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Abstract
Consider independent observations (Xi , Ri ) with random or fixed ranks Ri , while
conditional on Ri , the random variable Xi has the same distribution as the Ri -th order
statistic within a random sample of size k from an unknown distribution function F .
Such observation schemes are well known from ranked set sampling and judgment
post-stratification. Within a general, not necessarily balanced setting we derive and
compare the asymptotic distributions of three different estimators of the distribution
function F : a stratified estimator, a nonparametric maximum-likelihood estimator
and a moment-based estimator. Our functional central limit theorems generalize and
refine previous asymptotic analyses. In addition, we discuss briefly pointwise and
simultaneous confidence intervals for the distribution function with guaranteed cov-
erage probability for finite sample sizes. The methods are illustrated with a real data
example, and the potential impact of imperfect rankings is investigated in a small
simulation experiment.

Keywords Conditional inference · Confidence band · Empirical process · Functional
limit theorem · Moment equations · Imperfect ranking · Relative asymptotic
efficiency · Unbalanced samples

1 Introduction

Ranked set sampling and judgment post-stratification are both sampling strategies in
situations in which ranking several observations is possible and relatively easy without
referring to exact values, whereas obtaining complete observations is much more
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involved. For instance, this occurs often in agriculture or forestry when the quantities
of interest are yields on different plots or of different trees. Good overviews of theory
and applications of ranked set sampling are given by Wolfe (2004, 2012) and Chen
et al. (2004). Let us explain the two sampling schemes just mentioned in a simple
hypothetical example: Suppose we want to estimate the distribution of body heights
among all men of age 20–25 in a certain population. Whenever we have obtained a
precise measurement Xi of such a man, we could compare him to k − 1 additional
young men and note the rank Ri ∈ {1, 2, . . . , k} of Xi within this small group without
measuring the heights of the additional men precisely. This sampling scheme is called
judgment post-stratification (JPS), see MacEachern et al. (2004). Alternatively, for
each observation we could recruit a group of k young men, rank them with respect
to their heights and then obtain the precise body height Xi of the person with rank
Ri ∈ {1, . . . , k} only. Here the ranks R1, R2, . . . , Rn have been specified in advance.
This sampling scheme, called ranked set sampling (RSS), was introduced byMcIntyre
(1952). If the empirical distribution of the ranks Ri is (approximately) uniform on
{1, . . . , k}, one talks about balanced RSS, otherwise unbalanced RSS. For instance, if
we are mainly interested in the upper tail of the distribution of body heights, we could
favor larger ranks Ri .

In general, we consider independent random pairs (X1, R1), (X2, R2),…, (Xn, Rn)

with fixed or random ranks Ri ∈ {1, 2, . . . , k}. Conditional on Ri = r , the random
variable Xi has the same distribution as the r -th order statistic of a random sample of
size k from F . That means, Xi has distribution function

Fr (x) := IP(Xi ≤ x | Ri = r) = Br (F(x)),

where Br : [0, 1] → [0, 1] denotes the distribution function of the beta distribution
with parameters r and k + 1 − r . Thus for p ∈ [0, 1],

Br (p) =
k∑

i=r

(
k

i

)
pi (1 − p)k−i =

∫ p

0
βr (u) du

with

βr (u) = Cru
r−1(1 − u)k−r and Cr = k

(
k − 1

r − 1

)
= k

(
k − 1

k − r

)
,

see David and Nagaraja (2003). The vector Nn = (Nnr )
k
r=1 of stratum sizes

Nnr :=
n∑

i=1

1[Ri=r ]

plays a key role. In RSS, the ranks R1, R2, . . . , Rn and thus the whole vector Nn are
fixed. In JPS, the Ri are independent and uniformly distributed on {1, . . . , k}, whence
Nn follows a multinomial distribution Mult (n; 1/k, . . . , 1/k).
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Inference on a distribution function 159

Several estimators of the c.d.f. F have been proposed. Of course one could just
ignore the rank information and compute the empirical c.d.f. F̂n ,

F̂n(x) := 1

n

n∑

i=1

1[Xi≤x].

