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Appendix B

In order to simplify the notation, ĉ ?k (ψ0, r) and âk(ψ0, r) are respectively

replaced by ĉ ?0k and â0k. Hence, ĉ ?0k = (â>0k, ĉ
>
k )>.

Lemma B1 Let Ŝ be a random r × r matrix, where r <∞. If there exists a
population matrix SU and a positive definite symmetric matrix S of constants
such that Ŝ − SU = Op(1), SU − S = O(1) and ‖S‖ < ∞, we have that

Ŝ = Op(1), Ŝ
−1

= Op(1) and ‖S−1
U ‖ � 1.

The proof of Lemma B1 can be found in Berger & Kabzinska (2016). Lemma
B1 and [C11] imply

Ŝ0 = Op(1), (B.1)

Ŝ
−1
0 = Op(1)· (B.2)

Proof (Lemma 3)
We have

nṼ0 =
n

N2

H∑
h=1

∑
k∈S̃h

π−2k ε̂kε̂
>
k −

n

N2

H∑
h=1

(
n−1h

∑
k∈S̃h

π−1k ε̂k
∑
`∈S̃h

π−1` ε̂
>
`

)
· (B.3)

It can be shown that

ε̂k = β̃
>
0 ĉ

?
0k, (B.4)
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where β̃0 := (1>dξ+p,0
>
H , −β

>
0 )>. Here, 1dξ+p denotes the (dξ+p)×1 unit vector

and 0H the H × 1 zero vector. Thus, using (B.4), expression (B.3) reduces to

nṼ0 = −β̃
>
0

{
Ŝ0 +

H∑
h=1

ψ−1h Ψ
2
hN

−2
h Ĉ0hĈ

>
0h

}
β̃0· (B.5)

where Ĉ0h, Ŝ0, ψh and Ψh are respectively defined by (20), (21), [C6] and
[C7]. Consider the matrix of constants

Σ0 := −β̃
>
0

(
S +

H∑
h=1

ψ−1h Ψ
2
hC̄hC̄

>
h

)
β̃0,

where C̄h is defined in [C8]. We have that

nṼ0 −Σ0 = −β̃
>
0

[
Ŝ0 − S +

H∑
h=1

ψ−1h Ψ
2
h

{
N−2
h Ĉ0hĈ

>
0h − C̄hC̄

>
h

}]
β̃0·

Hence,

‖nṼ0−Σ0‖ 6 ‖β̃0‖2
{
‖Ŝ0−S‖+

H∑
h=1

ψ−1h Ψ
2
h

∥∥∥N−2
h Ĉ0hĈ

>
0h−C̄hC̄

>
h

∥∥∥}· (B.6)

The expression

N−2
h Ĉ0hĈ

>
0h − C̄hC̄

>
h =

{
N−1
h Ĉ0h − C̄h

}
C̄>h +N−1

h Ĉ0h

{
N−1
h Ĉ0h − C̄h

}>
implies∥∥∥N−2

h Ĉ0hĈ
>
0h − C̄hC̄

>
h

∥∥∥ 6 ∥∥N−1
h Ĉ0h − C̄h

∥∥{‖C̄h‖+N−1
h ‖Ĉ0h‖

}
· (B.7)

We have

N−1
h ‖Ĉ0h‖ 6 Ψ−1h N−1 ∑

k∈S̃h

π−1k ‖ĉ
?
0k‖·

Thus, [C7] and [C10] imply

N−1
h ‖Ĉ0h‖ = Op(1)· (B.8)

Thus, [C8], (B.7) and (B.8) imply∥∥∥N−2
h Ĉ0hĈ

>
0h − C̄hC̄

>
h

∥∥∥ = n
− 1

2

h Op(1)· (B.9)

By using [C11] and substituting (B.9) into (B.6), we have

nṼ0 −Σ0 = Op(1), (B.10)
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which implies

nṼij −Σij = op(1), (B.11)

where Ṽij and Σij denote respectively the (i, j) component of Ṽ0 and Σ0; that
is,

