Supplementary material for the article "Inference on a distribution function from ranked set samples" (Lutz Dümbgen and Ehsan Zamanzade)

A Further proofs and technical details

Proof of Lemma 1. Continuity of $L_n(x, \cdot) : [0, 1] \to [-\infty, 0]$ follows essentially from continuity of $\log : [0, 1] \to [-\infty, 0]$. For $p \in (0, 1)$,

$$L'_{n}(x,p) = \sum_{r=1}^{k} N_{nr} \Big[\frac{\beta_{r}}{B_{r}}(p) \widehat{F}_{nr}(x) - \frac{\beta_{r}}{1 - B_{r}}(p) (1 - \widehat{F}_{nr}(x)) \Big].$$

It follows from the formula $B_r(p) = \sum_{i=r}^k {k \choose i} p^i (1-p)^{k-i}$ that

$$\frac{\beta_r}{B_r}(p) = C_r \Big/ \sum_{i=r}^{\kappa} \binom{k}{i} p^{i+1-r} (1-p)^{r-i}$$

and

$$\frac{\beta_r}{1-B_r}(p) = C_r \Big/ \sum_{i=0}^{r-1} \binom{k}{i} p^{i+1-r} (1-p)^{r-i}$$

are strictly decreasing and strictly increasing in $p \in (0, 1)$, respectively. Consequently, the derivative $L'_n(x, \cdot)$ is continuous and strictly decreasing on (0, 1).

Elementary algebra yields the alternative formula

$$L'_{n}(x,p) = \sum_{r=1}^{k} N_{nr} w_{r}(p) [\widehat{F}_{nr}(x) - B_{r}(p)]$$

with the auxiliary function

$$w_r(p) = \frac{\beta_r}{B_r(1-B_r)}(p) = \frac{\beta_r(p)}{B_r(p)B_{k+1-r}(1-p)}$$

The latter equation follows from the relation $1 - B_r(p) = B_{k+1-r}(1-p)$ and is highly recommended to avoid rounding errors in case of p being close to 1. Note also that

$$w_r(p) = \begin{cases} \frac{r+o(1)}{p} & \text{as } p \to 0, \\ \frac{k+1-r+o(1)}{1-p} & \text{as } p \to 1. \end{cases}$$
(10)

This implies that the limits of $L'_n(x, \cdot)$ at the boundary of (0, 1) satisfy

$$L'_n(x,0) = +\infty$$
 if $x \ge X_{(1)}$,
 $L'_n(x,1) = -\infty$ if $x < X_{(n)}$,

because $x \ge X_{(1)}$ implies that $\widehat{F}_{nr}(x) > 0 = B_r(0)$ for at least one r, while $x < X_{(n)}$ implies that $\widehat{F}_{nr} < 1 = B_r(1)$ for at least one r.

Proof of Lemma 7. As to part (a), note that w_r is a rational and strictly positive function on (0, 1). Hence $\tilde{w}_r(t) := t(1-t)w_r(t)$ defines a function with these properties, too. Moreover, it follows from (10) that $\lim_{t\downarrow 0} \tilde{w}_r(t) = r$ and $\lim_{t\uparrow 1} \tilde{w}_r(t) = k - r + 1$. Hence \tilde{w}_r may be viewed as a rational and strictly positive function on a neighborhood of [0, 1]. In particular, \tilde{w}_k is continuously differentiable on [0, 1].

It remains to show that $1 \leq \tilde{w}_r \leq \max(r, k+1-r)$ on [0, 1]. The upper bound follows from the fact that for 0 < t < 1,

$$\begin{split} \widetilde{w}_{r}(t) &= \frac{t(1-t)\beta_{r}(t)}{B_{r}(t)} + \frac{t(1-t)\beta_{r}(t)}{B_{k-r+1}(1-t)} \\ &= \frac{t^{r}(1-t)^{k-r+1}}{\int_{0}^{t} u^{r-1}(1-u)^{k-r} du} + \frac{t^{r}(1-t)^{k-r+1}}{\int_{0}^{1-t} u^{k-r}(1-u)^{r-1} du} \\ &\leq \frac{t^{r}(1-t)^{k-r+1}}{\int_{0}^{t} u^{r-1} du (1-t)^{k-r}} + \frac{t^{r}(1-t)^{k-r+1}}{\int_{0}^{1-t} u^{k-r} du t^{r-1}} \\ &= (1-t)r + t (k-r+1) \\ &\leq \max(r,k-r+1). \end{split}$$

The lower bound is equivalent to the claim that $\beta_r(t) \ge B_r(t)(1 - B_r(t))/(t(1 - t))$ for any $t \in (0, 1)$. Since $\log \beta_r(u) = \log C_r + (r - 1) \log u + (k - r) \log(1 - u)$ is concave in $u \in (0, 1)$, this assertion follows from Lemma 8 below.

