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Appendix B

In order to simplify the notation, E,:(¢O, ) and @y (v, r) are respectively

~T ~T
replaced by €;, and agi. Hence, €5, = (@oy, ¢ ) "

Lemma B1 Let S be a random r x r matriz, where r < co. If there exists a

population matriz Sy and a positive definite symmetric matriz S of constants
such that S — 8, = o,(1), Sy — S = o(1) and ||S|| < oo, we have that

§=0,1), 8 =0,1) and ||S;] = 1.

The proof of Lemma B1 can be found in Berger & Kabzinska (2016). Lemma
B1 and [C11] imply

So = O,(1), (B.1)
-1
Sy = 0,(1) (B.2)
Proof (Lemma 3)
We have
nVy = mz Z ﬂ';zngkT -~ Z(nh Z 7rk € Z ™, ee) B.3)
h=1kes, keS), €S,
It can be shown that
o~ NT/\*
€x = By Cop> (B.4)
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where ,£-')'0 = (1;_‘_1)7 0},,-34)7. Here, 144 denotes the (de+p) x 1 unit vector
and Oy the H x 1 zero vector. Thus, using (B.4), expression (B.3) reduces to

H
~ ~T( ~ o ~T )~
nVo = =By {SO + Z ¢h1WgNhQCOhCOh}ﬁ0' (B.5)
h=1
where CA’Oh, §0, ¥y, and ¥, are respectively defined by (20), (21), [C6] and

[C7]. Consider the matrix of constants

H
~T _ ~
=B, (S +y w#%%chCZ)ﬁo,

h=1

where Cj, is defined in [C8]. We have that

H

~ ~T 1| ~ ~ ~T — _ ~

nVo — Yo = =B [So -5+ Z%}lwﬁ{NﬁQCOhCoh - Chcz}} Bo:
h=1

Hence,
~ ~ —~ H —~ ~T _- _T
In¥6- ol < ||ﬁ0||2{so-sn+z G| N2 G, CiC, H}- (B.6)
h=1

The expression
2~ ~T - ST 1A - T aA aA - T
N;2CoiCop, — ChCp, = {N;'Cop, — Ch}Ch + N, Coh{Nh Con —Ch}
implies
2Ax Al 5 5T “1A > > 1A
|Mi2€onCon — €nlir || < NG Con — Enll{lCnll + N IConl }- (B7)
We have

NMIConll < 0'NTH Y m el

kegh
Thus, [C7] and [C10] imply
N Conll = 0, (1)- (B.3)
Thus, [C8], (B.7) and (B.8) imply
~ ~T - - _1
HNﬁQCOhCOh - C}LC}TLH =n,;,” Op(1): (B.9)

By using [C11] and substituting (B.9) into (B.6), we have

Vo — X = 0,(1), (B.10)
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which implies
nVy — Ty = o,(1), (B.11)

where \7ij and X;; denote respectively the (4, j) component of V; and X; that
is,

2
Vij i= N~ E ( E 7rk €hi€kj — — E 7rk ki E T, cg])
h=1 Leg, keSh €8y,

where €;; denotes the i-th component of €; that is,
ki = doki — Boif, (B.12)

where Ggy; is the i-th component of agx and B, is the i-th column of 3. Thus,

H
Vol <823 Y meitisl + o 3 mlfaal Y mlel) (B13)

h=1 kes, keSh €S,
Using Cauchy’s inequality, we have
3 w2l < (Z ml el Y wl e ) (B.14)
kES, keS), eSSy,
We also have
Zwk [€xi] < (nhZWk e,“> . (B.15)
keS keS
By substituting (B.14) and (B.15) into (B.13), we obtain

H

1 1
n|Vij| < 2Z(HN Z T e,ﬂ) : (anZ Z m,° 6\@2]) ° (B.16)

h=1 keSy eS8,

where €, is defined by (B.12). Using (B.12), Minkowski inequality and
TF 2 a 2 72 :
(Boifk)? < a2 41 Boiefre, we obtain