In the JPS setting, this estimator is unbiased and
√
n-consistent. However, the stratified

estimator

F̂S
n := 1

#{r : Nnr > 0}
∑

r : Nnr>0

F̂nr

with the empirical c.d.f.

F̂nr (x) := 1

Nnr

n∑

i=1

1[Ri=r , Xi≤x]

within stratum {i : Ri = r} is usually more efficient. It has been introduced and
analyzed in a balanced RSS setting by Stokes and Sager (1988). Refinements and
modifications of this estimator F̂S

n in the JPS setting have been proposed by Frey and
Ozturk (2011) and Wang et al. (2012). In particular, these authors consider situations
with small or moderate sample sizes so that some stratum sizes Nnr may be zero or
the empirical c.d.f.s F̂nr may fail to satisfy order relations which are known for their
theoretical counterparts Fr .

A second approach to estimating the c.d.f. F which can also handle empty strata
was introduced by Kvam and Samaniego (1994). They propose to estimate F(x) by
maximizing the conditional log-likelihood function

Ln(x, p) :=
n∑

i=1

[
1[Xi≤x] log BRi (p) + 1[Xi>x] log(1 − BRi (p))

]

=
k∑

r=1

Nnr

[
F̂nr (x) log Br (p) + (1 − F̂nr (x)) log(1 − Br (p))

]

of the indicator vector (1[Xi≤x])ni=1, given the rank vector Rn = (Ri )
n
i=1. The resulting

estimator F̂L
n is given by

F̂L
n (x) := argmax

p∈[0,1]
Ln(x, p).

Huang (1997) provides a detailed asymptotic analysis of this estimator F̂L
n in the

special setting when n = k�, Nnr = � for 1 ≤ r ≤ k, and � → ∞.
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A third approach, introduced byChen (2001), is to estimate F by amoment equality
for the naive empirical c.d.f. F̂n . Note that

IE
(
nF̂n(x)

∣∣ Rn
) =

k∑

r=1

Nnr Br (F(x)).

Hence, one can estimate F(x) by the unique number F̂M
n (x) ∈ [0, 1] such that

nF̂n(x) =
k∑

r=1

Nnr Br
(
F̂M
n (x)

)
. (1)

In the RSS setting with proportions Nnr/n converging to fixed numbers πr > 0 as
n → ∞, Chen (2001) proves asymptotic normality of

√
n
(
F̂M
n (x)− F(x)

)
for finitely

many points x and shows that the supremum norm of F̂M
n − F converges to zero in

probability. (Note that Chen (2001) formulates the moment equality (1) with nπr in
place of Nnr , but this would introduce an unnecessary estimation bias.)

In Sect. 2, we present some elementary properties of the estimators F̂S
n , F̂

L
n and F̂M

n
and comment briefly on the computation of the latter two. In addition, we describe two
methods to obtain pointwise and simultaneous confidence intervals for F , respectively.
The former procedure is just an adaptation of a method by Terpstra and Miller (2006)
and closely related to the estimator F̂M

n . Inverting the underlying tests yields honest
confidence intervals for any given quantile of F as proposed by Balakrishnan and Li
(2006) for balanced RSS. The confidence bands are a generalization of the confidence
bands described by Stokes and Sager (1988). Here it turns out that the estimator F̂M

n
is particularly convenient to work with.

Section 3provides a detailed analysis of the asymptotic distribution of the estimators
F̂S
n , F̂

L
n and F̂M

n as n → ∞ while k is fixed and Nnr/n →p πr > 0 for 1 ≤ r ≤ k.
Our analyses provide linear stochastic expansions and functional central limit theorems
for the processes

