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Abstract
The parameter of interest considered is the unique solution to a set of estimating
equations, such as regression parameters of generalised linear models. We consider a
design-based approach; that is, the sampling distribution is specified by stratification,
cluster (multi-stage) sampling, unequal selection probabilities, side information and a
response mechanism. The proposed empirical likelihood approach takes into account
of these features. Empirical likelihood has been mostly developed under more restric-
tive settings, such as independent and identically distributed assumption, which is
violated under a design-based framework. A proper empirical likelihood approach
which deals with cluster sampling, missing data and multidimensional parameters is
absent in the literature. This paper shows that a cluster-level empirical log-likelihood
ratio statistic is pivotal. The main contribution of the paper is to provide the rigorous
asymptotic theory and underlining regularity conditions which imply

√
n-consistency

and theWilks’s theorem or self-normalisation property. Negligible and large sampling
fractions are considered.

Keywords Design-based approach · Estimating equations · Stratification · Side
information · Unequal probabilities

1 Introduction

We consider that the sample data are selected with a stratified cluster (multistage) sam-
pling design with unequal probabilities. Side information is also included. Empirical
likelihood approaches for missing data have been developed under more restrictive
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92 Y. G. Berger

settings, which do not take into account of the complexity of the design and param-
eters. For example, Qin et al. (2009) empirical likelihood approach for missing data,
does not includes cluster sampling, unequal probabilities and population level infor-
mation. The complexity of the sampling design is the primarily focus of this paper.
Standard empirical likelihood approach based on the complete case cannot be straight-
forwardly implemented, because it would not take into account of the sampling design
and responsemechanism.We proposed a general empirical likelihood approach which
accommodates these complex features. It naturally includes adjustments for missing
data. In Sect. 6, we give regularity conditions which imply the Wilks’s theorem and√
n-consistency.
Parameters are often multidimensional, such as parameters of generalised linear

models. However, most of the design-based literature on missing data deals with uni-
dimensional parameters, such as totals, means, ratios and quantiles (e.g. Haziza and
Lesage 2016). However, in the presence of non-response, the parameter is multidi-
mensional, because the parameter of interest depends on non-response parameters.
For example, if we wish to estimate a mean and we have c re-weighting classes.
We have a multidimensional parameter of size c + 1 containing the mean and c
response probabilities, one for each class. It is common practice to treat the estimated
response probabilities as deterministic, which may affect confidence intervals (Val-
liant 2004). In their simplest forms, these estimated response probabilities reduces
to response rates. For example, when all the units have the same response prob-
ability, we have one re-weighting class and an estimator of this probability is the
overall response rate. It is common practice to ignore the estimation of these prob-
abilities and to treat them as if they were deterministic. The randomness of these
probabilities is taken into account within the empirical likelihood confidence intervals
proposed.

Pseudo-likelihood (Binder 1983) can be used for regression parameters. How-
ever, pseudo-likelihood confidence intervals are based on Wald’s statistics, involving
linearisation. There is no Wilks’s type theorem for pseudo-likelihood. Empirical like-
lihood has the advantage of having data driven and range preserving confidence
intervals, based on a self-normalising empirical log-likelihood ratio statistic. The
empirical likelihood approach proposed may provide better confidence intervals than
those based on Wald’s type statistics.

The mainstream empirical likelihood theory under independent and identically dis-
tributed (i.i.d.) observations, was developed by Owen (1988) and Qin and Lawless
(1994). Wang and Rao (2002a) proposed several empirical likelihood approaches for
imputed estimators of means, under an i.i.d. setting. It has been extended for linear
models and estimating equations by Wang and Rao (2002b), Wang and Chen (2009),
Qin et al. (2009). We consider a different situation when we have a stratified cluster
sampling design with unequal probabilities and side information.

Survey data are often clustered; that is, the population frame is split into small
groups of units, called clusters. A specified number of clusters are sampled. Units are
selectedwithin each cluster sampled. This is awidely used technique for social surveys.
We have a single-stage design when all the units are selected within each cluster
sampled. In both cases, the observations are not i.i.d., and the customary empirical
likelihood approach (Owen 2001) cannot be straightforwardly extended. We shall
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An empirical likelihood approach under cluster sampling 93

see that this customary empirical likelihood approach based on the completed cases
produces confidence intervals with coverages significantly different from the nominal
value.

Chen and Sitter (1999) pseudo-empirical likelihood is based on a weighted empiri-
cal likelihood function. It was extended for stratified simple sample with missing data
by Fang et al. (2009), Fang et al. (2010). The pseudo-empirical log-likelihood ratio
statistic is not pivotal (Wu and Rao 2006). Hence, the self-normalisation property does
not hold. Confidence intervals can still be obtained using linearisation or by adjusting
the pseudoempirical log-likelihood ratio statistic by a ratio of variance estimates, as
in Wu and Rao (2006) and Wang and Rao (2002b). This adjustment is limited to uni-
dimensional parameters, and cannot be used with multidimensional parameters. Chen
and Kim’s (2014) population empirical likelihood approach is based on single-stage
Poisson sampling with random sample size, which is not considered in this paper,
because we consider that the number of clusters sampled is deterministic.

Berger and Torres (2016) extended Owen (1988) approach for single-stage unequal
probabilities sampling and full response, when we have a single estimating equation
and fixed sample size. Oǧuz-Alper and Berger (2016) generalised this approach for
multidimensional parameters under full response. The fact that the self-normalisation
property holds is major advantage over the pseudo-empirical likelihood approach. A
comparison between Oǧuz-Alper and Berger (2016) approach and pseudo-empirical
likelihood can be found in Berger (2018). Berger and Torres (2016) proposed an
extension for multi-stage design and a single estimating equation. They conjectured
that the empirical log-likelihood ratio statistic is pivotal, under full response. In this
paper,weproof this conjecture, under amore general setting involvingmissingdata and
multidimensional parameters. The contribution of this paper is to provide regularity
conditions on the design which ensures that the profile cluster-level empirical log-
likelihood ratio statistic is pivotal. The primarily focus of this paper is the complexity
of the sampling design, rather than missingness. The former is add-on feature which
cannot be avoided with clustered samples. Imputation is not covered and is beyond
the scope of this paper.

The aim of this paper is to develop a rigorous asymptotic theory of empirical like-
lihood under multistage designs and nonresponse. We shall use response propensities
to adjust for missing data, as in Qin et al. (2009), but we consider a different setting
when we have a stratified cluster sampling design with unequal probabilities and side
information.We show that the independence between the responsemechanism and the
sampling design implies that the empirical log-likelihood ratio statistic is pivotal and
does not need to be adjusted for missing data. The empirical log-likelihood ratio statis-
tic takes the response mechanism into account. First, we show that this result holds for
negligible sampling fractions. Then, we show how the empirical log-likelihood ratio
statistic can be adjusted for large sampling fractions. We provide the regularity con-
ditions on the multistage sampling design and response mechanism which ensure that
the empirical likelihood estimator is consistent and that the empirical log-likelihood
ratio statistic is pivotal.

It is common practice to treat the estimated response propensities as determinis-
tic within variance estimators. This may shortened the confidence intervals (Valliant
2004). We show that the empirical log-likelihood ratio statistic possesses the self-
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94 Y. G. Berger

normalising property, while taking into account of the estimation of these propensities.
This allows confidence intervals which reflect the estimation of these propensi-
ties.

Inverse probability weighting approaches for handling missing data is well devel-
oped in the survey sampling literature (e.g. Brick and Kalton 1996; Brick and
Montaquila 2009). Most of them are based on a propensity model, with stochastic
response as a second phase (Särndal and Swensson 1987), with unknown response
propensities. Non-response bias reduction can be achieved under accurate estimation
of the response propensities. The propensity model used is often a logistic model
containing categories or classes, as in Little (1986). We shall use a similar approach.
Another approach is a non-response weighting adjustment based on calibration (Särn-
dal and Lundström 2005), based on auxiliary information at sample or population level
(Brick and Kalton 1996; Lundström and Särndal 1999). Other technique involves cal-
culating an upper bound for the non-response bias (Montaquila et al. 2008).

There are three main approaches for variance estimation: Jackknife (Rao and Shao
1992; Berger and Rao 2006), bootstrap (Kovar et al. 1988; Rust and Rao 1996) and lin-
earisation (Wolter 2007; Binder 1983; Deville 1999). Asymptotic theory of bootstrap
is restricted to simple settings. Its properties is often limited tomeans, and solely based
on simulations. Valliant (2004) compared these approaches via simulation. Brick and
Montaquila (2009) pointed out that more research is needed on the effect of non-
response weighting on confidence intervals. We proposed to fill this gap, by showing
how this effect can be taken into account, by using a profile empirical log-likelihood
ratio statistic. Its implementation does not involves variance estimation, re-sampling
or linearisation.