Nl
W=

(Z ™ afz) (Z i ao;ﬂ)% {Z 2 (BLEx) }

kGSh, k‘GSh kGSh,
3 kd 273
-2
(Z Ty aom) +\/EIZ|50M|{Z un sz} , (B.17)
k€S, (=1 keSh

where (g;¢ and ?kg are respectively the /-th component of 8, and f'\k..
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Using conditions [C19] and [C20] and inequalities (B.16) and (B.17), we
have that there exists a positive random variable v;; such that

E(vi;) < o0, nHZ]| < for all n- (B.18)

The Dominated Convergence Theorem, (B.11) and (B.18) imply nIE(IZJ) -
Xi; = o(1) or equivalently

nE(Vy) — 3o = o(1)- (B.19)
Minkowski inequality gives
120 — nVo|| < [InE(Vo) — nVo| + [[nE(Vo) — X,

which implies

2() — n‘/() = O(].), (B20)
by using (31) and (B.19). Now, (B.10) and (B.20) implies
n(Vo - W) = o(1), (B.21)
Expression (B.5) can be re-written as
~ AT ~ ~
nVh = =By Ao Bo, (B.22)
where
—~ ~ H ~ ~T
Ao =80+ > ' WEN,?ConCo,- (B.23)
h=1

Conditions [C7] and [C10] imply
NMCoull 8N Y mt gl = Op(1)-
kegh
Using the last inequality and (B.1), expression (B.23) implies
Ay = O,(1), (B.24)

because vy, ¥, and H are finite.
It can be shown that

~ T ~
where by := (17,0}, b, )", 1 is the unit vector and V; is defined by (26).
Equations (B.22) and (B.25) imply

~ ~ ~ ~ ~ ~ T o~ ~ ~
nVo —nVy = {By — bo} " Ag bo + By Ao {By — bo}- (B.26)

By using (B.24) and Lemma 1, expression (B.26) gives
nVp —nV = o,(1), (B.27)

which implies (32), because of equation (B.21). O
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Proof (Theorem 1) Condition [C8] implies
niN1(Coy-C*) Zth/)h (N;1Con -Cp) = O,(1), (B.28)

where

&N lax
CO = ﬂ-k cOk‘
keS

Oguz-Alper & Berger (2016, Th.2) showed that [C4], [C9], [C10], (B.1),
(B.2) and (B.28) imply (33). O

Proof (Theorem 2)
Berger & Torres (2016) showed that [C4], [C3], [C9], [C10], (B.28), (B.1)
and (B.2) imply

't Ago) = N"'n® A(th) + 05(1), (B.29)
where A(t),) is defined by (22).
Using the fact that ¢, is a sub-vector of €, (see (8)), condition [C11] and

Lemma B1 imply nN~ H(Zkes T2 Ck &)Y = 0,(1). Cauchy’s inequality
and [C10], we have nN2|| Zkesﬂf Er Gyl = O,(1). Hence

By = 0,(1)- (B.30)
Expressions(B.28), (22) and (B.30) imply
N'n2 A(xp,) = O,(1)- (B.31)
Hence, (B.29) implies
'n2 A(shg) = O,(1)- (B.32)

Under conditions [C15] and [C16], we have the Taylor expansion of A(t)
around 1,

dA(v,)
0%,

~

LA(Y) = N A(hg) + N7 (-1po) + |91, |POp(1):  (B.33)

We have 21\(1;) = 0, because 1 is the solution to (14). Hence, (B.32), (B.33)
and [C17] imply n2 (¢ — tby) = O,(1). Theorem 2 follows. 0
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Appendix C

In order to simplify the notation, ¢ (v, 7), gi(T0), ai(1y,7) and @y (1p,,r)
. ~% ~ ~Kk ~T ATN\T
are respectively replaced by €, go:i , @o; and aor. Hence, €5, = (@gi, €, ) ' -

The operators E,.(-) and V,.(-) denote the expectation and variance with
respect to the response mechanism. The operators V4(-|r) and E4(-| ) denote
the conditional expectation and variance with respect to the sampling design,
given r. The operators E(-) and V(-) denote respectively the expectation and
variance operator with respect to the response mechanism and the sampling
design.