Ṽij := N−2
H∑
h=1

(∑
k∈S̃h

π−2k ε̂kiε̂kj −
1

nh

∑
k∈S̃h

π−1k ε̂ki
∑
`∈S̃h

π−1` ε̂`j
)
·

where ε̂ki denotes the i-th component of ε̂k; that is,

ε̂ki = â0ki − β>0if̂k, (B.12)

where â0ki is the i-th component of â0k and β0i is the i-th column of β0. Thus,

|Ṽij | 6 N−2
H∑
h=1

(∑
k∈S̃h

π−2k |ε̂kiε̂kj |+
1

nh

∑
k∈S̃h

π−1k |ε̂ki|
∑
`∈S̃h

π−1` |ε̂`j |
)
· (B.13)

Using Cauchy’s inequality, we have∑
k∈S̃h

π−2k |ε̂kiε̂kj | 6
(∑
k∈S̃h

π−2k ε̂ 2
ki

∑
`∈S̃h

π−2` ε̂ 2
`j

) 1
2 · (B.14)

We also have ∑
k∈S̃

π−1k |ε̂ki| 6
(
nh
∑
k∈S̃

π−2k ε̂ 2
ki

) 1
2 · (B.15)

By substituting (B.14) and (B.15) into (B.13), we obtain

n|Ṽij | 6 2

H∑
h=1

(
nN−2 ∑

k∈S̃h

π−2k ε̂ 2
ki

) 1
2
(
nN−2 ∑

`∈S̃h

π−2` ε̂ 2
`j

) 1
2

, (B.16)

where ε̂ki is defined by (B.12). Using (B.12), Minkowski inequality and

(β>0if̂k)2 6 q
∑q
`=1 β

2
0i` f̂

2

k`, we obtain

(∑
k∈S̃h

π−2k ε̂ 2
ki

) 1
2

6
(∑
k∈S̃h

π−2k â2
0ki

) 1
2

+
{∑
k∈S̃h

π−2k
(
β>0if̂k

)2} 1
2

6
(∑
k∈S̃h

π−2k â2
0ki

) 1
2

+
√
q

q∑
`=1

|β0i`|
{∑
k∈S̃h

π−2k f̂
2

k`

} 1
2

, (B.17)

where β0i` and f̂k` are respectively the `-th component of β0i and f̂k.
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Using conditions [C19] and [C20] and inequalities (B.16) and (B.17), we
have that there exists a positive random variable vij such that

E(vij) <∞, n|Ṽij | 6 vij for all n· (B.18)

The Dominated Convergence Theorem, (B.11) and (B.18) imply nE(Ṽij) −
Σij = o(1) or equivalently

nE(Ṽ0)−Σ0 = O(1)· (B.19)

Minkowski inequality gives

‖Σ0 − nV0‖ 6 ‖nE(Ṽ0)− nV0‖+ ‖nE(Ṽ0)−Σ0‖,

which implies

Σ0 − nV0 = O(1), (B.20)

by using (31) and (B.19). Now, (B.10) and (B.20) implies

n(Ṽ0 − V0) = O(1), (B.21)

Expression (B.5) can be re-written as

nṼ0 = −β̃
>
0 Λ̂0 β̃0, (B.22)

where

Λ̂0 = Ŝ0 +

H∑
h=1

ψ−1h Ψ
2
hN

−2
h Ĉ0hĈ

>
0h· (B.23)

Conditions [C7] and [C10] imply

N−1
h ‖Ĉ0h‖ 6 Ψ−1h N−1 ∑

k∈S̃h

π−1k ‖ĉ
?
0k‖ = Op(1)·

Using the last inequality and (B.1), expression (B.23) implies

Λ̂0 = Op(1), (B.24)

because ψh, Ψh and H are finite.
It can be shown that

nV̂0 = −b̃
>
0 Λ̂0 b̃0· (B.25)

where b̃0 := (1>,0>H ,−b̂
>
0 )>, 1 is the unit vector and V̂0 is defined by (26).

