K) = g(g*> H*)+)‘0 ?:1 ||97||’2}1K+/\1 Zf,l’:l 7Tll’||Hl>E’ HHK
Then the following inequality holds

5(@7 ﬁ) + J</g\> ﬁ) < 901(Zn) + 902(2””) + A<>‘07 >‘17 K)
Proof of Proposition 1. Simple algebra yields that
(8, H) + J(8,H)

< E(8 H) — E20(8,H) + Ez (8", H) + J(8", H")
= E(8 H) — -8, H) + (8" HY) + E(&8", HY) — £(8" H) + J(8 , H)
p p

= 01(2") + 922" + £ H) + X0 > g e + X1 D> ml il
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where the inequality comes from the definition of (8, H). O
Next, we consider the following function space

p
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for some positive r,, > ﬁ S (yi—y;)?. By the definition of (&, H), £2-(8, H)+J(8, H) <

ij=1
Ez(0,0) + J(0,0) < ﬁ > (i = y;)?, implying that (8, H) € .. Denote

S(Zn,T‘n) = sup ‘S(gaH) —Sgn(g,H)‘
(g,H)G.Frn

By McDiarmid’s inequality (McDiarmid, 1989), we obtain the upper bound of S(Z",r,,).

Lemma 1. Suppose that Assumption 3 is met. If |y| < M,, then for any € > 0,

2
P(IS(2", 1) — B(S(2", 1)) > €) < 2exp | — ne ,

1
32 <Mn + cxk (prn)\gl)l/2 + ci/frn)\l_lc;1>

where ¢x = maxxey || X ||oo and £ = sup, ¢y (K (X, x))'2,

Proof of lemma |1, Denote Z™ as a sample that is the same as Z™ except the i-th entry replaced
by (%, y.), then we have

S(Z2", ) — S(2", 1) = sup |£(8, H) — £z (8, H)| — sup |£(8,H) — & (8, H)|

(8,H) (8,H)

< (SUP) (|5(g,H) —Ez0(8,H)| — |E(8,H) — Ezu (gvH)D
g.H

S sup |gZ" (g7 H) - gzn’(g7 H)|7
(8,H)

where the first inequality is trivial and the second inequality follows from the triangle inequality.
Now we decompose £z (8, H) as

Ezn(g,H):ﬁ< Z h(z, z;) + Z h(z;,z;) + Z h(zt,zi)>,

t#i, i j=1ji t=1,ti

where h(z;,2;) = w;; (yi —y; —8(x)T(x; —x;) + %(Xl —x;)TH(x;) (x; —Xj))2 and z; = (X;, ;).



Then
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2
< — (Mn + cxk (prn)\al)l/2 + Cim"n)\l_lcgl> ,

n
where the first inequality is trivial, the second inequality follows from the property of RKHS, and

the last two inequalities follow from Cauchy-Schwartz inequality, the definition of the F, and
Assumption 3. Therefore, we have

] 2
Ezn(8,H) — €5 (8, H)‘ < - (Mn + cxk (prn)\al)l/z + ciﬁrn/\l_102_1> )
Finally, by McDiarmid’s Inequality, we have

ne?

1
32 (Mn + cxk (prn)\gl)l/2 + ciﬁrn)\l_102_1>

P(|S(Z2" 1) — E(S(Z",r,))| > €) <2exp | —
This completes the proof of the desired lemma.
Lemma 2. If |y| < M,, there exists a constant b, x such that
n ~1/2 —1\1/2 1)?
E(S(Z", 1)) < buxn (Mn + (prarg )Y+ rady ) .

Proof of Lemma 2| For simplicity, denote

€% g, 0) = wx =) (= 0 = 860 x - w) + G- HOIx-w) )



where (u, v) is an independent copy of (x,y). Then

S(Z,r,)= sup |Ez(8 H)—E(8,H)
(8,H)EFr,

< sup |£(8H) ——ZEé‘Xy, X;, Y \+ _sup }—ZEfxy, x;,y;) — £2(g H)|
(8 H)EFr, =1 H)EFr,

< sup Exy‘Euv £(x,y,u,0) __ZEX% J?y])|
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n
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+ sup - E sup | Ex)&(X,y,u,v)
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s Yis U, V)

def

= S1(Z) + S2(2),

where the first inequality follows from the triangle inequality, and the next two inequalities follow
from the definition of £(8, H) and Jensen’s inequality, respectively.

Next, we use Rademacher complexity (Bartlett and Mendelson, 2002) to get the upper bounds
of £(S1) and E(S5). In fact, there holds
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where o;’s are a sequence of Rademacher variables. Similarly, we have

ESy(2) < 2xp12 (M + (pradg )" + 1udy 1>2,

2
which implies the desired inequality. ]
Proposition 2. If |y| < M,, and n(n;—l) > orio1 (Wi —y;)? < My, there exists a constant by such that

with probability at least 1 — %”,

n 1 4 2 ~1\1/2 1 2
@1(2 )S b1 Elogé— (Mn+ (pM()AO ) +M0)\1 ) .

n

n

Proof of Proposition 2. Since ﬁ >orioi(yi — y;)? < M, it implies that (8, H) € Fu. By
Lemma we have with probability at least 1 — 22,
32 4

1/2 )
e1(Z2") < E[S(Z2", )] + (? log 5—) (Mn + cxk (]0]\40)\0’1)1/2 + CiKMOA;1651> :