√
n(F̂Z

n − F), Z = S,L,M. These results generalize the findings of
Stokes and Sager (1988) about F̂S

n , of Huang (1997) about F̂
L
n in balanced RSS and of

Chen (2001) and Ghosh and Tiwari (2008) about F̂M
n . We obtain explicit expressions

for the asymptotic covariance functions of
√
n(F̂Z

n − F) which enable efficiency
considerations. The most important findings are that (i) the estimator F̂L

n is always
superior to the other two, (ii) the estimators F̂S

n and F̂M
n are asymptotically equivalent

in case of π1 = · · · = πk = 1/k and (iii) in unbalanced settings the estimator F̂S
n can

be substantially worse than the other two estimators. Moreover, the efficiency gain
of F̂L

n over F̂M
n is bounded and typically rather small. In addition, we analyze the

estimators’ asymptotic behavior in the tails of the distribution F where they turn out
to be essentially equivalent.

A detailed analysis of a real data example is presented in Sect. 4. It involves popula-
tion sizes of Swiss municipalities and illustrates that sampling from finite populations
without replacement may render our confidence regions conservative, even if the rank-
ings are not perfect. The impact of imperfect rankings itself is investigated in a small
simulation study based on the model of Dell and Clutter (1972).

123



Inference on a distribution function 161

Themain proofs are deferred to an appendix. Further technical details and additional
material, including references to computer code inR (RCoreTeam2013), are collected
in a supplement.

2 Computation of the estimators and exact inference

Computations In what follows let X(1) < X(2) < · · · < X(n) be the order statistics of
X1, X2, . . . , Xn , augmented by X(0) := −∞ and X(n+1) := ∞. One can easily verify
that for Z = S,M,L, the estimator F̂Z

n is constant on each interval [X(y), X(y+1)),
0 ≤ y ≤ n, where F̂Z

n ≡ 0 on [X(0), X(1)) and F̂Z
n ≡ 1 on [X(n), X(n+1)).

While the computation of the stratified estimator F̂S
n is straightforward, the esti-

mators F̂M
n and F̂L

n may be computed numerically by running a suitable bisection
algorithm n − 1 times. Concerning F̂M

n , note that
∑k

r=1 Nnr Br (p) is continuous and
strictly increasing in p ∈ [0, 1] with boundary values 0 and 1. Hence for 1 ≤ y < n
and X(y) ≤ x < X(y+1), the estimator F̂M

n (x) is the unique solution p ∈ (0, 1) of∑k
r=1 Nnr Br (p) = y.
As to F̂L

n , the next lemma provides some essential properties of the log-likelihood
function Ln(·, ·). Its proof is given in the supplement.

Lemma 1 For any x ∈ R, the function Ln(x, ·) : [0, 1] → [−∞, 0] is continuous
and continuously differentiable on (0, 1). Its derivative L ′

n(x, p) := ∂Ln(x, p)/∂ p is
strictly decreasing in p ∈ (0, 1) and equals

L ′
n(x, p) =

k∑

r=1

Nnrwr (p)
[
F̂nr (x) − Br (p)

]

with the auxiliary function

wr (p) = βr

Br (1 − Br )
(p) = βr (p)

Br (p)Bk+1−r (1 − p)
.

Moreover, in case of X(1) ≤ x < X(n), the limits of L ′
n(x, ·) at the boundary of (0, 1)

are equal to L ′
n(x, 0) = ∞ and L ′

n(x, 1) = −∞.

According to this lemma, for y ∈ {1, . . . , n−1} and X(y) ≤ x < X(y+1), the value
of F̂L

n (x) is the unique number p ∈ (0, 1) such that

k∑

r=1

Nnrwr (p)
[
F̂nr (X(y)) − Br (p)

] = 0.

The computation of F̂M
n and F̂L

n for one single data set is of similar complexity. There

is, however, an important difference: The vector
(
F̂M
n (X(y))

)n−1
y=1 depends solely on the

vector Nn = (Nnr )
k
r=1 of stratum sizes. Hence, if we want to simulate the conditional

distribution of F̂M
n , given Rn , we have to compute the vector

(
F̂M
n (X(y))

)n−1
y=1 only
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162 L. Dümbgen, E. Zamanzade

once. By way of contrast, the vector
(
F̂L
n (X(y))

)n−1
y=1 depends on the whole matrix

(Nnry)1≤r≤k,1≤y≤n of frequencies Nnry = Nnr F̂nr (X(y)) = ∑n
i=1 1[Ri=r , Xi≤X(y)].