Proof (Lemma 2) Using (8), (9) and (B.28), we have that
N_lﬁr = n_%op(l), where ﬁr = Z 71'];1&- (C.1)
keS
Expression (22) can be re-written as
-1 OH
AW =Ao Soranel (Ymrae) (%) (2
o) =Aoe- Y rane; (Smtael) (§) 2
¢S keS

We have that
S mZaoe el = (S, 85), (C.3)
keS
9~ T\t . —§71§ f(§ﬁ —§T§71§ f)_l
(Y mrae) - { =2 T D0 } (C.4)
keS

where e represents sub-matrices for which expressions are not needed. By
substituting (C.3) and (C.4) into (C.2), we obtain

o~

Ay = Agr — Eo fr

where Ag, and by are respectively defined by (23) and (27).
Lemma 1 and (C.1) imply

N A(y) — € = (bo — By) TN ', =n 20,(1), (C.5)

where €, is defined by (46).
~T
Using (B.4), we have that & = 8y N"' 3, .5 7}, €0y, Thus, [C10] imply

&x = O,(1)- (C.6)

We have
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. T
+€7T{N_1A<1/)O) _Eﬂ} .
By combining the last expressions with (B.31), (C.5) and (C.6), we obtain
N2 A(g)A(hy) " — &xe] =n 2 0,(1)- (C.7)

Let 2(()2 and dog; denote respectively the i-th component of ﬁoﬂ and aoy.
We have

D=

-1 2
‘AOTF S Zﬂ-k |aori| < (nN Zﬂk aom)

keS keS

Condition [C19] implies that for all ¢

S ol

NYAY < HE with E(H}) < oo (C.8)

Let C; and @ denote respectively the i-th component of C, C. Note that
C; —C;=0fori< H. For i > H, we have

NC = Gl < NSt [l < (”N_QZszfji)%'

keS8 kesS

Condition [C20] implies that for all 4

ol

NYC;, — G| € ]-'2 with E(F?) < oo (C.9)
Inequalities (C.8), (C.9) and [C21] imply that the components of N1 A(t),)
are dominated by positive random variables with finite expectations. Con-
ditions [C19] and [C20] imply that the components of €, are dominated by
positive random variables with finite expectations. Hence, the matrices in the
left hand side of (C.5) and (C.7) are dominated by positive random variables
with finite expectations. Thus,

NE{Aftko)} = E{e.} + o()
NZE{A(h)A(shg) "} = E{ere, } +o(1)

using the Dominated Convergence Theorem. The last two expressions imply
that the variance of N"1A () is given by

Vo = V(&) + o(1): (C.10)

The independence between the response mechanism and the sampling de-
sign implies that we can consider that non-response occurs before sampling as
in Fay (1991) and Shao & Steel (1999). Thus, the variance is

V(éﬂ') = ET{Vd(E‘ﬂ' ‘ ’I")} +VT{]Ed(ETr | T)} (Cll)
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We have
Ea(ex [7) = N> ap—Bg N fi
ieU €U
=N {aggript & (ri - —By N
€U’ e’
=N ko~ N Z{OT,éim}T ~ BN,
icu = icu

where p; is defined by (4) and

Koi = {QOZp 5 }

Thus, as r; AL r; for i # j and V,.(r;) = p;(1 — p;), we have

N2V, {Ey(&; | 7)} = ZHS;—FLOi pi(1 = p;) (C.12)
=

The last expression implies

N2V ABa(&r | )}] < loil® i

€U
<D llgoillPoit + > l&ll*
€U €U

The last inequality, B, = O(1), [C2], [C12] and [C13] imply
Vo {Eu(er | 1)} = NLO(1)- (C.13)
Under the two-stage design, we have
EA{Va(€r | )} = E;(Vaa) + Er (Vi) (C.14)
where
Via =V {EP € | S,r) | 7},
Vap =BV (e, | S,7) | 7} (C.15)

Here, E((il) and IE&Q) respectively denote the first and second stage design ex-

pectation operator. The operators VS) and ng) denote the first and second
stage design variance.