In Sect. 2, we define the response mechanism and the sampling design. The class of
multi-stage designs is defined in Sect. 3. The parameters of interest and side informa-
tion are defined in Sect. 4. In Sect. 5, we describe the empirical likelihood approach
proposed. The asymptotic results can be found in Sect. 6. The key results is Theorem
1, which shows that the empirical log-likelihood ratio statistic is pivotal. The approach
proposed is extended for two-stage designs with large sampling fraction in Sect. 7.
The proofs are given in in the online supplement. Simulation results, found in Sect. 8,
show that the approach proposed is robust against skewed data, extreme values, and
large sampling fraction. An example of application to real survey data can be found
in Sect. 9.

2 Responsemechanism, sampling design and sample data

Consider a population U = {1, . . . ,N } containing N units. Let

ξ := (ξ1, . . . , ξ i , . . . , ξN )�,

ζ := (ζ 1, . . . , ζ i , . . . , ζN )�,

y := ( y1, . . . , yi , . . . , yN )�,
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An empirical likelihood approach under cluster sampling 95

where ξ i ∈ R
dξ , ζ i ∈ R

dζ and yi ∈ R
dy denote vectors of constant values attached

to unit i ∈ U . The vectors ξ , ζ and y are called respectively the ‘non-response
variables’, the ‘design variables’ and the ‘variables of interest’. We consider that
some components of y are subject to missingness. The variables ξ and ζ are not
subject to missingness.

We consider a ‘design-based approach’ (Neyman 1938); that is, ξ , ζ and y are
treated as constants. This is a non-parametric approach, because we do not assume any
distribution for ξ i ,ζ i and yi . The design-based approach is different from mainstream
statistics and is the core of survey data estimation. The response mechanism and the
samplingdesign are respectively defined inSects. 2.1 and2.2.The responsemechanism
specifies the random process which determines which unit i is missing (Rubin 1976).
The sampling design characterises the random selection of a sample within U . We
assume that the response mechanism and the sampling design are independent random
processes.

2.1 Responsemechanism

Let ri denotes the response indicator of i ∈ U , where ri = 1 if i is not missing and
ri = 0 if i is missing. The response mechanism is characterised by the probability
space {Ωr , σ (Ωr ), Pr }, where

Ωr = {r := (r1, . . . , ri , . . . , rN )� : ri = 0 or 1}, (1)

generates the σ -algebra σ(Ωr ). The probability Pr : σ(Ωr ) → [0, 1] is given by

Pr (r, ξ ,λ0) :=
∏

i∈U
Pi (λ0)

ri {1 − Pi (λ0)}1−ri , (2)

where

Pi (λ) := �
−1(ξ�

i λ), (3)

where �
−1 : R → (0, 1] is the inverse of a link function � (e.g. logit, probit, com-

plementary log-log). Definition (2) means that ri ∼ Bernoulli(ρi ), with ri ⊥⊥ r j for
i �= j and

ρi := Pi (λ0). (4)

The quantity ρi is called the ‘response propensity’ of unit i ∈ U and λ0 ∈ R
dξ is called

the ‘response parameter’. The ξ i denotes variables that explains the missingness. For
example, the ξ i may contain some geographical variables or variables available in a
population register or census. We shall assume that the ρi are unknown and correctly
specified by (3).
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The choice of ξ i is discussed inKalton (1983), Särndal andLundström (2005), Little
andVartivarian (2005). In practice, it is preferable to have ξ i being a set of dichotomous
variables representing re-weighting classes, with uniform response propensitieswithin
classes (Little 1986; Haziza and Beaumont 2007; Brick and Montaquila 2009), since
logistic model with continuous variable may give unstable estimates (Little 1986).
Little (1986) proposed to create quantile classes from fitted response probabilities,
and use them in a logistic model to obtain more stable propensities. In this case, ξ i is
a matrix of dummy variables specifying the classes, and λ0 is a vector containing the
response rates for each classes.

2.2 Sampling design

A sample is a collection of units from U . A sample is not necessarily a subset of U ,
because the same unit can be sampled several times, under with replacement sampling.
Let di denote the number of time a unit i ∈ U is selected, with di = 0 when the unit i
is not selected. The sample size is ν := ∑

i∈U di . Consider the set Ωd of all possible
samples:

Ωd = {d := (d1, . . . , di , . . . , dN )� : di ∈ N}.

We consider the probability space {Ωd , σ (Ωd), Pd}, where Pd : σ(Ωd) → [0, 1]
is a probability measure called ‘sampling design’. This probability is denoted by
Pd(d, ζ ) and is a function of design variables ζ , which includes information about
strata, clusters or selection probabilities. The class of sampling designs considered is
defined in Sect. 3.

2.3 Product space and sample data

The key assumption is the independence between the response mechanism and the
sampling design. This is a weak assumption oftenmet in practice. It means that ρi does
not depend on the sample selected. Thus, we have the product probability space {Ωr ×
Ωd , σ (Ωr ) ⊗ σ(Ωd), Pr ,d}, where Pr ,d(r, d, ξ ,λ0, ζ ) = Pr (r, ξ ,λ0) × Pd(d, ζ ). A
random variable is a real measurable function on that product probability space.

An outcome of Ωr × Ωd is ωr ,d := {(ri , di )� : i ∈ U }, with ξ i , ζ i and yi being
associated to i ∈ U . We adopt the convention that ξ i , ζ i and yi are only known for
i such that di �= 0, with some components of yi missing when ri = 0. Instead of the
outcome ωr ,d , we prefer to use the equivalent concept of ‘sample data’ given by

Dr ,d :=
{
(ri , di , ξ

�
i , ζ�

i , y�
i )� : i ∈ U , di �= 0

}
,

because the variables ξ i , ζ i and yi are vectors of constants. A real Borel-measurable
functionofDr ,d is a randomvariable. For example, the samplemeanof the non-missing
values, (

∑
i∈U diri )−1 ∑

i∈U diri yi , is a random variable with a sampling distribution
specified by Pr ,d . Note that this random variable is usually a biased estimator of the
population mean of yi , because it does not contains non-response adjustments.
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The design-based framework described in this section is different frommainstream
statistics, because the ξ i , ζ i and yi are constants. The sampling distribution is specified
by probability space {Ωr ×Ωd , σ (Ωr )⊗σ(Ωd), Pr ,d} or equivalently, by the response
mechanism and the sampling design. The advantage is that it is not necessary to
specify a distribution for the variable of interest, and it provides robust non-parametric
approach for estimation.

2.4 Some remarks

Response mechanisms are often classified as ‘missing completely at random’ (mcar),
‘missing at random’ (mar) and ‘not missing at random’ (nmar) (Rubin 1976; Little
and Rubin 2002). We have a mcarmechanisms, when there is no correlation between
ξ and y. We should not view this correlation from a probabilist point of view, but
simply as the descriptive correlation measured between the N -vectors of constants
within ξ and y. We have a nmarmechanism, when ξ and y have common variables or
are correlated. We do not consider nmar mechanisms. We assume that the response
mechanism is mar. In Sect. 4, we will see that the mar assumption is linked with the
estimating function. In Sect. 8.2, a simulation study evaluates the approach proposed
under a nmar mechanism.

Even under mar, there is still a non-response component within the variance.
Response propensities need to be taken into account within the weights to reflect
the fact that the complete case sample is smaller that the sample selected. Ignoring
the response mechanism under-estimates the variance. Our profile empirical log-
likelihood ratio statistic takes the response mechanism into account within confidence
intervals and p-values. Since we assume that the response mechanism is independent
of the sampling design, we can consider that non-response occurs before sampling as
in Fay (1991) and Shao and Steel (1999). This allows to have the effect of the design
and non-response included within a single term, which is captured by the empirical
log-likelihood ratio statistic. Since, non-response is stochastic, the fact that it occurs
before or after sampling, has no implication for the expectation and variance of point
estimates (Fay 1991).

Equation (2) implicitly assumes that ξ explains missingness. In Sect. 5, response
propensities will be used to adjust for missing data. Even under mar, the response
mechanism needs to be taken into account for propensity weighting. Within the vari-
ance, there is also a component due to missingness, to reflect the loss of efficiency that
occurs because of the non-response mechanism.

The sampling design is informative when some variables of y are correlated with
ζ (Pfeffermann et al. 1998). Ignoring informativeness may result in invalid inference.
Informativeness will be taken into account by incorporating ζ within the estimating
equations [see (7].We assume that the design variables ζ are known for all the sampled
units.
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98 Y. G. Berger

3 Cluster sampling design

In practice, sampling designs commonly used, involves stratification, clusters and
unequal selection probabilities (e.g. Brewer and Gregoire 2009). In this section, we
define the class of sampling designs considered.

