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A Further proofs and technical details

Proof of Lemma 1. Continuity of L, (z, -) : [0, 1] — [—o00, 0] follows essentially from continuity

of log : [0,1] — [—00,0]. For p € (0,1),

Br

Ly(@,p) = ZN[§>ﬁ<>1_&@u4%@w

It follows from the formula B, (p) = Zf:r (’:) p'(1 — p)k~ that

gz(p) = C/Z( > ()

and
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are strictly decreasing and strictly increasing in p € (0, 1), respectively. Consequently, the deriva-

tive L] (z, -) is continuous and strictly decreasing on (0, 1).

Elementary algebra yields the alternative formula

L, :C p ZNnrwr nr( ) - Br(p)]

with the auxiliary function

b () = Br(p)
Br(l - Br) Br(p)Bk+l—r(1 - p) .

wy(p) =

The latter equation follows from the relation 1 — B,.(p) = Bky1-,(1 — p) and is highly recom-

mended to avoid rounding errors in case of p being close to 1. Note also that

Lo(l) asp — 0
wr(p) = b
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This implies that the limits of L/, (x, -) at the boundary of (0, 1) satisfy

z,1

/
L;L( s ) = —0 ifﬂj<X(n),

(10)

because x > Xy implies that Fy(z) > 0 = B,(0) for at least one r, while z < X, (n) implies

that ﬁmn < 1 = B,(1) for at least one r.

O]



Proof of Lemma 7. As to part (a), note that w, is a rational and strictly positive function on (0, 1).
Hence w,(t) := t(1 — t)w,(t) defines a function with these properties, too. Moreover, it follows
from (10) that lim o w,(t) = r and limyy w,(t) = k — r + 1. Hence w, may be viewed as a
rational and strictly positive function on a neighborhood of [0, 1]. In particular, wy, is continuously
differentiable on [0, 1].

It remains to show that 1 < w, < max(r,k+ 1 — ) on [0, 1]. The upper bound follows from
the fact that for 0 < ¢ < 1,
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The lower bound is equivalent to the claim that 5,(t) > B,.(t)(1 — B,.(t))/(t(1 — t)) for any
€ (0,1). Since log B, (u) =log C + (r — 1) logu+ (k —r)log(1 — u) is concave in u € (0, 1),
this assertion follows from Lemma 8 below.

For proving part (b), note first that [p — ¢| < ct(1 — t) implies the inequalities p < (1 + ¢)t
and 1 — p < (1 + ¢)(1 — t). Moreover, since |p(1 — p) — (1 — t)| < |p — t|, we may conclude
that p(1 — p) > (1 — ¢)t(1 — t). Consequently,

we(p) 1‘ _ @)1 — 1) — @, (H)p(1 — p)|
wy(t) wy(t)p(1 — p)
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where ¢, := max;<,<j yefo,1] |W; (v)|. Moreover, for min(t, p) < ¢ < max(t,p),
BHOI _ Ir=1- (k-1 _ k-1 Br (&)
Br(6) §(1—=¢) — (1=t -1 Br(t)

Hence Taylor’s formula shows that for a suitable such &,
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In the proof of Lemma 7 we referred to the following general inequality which is possibly of
independent interest:



Lemma 8. Let § be a strictly positive probability density on (0, 1) such that log (8 is concave.
Then its distribution function B : [0,1] — [0, 1] satisfies the following inequalities: For any
te(0,1),
B(t)(1 — B(t))

t

Al = =iy

with equality if, and only if, 5 = 1.

Proof of Lemma 8. Fora € Rlet G, : [0, 1] — [0, 1] be the distribution function given by

Ga(z) = {(6‘“ —1)/(e*=1) ifa#0,

T ifa=0.
Then G, has log-linear density
gal) i= Glfw) = eoe=el®

with ¢(0) = 0 and c(a) = log((e® — 1)/a) for a # 0. For fixed t € (0, 1), G4(t) is continuous in
a € R with lim,>o G4 (t) = 0 and lim,—,_~ G4(t) = 1. Hence for a suitable a = a(t) € R,

If we fix this value a, then the previous equality implies that 5(s) > g,(s) for some s € (0,¢) and
B(u) > gq(u) for some u € (¢,1). But then concavity of log 5 and linearity of log g, yield the
inequality 5(t) > ga(t). Moreover, if 3(t) = g4(t), then 5 < g,, and this implies that 8 = g,.

Hence it suffices to prove the claim in case of 5 = g, for some a € R.