For given Nn , there are

n!
Nn1! Nn2! · · · Nnk !

possibilities for that matrix, and this number grows exponentially with n, unless Nn is
extremely unbalanced. As a consequence, for each new data set we have to compute
F̂L
n anew, even if Nn remains unchanged.

Basic distributional properties From now on, we condition on the rank vector Rn =
(Ri )

n
i=1. Hence the vector Nn = (Nnr )

k
r=1 of stratum sizes is viewed as a fixed vector,

and all probabilities, expectations and distributional statements refer to the conditional
distribution of Xn = (Xi )

n
i=1, given Rn .

All estimators F̂n , F̂S
n , F̂

M
n and F̂L

n are distribution-free in the following sense: Let
B̂n , B̂S

n , B̂
M
n and B̂L

n be defined analogously with raw observations from the uniform
distribution on [0, 1]. That means, we replace the random variables X1, X2, . . . , Xn

with random variables X̃1, X̃2, . . . , X̃n ∈ [0, 1] which are independent, and X̃i has
(conditional) distribution function Br if Ri = r . Then

(
F̂Z
n (x)

)
x∈R has the same distribution as

(
B̂Z
n (F(x))

)
x∈R,

where Z = S,M,L. Consequently, it suffices to analyze the distribution of the random
processes

(
B̂Z
n (t)

)
t∈[0,1].

Pointwise confidence intervals Recall that the estimator F̂M
n (x)was defined by match-

ing nF̂n(x) to its (conditional) mean. Comparing nF̂n(x)with its distribution function
yields exact confidence bounds for F(x). This approach has been used by Terpstra
and Miller (2006) in the framework of balanced ranked set sampling. In the present
general framework, this method works as follows: The (conditional) distribution of
nF̂n(x) depends only on Nn and F(x). Precisely, in case of F(x) = p, it has the same
distribution as

∑k
r=1 Yr ,p with independent random variables Y1,p, Y2,p, …, Yk,p,

where

Yr ,p ∼ Bin(Nnr , Br (p)).

Let GNn ,p be the corresponding distribution function, i.e.,

GNn ,p(y) := IP

(
k∑

r=1

Yr ,p ≤ y

)
.

This is not a standard distribution but a convolution of binomial distributionswhich can
be computed numerically quite easily. Elementary considerations reveal that for any
y ∈ {0, 1, . . . , n − 1}, the distribution function GNn ,p(y) is continuous and strictly
decreasing in p ∈ [0, 1] with boundary values GNn ,0(y) = 1 and GNn ,1(y) = 0.
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Inference on a distribution function 163

Further, GNn ,p(n) = 1 and GNn ,p(−1) = 0 for all p ∈ [0, 1]. Consequently, non-
asymptotic p values for the null hypotheses “F(x) ≥ p” and “F(x) ≤ p” are given by
GNn ,p(nF̂n(x)) and 1− GNn ,p(nF̂n(x) − 1), respectively. These imply two different
(1 − α)-confidence regions for F(x), namely

{
p ∈ [0, 1] : GNn ,p(nF̂n(x)) ≥ α

} = [
0, bα(Nn, nF̂n(x))

]
,

{
p ∈ [0, 1] : GNn ,p(nF̂n(x) − 1) ≤ 1 − α

} = [
aα(Nn, nF̂n(x)), 1

]
.

Here bα(Nn, y) is the unique solution p ∈ (0, 1) of the equation GNn ,p(y) = α if 0 ≤
y ≤ n − 1, and bα(Nn, n) = 1. Likewise, aα(Nn, y) is the unique solution p ∈ (0, 1)
of the equation GNn ,p(y − 1) = 1 − α if 1 ≤ y ≤ n, and aα(Nn, 0) = 0. Obviously,
one can combine lower and upper bounds and compute theClopper and Pearson (1934)
type (1 − α)-confidence interval

[
aα/2(Nn, nF̂n(x)), bα/2(Nn, nF̂n(x))

]
for F(x).