Equations (B.22) and (B.25) imply

nV̂0 − nṼ0 = {β̃0 − b̃0}>Λ̂0 b̃0 + β̃
>
0 Λ̂0 {β̃0 − b̃0}· (B.26)

By using (B.24) and Lemma 1, expression (B.26) gives

nV̂0 − nṼ0 = Op(1), (B.27)

which implies (32), because of equation (B.21). �
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Proof (Theorem 1) Condition [C8] implies

n
1
2N−1(Ĉ0 −C

?
)

=

H∑
h=1

Ψhψ
−1
h n

1
2

h

(
N−1
h Ĉ0h − C̄h

)
= Op(1), (B.28)

where

Ĉ0 :=
∑
k∈S̃

π−1k ĉ
?
0k·

Oǧuz-Alper & Berger (2016, Th.2) showed that [C4], [C9], [C10], (B.1),
(B.2) and (B.28) imply (33). �

Proof (Theorem 2)

Berger & Torres (2016) showed that [C4], [C3], [C9], [C10], (B.28), (B.1)
and (B.2) imply

N−1n
1
2 Â(ψ0) = N−1n

1
2 Ä(ψ0) + Op(1), (B.29)

where Ä(ψ0) is defined by (22).

Using the fact that ĉk is a sub-vector of ĉ ?0k (see (8)), condition [C11] and

Lemma B1 imply nN−2‖(
∑
k∈S̃ π

−2
k ĉk ĉ

>
k )−1‖ = Op(1). Cauchy’s inequality

and [C10], we have nN−2‖
∑
k∈S̃ π

−2
k ĉk â

>
0k‖ = Op(1). Hence

B̂0 = Op(1)· (B.30)

Expressions(B.28), (22) and (B.30) imply

N−1n
1
2 Ä(ψ0) = Op(1)· (B.31)

Hence, (B.29) implies

N−1n
1
2 Â(ψ0) = Op(1)· (B.32)

Under conditions [C15] and [C16], we have the Taylor expansion of Â(ψ)
around ψ0,

N−1Â(ψ̂) = N−1Â(ψ0) +N−1 ∂Â(ψ0)

∂ψ0

(ψ̂−ψ0) + ‖ψ̂−ψ0‖2Op(1)· (B.33)

We have Â(ψ̂) = 0, because ψ̂ is the solution to (14). Hence, (B.32), (B.33)

and [C17] imply n
1
2 (ψ̂ −ψ0) = Op(1). Theorem 2 follows. �
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Appendix C

In order to simplify the notation, ĉ ?k (ψ0, r), gi(τ 0), ai(ψ0, r) and âk(ψ0, r)

are respectively replaced by ĉ ?0k, g0i , a0i and â0k. Hence, ĉ ?0k = (â>0k, ĉ
>
k )>.

The operators Er(·) and Vr(·) denote the expectation and variance with
respect to the response mechanism. The operators Vd(· |r) and Ed(· |r) denote
the conditional expectation and variance with respect to the sampling design,
given r. The operators E(·) and V(·) denote respectively the expectation and
variance operator with respect to the response mechanism and the sampling
design.

Proof (Lemma 2) Using (8), (9) and (B.28), we have that

N−1f̂π = n−
1
2Op(1), where f̂π :=

∑
k∈S̃

π−1k f̂k· (C.1)

Expression (22) can be re-written as

Ä(ψ0)=Â0π −
∑
`∈S̃

π−2` â0` ĉ
>
`

(∑
k∈S̃

π−2k ĉk ĉ
>
k

)−1(
0H
f̂π

)
· (C.2)

We have that∑
k∈S̃

π−2k â0k ĉ
>
k =

(
Ŝ
>
za, Ŝ

>
fa

)
, (C.3)

(∑
k∈S̃

π−2k ĉk ĉ
>
k

)−1
=

{
• −Ŝ

−1
zzŜzf(Ŝff − Ŝ

>
zf Ŝ

−1
zzŜzf)

−1

• (Ŝff − Ŝ
>
zf Ŝ

−1
zzŜzf)

−1

}
, (C.4)

where • represents sub-matrices for which expressions are not needed. By
substituting (C.3) and (C.4) into (C.2), we obtain

Ä(ψ0) = Â0π − b̂
>
0 f̂π·

where Â0π and b̂0 are respectively defined by (23) and (27).
Lemma 1 and (C.1) imply

N−1Ä(ψ0)− ε̄π = (b̂0 − β0)>N−1f̂π = n−
1
2 Op(1), (C.5)

where ε̄π is defined by (46).