For proving part (b), note first that $|p - t| \le ct(1 - t)$ implies the inequalities $p \le (1 + c)t$ and $1 - p \le (1 + c)(1 - t)$. Moreover, since $|p(1 - p) - t(1 - t)| \le |p - t|$, we may conclude that $p(1 - p) \ge (1 - c)t(1 - t)$. Consequently,

$$\begin{aligned} \left| \frac{w_r(p)}{w_r(t)} - 1 \right| &= \frac{\left| \widetilde{w}_r(p)t(1-t) - \widetilde{w}_r(t)p(1-p) \right|}{\widetilde{w}_r(t)p(1-p)} \\ &\leq \frac{\left| \widetilde{w}_r(p) - \widetilde{w}_r(t) \right| t(1-t) + \widetilde{w}_r(t) \left| t(1-t) - p(1-p) \right|}{\widetilde{w}_r(t)p(1-p)} \\ &\leq \frac{\left| \widetilde{w}_r(p) - \widetilde{w}_r(t) \right| / 4 + C_w |t-p|}{c_w(1-c)t(1-t)} \\ &\leq \frac{c'_w/4 + C_w}{c_w(1-c)} \frac{|p-t|}{t(1-t)}, \end{aligned}$$

where $c'_w := \max_{1 \le r \le k, u \in [0,1]} |\widetilde{w}'_r(u)|$. Moreover, for $\min(t, p) \le \xi \le \max(t, p)$,

$$\frac{|\beta_r'(\xi)|}{\beta_r(\xi)} \ = \ \frac{|r-1-(k-1)\xi|}{\xi(1-\xi)} \ \le \ \frac{k-1}{(1-c)t(1-t)} \quad \text{and} \quad \frac{\beta_r(\xi)}{\beta_r(t)} \ \le \ (1+c)^{k-1}.$$

Hence Taylor's formula shows that for a suitable such ξ ,

$$\left|\frac{B_r(p) - B_r(t)}{\beta_r(t)(p-t)} - 1\right| = \frac{|\beta_r'(\xi)||p-t|}{2\beta_r(t)} \le \frac{(k-1)(1+c)^{k-1}}{c-1} \frac{|p-t|}{t(1-t)}.$$

In the proof of Lemma 7 we referred to the following general inequality which is possibly of independent interest:

Lemma 8. Let β be a strictly positive probability density on (0, 1) such that $\log \beta$ is concave. Then its distribution function $B : [0, 1] \rightarrow [0, 1]$ satisfies the following inequalities: For any $t \in (0, 1)$,

$$\beta(t) \geq \frac{B(t)(1-B(t))}{t(1-t)}$$

with equality if, and only if, $\beta \equiv 1$.

Proof of Lemma 8. For $a \in \mathbb{R}$ let $G_a : [0,1] \to [0,1]$ be the distribution function given by

$$G_a(x) := \begin{cases} (e^{ax} - 1)/(e^a - 1) & \text{if } a \neq 0, \\ x & \text{if } a = 0. \end{cases}$$

Then G_a has log-linear density

$$g_a(x) := G'_a(x) = e^{ax - c(a)}$$

with c(0) = 0 and $c(a) = \log((e^a - 1)/a)$ for $a \neq 0$. For fixed $t \in (0, 1)$, $G_a(t)$ is continuous in $a \in \mathbb{R}$ with $\lim_{a \ge \infty} G_a(t) = 0$ and $\lim_{a \to -\infty} G_a(t) = 1$. Hence for a suitable $a = a(t) \in \mathbb{R}$,

$$B(t) = G_a(t).$$

If we fix this value a, then the previous equality implies that $\beta(s) \ge g_a(s)$ for some $s \in (0, t)$ and $\beta(u) \ge g_a(u)$ for some $u \in (t, 1)$. But then concavity of $\log \beta$ and linearity of $\log g_a$ yield the inequality $\beta(t) \ge g_a(t)$. Moreover, if $\beta(t) = g_a(t)$, then $\beta \le g_a$, and this implies that $\beta \equiv g_a$. Hence it suffices to prove the claim in case of $\beta \equiv g_a$ for some $a \in \mathbb{R}$.