Note that the computation of all these confidence bounds for F boils down to
determining only finitely many values aλ(Nn, y) and bλ(Nn, y) for λ = α, α/2 and
y ∈ {0, 1, . . . , n}.

If we would ignore the ranks Ri and just pretend that X1, X2, . . . , Xn are i.i.d. with
distribution function F , then we would work with the distribution function Gn,p of
the binomial distribution Bin(n, p) instead of GNn ,p. This would lead to the tradi-

tional confidence bounds astα (n, nF̂n(x)), bstα (n, nF̂n(x)) and the confidence interval
of Clopper and Pearson (1934) with endpoints astα/2(n, nF̂n(x)), bstα/2(n, nF̂n(x)) for
F(x).
Confidence bandsWemay compute Kolmogorov–Smirnov-type confidence bands for
the unknown distribution function F as follows: Let κZ(Nn, α) be the (1−α)-quantile
of the random variable ‖B̂Z

n − B‖∞ = supt∈[0,1]
∣∣B̂Z

n (t) − t
∣∣. Then, we may conclude

with confidence 1 − α that

F(x) ∈ [
F̂Z
n (x) ± κZ(Nn, α)

]
for all x ∈ R.

The quantiles κZ(Nn, α)may be estimated viaMonte Carlo simulations. As explained
before, this procedure is particularly convenient to implement for the moment-
matching estimator F̂M

n , whereas for the likelihood estimator F̂L
n it would be very

computer-intensive.
Numerical example Figure 1 shows for n = 210 and Nn = (70, 70, 70), (100, 70, 40)
the estimator value F̂M

n (X(y)) and the two-sided 95%-confidence boundsa2.5%(Nn, y),
b2.5%(Nn, y), ast2.5%(n, y) and bst2.5%(n, y) as a function of y ∈ {0, 1, . . . , n}. One sees
that the additional rank information leads to more accurate confidence bounds in
the balanced setting. In the unbalanced situation, ignoring the rank information and
pretending the Xi to be i.i.d. would induce a severe bias, and the coverage probabilities
would be substantially smaller than 95%.

For Kolmogorov–Smirnov-type confidence bands centered at F̂M
n , we estimated

the quantiles κM(Nn, 5%) in 105 Monte Carlo simulations and obtained

κ̂M(Nn, 5%) =
{
0.0790 for Nn = (70, 70, 70),

0.0812 for Nn = (100, 70, 40).
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Fig. 1 Estimator F̂M
n and pointwise 95%-confidence intervals for F : For y ∈ {0, 1, . . . , n} one sees the

value F̂M
n (X(y)) (dashed), the exact confidence bounds a2.5%(Nn , y) and b2.5%(Nn , y) (solid), and the

classical bounds ast2.5%(n, y) and bst2.5%(n, y) (dotted)

For the usual Kolmogorov–Smirnov confidence band with n = 210 observations, the
critical value would be κ(n, 5%) = 0.0927.
Unequal group sizes The point estimators F̂L

n , F̂M
n and the confidence regions just

described may be extended easily to a more general setting with independent observa-
tions (Xi , Ri , ki ), 1 ≤ i ≤ n, where ki ≥ 1 is a fixed integer, Ri is a fixed or random
rank in {1, 2, . . . , ki }, and

IP(Xi ≤ x | Ri = r) = Br ,ki+1−r (F(x)),

see, for instance, Bhoj (2001) or Chen (2001). Here Br ,s denotes the distribution
function of the beta distribution with parameters r and s.

3 Asymptotic considerations

We consider the asymptotic behavior of the estimators B̂S
n , B̂

M
n and B̂L

n for fixed k as
n → ∞ and

πnr := Nnr

n
→ πr for 1 ≤ r ≤ k.