Using (B.4), we have that ε̄π = β̃
>
0 N

−1∑
k∈S̃ π

−1
k ĉ

?
0k. Thus, [C10] imply

ε̄π = Op(1)· (C.6)

We have

N−2Ä(ψ0)Ä(ψ0)> − ε̄π ε̄>π =
{
N−1Ä(ψ0)− ε̄π

}
N−1Ä(ψ0)>
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+ ε̄π

{
N−1Ä(ψ0)− ε̄π

}>
·

By combining the last expressions with (B.31), (C.5) and (C.6), we obtain

N−2Ä(ψ0)Ä(ψ0)> − ε̄π ε̄>π = n−
1
2 Op(1)· (C.7)

Let Â
(i)

0π and â0ki denote respectively the i-th component of Â0π and â0k.
We have

N−1|Â
(i)

0π | 6 N−1 ∑
k∈S̃

π−1k |â0ki| 6
(
nN−2 ∑

k∈S̃

π−2k â2
0ki

) 1
2 ·

Condition [C19] implies that for all i

N−1|Â
(i)

0π | 6 H
1
2
i , with E(H

1
2
i ) <∞· (C.8)

Let Ci and Ĉi denote respectively the i-th component of C, Ĉ. Note that
Ĉi − Ci = 0 for i 6 H. For i > H, we have

N−1|Ĉi − Ci| 6 N−1 ∑
k∈S̃

π−1k |f̂ki| 6
(
nN−2 ∑

k∈S̃

π−2k f̂
2

ki

) 1
2 ·

Condition [C20] implies that for all i

N−1|Ĉi − Ci| 6 F
1
2
i , with E(F

1
2
i ) <∞· (C.9)

Inequalities (C.8), (C.9) and [C21] imply that the components of N−1Ä(ψ0)
are dominated by positive random variables with finite expectations. Con-
ditions [C19] and [C20] imply that the components of ε̄π are dominated by
positive random variables with finite expectations. Hence, the matrices in the
left hand side of (C.5) and (C.7) are dominated by positive random variables
with finite expectations. Thus,

N−1E
{
Ä(ψ0)

}
= E

{
ε̄π
}

+ O(1),

N−2E
{
Ä(ψ0)Ä(ψ0)>

}
= E

{
ε̄π ε̄
>
π

}
+ O(1),

using the Dominated Convergence Theorem. The last two expressions imply
that the variance of N−1Ä(ψ0) is given by

V0 = V(ε̄π) + O(1)· (C.10)

The independence between the response mechanism and the sampling de-
sign implies that we can consider that non-response occurs before sampling as
in Fay (1991) and Shao & Steel (1999). Thus, the variance is

V(ε̄π) = Er{Vd(ε̄π | r)}+ Vr{Ed(ε̄π | r)}· (C.11)
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We have

Ed(ε̄π | r) = N−1∑
i∈U

a0i − β>0 N−1∑
i∈U

fi

= N−1∑
i∈U

{
g>0iri ρ

−1
i , ξ

>
i (ri − ρi)

}> − β>0 N−1∑
i∈U

fi

= N−1∑
i∈U

κ0i ri −N−1∑
i∈U

{
0>, ξ>i ρi

}> − β>0 N−1∑
i∈U

fi,

where ρi is defined by (4) and

κ0i :=
{
g>0iρ

−1
i , ξ

>
i

}>·
Thus, as ri ⊥⊥ rj for i 6= j and Vr(ri) = ρi(1− ρi), we have

N2Vr{Ed(ε̄π | r)} =
∑
i∈U

κ>0iκ0i ρi(1− ρi)· (C.12)

The last expression implies∥∥N2Vr{Ed(ε̄π | r)}
∥∥ 6∑

i∈U
‖κ0i‖2 ρi

6
∑
i∈U
‖g0i‖2ρ−1i +

∑
i∈U
‖ξi‖2·

The last inequality, β0 = O(1), [C2], [C12] and [C13] imply

Vr{Ed(ε̄π | r)} = N−1O(1)· (C.13)