Since $g_0 \equiv 1$ and $G_0(t) = t$, the asserted inequality is an equality in case of a = 0. Hence it remains to show that $G_a(t)(1 - G_a(t)) < t(1 - t)g_a(t)$ in case of $a \neq 0$. Indeed,

$$\frac{G_a(t)(1-G_a(t))}{t(1-t)g_a(t)} = \frac{(e^{at}-1)(e^a-e^{at})}{t(1-t)e^{at}a(e^a-1)}$$
$$= \frac{e^{at}-1}{at} \cdot \frac{e^{a(1-t)}-1}{a(1-t)} / \frac{e^a-1}{a} = \exp(h(at) + h(a-at) - h(a)),$$

where $h(x) := \log((e^x - 1)/x)$ for $x \neq 0$. In case of a > 0 it follows from $\lim_{x\to 0} h(x) = 0$ that

$$h(at) + h(a(1-t)) - h(a) = \int_0^{at} (h'(u) - h'(a(1-t) + u)) du < 0.$$

because $h''(x) = x^{-2} - (e^x + e^{-x} - 2)^{-1} > 0$, so h' is strictly increasing. In case of a < 0, it follows from h(x) = x + h(-x) that

$$h(at) + h(a(1-t)) - h(a) = h(|a|t) + h(|a|(1-t)) - h(|a|) < 0$$

as well.

3

Details about asymptotic variances and the function ρ in case of k = 2. In the special case k = 2, elementary calculations reveal that

$$\beta_1(t) = 1 - u, \quad B_1(1 - B_1)(t) = K(t)\frac{3 - 4u + u^2}{4}, \quad w_1(t) = \frac{4}{K(t)(3 - u)},$$

$$\beta_2(t) = 1 + u, \quad B_2(1 - B_2)(t) = K(t)\frac{3 + 4u + u^2}{4}, \quad w_2(t) = \frac{2}{K(t)(3 + u)},$$

where $u := 2t - 1 \in [-1, 1]$ and K(t) := K(t, t) = t(1 - t). In particular,

$$\widetilde{w}_1(t) = \frac{4}{3-u}, \quad \widetilde{w}_2(t) = \frac{4}{3+u} \text{ and } \frac{\rho(t)+\rho(t)^{-1}+2}{4} = \frac{9}{9-u^2}$$

Moreover, with $\Delta := \pi_2 - \pi_1$ these formulae entail that

$$\begin{split} K^{\rm S}(t) &= \frac{K(t)}{4} \frac{3 + u^2 - 4u\Delta}{(1 - \Delta^2)}, \\ K^{\rm M}(t) &= \frac{K(t)}{4} \frac{3 + u^2 + 4u\Delta}{(1 + u\Delta)^2}, \\ K^{\rm L}(t) &= \frac{K(t)}{4} \frac{9 - u^2}{3 - u^2 + 2u\Delta}. \end{split}$$

The top left panel in Figure 8 shows for $\pi_1 = \pi_2 = 1/2$ the asymptotic variances $K^{\mathrm{M}}(t) = K^{\mathrm{S}}(t) > K^{\mathrm{L}}(t)$ as well as the variances K(t) for simple random sampling. In the top right and lower panels one sees for $\pi_1 = 1 - \pi_2 = 1/2, 5/8, 3/4$ the relative asymptotic efficiencies $E^{\mathrm{M}}(t) = K^{\mathrm{M}}(t)/K^{\mathrm{L}}(t)$ and $E^{\mathrm{S}}(t) = K^{\mathrm{S}}(t)/K^{\mathrm{L}}(t)$ of $\widehat{B}_n^{\mathrm{L}}$ with respect to $\widehat{B}_n^{\mathrm{M}}$ and $\widehat{B}_n^{\mathrm{S}}$, respectively. In each panel the gray dotted line depicts the upper bound $E_{\mathrm{max}}^{M}(t) = (\rho(t) + \rho(t)^{-1})/4 \leq 1.125$ for $E^{\mathrm{M}}(t)$. Note that $E^{\mathrm{S}}(t)$ can get arbitrarily large.