Recall that we condition on the rank vector Rn . The former condition is satisfied with
πr = 1/k both in Huang’s (1997) setting and in the JPS setting almost surely. In
general, we assume that

{
π1, . . . , πk > 0 in connection with B̂S

n ,

π1, πk > 0 in connection with B̂M
n , B̂L

n .
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Inference on a distribution function 165

Linear expansions and limit theorems In what follows, let

Vnr := √
Nnr

(
B̂nr − Br

)
◦ B−1

r

for 1 ≤ r ≤ k. Each stochastic processVnr has the same distribution as a standardized
empirical distribution function of Nnr independent random variables with uniform
distribution on [0, 1], see also “Appendix.” Moreover, the processesVn1, . . . ,Vnk are
stochastically independent. Our first result shows that the three estimators B̂S

n , B̂
M
n

and B̂L
n may be approximated by simpler processes involving Vn1, . . . ,Vnk .

Theorem 2 (Linear expansion). For Z = S,M,L and any fixed δ ∈ [0, 1/2),

sup
t∈(0,1)

∣∣√n(B̂Z
n (t) − t) − V

Z
n (t)

∣∣
tδ(1 − t)δ

→p 0,

where

V
Z
n (t) :=

k∑

r=1

γ Z
nr (t)Vnr (Br (t))

with continuous functions γ Z
n1, . . . , γ

Z
nk : [0, 1] → [0,∞). Precisely, for t ∈ (0, 1),

γ S
nr (t) := 1

k
√

πnr
,

γM
nr (t) := √

πnr
/ k∑

s=1

πnsβs(t),

γ L
nr (t) := √

πnr wr (t)
/ k∑

s=1

πnsws(t)βs(t)

with wr = βr/(Br (1 − Br )). Moreover,

sup
t∈(0,c]∪[1−c,1)

|VZ
n (t)|

tδ(1 − t)δ
→p 0 as n → ∞ and c ↓ 0.

The next theorem shows that all estimators F̂S
n , F̂M

n , F̂L
n are asymptotically equiv-

alent in the tail regions. Moreover, the asymptotic behavior in the left and right tail is
driven mainly by the processes Vn1 and Vnk , respectively.

Theorem 3 (Linear expansion in the tails). For Z = S,M,L and any fixed κ ∈
[1/2, 1),

sup
t∈(0,c]

∣∣√n(B̂Z
n (t) − t) − V

(�)
n (t)

∣∣
tκ

→p 0
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166 L. Dümbgen, E. Zamanzade

and

sup
t∈[1−c,1)

∣∣√n(B̂Z
n (t) − t) − V

(r)
n (t)

∣∣
(1 − t)κ

→p 0

as n → ∞ and c ↓ 0, where

V
(�)
n (t) := Vn1(B1(t))

k
√

πn1
and V

(r)
n (t) := Vnk(Bk(t))

k
√
Nnk/n

.

It follows from Donsker’s theorem for the empirical process that Vnr behaves
asymptotically like a standard Brownian bridge process V = (V(u))u∈[0,1]. Together
with Theorem 2, this leads to the following limit theorem:

Corollary 4 (Asymptotic distribution). For Z = S,M,L, the stochastic process VZ
n

converges in distribution in the space �∞([0, 1]) to a centered Gaussian process VZ

with continuous paths on [0, 1]. Precisely, for t ∈ [0, 1],

V
Z(t) =

k∑

r=1

γ Z
r (t)Vr (Br (t))

with independent standard Brownian bridges V1, . . . ,Vk and continuous functions
γ Z
1 , . . . , γ Z

k : [0, 1] → [0,∞) given by

γ S
r (t) := 1

k
√

πr
,

γM
r (t) := √

πr
/ k∑

s=1

πsβs(t),

γ L
r (t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
πr wr (t)

/ k∑

s=1

πsws(t)βs(t) for 0 < t < 1,

√
πr r/(π1k) for t = 0,√
πr (k + 1 − r)/(πkk) for t = 1.