Under the two-stage design, we have

Er{Vd(ε̄π | r)} = Er(Vd;a) + Er(Vd;b), (C.14)

where

Vd;a := V(1)
d {E

(2)
d (ε̄π | S̃, r) | r},

Vd;b := E(1)
d {V

(2)
d (ε̄π | S̃, r) | r}· (C.15)

Here, E(1)
d and E(2)

d respectively denote the first and second stage design ex-

pectation operator. The operators V(1)
d and V(2)

d denote the first and second
stage design variance.

As the first stage is a stratified with-replacement design, we have the fol-
lowing Hansen & Hurwitz’s (1943) variance

Vd;a = N−2
H∑
h=1

(∑
k∈Ũh

π−1k εkε
>
k −

1

nh

∑
k∈Ũh

εk
∑
`∈Ũh

ε>`

)
, (C.16)
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where

εk := E(2)
d (ε̂k | S̃, r) =

∑
i∈Ũk

εi|k, (C.17)

εi|k := a0i − β>0 fi· (C.18)

We have

Vr(εi|k) = (1− ρi)
(
g>0i, ρiξ

>
i

)>(
g>0i, ρiξ

>
i

)
(C.19)

Er(εi|k) =
(
g>0i,0

>)> − β>0 fi· (C.20)

We have that ri ⊥⊥ rj for i 6= j implies εi|k ⊥⊥ εj|k for i 6= j. Thus,

Er(εkε>` ) = Er(εk) Er(ε`)>, for k 6= `·

Now, (C.16) implies

Er(Vd;a) = N−2
H∑
h=1

∑
k∈Ũh

(π−1k − n
−1
h )Vr(εk) + Vd,r, (C.21)

where

Vd,r :=N−2
H∑
h=1

{∑
k∈Ũh

π−1k Er(εk)Er(εk)>−n−1h
∑
k∈Ũh

Er(εk)
∑
`∈Ũh

Er(ε`)>
}
· (C.22)

Using (C.17) and (C.19), we have

‖Vr(εk)‖ 6
∑
i∈Ũk

‖Vr(εi|k)‖ 6 O(1)
∑
i∈Ũk

‖g0i‖2 +
∑
i∈Ũk

‖ξi‖2·

The last inequality combined with [C4], [C6], [C12], and [C13] implies

N−2
∥∥∥ H∑
h=1

∑
k∈Ũh

(π−1k − n
−1
h )Vr(εk)

∥∥∥ 6 N−1n−1
H∑
h=1

∑
k∈Ũh

|nN−1π−1k − nN
−1n−1h |‖Vr(εk)‖

6 N−1n−1Op(1)

H∑
h=1

∑
k∈Ũh

‖Vr(εk)‖

6 N−1n−1
{
O(1)

∑
i∈U
‖g0i‖2 +O(1)

∑
i∈U
‖ξi‖2

}
= n−1O(1)· (C.23)

We have that Er(εk) =
∑
i∈Ũk(g>0i,0

>)> − β>0
∑
i∈Ũk fi implies

‖Er(εk)‖ 6
∑
i∈Ũk

‖g0i‖+ ‖β0‖
∑
i∈Ũk

‖fi‖,
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Minkowski inequality implies( H∑
h=1

∑
k∈Ũh

‖Er(εk)‖2
) 1

2

6
{ H∑
h=1

∑
k∈Ũh

(∑
i∈Ũk

‖g0i‖
)2} 1

2

+ ‖β0‖
{ H∑
h=1

∑
k∈Ũh

(∑
i∈Ũk

‖fi‖
)2} 1

2

6
{ H∑
h=1

∑
k∈Ũh

Ñk
∑
i∈Ũk

‖g0i‖2
} 1

2

+ ‖β0‖
{ H∑
h=1

∑
k∈Ũh

Ñk
∑
i∈Ũk

‖fi‖2
} 1

2

6 O(1)
{∑
i∈U
‖g0i‖2

} 1
2

+O(1)‖β0‖
{∑
i∈U
‖fi‖2

} 1
2

,

(C.24)

because of condition [C1]. Now (C.24), [C13] and [C14] imply

N−1
H∑
h=1

∑
k∈Ũh

‖Er(εk)‖2 = O(1)· (C.25)