As the first stage is a stratified with-replacement design, we have the fol-
lowing Hansen & Hurwitz’s (1943) variance

—N22<Zwkekek_zekzq) (C.16)

h=1 *reU, keUn €U
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where

= E( (& Ek | S ’I’ Z €z|k7 (017)

lEUk
€ilk = ao; — B £i- (C.18)

We have
-
Volege) = (1= pi) (g0 ikl ) (905 pi&]) (C.19)
T

E. (&) = (90:-07) — By fi- (C.20)

We have that r; I r; for i # j implies €;, 1L €j);, for i # j. Thus,
E,(exe] ) =E,(ex) Er(er) ", for k # -

Now, (C.16) implies
E Vd a) = N2 Z Z — nh (ek) + Vd,r, (0.21)

where

H
Vi ::N’QZ{ S Er(en)E(en) T -npt S Eler) ET(Q)T}. (C.22)

h=1 kG[jh keﬁh Zeﬁh
Using (C.17) and (C.19), we have
1ol < 3 IValeq)l <0 S gl + 3 1161
ZGUk ZGU}C ZGUk

The last inequality combined with [C4], [C6], [C12], and [C13] implies

H
HZ ST (-t (ek)H <N ST S N - aN TV (e
h= 1k‘€U}L h=1 kElNJh,
H
SN, D IVe(en)
h=1 kéﬁ}
<N o) Y ligoil? + 0(1) Y 161}
€U €U
=n"'0(1)- (C.23)

We have that E,(ex) = 3,5, (96077 — By > icq, fi implies

I, (er)ll < ) lgoill + 18oll D IIEill

ieUy ieUy
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Minkowski inequality implies

(3 S iEr) < (X% (3 tond)} + {3 3 (3 1r)’)

1
2

h=1 ke, h=1keU, icU, h=1kelU, icU,
1 H 1
2 ~ 2
{Z SN lgoil?} + 1830 ST Ne DT eI
h=1keU, i€l h=1keU, i€l
3 }
{anmn Fromisal{> eI}
€U
(C.24)

because of condition [C1]. Now (C.24), [C13] and [C14] imply

H
NI S IE (e = 01 (C.25)

h=1 keﬁh

Using [C4] and [C6], definition (C.22) implies

[Vas < n7IN" 12 ST B (er)? + N7 2Znh (Z . (ex ||)

h= 1k)EUh keUy,
<nINT 12 > B (e)]* + N 2Znthh > En(er)
h= 1k€Uh keUy,

SRR 9D DI CTATIERENED SUATED SIAeY)
h= 1k€Uh keUp
VY S Bl + 0N Y S B el
h= 1k€Uh h= 1k6Uh

H
Ny N IIE(en)|
h=1 keﬁh
=nt0(1), (C.26)

using (C.25).
Expression (C.21) combined with (C.23) and (C.26) implies

E,. (Vi) =n"O(1)- (C.27)

We also need to derive the order of the second term of (C.14): E,(Vgy),
where Vg, is defined by (C.15). We have that (46) and (C.15) imply

N
Vi = N2 Zw,;lvff) (€S, ), (C.28)
k=1
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where €, defined by (29) can be re-written as
/E\k = Z Trz‘_ﬁgei\ka
€Sk
with €;);, defined by (C.18) and
V( Ek‘S ’I" Z Z Dl]|k €z|k 6
1€Uk ]EUk