Suppose that the population U is split into N non-overlapping subsets Ũk called
clusters, where k ∈ Ũ = {1, . . . , N }, Ũ denotes the population of N clusters and
∪k∈Ũ Ũk = U . Note that N is different from the population size N . We assume that

Ũ is split into H non-overlapping strata, Ũ1, . . . , ŨH , such that ∪H
h=1Ũh = Ũ . We

assume that a sample S̃h of nh clusters is selected independently with-replacement
within Ũh , with probabilities πk/nh , where

∑
k∈Ũh

πk = nh . The sample S̃h contains
nh clusters’ labels selected after nh successive draws. The overall sample of psu’s is
denoted S̃ = ∪H

h=1 S̃h and contains n = ∑H
h=1 nh cluster labels. An important feature

of this design is that the clusters are selected with unequal probabilities.
Within each cluster Ũk sampled, we select a without replacement sample Sk of

νk units. Let πi |k denote the conditional inclusion probability of a unit i in Ũk . Any
sampling designs can be used to select Sk . The final sample S = ∪k∈S̃ Sk contains
ν = ∑

k∈S̃ νk units. We have a single-stage sampling design when we select all the
units of each cluster sampled; that is, Sk = Ũk .

The sample S contains the labels of units selected, some of them can appear sev-
eral times within S. There is a bijection between all possible samples S and Ωd ,
because each S can be paired with a single d ⊂ Ωd . Thus, the probability space
{Ωd , σ (Ωd), Pd} also describe the random, selection of the sample S.

The design variables ζ specify the clusters, the stratification, theπk and theπi |k .We
assume that the design variables ζ are known for the sampled units. However, these
variables may be not available to survey data users. Most of the standard survey sam-
pling literatures (e.g. Särndal et al. 1992; Wolter 2007) rely on this assumption. Exact
analytic approaches for variance estimation are not possible without this information.
Proxies need to be used when some of these variables are not available. For example,
with the “European Union Statistics on Income and Living Conditions” (eu- silc)
survey (Eurostat 2012), the πk are available, geographical variables can be used as
proxies for stratification and survey weights can used within the sums where πi |k is
needed [see (10) and (11)]. Details on how to create these proxies can be found in
Osier et al. (2013). We also have an example in Sect. 9.

4 Parameters of interest and side information

The parameter of interest τ 0 is a function of ξ , ζ and y, which is the solution to p
estimating equations,

G(τ ) :=
∑

i∈U
gi (τ ) = 0p, (5)

where gi (τ ) = g(τ , ξ i , ζ i , yi ) ∈ R
p is an estimating function of τ , ξ i , ζ i and yi .

Here, τ 0 ∈ T ⊂ R
p′
and τ ∈ T , where T is compact and p′ � p. The vector 0p is
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An empirical likelihood approach under cluster sampling 99

the p-vector of zeros. We assume that the solution to (5) is unique. For example, τ 0
can be a vector of population regression coefficient of a generalised linear regression
model (e.g. Binder and Patak 1994; Chen and Keilegom 2009). Examples of logistic
and poisson regression parameters can be found in Sect. 8.

Asymptotically unbiased estimation of G(τ ) is the key aspect of the theory of
estimating equation in survey sampling (e.g. Godambe and Thompson 2009). In order
for weighted estimator of G(τ ) to be unbiased, the response mechanism must be
such that there is no correlation between gi (τ ) and ρi given by (4). This derived
from the standard theory of weighted estimator of totals (e.g. Haziza and Beaumont
2007; Haziza 2009). When gi (τ ) is a non-linear function of y, the covariance between
gi (τ ) and ρi could be negligible, even if y and ρi are dependent, under a non-ignorable
(nmar) responsemechanism. Hence, ignorability of the responsemechanism depends
on the estimating function gi (τ ) or the parameter to estimate. An example can be found
in Sect. 8.2.

Wemay have some ‘side information’ in the form of population-level means, counts
or proportions from large external censuses or surveys, knownwithout sampling errors
as in Owen (2001, Sect. 3.10). In the econometric literature, this is known as ‘deter-
ministic macro-level information’ or ‘exact knowledge’ (Imbens and Lancaster 1994).
In other words, we assume that we know a vector ϕ0 ∈ Φ ⊂ R

q ′
, which is the solution

to q estimating equations (q ′ � q),

∑

i∈U
fi (ϕ) = 0q , (6)

where fi (ϕ) := f(ϕ, ξ i , ζ i , yi ) ∈ R
q , ϕ ∈ Φ and Φ is compact. We assume that

fi (ϕ) is not subject to missingness. Thus, fi (ϕ) is a function of the components of yi
which are not subject to missing values. In (6), fi (ϕ) is a unit level function. When
ϕ0 describe cluster level characteristics, we use fi (ϕ) = f̃k(ϕ)πi |k ν−1

k , where i ∈ Ũk

and f̃k(ϕ) is a cluster level function. In this case, (6) reduces to
∑N

k=1 f̃k(ϕ) = 0q ,
because

∑
i∈Ũk

πi |k = νk .
The fi (ϕ0) are called ‘auxiliary variables’ in the survey sampling literature (e.g.

Hartley and Rao 1968; Deville and Särndal 1992). In what follows, we shall replace
fi (ϕ0) by fi , because ϕ0 is a vector of known constants.

5 Empirical likelihood approach

Wehave twounknownparameters: the parameter of interestτ 0 and the responseparam-
eter λ0. Let ψ0 = (τ�

0 ,λ�
0 )� denotes the overall parameter and ψ = (τ�,λ�)�,

where ψ0,ψ ∈ Ψ ⊂ R
p+dξ and Ψ denotes the compact parameter space of ψ0.

Consider the “cluster-level empirical likelihood function”:


max(ψ) := max
pk :k∈S̃

⎧
⎨

⎩
∑

k∈S̃
log pk : pk > 0, n

∑

k∈S̃

pk
πk

ĉ �
k (ψ, r) = C�

⎫
⎬

⎭ , (7)
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100 Y. G. Berger

where r is defined within (1) and

ĉ �
k (ψ, r) :=

{
âk(ψ, r)�, ĉ�k

}�
, ĉk :=

{
Nn−1z�k , f̂

�
k

}�
, (8)

C� :=
(
0�
dξ +p,C

�)�
, C := (Nn−1n�

H , 0�
q )�, (9)

âk(ψ, r) :=
∑

i∈Sk
π−1
i |k ai (ψ, r), (10)

f̂k :=
∑

i∈Sk
π−1
i |k fi , (11)

ai (ψ, r) :=
[
Pi (λ)−1ri gi (τ )�, ξ�

i {ri − Pi (λ)}
]�

, (12)

zk := (zk1, . . . , zkh, . . . , zkH )�,

nH := (n1, . . . , nH )�,

zkh :=
{

πk for k ∈ Uh,

0 otherwise,

dξ = dim{ξ i } and log denotes the natural logarithm. The Pi (λ) are defined by (3).
Note that gi (τ ) is function of yi . Thus, when ri = 0, we have that gi (τ ) is missing,
and ri gi (τ ) = 0p. When πi |k are unknown, survey weights can used within (10) and
(11) instead of π−1

i |k .
The zk are the ‘stratification variables’. The f̂k are related to constraint imposed by

(6). The information about the parameter is included within âk(ψ, r). Expression (7)
is a cluster-level function because of the sum over k ∈ S̃within (7). The key idea of the
paper is to show that (7) can be used for consistent point estimation and gives a pivotal
empirical log-likelihood ratio statistic. One of the unique feature of the approach is
the inclusion of a set of stratification constraints, n

∑
k∈S̃ pkπ

−1
k zk = nH , given by

(8) and (9), not motivated by moment conditions. The other feature is the weights π−1
k

included within the constraint of (7).
It can be shown that the constraint within (7) implies

∑
k∈S̃ pk = 1, which is

known as the leading constraint. The definition (7) resembles the standard empirical
likelihood function (Owen 1988), apart from the weight π−1

k within the constraint. The
pk play the same role as the g-weights as in Särndal et al. (1992, p. 232) or calibration
factor (Deville and Särndal 1992).

Using Lagrangian multiplier, we have that


max(ψ) =
∑

k∈S̃
log p̂k(ψ)·
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An empirical likelihood approach under cluster sampling 101

where

p̂k(ψ) = n−1
{
1 + η(ψ)� ĉ �

k (ψ, r)π−1
k

}−1 ·

Here, η(ψ) is such that p̂k(ψ) > 0 and the following constraint holds.

n
∑

k∈S̃
π−1
k p̂k(ψ) ĉ �

k (ψ, r) = C�·

We assume that ψ is such that C� is an inner point of the convex conical hull of
{ĉ �

k (ψ, r) : k ∈ S̃}, so that a unique solution η(ψ) exists.