Proof of (3) and (4). Let $(\hat{p}_n)_n, (\hat{q}_n)_n$ be random sequences in [0, 1] converging to p := F(x) in probability. It follows from Lindeberg's Central Limit theorem, applied to convolutions of binomial distributions, that

$$\sup_{y \in \mathbb{R}} \left| G_{\boldsymbol{N}_n, \widehat{p}_n}(y) - \Phi\left(\frac{\sqrt{n}}{\sigma(p)} \left(\frac{y}{n} - \mu_n(\widehat{p}_n)\right) \right) \right| \to_p 0,$$

where

$$\mu_n(q) := \sum_{r=1}^k \frac{N_{nr}}{n} B_r(q) \quad \text{for } q \in [0, 1],$$

$$\sigma(p) := \left(\sum_{r=1}^k \pi_r B_r(p) (1 - B_r(p))\right)^{1/2}.$$

Moreover,

$$\mu_n(\widehat{q}_n) - \mu_n(\widehat{p}_n) = \sum_{r=1}^k \frac{N_{nr}}{n} \big(B_r(\widehat{q}_n) - B_r(\widehat{p}_n) \big)$$
$$= \Big(\sum_{r=1}^k \pi_r \beta_r(p) + o_p(1) \Big) (\widehat{q}_n - \widehat{p}_n)$$
$$= \Big(\frac{\sigma(p)}{K^{\mathrm{M}}(F(x))^{1/2}} + o_p(1) \Big) (\widehat{q}_n - \widehat{p}_n)$$

Figure 8: Asymptotic variances and relative efficiencies for k = 2.

Now we apply these findings to

$$\widehat{p}_n := \widehat{F}_n^{\mathrm{M}}(x) + \frac{\Delta}{\sqrt{n}} \text{ and } \widehat{q}_n := \widehat{F}_n^{\mathrm{M}}(x)$$

with $\Delta \in \mathbb{R}$ to be specified later. Note that $\mu_n(\hat{q}_n) = \hat{F}_n(x)$ by definition of $\hat{F}_n^M(x)$. Hence for c = 0, 1,

$$G_{\mathbf{N}_n,\widehat{p}_n}(n\widehat{F}_n(x)-c) = \Phi\left(\frac{\sqrt{n}}{\sigma(p)}\left(\widehat{F}_n(x)+O(n^{-1})-\mu_n(\widehat{p}_n)\right)\right) + o_p(1)$$
$$= \Phi\left(\frac{\sqrt{n}}{\sigma(p)}\left(\mu_n(\widehat{q}_n)-\mu_n(\widehat{p}_n)\right)\right) + o_p(1)$$
$$\to_p \Phi\left(\frac{-\Delta}{K^{\mathrm{M}}(F(x))^{1/2}}\right).$$

If we choose Δ strictly smaller or strictly larger than $K^{\mathrm{M}}(F(x))^{1/2}\Phi^{-1}(1-\alpha)$, then the limit of $G_{N_n,\hat{p}_n}(n\hat{F}_n(x))$ is strictly larger or strictly smaller than α , respectively. This proves (4). If we choose Δ strictly smaller or strictly larger than $-K^{\mathrm{M}}(F(x))^{1/2}\Phi^{-1}(1-\alpha)$, then the limit of $G_{N_n,\hat{p}_n}(n\hat{F}_n(x)-1)$ is strictly larger or strictly smaller than $1-\alpha$, respectively, which proves (3).

B Computer code

From the web pages of Lutz Dümbgen (www.stat.unibe.ch/duembgen) one can download specific computer programs for the methods and examples presented here. All code is for the statistical computing environment R (R Core Team 2013). The files are:

- Estimation.R: Computation of the point estimators \hat{F}_n^{S} , \hat{F}_n^{M} and \hat{F}_n^{L} .
- Simulations.R: Simulation of RSS and JPS data sets, including sampling from the Dell–Clutter model.
- ConfBands.R: Computing pointwise and simultaneaous confidence bands for F.
- MonteCarlo.R: Monte Carlo estimation of the estimators' bias and RMSE; simulating sampling from a finite population as in Section 4.1.
- Municip_CH_2015.txt: Data for Section 4.1.
- MainScript.R: Main script file with examples for all procedures coded in the previous R files.