The desired inequality follows immediately after Lemma O
Now we derive the upper bound of £(g*, H*). By Assumption 1, for some positive constant by
we have

o 1)~ 202 < [ [ wixw)cdx - u Sdpadpn < bas? [t 4T,

where by = c3cy, t = (u—X)/s, and the inequalities directly follow from Assumptions 1 and 2.

n

Lemma 3. Suppose that the assumptions of Theorem 1 are met. If |y, | < M, and ﬁ Zi’j: (yi—
yj)2 < M, there exists b3 > 0 such that with probability at least 1 — 9,

A A 4\ 12
E(B,H)+J(8,H)—202 < by <log 6_> (02 M2 4+ 0 VP MAG + P MEAT 4 70+ A+ Ny -
Proof of Lemma 3] By Proposition 1, we have
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S b4(8p+6 + )\0 + )\1),



where by = max{b, [ e ¢ ®tTtdt, > 0 [g7]3,, tir—1 T | Hjy || 31 } - Following a similar proof
of Lemma we have with probability at least 1 — 9n

n 32 4 12 ¢ * 2 - * i
p2(2 < (Slog ) | Mt ek Do llgilhe + 26 D I Hit

=1 LI=1
9 4 1/2
n On

where the second inequality follows from the fact that ||g;||7, and ||H}} |3, are smaller than M,
when n is sufficient large. Together with Lemma 2| and Proposition [2] there exists a constant by
such that with probability at least 1 — 9,,,

5@7 ﬁ)+J(§, ﬁ) — 207 < 01(Z2") 4+ 02(Z2") + Au(Xo, M, K) — 207

40\ 12
< bs <log 5—) (n_l/QMfL +n V2 MG + 0TV PMEA 2 et 4 sPTO 4 A + M),

n

which immediately leads to the desired upper bound with some constant b3. ]

Lemma 4. Suppose that Assumption 1 is met, 8* € H% and H* € HY'P. There exists some
constant bg such that for any 8 € H%. and H € HEY?,

IEL(x) — H* (%) |[Fdpx < b6 (s + s~ (E(8, H) — 207)),

Xs
where X, = {x € X : d(x,0X) > s,p(x) > s+ ¢;5°}.

Proof of Lemmad} Let M;(x,u) = f*(x) — f*(u) — 8*(x)"(x —u) + 3(x —u) "H*(x)(x — ),

and M, (x,u) = (8(x) — g*(x))" (x—u) — t(x—u)T(H(x) — H*(x))(x — u). Then we have
£(g,H) — 202 = //w(x, u) (M, (x, 1) — My(x, 1)) dpudpy

> [ wx w0 )2~ 2 [ [ wx 020105, 0) M, 0)dpudp

By Assumption 1, we have | M, (x,u)| < ¢||x —u |3, and then

[ wixwn o) Papdpe < [ [ wixwedllx—u Pdpudn < 1575,

for some constant b7. This inequality, together with Cauchy-Schwarz inequality, yields that

[ [ wtx w0 w)dpude

- (/ [ e wing u>>2dpudpx> ) (/ [ wixwn(x 11))2dpudﬂx> )

< brs?l2H ( [ wixwionix, u>>2dpudpx) "



Next, we turn to bound [ [ w(x, u)(My(x, u))?dpudpx. Specifically,
Q&.H) = //w(x, u) (M, (x,1))2dpxdpy

1 T x) — *(x x—u 2 wdu
- Z/XS /Iu xu<sw<x’u) ((x—w)" (H(x) — H'(x))(x — )" p(w)d u dpx+
/ /| —x|l< w(x, u) ((8(x) — &*(x))7 (x — ) p(u)d udpy+

/ /| - X 11) ((X 11) (H (X) H(X))(X—u)) ((g(x) _g*(X))T(X—u» p(U)dudpx
= Q:(8, H) + Q2(8, H) + Q3(8, H).

Then we bound Q)1 (8, H), Q2(8, H) and Q3(8, H) separately. Note that for any x € Xy, it is clear
that {u;||u—x|| < s} C X. Moreover, for any u € {u;||u—x|| < s}, Assumption 2 implies
that p(u) > p(x) — c1||x —u||§ > s+ c18? — 1% = 5. For Q1(8, H), there exists some constant
bs such that

p

Qi(8.H) = 577 ) / (Huw (x) — Hy (%)) dpx /||t||<1 et (Lt ) d

LI'=1

SRS / () — 1 () = s [ 00— B0

LI'=1

where the first inequality follows from the fact that Zf I stk f” tll<1 e*tT"tltl/tst;ﬁdt = 0, and
| - ||F is the Frobenius norm. Similarly, there exists some constant by such that ()»(8, H) >
bos?*? [ 118(x) — 8"(x)*dpx and Qs(8, H) = 0.

Since £(8,H) — 202 > Q(8,H) — 2b7s?/2™ (Q(8, H))"?, solving the inequality equation
yields that Q(8, H) < byo(s° + £(8,H) — 20?) for some positive constant byg. As Q(8, H) >
Q1(8,H) > bgs”*? [, [[H(x) — H*(X)||3dpx, combing these two inequalities yields that

() — H(%)[[7dpx < bgs™ P+ (s°*7 + £(8, H) — 207).

Xs

This completes the proof of the desired lemma. O
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