5.1 Point estimation

The ‘maximum empirical likelihood estimator’ is

ψ̂ := argmax
ψ∈Ψ


max(ψ)· (13)

It can be shown that ψ̂ is also the solution to

Â(ψ) := n
∑

k∈S̃
p̂k π−1

k âk(ψ, r) = 0t+p, (14)

where

p̂k := n−1
(
1 + η� ĉk π−1

k

)−1 · (15)

Here, η is such that p̂k > 0 and n
∑

k∈S̃ p̂k π−1
k ĉk = C, where ĉk and C are respec-

tively defined by (8) and (9). Note that the constraint always implies
∑

k∈S̃ p̂k = 1.
By using (12) and (10), we have that (14) reduces to sample-based estimating

equations:

∑

k∈S̃

∑

i∈Sk
wi |kξ i {ri − Pi (λ)} = 0dξ , (16)

∑

k∈S̃

∑

i∈Sk
wi |kfi = 0q , (17)

∑

k∈S̃

∑

i∈Sk
ri Pi (λ)−1wi |k gi (τ ) = 0p, (18)

where wi |k := m̂k π−1
i |k and m̂k := n p̂k π−1

k . The quantities m̂k and π−1
i |k are respec-

tively the cluster-level empirical likelihood weights and the unit-level weight. The
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quantities Pi (λ)−1 are ‘propensity-score adjustments’. In Sect. 6, we will see that they
ensure consistency of ψ̂ . The non-response parameter λ0 is estimated from (16), which
is the sample-level weighted estimating equation of a generalised linear model. Equa-
tion (17) takes into account of the side information. The parameter τ 0 is estimated
from the equation (18). Note that (18) and (17) are sum over the non-missing unit i ,
with ri = 1.

In the particular case when we have a simple random sample with no stratification,
clustering and side information, the estimating Eqs. (16–18) are indeed those obtained
by Qin et al. (2009), under an i.i.d. setting.

The constant ϕ0 can be estimated by including fi (ϕ) within gi (τ ), where fi (ϕ) is
defined in (6). Equation (17) implies that the maximum empirical likelihood estimator
of ϕ0 is almost surely a constant random variable taking a single value ϕ0. This prop-
erty is known as the ‘calibration’ in survey sampling literature (Deville and Särndal
1992). Calibration is the consequence of the maximisation in (13). In survey sampling
literature, calibration is viewed as weighting procedure, rather than the consequence
of the maximisation of an empirical likelihood function.

5.2 Profile empirical likelihood ratio statistic

To allow hypotheses testing and computation of confidence intervals, we need a pivotal
statistics. We propose to use the profile empirical log-likelihood ratio statistic defined
by (19). Theorem 1 shows that (19) is a pivotal.

Consider that the parameter of interest θ0 is a sub-vector of ψ0 = (τ�
0 ,λ�

0 )�.
The remaining parameter is μ0; that is, ψ0 = (θ�

0 ,μ�
0 )�. The respective maximum

empirical likelihood estimators are denoted θ̂ and μ̂. In practice, λ0 is usually not a
parameter of interest and is therefore part of μ0.

Let 
max(θ,μ) := 
max(ψ), where θ ∈ Θ , μ ∈ M and ψ = (τ�,λ�)� =
(θ�,μ�)�. Here, Θ and M denote the parameter space of θ0 and μ0. The profile
empirical log-likelihood ratio statistic is defined by the following function of θ .

R̂(θ) := 2

{

max(ψ̂) − max

μ∈M

max(θ ,μ)

}
· (19)

It can be shown that 
max(ψ̂) = ∑
k∈S̃ log( p̂k), where p̂k is defined by (15). Theorem

1 in Sect. 6.2 shows that (19) is pivotal. Thus, (19) can used as traditional ratio statistic
to test or construct confidence regions for θ0 (see Sect. 8). The algorithm proposed by
Oǧuz-Alper and Berger (2016, pp. 457–458) can be used to compute (19).

6 Asymptotic results

The asymptotic framework considered is based on an infinite nested sequence of
sampling designs, samples and populations as in Isaki and Fuller (1982). We assume
that n → ∞, where n is the number of clusters sampled. The number of strata H is
constant. Let op(·) and Op(·) be the orders of convergence in probability with respect
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to the response mechanism and the sampling design. The ordersOp(a) and Op(a) are
matrices (or vectors) which are such that ‖Op(a)‖ = Op(a) and ‖Op(a)‖ = op(a),
where ‖ · ‖ denotes the Frobenius norm.

6.1 Regularity conditions

We assume the following conditions

[C1] max
k=1,...,N

Ñk = O(1)·
[C2] max

i∈U (ρ−1
i ) = O(1)·

[C3] Nn−1 max
k=1,...,N

(πk) = O(1)·
[C4] N−1n max

k=1,...,N
(π−1

k ) = O(1)·
[C5] max

k=1,...,N
max
i∈Ũk

(π−1
i |k) = O(1), where πi |k is the conditional inclusion probability

of a unit i in Ũk .
[C6] nhn−1 = ψh , where ψh is a strictly positive fixed constant that does not vary as

n → ∞ (∀h = 1, . . . , H).
[C7] NhN−1 = Ψh , where Ψh is a strictly positive fixed constant that does not vary

as n → ∞ (∀h = 1, . . . , H).
[C8] There exists a set of vectors of constants C̄h , such that

H∑

h=1

NhC̄h = C�, n
1
2
h

(
N−1
h Ĉ0h − C̄h

)
= Op(1) and C̄h = Op(1),

∀ h = 1, . . . H , where

Ĉ0h :=
∑

k∈S̃h
π−1
k ĉ �

k (ψ0, r)· (20)

[C9] n− 1
2 maxk∈S̃‖ĉ �

k (ψ0, r)‖ = op(1)·
[C10] N−μnμ−1∑

k∈S̃π
−μ
k ‖ĉ �

k (ψ0, r)‖μ = Op(1), (μ = 1, 2, 3, 4)·
[C11] There exists a matrix of negative constants S such that Ŝ0 − S = Op(1),

S = O(1) and −S is positive definite, where

Ŝ0 := −nN−2 ∑

k∈S̃
π−2
k ĉ �

k (ψ0, r) ĉ
�
k (ψ0, r)

�· (21)

[C12] N−1 ∑

i∈U
‖ξ i‖2 = O(1)·

[C13] N−1 ∑

i∈U
‖gi (τ 0)‖2 = O(1)·
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[C14] N−1 ∑

i∈U
‖fi‖2 = O(1)·

[C15] N−1 ∂ Â(ψ)

∂ψ
is continuous in ψ ∈ Ψ , with

∥∥∥∥∥N
−1 ∂ Â(ψ0)

∂ψ0

∥∥∥∥∥ �p 1·

[C16] N−1 ∂2 Â(ψ)

∂ψ2 = Op(1) uniformly for ψ ∈ Ψ ·
[C17] ψ̂ − ψ0 = Op(1)·
[C18] N−1 Ä(ψ0)

d−→ N(0, V0),

where I denotes the identity matrix,

Ä(ψ0) := Â0π + B̂
�
0 (C − Ĉ), (22)

Â0π :=
∑

k∈S̃
π−1
k â0k, (23)

B̂0 :=
⎛

⎝
∑

k∈S̃
π−2
k ĉk ĉ�k

⎞

⎠
−1

∑

k∈S̃
π−2
k ĉk â�

0k, (24)

Ĉ :=
∑

k∈S̃
π−1
k ĉk,

V0 := V

{
N−1 Ä(ψ0)

}
(25)

and â0k := âk(ψ0, r). The operator V(·) denotes the variance with respect to the
response mechanism and the sampling design.

We assume that there exist positive random variablesHi , Fi and Bi j which do not
depend on n and N , such that for all n

[C19] E(Hi ) < ∞ and nN−2∑

k∈S̃
π−2
k â20ki � Hi , ∀i ,

[C20] E(Fi ) < ∞ and nN−2∑

k∈S̃
π−2
k f̂

2
0ki � Fi , ∀i

[C21] E(Bi j ) < ∞ and |B̂0i j | � Bi j , ∀i, j ;
where f̂0ki and â0ki are respectively the i th component of f̂0k := f̂k and â0k . Here,
B̂0i j is the (i, j) component of B̂0 defined by (24). The operator E(·) denotes the
expectation with respect to the response mechanism and the sampling design.