Using [C4] and [C6], definition (C.22) implies

‖Vd,r‖ 6 n−1N−1
H∑
h=1

∑
k∈Ũh

‖Er(εk)‖2 +N−2
H∑
h=1

n−1h

(∑
k∈Ũh

‖Er(εk)‖
)2

6 n−1N−1
H∑
h=1

∑
k∈Ũh

‖Er(εk)‖2 +N−2
H∑
h=1

n−1h Nh
∑
k∈Ũh

‖Er(εk)‖2

6 n−1N−1
H∑
h=1

∑
k∈Ũh

‖Er(εk)‖2 + n−1N−1
H∑
h=1

Ψhψ
−1
h

∑
k∈Ũh

‖Er(εk)‖2

6 n−1N−1
H∑
h=1

∑
k∈Ũh

‖Er(εk)‖2 +O(1)n−1N−1
H∑
h=1

∑
k∈Ũh

‖Er(εk)‖2

= O(1)n−1N−1
H∑
h=1

∑
k∈Ũh

‖Er(εk)‖2

= n−1O(1), (C.26)

using (C.25).
Expression (C.21) combined with (C.23) and (C.26) implies

Er(Vd;a) = n−1O(1)· (C.27)

We also need to derive the order of the second term of (C.14): Er(Vd;b),
where Vd;b is defined by (C.15). We have that (46) and (C.15) imply

Vd;b = N−2
N∑
k=1

π−1k V(2)
d (ε̂k|S̃, r), (C.28)
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where ε̂k defined by (29) can be re-written as

ε̂k =
∑
i∈Sk

π−1i|kεi|k,

with εi|k defined by (C.18) and

V(2)
d (ε̂k|S̃, r) =

∑
i∈Ũk

∑
j∈Ũk

Dij|k εi|k ε
>
j|k·

Here, Dij|k is defined by

Dij|k = πij|kπ
−1
i|k π

−1
j|k − 1,

where πij|k denotes the conditional joint-inclusion probability of units i, j ∈
Ũk.

Condition [C1] implies that there exists a constant γ2 such that

ñ−1k Ñk 6 γ2, (C.29)

where ñk and Ñk be respectively the sample and population size of Ũk. Using
[C5], (C.29) and the fact that Ũk is a finite set, we have that there exists a
finite constants γ3 such that for all k

ñ2
kÑ

−2
k

∑
i∈Ũk

∑
j∈Ũk
j 6=i

D2
ij|k 6 γ3· (C.30)

Furthermore,

‖Er(Vd;b)‖ 6 N−2
N∑
k=1

π−1k
∑
i∈Ũk

∑
j∈Ũk

Dij|k ‖Er(εi|k ε>j|k)‖

= N−2
N∑
k=1

π−1k

{∑
i∈Ũk

∑
j∈Ũk
j 6=i

Dij|k ‖Er(εi|k ε>j|k)‖

+
∑
i∈Ũk

π−1i|k(1− πi|k) ‖Er(εi|k ε>i|k)‖
}
·

Cauchy’s inequality, [C4], (C.29), [C5] and (C.30) imply

‖Er(Vd;b)‖ 6 N−2
N∑
k=1

π−1k

{(∑
i∈Ũk

∑
j∈Ũk
j 6=i

D2
ij|k

) 1
2
(∑
i∈Ũk

∑
j∈Ũk
j 6=i

‖Er(εi|k ε>j|k)‖2
) 1

2

+
∑
i∈Ũk

π−1i|k(1− πi|k) ‖Er(εi|k ε>i|k)‖
}
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6 O(1)γ
1
2
3 n

