
Supplementary material for the article

“Inference on a distribution function from ranked set samples”

(Lutz D¨umbgen and Ehsan Zamanzade)

A Further proofs and technical details

Proof of Lemma 1. Continuity of L
n

(x, ·) : [0, 1] ! [�1, 0] follows essentially from continuity
of log : [0, 1] ! [�1, 0]. For p 2 (0, 1),
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are strictly decreasing and strictly increasing in p 2 (0, 1), respectively. Consequently, the deriva-
tive L0

n

(x, ·) is continuous and strictly decreasing on (0, 1).

Elementary algebra yields the alternative formula
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with the auxiliary function

w
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The latter equation follows from the relation 1 � B
r

(p) = B
k+1�r

(1 � p) and is highly recom-
mended to avoid rounding errors in case of p being close to 1. Note also that

w
r

(p) =

8

>

>

<

>

>

:

r + o(1)

p
as p ! 0,

k + 1� r + o(1)

1� p
as p ! 1.

(10)

This implies that the limits of L0
n

(x, ·) at the boundary of (0, 1) satisfy

L0
n

(x, 0) = +1 if x � X
(1)

,

L0
n

(x, 1) = �1 if x < X
(n)

,

because x � X
(1)

implies that bF
nr

(x) > 0 = B
r

(0) for at least one r, while x < X
(n)

implies
that bF

nr

< 1 = B
r

(1) for at least one r.
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Proof of Lemma 7. As to part (a), note that w
r

is a rational and strictly positive function on (0, 1).
Hence ew

r

(t) := t(1 � t)w
r

(t) defines a function with these properties, too. Moreover, it follows
from (10) that lim

t#0 ew
r

(t) = r and lim

t"1 ew
r

(t) = k � r + 1. Hence ew
r

may be viewed as a
rational and strictly positive function on a neighborhood of [0, 1]. In particular, ew

k

is continuously
differentiable on [0, 1].

It remains to show that 1  ew
r

 max(r, k + 1� r) on [0, 1]. The upper bound follows from
the fact that for 0 < t < 1,

ew
r

(t) =

t(1� t)�
r

(t)

B
r

(t)
+

t(1� t)�
r

(t)

B
k�r+1

(1� t)

=
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+
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R
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0
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= (1� t) r + t (k � r + 1)

 max(r, k � r + 1).

The lower bound is equivalent to the claim that �
r

(t) � B
r

(t)(1 � B
r

(t))/(t(1 � t)) for any
t 2 (0, 1). Since log �

r

(u) = logC
r

+(r� 1) log u+(k� r) log(1�u) is concave in u 2 (0, 1),
this assertion follows from Lemma 8 below.

For proving part (b), note first that |p � t|  ct(1 � t) implies the inequalities p  (1 + c)t

and 1 � p  (1 + c)(1 � t). Moreover, since
�
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�  |p � t|, we may conclude
that p(1� p) � (1� c)t(1� t). Consequently,
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,

where c0
w

:= max

1rk,u2[0,1] | ew0
r

(u)|. Moreover, for min(t, p)  ⇠  max(t, p),
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�
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Hence Taylor’s formula shows that for a suitable such ⇠,
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In the proof of Lemma 7 we referred to the following general inequality which is possibly of
independent interest:
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Lemma 8. Let � be a strictly positive probability density on (0, 1) such that log � is concave.
Then its distribution function B : [0, 1] ! [0, 1] satisfies the following inequalities: For any
t 2 (0, 1),

�(t) � B(t)(1�B(t))

t(1� t)

with equality if, and only if, � ⌘ 1.

Proof of Lemma 8. For a 2 R let G
a

: [0, 1] ! [0, 1] be the distribution function given by

G
a

(x) :=

(

(eax � 1)/(ea � 1) if a 6= 0,

x if a = 0.

Then G
a

has log-linear density

g
a

(x) := G0
a

(x) = eax�c(a)

with c(0) = 0 and c(a) = log((ea � 1)/a) for a 6= 0. For fixed t 2 (0, 1), G
a

(t) is continuous in
a 2 R with lim

a�1G
a

(t) = 0 and lim

a!�1G
a

(t) = 1. Hence for a suitable a = a(t) 2 R,

B(t) = G
a

(t).

If we fix this value a, then the previous equality implies that �(s) � g
a

(s) for some s 2 (0, t) and
�(u) � g

a

(u) for some u 2 (t, 1). But then concavity of log � and linearity of log g
a

yield the
inequality �(t) � g

a

(t). Moreover, if �(t) = g
a

(t), then �  g
a

, and this implies that � ⌘ g
a

.
Hence it suffices to prove the claim in case of � ⌘ g

a

for some a 2 R.