Condition [C1] ensures that the clusters’ sizes are bounded. This condition is usually
met in practice, because these sizes are rarely large. Condition [C2] excludes situations
when the response propensities tend to zero. Conditions [C4] and [C3] are standard
requirement for πk (e.g. Krewski and Rao 1981; Fuller 2009 p. 49). It excludes πk

disproportionally smaller or larger than n/N . Condition [C5] means that the πi |k
are not disproportionally small. Conditions [C6] and [C7] imply that nh (and Nh)
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tends to ∞, with the same rate as n (and N ). The condition [C8] assumes that the
law of large numbers holds for (20). Using Markov’s inequality it can be shown
that [C9] holds when E(‖ĉ �

k (ψ0, r)‖4) = O(1) (Chen and Sitter 1999, Appendix 2).
The condition [C10] is a Lyapounov’s type conditions for the existence of sample
moments (Krewski and Rao 1981, Sect. 6.4.1). Condition [C11] assumes that the
matrix of moments (21) is consistent. Condition [C12], [C13] and [C14] are standard
moment conditions.Conditions [C15] and [C16] are smoothness requirement for Â(ψ)

(e.g Godambe and Thompson 1974). Both ensure that the Taylor expansion of Â(ψ)

exists. Condition [C17] is a standard requirement for solutions to estimating equations
(e.g. Godambe and Thompson 2009, p. 90). It relies on conditions on A(ψ) and Â(ψ)

proposed by Van Der Vaart (1998, Sect. 5). Condition [C18] assumes that the central
limit theorem holds for N−1 Ä(ψ0). It can be justified by Fuller (2009, Ch. 2) regularity
conditions. Conditions [C19–C21] ensure that an estimator of (25) is asymptotically
unbiased (see Lemma 2).

6.2 Pivotal property of (19) and
√
n-consistency

The pivotal property is based on the consistency of the following variance.

V̂0 := N−2
H∑

h=1

⎛

⎝
∑

k∈S̃h
π−2
k êk ê�

k − 1

nh

∑

k∈S̃h
π−1
k êk

∑


∈S̃h
π−1


 ê�



⎞

⎠ , (26)

where

êk := â0k − b̂
�
0 f̂0k,

b̂0 :=
(
Ŝff − Ŝ

�
zf Ŝ

−1
zz Ŝzf

)−1 (
Ŝfa − Ŝ

�
zf Ŝ

−1
zz Ŝza

)
, (27)

Ŝzz :=
∑

k∈S̃
π−2
k zk z�k , Ŝzf :=

∑

k∈S̃
π−2
k zk f̂

�
0k, Ŝff :=

∑

k∈S̃
π−2
k f̂0k̂f�0k,

Ŝfa :=
∑

k∈S̃
π−2
k f̂0k â�

0k, Ŝza :=
∑

k∈S̃
π−2
k zk â�

0k,

â0k := âk(ψ0, r) and f̂0k := f̂k .

Lemma 1 There exists a vector β0 = O(1) such that b̂0 − β0 = Op(1), where b̂0 is
defined by (27).

Lemma 1 follows from [C11] and a first-order Taylor expansion of b̂0.
Consider

Ṽ0 := N−2
H∑

h=1

⎛

⎝
∑

k∈S̃h
π−2
k ε̂k ε̂

�
k − 1

nh

∑

k∈S̃h
π−1
k ε̂k

∑


∈S̃h
π−1


 ε̂�



⎞

⎠ , (28)
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where

ε̂k := â0k − β�
0 f̂0k, (29)

and β0 is defined in Lemma 1. Note that Ṽ0 is a function of the constant β0. On the
other hand, V̂0 is a function of the random variable b̂0.

Lemma 2 When nN−1 = o(1), we have that

nV0 = O(1), (30)

nE(Ṽ0) = nV0 + O(1), (31)

where V0 is defined by (25).

The proof can be found in “Appendix C” of the online supplement.

Lemma 3 When nN−1 = o(1), we have that

n(V̂0 − V0) = Op(1), (32)

where V̂0 is defined by (26).

The proof can be found in “Appendix B” in the online supplement.

Theorem 1 Assuming that ĉ �
k (ψ, r) is differentiable with respect to μ (see Sect. 5.2),

conditions [C1]–[C21] imply

R̂(θ0) = N−2 Ä(ψ0)
� (

I − Â0
)
V̂−1
0 Ä(ψ0) + n− 1

2 Op(1), (33)

where,

Â0 := V̂
− 1
2

0 ∇̂0

(
∇̂�
0 V̂

−1
0 ∇̂0

)−1 ∇̂�
0 V̂

− 1
2

0 ,

∇̂0 := N−1 ∂ Ä(ψ)

∂μ

∣∣∣
ψ=ψ0

· (34)

The proof can be found in “Appendix B” in the online supplement.
Using [C18] and Lemma 3, the Slutsky’s Theorem implies

V̂
− 1
2

0 N−1 Ä(ψ0)
d−→ N (0, I)· (35)

Thus, when nN−1 = o(1), expressions (35) and (33) imply

R̂(θ0)
d−→ χ2

d f =t , (36)

because (I − Â0) is a symmetric idempotent matrix with trace t , where t = dim(θ0).
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Theorem 2 Under [C3], [C4], [C8], [C9], [C10], [C11], [C15], [C16] and [C17],
we have that ψ̂ is

√
n-consistent; that is,

n
1
2 (ψ̂ − ψ0) = Op(1)·

The proof of Theorems 1 and 2 can be found in “AppendixB” of the online supplement.

7 Cluster sampling with large sampling fractions

In this section, we extend the approach proposedwhen the clusters are selectedwithout
replacement and with a large sampling fraction n/N . For instance, this is can be the
case for the “National Health and Nutrition Examination Survey” (National Center
for Health Statistics 2016). Note that in Sect. 5, we allow the within-cluster sampling
fractions νk/Ñk to be large. For the extreme case when νk/Ñk = 1, we have a single
stage design and Berger and Torres (2016) empirical likelihood approach for single
stage designs with large sampling fractions can used. This section’s extension is not
be based upon Berger and Torres (2016) approach.

Our point estimator ψ̂ is still
√
n-consistent when n/N is large, because Theorem

2 does not rely on n/N = o(1). It is also not necessary to have n/N = o(1), for
Theorem 1 to hold. However, (36)may not hold any longer when n/N is large; because
the condition of Lemma 3 is not satisfied; that is, R̂(θ0) converges to a distribution
which is different from aχ2-distribution. Since (33) holds when n/N is large, standard
results on the distribution of quadratic forms (e.g. Scheffé, 1959 p. 418; Rao 1973 and
Wu et al. 2017) can be used to show that (33) and [C18] imply that R̂(θ0) converges
to a linear combination of χ2-distribution; that is,

R̂(θ0)
d−→

p∑


=1

λ
 Z2

 , (37)

where Z1, . . . ,Zp are independently distributed standard normal variables and
λ1, . . . , λp are the eigenvalues of

L0 = V0(I − Â0) V̂
−1
0 (38)

where V0, V̂0 and Â0 are respectively given by (25), (26) and (34). In “Appendix A”, we
propose an estimator L̂0 of (38). Let λ̂1, . . . , λ̂p be the eigenvalues of L̂0. The infer-
ence can be based upon R̂(θ) and the quantiles of

∑p

=1 λ
 Z2


 estimated numerically
from the empirical distribution of

∑p

=1 λ̂
 Z2


 .
When n/N = o(1), Lemma 3 holds and by substituting V0 by V̂0 within (38), we

obtain t eigenvalues equal to 1 and p− t eigenvalues equal to 0, which indeed implies
(36).

It is common practise to have θ0 scalar (t = 1), for example, when we are interested
in confidence intervals of a component of ψ0. In this case, we have a single strictly
positive eigenvalue, say λ1 and p − 1 eigenvalues equal to 0. Hence, (37) reduces to
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R̂(θ0)λ
−1
1

d−→ χ2
d f=1 when t = 1· (39)

After replacing λ1 by its estimates, (39) can be used for inference.
The simulation study on Sect. 8.4 shows that confidence intervals based on (39) are

slightly shorter than those based (36). Themore conservative confidence interval based
on (36) seems preferable. We have a simple interpretation for the minor differences
between the confidence intervals based on (39) and (36). The variance V̂0 within the
quadratic form (33) converges to the random matrix Ṽ0 [see (B.27) in “Appendix B”
in the online supplement). The expectation of Ṽ0 is a sum of a between and within-
cluster variances [see (C.15) and (C.37) in the online supplement]. Thus, V̂0 captures
both terms of the two-stage variance. However, the between variance does not contain
any finite population corrections, such as joint-inclusion probabilities or Hájek (1964)
finite population correction. Hence, the lack of finite population corrections increases
the bias of V̂0. One of the terms due to non-response is the variance due to the non-
response mechanism of the design expectation. This non-response term is of order
N−1 [see (C.13) in the online supplement], which is still small compared to the overall
variance of order n−1 [see (30)]. When n/N → 0, this term is ignored within V̂0,
because it is asymptotically negligible. When n/N �→ 0, the absence of this non-
response term within V̂0 decreases the bias of V̂0. Finally, the increase in bias due to
the lack of finite population correction and the decreases in bias due to the absence of
one of the non-response term may compensate each other, and produce a negligible
bias for V̂0, even when n/N �→ 0.