−1N−1
N∑
k=1

{
ñ−1k Ñk

(∑
i∈Ũk

∑
j∈Ũk
j 6=i

‖Er(εi|k ε>j|k)‖2
) 1

2

+
∑
i∈Ũk

π−1i|k(1− πi|k) ‖Er(εi|k ε>i|k)‖
}

6 O(1)n−1N−1
N∑
k=1

{(∑
i∈Ũk

∑
j∈Ũk
j 6=i

‖Er(εi|k ε>j|k)‖2
) 1

2

+O(1)
∑
i∈Ũk

‖Er(εi|k ε>i|k)‖
}
· (C.31)

Using εi|k ⊥⊥ εj|k for i 6= j, we have that

Er(εi|k ε>j|k) = Er(εi|k)Er(εj|k)>, when i 6= j·

Thus, (C.31) implies

‖Er(Vd;b)‖ 6 O(1)n−1N−1
N∑
k=1

{∑
i∈Ũk

‖Er(εi|k)‖2 +O(1)
∑
i∈Ũk

‖Er(εi|kε>i|k)‖
}
·

(C.32)

Since, Er(εi|k ε>i|k) = Vr(εi|k) +Er(εi|k)Er(εi|k)>, expression (C.19) imply

‖Er(εi|k ε>i|k)‖ 6
∥∥(g>0i, ρiξ>i )>∥∥2

+ ‖Er(εi|k)‖2· (C.33)

Using [C12], [C13], [C14], (C.33) and Minkowski inequality, inequality (C.32)
implies

‖Er(Vd;b)‖ 6 O(1)n−1
[
O(1)

{(
N−1∑

i∈U
‖g0i‖2 +N−1∑

i∈U
‖ξi‖2

) 1
2
}2

+O(1)N−1
N∑
k=1

∑
i∈Ũk

‖Er(εi|k)‖2
]

6 O(1)n−1 +O(1)n−1N−1
N∑
k=1

∑
i∈Ũk

‖Er(εi|k)‖2· (C.34)

Using [C13], [C14] and Minkowski inequality, we have that (C.20) implies(
N−1

N∑
k=1

∑
i∈Ũk

‖Er(εi|k)‖2
) 1

2

6
{
N−1∑

i∈U

(
‖g0i‖+ ‖β0‖‖fi‖

)2} 1
2

6
{
N−1∑

i∈U
‖g0i‖2

} 1
2

+ ‖β0‖
{
N−1∑

i∈U
‖fi‖2

} 1
2
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= O(1)·
The last inequality combined with (C.34) implies

‖Er(Vd;b)‖ = n−1O(1)· (C.35)

Hence, expressions (C.10), (C.11), (C.13), (C.14), (C.27) and (C.35) imply

nV0 = O(1) + nN−1O(1) + O(1) = O(1),

because nN−1 = o(1). Thus, (30) holds.
Using (28) and (C.17), we have

E(2)
d (Ṽ0|S̃, r) = N−2

H∑
h=1

{∑
k∈S̃h

π−2k E(2)
d (ε̂kε̂

>
k |S̃, r)− n−1h

∑
k∈S̃h

π−1k εk
∑
`∈S̃h

π−1` ε`

}

= N−2
H∑
h=1

{∑
k∈S̃h

π−2k εkε
>
k − n−1h

∑
k∈S̃h

π−1k εk
∑
`∈S̃h

π−1` ε
>
`

}

+N−2
H∑
h=1

∑
k∈S̃h

π−2k V(2)
d (ε̂k|S̃, r)· (C.36)

Hence, by combining (C.36) with (C.15), (C.16) and (C.28), we have

E(1)
d

{
E(2)
d (Ṽ0 | S̃, r)

}
= Vd;a + Vd;b· (C.37)

Thus, (C.14) and (C.37) imply

E(Ṽ0) = Er[E(1)
d {E

(2)
d (Ṽ0 | S̃, r)}]

= Er(Vd;a) + Er(Vd;b)

= Er{Vd(ε̄π | r)}·
Expressions (C.11), (C.13) imply Er{Vd(ε̄π | r)} = V(ε̄π) +N−1O(1) and

E(Ṽ0) = V(ε̄π) +N−1O(1),

which implies (31), using (C.10) and nN−1 = o(1). �
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