Since g
0

⌘ 1 and G
0

(t) = t, the asserted inequality is an equality in case of a = 0. Hence it
remains to show that G

a

(t)(1�G
a

(t)) < t(1� t)g
a

(t) in case of a 6= 0. Indeed,

G
a

(t)(1�G
a

(t))

t(1� t)g
a

(t)
=

(eat � 1)(ea � eat)

t(1� t)eata(ea � 1)

=

eat � 1

at
· e

a(1�t) � 1

a(1� t)

.ea � 1

a
= exp

�

h(at) + h(a� at)� h(a)
�

,

where h(x) := log((ex � 1)/x) for x 6= 0. In case of a > 0 it follows from lim

x!0

h(x) = 0 that

h(at) + h(a(1� t))� h(a) =

Z

at

0

�

h0(u)� h0(a(1� t) + u)
�

du < 0,

because h00(x) = x�2 � (ex + e�x � 2)

�1 > 0, so h0 is strictly increasing. In case of a < 0, it
follows from h(x) = x+ h(�x) that

h(at) + h(a(1� t))� h(a) = h(|a|t) + h(|a|(1� t))� h(|a|) < 0

as well.
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Details about asymptotic variances and the function ⇢ in case of k = 2. In the special case
k = 2, elementary calculations reveal that

�
1

(t) = 1� u, B
1

(1�B
1

)(t) = K(t)
3� 4u+ u2

4

, w
1
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4
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4
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,

where u := 2t� 1 2 [�1, 1] and K(t) := K(t, t) = t(1� t). In particular,
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2
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and
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+ 2
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.

Moreover, with � := ⇡
2

� ⇡
1

these formulae entail that
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(t) =
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2
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(1 + u�)

2
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.

The top left panel in Figure 8 shows for ⇡
1

= ⇡
2

= 1/2 the asymptotic variances KM

(t) =

KS

(t) > KL

(t) as well as the variances K(t) for simple random sampling. In the top right
and lower panels one sees for ⇡

1

= 1 � ⇡
2

= 1/2, 5/8, 3/4 the relative asymptotic efficiencies
EM

(t) = KM

(t)/KL

(t) and ES

(t) = KS
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(t) of bBL

n

with respect to bBM

n

and bBS

n

, respec-
tively. In each panel the gray dotted line depicts the upper bound EM

max

(t) = (⇢(t)+ ⇢(t)�1

)/4 
1.125 for EM

(t). Note that ES

(t) can get arbitrarily large.

Proof of (3) and (4). Let (bp
n

)

n

, (bq
n

)

n

be random sequences in [0, 1] converging to p := F (x)

in probability. It follows from Lindeberg’s Central Limit theorem, applied to convolutions of
binomial distributions, that
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Figure 8: Asymptotic variances and relative efficiencies for k = 2.
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Now we apply these findings to

bp
n

:=

bFM

n

(x) +
�p
n

and bq
n

:=

bFM

n

(x)

with � 2 R to be specified later. Note that µ
n

(bq
n

) =

bF
n

(x) by definition of bFM

n

(x). Hence for
c = 0, 1,

GNn,bpn(n
bF
n

(x)� c) = �

⇣
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�
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n
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)� µ
n
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)

�
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= �
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�
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)

�

⌘

+ o
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(1)

!
p

�

⇣ ��

KM

(F (x))1/2

⌘

.

If we choose � strictly smaller or strictly larger than KM

(F (x))1/2��1

(1 � ↵), then the limit
of GNn,bpn(n

bF
n

(x)) is strictly larger or strictly smaller than ↵, respectively. This proves (4). If
we choose � strictly smaller or strictly larger than �KM

(F (x))1/2��1

(1� ↵), then the limit of
GNn,bpn(n

bF
n

(x) � 1) is strictly larger or strictly smaller than 1 � ↵, respectively, which proves
(3).

B Computer code

From the web pages of Lutz Dümbgen (www.stat.unibe.ch/duembgen) one can download specific
computer programs for the methods and examples presented here. All code is for the statistical
computing environment R (R Core Team 2013). The files are:

• Estimation.R: Computation of the point estimators bF S

n

, bFM

n

and bFL

n

.

• Simulations.R: Simulation of RSS and JPS data sets, including sampling from the Dell–Clutter
model.

• ConfBands.R: Computing pointwise and simultaneaous confidence bands for F .

• MonteCarlo.R: Monte Carlo estimation of the estimators’ bias and RMSE; simulating sam-
pling from a finite population as in Section 4.1.

• Municip CH 2015.txt: Data for Section 4.1.

• MainScript.R: Main script file with examples for all procedures coded in the previous R files.
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