8 Numerical results

We consider the following parameters of interest: populationmean and poisson regres-
sion parameters, multiple logistic regression parameters, quantiles and distribution
functions. We consider that θ0 is a scalar θ0. Thus, the 95% confidence intervals can
be constructed using (36); that is,

ci(θ0) :=
{
θ : R̂(θ) � 3.8415

}
, (40)

where 3.8415 is the upper 95% quantile of the χ2-distribution with one degree of
freedom. In Sects. 8.1, 8.2 and 8.3, we report the observed coverages of (40). Single-
stage samplingwithout side information is considered in Sects. 8.1 and 8.2. This allows
to investigate the effect of non-response without the clustering effect. In Sects. 8.3 and
8.4, we consider cluster (two-stage) sampling designs. Side information is considered
in Sect. 8.3. In Sect. 8.4, we consider large sampling fractions.

In all the simulation studies, we have multidimensional parameters, because of the
response parameter needs to be estimated and is part of ψ0. Indeed, we have ψ0 =
(τ�

0 ,λ�
0 )�, where τ 0 is the parameter of interest and λ0 is the response parameter. The

profile empirical log-likelihood ratio statistic (19) allows to construct the confidence
interval (40) for each scalar components θ0 of τ 0.
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The simulation was done in R (R Development Core Team 2004). Some of the R
codes used in this section, are available on the author’s web-page:
http://www.yvesberger.co.uk.

8.1 Populationmean

Consider artificial populations of N = 10,000 values yi generated from a skewed
distribution given by

yi = 3 + ζi + xi + ψ(ei − 1),

where ζi ∼ exp(1), xi ∼ exp(1) and ei ∼ χ2
d f =1. Five populations are generated

with ψ = 20, 3.5, 1.5, 0.6 and 0.1. We consider a single-stage randomised systematic
sampling design (e.g. Hartley and Rao 1962); that is, Sk = Ũk = {k} and νk = 1.
We select 10,000 samples of size 100. The πi are proportional to |ζi | + 2. Different
values of ψ allows the correlation between πi and yi to vary between 0.02 and 0.7.
Missing values for yi are generated from (2) with � in (3) being the logit function,
ξ i = (1, ξi )� and λ0 = (−1, 1)�. Here, ξi ∼ Γ (shape = 1, scale = 2). The response
propensities (4) lie between 0.27 and 1, with an average of 0.6. Side information is
not considered. The parameter of interest is the mean τ 0 := N−1 ∑

i∈U yi . We use
gi (τ ) = yi − θ with τ = θ .

The customary two-phase point estimator of τ 0 is

θ̂c := N̂−1 ∑

i∈S
ri (πi ρ̂i )

−1yi , (41)

where N̂ := ∑
i∈S ri (πi ρ̂i )

−1 is an estimator of N and ρ̂i are the fitted probabilities of
a logistic model with an intercept and ξi . The customary two-phase variance estimator
(Särndal et al. 1992, Sect. 9.4) is

V̂2(θ̂c) := N̂−2
[∑

i∈S
ri
∑

j∈S
r j

(
π−1
i π−1

j − π−1
i j

)
ρ̂ −1
i j

(
yi − θ̂c

) (
y j − θ̂c

)

+
∑

i∈S
ri π

−2
i ρ̂ −2

i

(
yi − θ̂c

)2
(1 − ρ̂i )

]
, (42)

where ρ̂i j = ρ̂i ρ̂ j for i �= j and ρ̂i i = ρ̂i . Here, πi j := Pd(di = 1, d j = 1) denote
joint-inclusion probabilities, which can be computed with Hartley and Rao (1962)
formula.

In Table 1, we have the observed coverages of the empirical likelihood confidence
interval (40) and the standard confidence interval based on (42) and the normality
assumption for θ̂c. We observe a low coverage for the standard approach, because of
the skewness of the data. We also have significantly large right error rates and low left
error rates. The coverage of the empirical likelihood approach are closed to 95%. They
are however significantly different from 95%, because 10,000 sample are selected. The
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Table 1 Observed coverages of 95% confidence intervals and (left and right) tail error rates

Corr(yi ,πi ) Coverages (%) Left rates (%) Right rates (%) mse

el (40) stand. el (40) stand. el (40) stand. el stand.

0.02 96.3† 91.0† 2.68 0.71† 0.72† 8.34† 17.83 17.85

0.2 95.7† 92.2† 2.91† 0.97† 1.19† 6.81† 0.57 0.57

0.4 94.0† 93.0† 3.29† 1.54† 2.57 5.46† 0.14 0.14

0.6 94.4† 93.7† 2.99† 2.08† 2.61 4.20† 0.05 0.05

0.7 94.9 94.1† 2.71 1.86† 2.33 4.07† 0.04 0.04

mse, mean squared errors; Corr(yi ,πi ) denotes the correlation between yi and πi . el, empirical likelihood
approach; stand., standard approach based on (41) and (42). 10,000 samples
† Coverages (or rates) significantly different from 95% (or 2.5%): p value ≤ 0.05

left and right error rates are more balanced, with some not significantly different from
2.5%. We do not observed difference between the mean squared errors (mse) of the
empirical likelihood point estimator and (41), because side information is not used.

8.2 Poisson regression

Consider artificial populations of approximately 40,000 values yi generated from a
poisson distribution with mean ϑxiui , where xi ∼ N (10, σ 2) and ui ∼ N (100, 302)
is an offset.Weexclude the unitswithϑxi ui � 0. Several population data are generated
withϑ = −0.5,− 0.4,− 0.2, 0.005; andσ = 0.5, 1.0, 2.0, 3.0 or 4.0. The parameter of
interest is the poisson regression parameter θ0 = τ 0, which is the solution to (5) with

gi (τ ) = xi
{
yi − ui exp(θxi )

}·

Here, τ = θ and yi = (yi , xi , ui )�. For simplicity, we did not include an intercept
and side information is not considered.

We select 10,000 single-stage randomised systematic samples, as described in Sect.
8.1. The sample size is 400. The πi are proportional to |ζi + 10|, where ζi = 0.7(yi −�Y )σ −1

y +ei , ei ∼ N (0, 0.51), �Y = N−1 ∑
i∈U yi and σ 2

y = (N −1)−1 ∑
i∈U (yi −�Y )2.

The correlation between πi and yi is approximately 0.7.
Missing values for yi are generated from (2) with � in (3) being the logit function,

ξ i = (1, ξi )� and λ0 = (−8, 1)�. Here, ξi = 0.8(xi − �X)σ −1
x + εi , εi ∼ N (0, 0.36),

�X = N−1 ∑
i∈U xi and σ 2

x = (N − 1)−1 ∑
i∈U (xi − �X)2. The correlation between

ξi and xi is approximately 0.8. The response propensities (3) lie between 0.02 and 1,
with an average of 0.88. We have a non-mar response mechanism, because we may
have a correlation between yi and ρi .