Theorem 2 and Corollary 4 show that all three estimators F̂S
n , F̂M

n , F̂L
n are root-n-

consistent. In the asymptotically balanced case with

π1 = π2 = · · · = πk = 1/k, (2)

one can easily deduce from
∑k

s=1 βs ≡ k that

γM
r ≡ γ S

r = 1/
√
k for 1 ≤ r ≤ k.
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Inference on a distribution function 167

Hence, in this particular case the estimators F̂S
n and F̂M

n are asymptotically equivalent.

But otherwise F̂S
n may be substantially worse than F̂M

n , as shown later.
Relative asymptotic efficiencies Let K be the covariance function of a standard Brow-
nian bridge V, i.e., K (s, t) = min{s, t} − st for s, t ∈ [0, 1]. Then the covariance
function KZ of the Gaussian process VZ in Corollary 4 is given by

KZ(s, t) =
k∑

r=1

γ Z
r (s)γ Z

r (t)K
(
Br (s), Br (t)

)
.

In particular, for 0 < t < 1 the asymptotic distribution of
√
n
(
B̂Z
n (t) − t

)
equals

N (0, KZ(t)
)
with KZ(t) := KZ(t, t) given by

K S(t) =
k∑

r=1

Br (t)(1 − Br (t))

k2πr
,

KM(t) =
k∑

r=1

πr Br (t)(1 − Br (t))
/( k∑

s=1

πsβs(t)

)2

,

KL(t) =
k∑

r=1

πrwr (t)
2Br (t)(1 − Br (t))

/( k∑

s=1

πsβs(t)ws(t)

)2

= 1
/ k∑

s=1

πsβs(t)ws(t).

The latter equation follows from wr = βr/(Br (1 − Br )). The next result provides a
detailed comparison of these asymptotic variances.

Theorem 5 (Relative asymptotic efficiencies). For arbitrary t ∈ (0, 1),

KL(t) ≤ K S(t)

with equality for at most one t ∈ (0, 1). Furthermore,

KL(t) ≤ KM(t)

with equality if, and only if, t = 1/2 and k = 2. On the other hand,

sup
π

K S(t)

KL(t)
= ∞,

sup
π

KM(t)

KL(t)
= ρ(t) + ρ(t)−1 + 2

4
≤ k + k−1 + 2

4
,
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Fig. 2 Asymptotic variances of B̂L
n , B̂

S
n ≡ B̂M

n , B̂n (left panel) and relative efficiencies of B̂L
n versus B̂Z

n
(right panel) in case of π1 = π2 = π3 = 1/3

where the suprema are over all tuples (πr )
k
r=1 with strictly positive components sum-

ming to one, and

ρ(t) := max
r=1,...,k

wr (t)
/

min
r=1,...,k

wr (t) ≤ k.

Numerical examples In case of k = 2, the upper bound for KM(t)/KL(t) equals
9/8 = 1.125. More precisely,

ρ(t) + ρ(t)−1 + 2

4
= 1 + u2

9 − u2
≤ 1.125

with u := 2t − 1 ∈ [−1, 1], see the supplement for more details.
In case of k = 3, the upper bound for KM(t)/KL(t) equals 4/3 ≈ 1.333. Figures 2

and 3 show the asymptotic variance functions K (·) of B̂n and KZ(·) of B̂Z
n for Z =

S,M,L in the balanced and one unbalanced situation. Note that in the balanced setting,
B̂S
n ≡ B̂M

n and thus K S(·) ≡ KM(·). In addition, one sees the asymptotic relative
efficiencies

EZ(t) := KZ(t)

KL(t)

of B̂L
n versus B̂Z

n together with the upper bound

EM
max(t) := (

ρ(t) + ρ(t)−1 + 2
)
/4

for EM(t). One sees clearly that the inefficiency of B̂M
n versus B̂L

n ismoderate, whereas
the inefficiency of B̂S

n may become substantial in unbalanced settings. Note also that
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Fig. 3 Asymptotic variances of B̂S
n , B̂