Since go = 1 and G(t) = t, the asserted inequality is an equality in case of @ = 0. Hence it
remains to show that G, (t)(1 — G4(t)) < t(1 — t)ga(t) in case of a # 0. Indeed,

Ga(t)(1 = Ga(t)) _ (e” —1)(e® —e™)
t(1 —t)ga(t) t(1 —t)e®a(e* — 1)
eat -1 ea(lft) —1 je%—1

at  a(l—t) /

- = exp(h(at) + h(a — at) — h(a))’

where h(x) :=log((e® — 1)/x) for z # 0. In case of a > 0 it follows from lim,_,o h(z) = 0 that
at
h(at) + h(a(1 — 1)) — h(a) = / (' (u) — W' (a(l — ) +w)) du < 0,
0

because h"(x) = 272 — (e + e® — 2)~1 > 0, so I’ is strictly increasing. In case of a < 0, it
follows from h(z) = = + h(—x) that

h(at) + h(a(l —t)) — h(a) = h(lalt) + h(la](1 —t)) — h(la]) < O

as well. O



Details about asymptotic variances and the function p in case of k£ = 2. In the special case
k = 2, elementary calculations reveal that

—4 2 4
B = 1= B1=B)(0) = KO () = o
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Balt) = 1w Ba(l=Bo)(t) = KOZ ualt) = g
where u := 2t — 1 € [—1,1] and K (¢) := K(¢,t) = t(1 — t). In particular,
-1
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Moreover, with A := w9 — 71 these formulae entail that
K(t) 3+ u? — 4uA

K3 = EUIHE IS,
u? + 4u
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4 3 —u?+2uA’

The top left panel in Figure 8 shows for 71 = m = 1/2 the asymptotic variances K™ (t) =
KS5(t) > KU(t) as well as the variances K (t) for simple random sampling. In the top right
and lower panels one sees for 11 = 1 — mp = 1/2,5/8,3/4 the relative asymptotic efficiencies
EM(t) = KM(t)/KY(t) and ES(t) = KS(t)/K"(t) of B: with respect to BM and B3, respec-
tively. In each panel the gray dotted line depicts the upper bound EM. () = (p(t) +p(t)~1)/4 <
1.125 for EM(t). Note that £5(¢) can get arbitrarily large.

Proof of (3) and (4). Let (Dn)n, (Gn)n be random sequences in [0, 1] converging to p := F(x)
in probability. It follows from Lindeberg’s Central Limit theorem, applied to convolutions of
binomial distributions, that

sup G5 () — CD(U(\/?) (% - Mn(ﬁn)»‘ —p 0,
where
k
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Moreover,
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Figure 8: Asymptotic variances and relative efficiencies for k = 2.




Now we apply these findings to

N =~ A R ~
Pn = Fé\/[(x)_f_% and gp = Fy(x)
with A € R to be specified later. Note that ju,(G,,) = Fj,(z) by definition of 13};4(:3) Hence for
c=0,1,

Gty (W2~ ) = (Y (Fia) + O(™) = ) ) + 04 (1)
= @(O{;(Mn(@@) - ﬂn(ﬁn))) + 0p(1)

—p CI)(IW(F_(Ax))l/?>

If we choose A strictly smaller or strictly larger than KM(F(x))'/2®~1(1 — «), then the limit
of Gn, 5, (nﬁn(az)) is strictly larger or strictly smaller than «, respectively. This proves (4). If
we choose A strictly smaller or strictly larger than — K™ (F(z))Y/2®~1(1 — ), then the limit of
Gn, @L(nﬁn(m) — 1) is strictly larger or strictly smaller than 1 — «, respectively, which proves
3). O

B Computer code

From the web pages of Lutz Diimbgen (www.stat.unibe.ch/duembgen) one can download specific
computer programs for the methods and examples presented here. All code is for the statistical

computing environment R (R Core Team 2013). The files are:

e Estimation.R: Computation of the point estimators ﬁg, ﬁfl\/[ and ﬁf;

e Simulations.R: Simulation of RSS and JPS data sets, including sampling from the Dell-Clutter
model.

e ConfBands.R: Computing pointwise and simultaneaous confidence bands for F'.

e MonteCarlo.R: Monte Carlo estimation of the estimators’ bias and RMSE; simulating sam-

pling from a finite population as in Section 4.1.
e Municip-CH_2015.txt: Data for Section 4.1.

e MainScript.R: Main script file with examples for all procedures coded in the previous R files.