We compare the proposed empirical likelihood approach proposed with the naïve
approach based on maximum likelihood from the set of non-missing values. This
naïve approach is not likely to perform well, because it does not contain adjustment
for missing data and yi can be correlated with ρi . This naïve approach is used as a
benchmark.
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Table 2 Observed coverages of 95% confidence intervals and (left and right) tail error rates

σ ϑ Coverages (%) Left rates (%) Right rates (%) mse (EL)

el (40) Naïve el (40) Naïve el (40) Naïve mse (Naïve) Corr (yi , ρi )

0.5 −0.5 94.8 78.2† 2.72 21.72† 2.44 0.05† 0.47 −0.17

−0.4 94.9 79.3† 2.43 20.63† 2.69 0.10† 0.47 −0.19

−0.2 94.6 86.9† 2.72 12.92† 2.64 0.16† 0.63 −0.18

0.005 95.0 93.3† 2.50 5.86† 2.52 0.79† 0.91 0.01

1.0 −0.5 95.1 80.2† 2.48 19.68† 2.42 0.09† 0.50 −0.31

−0.4 94.9 83.5† 2.66 16.33† 2.42 0.14† 0.55 −0.37

−0.2 95.3 88.5† 2.25 11.16† 2.41 0.36† 0.67 −0.35

0.005 95.0 94.3† 2.58 4.87† 2.41 0.84† 0.94 0.01

2.0 −0.5 94.7 89.5† 2.81† 10.04† 2.47 0.45† 0.76 −0.54

−0.4 95.0 90.6† 2.50 8.83† 2.50 0.53† 0.77 −0.58

−0.2 95.0 92.2† 2.41 7.15† 2.56 0.62† 0.82 −0.55

0.005 95.4† 93.5† 2.32 5.52† 2.25 0.94† 0.90 0.03

3.0 −0.5 94.9 94.4† 2.56 4.43† 2.51 1.21† 0.99 −0.48

−0.4 94.9 94.0† 2.58 4.84† 2.52 1.11† 0.98 −0.58

−0.2 94.9 94.0† 2.55 5.00† 2.51 0.95† 0.93 −0.64

0.005 95.0 93.5† 2.55 5.62† 2.45 0.91† 0.90 0.03

4.0 −0.5 94.5† 95.2 2.74 2.68 2.71 2.07† 1.06 −0.31

−0.4 95.1 95.3 2.42 3.08† 2.45 1.65† 1.02 −0.42

−0.2 95.3 94.5† 2.41 4.20† 2.31 1.26† 0.97 −0.66

0.005 95.0 93.9† 2.48 5.27† 2.51 0.82† 0.90 0.05

el, empirical likelihood approach. In the 9th column, we have the mse of the empirical likelihood point
estimator divided by the mse of the Naïve estimator. Corr(yi ,ρi ) denotes the correlation between yi and ρi .
39,600 � N � 39960. 10,000 samples
† Coverages (or rates) significantly different from 95% (or 2.5%): p value ≤ 0.05

In Table 2, the 9th column shows that the mse of the empirical likelihood point
estimator is smaller than the mse of the naïve estimator, when σ is small. We also
notice that the overall coverage is well below 95%, with coverages increases with ϑ .
The empirical likelihood approach gives coverages closer to 95%,when the correlation
between yi and ρi is negligible. Even with large correlation (non-mar), we obtain
acceptable coverages. The error rates are also significantly different than 2.5% with
the naïve approach. With the empirical likelihood approach, the coverages and error
rates are respectively not significantly different from 95 and 2.5%, except in very few
cases, despite that 10,000 sample were selected.

8.3 Logistic model with income and living conditions data

The “European Union Statistics on Income and Living Conditions” (eu- silc) collects
information on income, living conditions and poverty (Eurostat 2012). We use Alfons
et al. (2011) synthetic dataset called amelia, based on eu- silc. amelia maintains
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the association between key variables. A full description of amelia can be found in
Alfons et al. (2011).

We consider a subset of amelia defined by the 3 regions (prov=1, 2, 3), and
individuals between 19 and 79 years of age. These three regions will be used as strata.
This subset is replicated twenty times to create an artificial population of 1,539,368
individuals. The strata sizes are 148,236, 567,376 and 823,756 respectively. Individ-
uals are grouped into communities (variable cit), which play the role as clusters. The
first stratum contains 1420 clusters, the second stratum contains 2540 clusters, and the
third stratum contains 2640 clusters. We select respectively 72, 128 and 132 clusters
within strata 1, 2 and 3. A randomised systematic sample of clusters are selected with
probabilities proportional to clusters’ sizes.Within each clusters selected, 20% of indi-
viduals (with a minimum of 5) are sampled with simple random sampling. Missing
values are generated from (2) with � being the logit function,

ξ i =
[
1, ξ (a)

i , ξ
(b)
i , δ{Urbi = 1}, δ{Urbi = 3}

]�
,

λ0 = (0.5,− 0.2, 0.2,− 0.2, 0.2)�,

where ξ
(a)
i and ξ

(b)
i are values generated independently form a Bernoulli(0.05) dis-

tribution. Here Urbi is the level of urbanisation of individual i : Urbi = 1 for
densely-populated areas, Urbi = 2 for intermediate-populated areas and Urbi = 3
for thinly-populated areas. The function δ{A} = 1 when A is true and δ{A} = 0,
otherwise. The response probabilities generated lies between 0.52 and 0.72.

The model of interest is the following logistic model

Logit{Pr(Unempi = 1)} = β0 + β1Agei + β2Educi + β3Marriedi + β4Malei ,

where Unempi = 1 if the individual i is unemployed and Unempi = 0 otherwise. The
explanatory variables are:

(I) Agei , the age of i ,
(II) Educi = 1 if the Highest ISCED level attained is strictly larger than 3 and

Educi = 0 otherwise,
(III) Marriedi = 1 if i is married and Marriedi = 0 otherwise,
(IV) Malei = 1 if i is male and Malei = 0 otherwise.

The estimating function of this logistic model is

gi (τ ) := xi yi − xi exp(x�
i τ )

{
1 + exp(x�

i τ )
}−1

, (43)

where yi := Unempi and xi := (Agei ,Educi ,Marriedi ,Malei )�. The parameter is
ψ0 = (τ�

0 ,λ�
0 )�, where τ 0 are the regression coefficients of xi in the model (43).

The response parameter λ0 contains the coefficient of ξ i in the model (2). Hence,
ψ0 ∈ R

10. The side information are the fractions of individuals within densely-
populated areas (35.57%), and within intermediate-populated areas (22.73%). Thus,
fi = {δ(Urbi = 1), δ(Urbi = 2)}� − ϕ0, where ϕ0 = (0.3557, 0.2273)�. The
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Table 3 Observed coverages of 95% confidence intervals and (left and right) tail error rates

Coverages (%) Left rates (%) Right rates (%)

el (40) Cust. el Naïve el (40) Cust. el Naïve el (40) Cust. el Naïve

β0: Intercept 94.9 97.1† 97.1† 2.10 1.50† 1.45† 3.00 1.40† 1.45†

β1: Age 94.5 98.1† 98.0† 2.80 1.00† 1.09† 2.70 0.90† 0.91†

β2: Educ 93.8 95.0 95.1 2.40 1.70 1.73 3.80† 3.30 3.18

β3: Married 94.2 93.8 93.9 2.90 3.70† 3.64† 2.90 2.50 2.45

β4: Male 94.1 94.5 94.5 3.20 2.80 2.73 2.70 2.70 2.73

el, empirical likelihood approach. 1000 samples
† Coverages (or rates) significantly different from 95% (or 2.5%): p value � 0.05

fraction of remaining thinly-populated areas is redundant and does not need to be
included within ϕ0.

We compare the proposed empirical likelihood approach proposed with the naïve
approach based onmaximum likelihood from the set of non-missing values. This naïve
approach is used as a benchmark. We also consider Owen (2001) customary empirical
likelihood approach (Column “Cust. el”) based on the complete cases.

We selected 1000 clustered (two-stage) samples to compute the observed expecta-
tion, mse and coverages of the confidence intervals. In Table 3, we have the observed
coverages of the 95% confidence intervals and the tail error rates. The customary
empirical likelihood approach and the naïve approach give similar coverages and
rates. The naïve approach can give coverages as high as 98.0%, and tail error rate as
low as 0.91%. None of the coverages of the empirical likelihood approach proposed
are significantly different from the nominal value (95%). The tail error rates are not
significantly different from 2.5%, except the right tail error rate of β2.

8.4 Cluster (two-stage) sampling with large sampling fractions

We consider a cluster sampling design with large sampling fractions. Consider an
artificial populations of N clusters with totals values Yk generated from a skewed
distribution given by

Yk = 100 × {3 + ζk + ψ(ek − 1)},

where ζi ∼ exp(1) and ei ∼ χ2
d f =1. Here, ψ = 0.5 or 2.3. The probabilities πk are

proportional to ζk . We have an informative design whenψ = 0.5, since the correlation
between πk and Yk and is approximately 0.8. With ψ = 2.3 the correlation is 0.3 and
the design is less informative. Let Ñk ∼ Uniform(200, 500).Within clusters Ñk values
yi are generated from the normal distribution

yi ∼ N
(�Yk, 0.5�Yk

)
for i ∈ Ũk,

where �Yk := Yk Ñ
−1
k . Missing values for yi are generated as in Sect. 8.1.
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Two populations are created, by generating two data sets of N = 2000 and N =
12,500 clusters. The resulting size N of the population U is approximately 706,000
and 442,500.We select 1000 randomised systematic samples of n = 500 clusters. This
gives non-negligible sampling fractions 0.25 and 0.4. A simple random sample of 20%
of units is selected, within each clusters sampled. Stratification and side information
are not used.