Here, D;j)y, is defined by

[ -1,_ -1 _
Dijie = Tigie T T — 1

where ;) denotes the conditional joint-inclusion probability of units 4,j €
Uk.
Condition [C1] implies that there exists a constant 2 such that

T Ny < 2, (C.29)

where nj and N, & be respectively the sample and population size of ﬁk. Using
[C5], (C.29) and the fact that Uy is a finite set, we have that there exists a
finite constants 73 such that for all &

NS DY Dl < (C.30)
iely, jeUy
J#i
Furthermore,
1 (Vaw)ll < QZW > > Dun [Er(eqe €]l
’Lefjk Jeﬁk
N
=N Zﬁkl{ DD D [En(eq €
k=1 i€Uy, jeUy
J#i
37 w1 = ) (B (e €)1}
1€Uk

Cauchy’s inequality, [C4], (C.29), [C5] and (C.30) imply

JE (Vi) < ZZW {(Z ZDW)’(Z > 1B (e Sl)’

€Uy jeUy iEUkaUk
J#i J#i

+ Z 7Tz|k = mik) [Er (€3 em)H}

ZEUk
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Nl

1 _
<O(nin z{ RS B <f1?)
’LEUk]GUk
i
+ 32 1= o) B+ e <1
1€Uk

1>n-1N-1i{(Z 3 B (e e;kw?)%

k=1 i€Up jeﬁk
J#i

) S IE (e e5k>||}~ (C.31)

ieﬁk
Using €;; AL €, for i # j, we have that
ET(Ei\k €;|—|k) = Er(eﬂk)ET(eﬂk)Ta when ¢ 7é J:
Thus, (C.31) implies

I (Vi) | < 1N12{Z||E el? +0() 3 IE (eqnel, ||}

- 1€Uy ZEUk
(C.32)
Since, E, (€% €;||—k) =V, (&) +Er(€;x)Er(€;) ", expression (C.19) imply
1B (i €l < || (g pi&0) 1|7 + I (i) > (C.33)

Using [C12], [C13], [C14], (C.33) and Minkowski inequality, inequality (C.32)
implies

IE, (V)| < O(1)n! {0(1){ (N‘l > llgoill> + N7 ||Ei||2> 3 }2

€U €U
N
NI ||Er<eik>||2]
kzliGﬁk
<O t4+01)n N Z > B (€)1 (C.34)
k= IZGUk

Using [C13], [C14] and Minkowski inequality, we have that (C.20) implies

(V3 B el?) < {3 S (ol + 180l60) )
k= 1Z€Uk icu
<3S lgnl?} + gl {3 g2

€U €U
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= O(l)
The last inequality combined with (C.34) implies
IE- (Vi) = ntO(1): (C.35)

Hence, expressions (C.10), (C.11), (C.13), (C.14), (C.27) and (C.35) imply
nVy = O(1) +nN1O(1) + o(1) = O(1),

because nN ! = o(1). Thus, (30) holds.
Using (28) and (C.17), we have

H
]Eff)(%|§7r) - N_QZ{ Z WkQE( (€ |S,m) ) =y Z Ty €k Z T, ez}
h=1"keSn keSh teSy,
H
—N2Z{Zwkekek—nh Zwkekzw g}
h=1"res, keSy eSSy,
H
+N QZ > w2V (@S, r)- (C.36)
1keS),
Hence, by combining (C.36) with (C.15), (C.16) and (C.28), we have
Eéll){Ez(f)(f}O | §,’l")} = Vd;a + Vd;b' (C37)

Thus, (C.14) and (C.37) imply
E(V) = E[ESHES (V0 | $,7)}]
= ]Er(Vd;a) + Er(Vd;b)
=E {Va(er [7)}:
Expressions (C.11), (C.13) imply E.{V4(€, | 7)} = V(€;) + N1O(1) and
E(Vo) = V(ex) + N 'O(1),
which implies (31), using (C.10) and nN™! = o(1). O
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