The parameters of interest are the quantiles Yα , with α = 0.1, 0.2 and 0.3. The
gi (τ ) for quantiles can be found in Berger and Torres (2016, Sect. 7.1). Thus, τ 0 = θ0,
where θ0 = Yα . Another parameter of interest is the distribution function of the yi ,

F(Y ) := N −1 ∑

i∈U
δ{yi � Y },

for a given value Y . Here, δ{yi � Y } = 1, if yi � Y and δ{yi � Y } = 0 otherwise. In
this cases, gi (τ ) = δ{yi � Y } − θ . We consider F(Y0.1) and F(Y0.3). Thus, θ0 = 0.1
or 0.3. Here, τ 0 = θ0, where θ0 = F(Y0.1) = 0.10 or F(Y0.3) = 0.3.

In all cases, we have three unknown parameters: the parameter of interest and two
response parameters within λ0; that is, ψ0 = (τ�

0 ,λ�
0 )�, with τ 0 = θ0 being either a

quantile or a distribution function, and λ0 = (−1, 1)�. The 95% confidence intervals
are constructed using (39); that is,

ci(θ0) :=
{
θ : R̂(θ )̂λ−1

1 � 3.8415
}
· (44)

This confidence interval will be compared with the non-adjusted empirical likelihood
confidence interval (40) and the standard confidence interval based on linearisation
(e.g. Deville 1999) and the central limit theoremwith the traditional two-stage variance
(e.g. Särndal et al. 1992, p. 137) containing a variance component due to non-response,
as in Shao and Steel (1999). The confidence interval (40) and (44) are range preserving;
that is, the bound are within the parameter space. Thus, since 0 < θ0 < 1, the lower
bound is always larger than 0 and the upper bound is always smaller than 1. Range
preserving is not guaranteed with the standard confidence interval.

The coverages and tail error rates are given in Table 4. The standard linearisation
approach suffers from a low coverage, due to a bias in the variance estimator, the lack
of normality and the fact that the bounds could be outside the parameter space. The
bias and lack of normality can be explained by the skewness of the data. The low
coverage of confidence intervals based on linearised variance is a know issue (Valliant
2004; Graf and Tillé 2014). The empirical likelihood approaches gives coverages
closer to the nominal value (95%). These coverages seems not to be related to the
correlation between πk and Yk . The range of the correction λ̂1 is [0.77, 1.07] with
an average of 0.93. As a result, the confidence intervals (44) gives coverages slightly
smaller than those obtained with (40). With the larger sampling fraction (N = 1250),
we have a larger difference between the coverages and a smaller correction λ̂1. The
simulation suggests that the effect of λ̂1 is small compared to the difference between
the coverage and the nominal value. Overall, the non-adjusted confidence interval
(40) gives coverages closer to 95%. Thus, the simulation study suggests that the more
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conservative confidence interval based on (40) seems preferable. More explanation
can be found at the end of Sect. 7.

9 An application to the educational survey data (PISA)

The empirical likelihood approach proposed is applied to the 2006 PISA survey data
(OECD 2006, 2007) for the United Kingdom, containing information on the skills
and knowledge of 13,152 fifteen year-old students. This dataset has missing values. A
two-stage sampling design was used. The schools are the clusters and the pupils are
the units. We use the reciprocal unit level and cluster level weights as proxies for the
inclusion probabilities πk and πi |k defined in Sect. 3.

We consider the logistic model (43) to explain the probability of a mathematics
achievement score below 497.27, which is the mean observed from the data. The
vector xi contains the following explanatory variables

– Parent-tertiary 1 if parents have tertiary education, 0 otherwise
– Male 1 for males, 0 for females
– Large-class 1 for class size over 25, 0 otherwise
– City 1 for city located schools, 0 otherwise.

One component of xi is 1 for the intercept. The response variable yi and the variables
Parent-tertiary, Large-class and City contains missing values.

The side information is the fraction of fifteen year-old males in 2006, which is
51.5%, according to the oecd website: http://stats.oecd.org. Thus, fi = Malei − ϕ0,
where ϕ0 = 0.515. The males are under-represented in the PISA survey, because the
weighted estimates of the proportion of males is 49.5%, which is lower than 51.5%.
The side information corrects for this under-representation.

For the non-response mechanism, we consider the following additional variables

– Scotland 1 for schools in Scotland, 0 for schools in England and Wales
– Public 1 for public school, 0 otherwise.

The variables Scotland and Public are cross-classified into four groups. A descriptive
analysis reveals that these groups and the variableMale are significant to explain non-
response.Hence, ξ i contains the variableMale, three dichotomous variables specifying
the groups and a variable equal to 1 for the intercept. The baseline group is the public
schools in England and Wales. The model (2) is considered with � being the logit
function.

The parameter isψ0 = (τ�
0 ,λ�

0 )�, where τ 0 are the regression coefficients of xi in
the model (43). The response parameter λ0 contains the coefficient of ξ i in the model
(2). Hence, ψ0 ∈ R

10. The pivotal statistics (19) is used to compute the p-values for
each component θ0 of τ 0. Indeed, (36) implies that R̂(θ0) converge to a χ2-distribution
with one degree of freedom, under H0 : θ0 = 0.

In Table 5, we have the empirical likelihood estimates and p values computed
from (19) and the p-values of Owen (2001) customary empirical likelihood approach
(Column “Customary EL”) based on the complete cases. We also have those obtain
from the naïve approach which consists in fitting a logistic model from the complete
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Table 5 Estimates and p-values of the logistic regression based upon the 2006 PISA survey data (OECD
2006, 2007) for the United Kingdom

Empirical likelihood Customary EL Naïve

Estimates p value Estimates p value Estimates p value

Intercept 0.13 0.257 0.28 < 0.001† 0.28 < 0.001†

City 0.13 0.443 0.06 0.159 0.06 0.159

Large-class 0.31 0.010† 0.03 0.477 0.03 0.477

Parent-tertiary − 0.52 < 0.001† − 0.49 < 0.001† − 0.49 < 0.001†

Male − 0.46 < 0.001† − 0.32 < 0.001† − 0.32 < 0.001†

† p value � 0.01

cases, using maximum likelihood. There is no difference between the p-values of the
naïve and customary empirical likelihood approach. This is in-line with the coverages
and error rates observed in Table 3. However, the empirical likelihood approach pro-
posed give different p-values. Parent-tertiary andMale are significant in all cases, but
with different estimates. The intercept is not significant with the approach proposed.
Note that Large-class is only significant with the approach proposed, despite that this
effect is not significant with the other approaches. The cluster effect and non-response
may explain the differences between the p-values of the intercept and Large-class.
Unlike, the customary empirical likelihood and naïve approaches ignore the weights,
the empirical likelihood approach proposed takes into account of the clustering, the
weights, the non-response mechanism and the estimation of the response parameter.

Supplement

The detailed proof of Lemmas 2, 3 and Theorem 1 can be found in the online supple-
ment.
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Appendix A

In this Appendix, we propose an estimator for (38). We have that [see (C.10) and
(C.11) in “Appendix C” of the online supplement]

V0 = V0I + V0II + O(1)· (45)

where

V0I := Er {Vd (ε̄π | r)}
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V0II := Vr {Ed (ε̄π | r)}
ε̄π := N−1 ∑

k∈S̃
π−1
k ε̂k (46)

and ε̂k is defined by (29). The operators Er (·) and Vr (·) denote the expectation and
variance with respect to the response mechanism. The operators Vd(· | r) and Ed(· | r)
denote the conditional expectation and variance with respect to the sampling design,
given r . An asymptotically unbiased estimator of V0I is

V̂0I := V̂d(ε̄π | r) (47)

where V̂d(ε̄π | r) denotes the customary two-stage variance estimator of Vd(ε̄π | r)
(e.g. Särndal et al. 1992, p137), treating r as constant. This estimator takes into account
of large sampling fractions, because it depends on the joint-inclusion probabilities of
the clusters. The second term V0II can be estimated by (see (C.12) in “Appendix C” of
the online supplement)

V̂0II := N−2 ∑

k∈S̃
π−1
k

∑

i∈Sk
π−1
i |kκ i (ψ0)

�κ i (ψ0) Pi (λ0)
{
1 − Pi (λ0)

}
, (48)

where Pi (λ0) is defined by (3) and

κ i (ψ0) := {
Pi (λ0)

−1gi (τ 0)
�, ξ�

i

}�· (49)

The unknown quantity β0 is substituted by b̂0 within (47) and (49).
Finally, (45), (47) and (48) gives the following estimator for (38)

L̂0 =(
V̂0I + V̂0II

)
(I − Â0) V̂

−1
0 · (50)

The estimates λ̂1, . . . , λ̂p of λ1, . . . , λp are the eigenvalues of (50), after substituting
ψ0 by ψ̂ within the right hand side of (50).
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