M
n , B̂L

n (left panel) and relative efficiencies of B̂L
n versus B̂Z

n (right
panel) in case of (π1, π2, π3) = (10/21, 7/21, 4/21)

in case of π1 > π2 > π3 the accuracy in the left tail increases at the expense of larger
errors in the right tail.
Implications for confidence intervals One can deduce from Corollary 4 that
n1/2κZ(Nn, α) converges to the (1 − α)-quantile of the random supremum norm
‖VZ‖∞. Moreover, for any x ∈ R with 0 < F(x) < 1, the pointwise confidence
bounds satisfy

aα(Nn, nF̂n(x)) = F̂M
n (x) −

√
KM(F(x))√

n
�−1(1 − α) + op(n

−1/2) (3)

bα(Nn, nF̂n(x)) = F̂M
n (x) +

√
KM(F(x))√

n
�−1(1 − α) + op(n

−1/2) (4)

with �−1 denoting the standard Gaussian quantile function, see the supplement.

4 A real data example and imperfect rankings

4.1 Population sizes of Swiss municipalities

Every 5years, the Swiss Federal Office of Statistics releases data about all munic-
ipalities of Switzerland, including their population sizes. There are currently 2289
communities, and the two most recent data collections are from 2010 and 2015. Sup-
pose we would have wanted to estimate the distribution function F of population sizes
by the end of 2015 in early 2016. Back then only the data of 2010 would have been
available, the data of 2015 having been released later in 2016 and corrected in 2017. In
principle one could have approached each single municipality to obtain its population
size by the end of 2015, but this would have been time-consuming of course. Hence,
one could have applied RSS sampling as follows: One chooses randomly n = 210
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Fig. 4 Inference about the distributionof population sizes (Sect. 4.1)withNn = (100, 70, 40). The smoother
function is the true c.d.f. F . The inner and outer two step functions are the pointwise and simultaneous
95%-confidence band for F

disjoint sets of k = 3 communities. Within the i-th set, one determines the unit with
rank Ri according to population sizes in 2010 and obtains its precise population size
Xi by the end of 2015. The ranks R1, . . . , Rn ∈ {1, 2, 3} are prespecified. If one is
particularly interested in smaller municipalities, one could choose Rn such that, say,
Nn = (100, 70, 40).

Having the complete data of 2010 and 2015, one can easily simulate this sampling
scheme. Figure 4 shows for one such sample the estimated distribution function F̂M

n
together with pointwise and simultaneous 95%-confidence intervals as described in
Sect. 2. Since the distribution of population sizes is heavily right-skewed, the horizontal
axis shows the decimal logarithms of population sizes. In the lower panel, the point
estimator F̂M

n is replaced with the true distribution function F , i.e., the empirical
distribution function of all 2289 population sizes in 2015.

We simulated this sampling scheme 105 times and analyzed the performance of
both F̂M

n and the confidence intervals. The Monte Carlo estimator of

BIAS(x) := IE F̂M
n (x) − F(x)

was everywhere between −10−4 and 10−3, whereas the MC estimator of

RMSE(x) :=
(
IE (F̂M

n (x) − F(x))2
)1/2

was nowhere larger than 0.0263. The left panel of Fig. 5 depicts these two functions
BIAS and RMSE. For each sample and any x ∈ R, we obtained a pointwise and simul-
taneous 95%-confidence interval, denoted by Cpw(x) and Csim(x), respectively. The
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Fig. 5 Inference about the distribution of population sizes (Sect. 4.1) with Nn = (100, 70, 40). Left panel:
bias and root mean squared error of F̂M

n . Right panel: Average width of pointwise 95%-confidence band
for F

MC estimator of the error probability IP
(
F(x) /∈ Cpw(x)

)
was nowhere larger than

4.22%, and the oneof IP
(
F(x) /∈ Csim(x) for some x ∈ R

)
turnedout to be smaller than

2.8%. The confidence intervals being conservative are probably a consequence of sam-
pling without replacement, which results in more accurate estimators than sampling
with replacement. The right panel of Fig. 5 showsMC estimates of the average widths

AWpw(x) := IE width(Cpw(x)).

Here one sees clearly the effect of unbalanced sampling with Nn1 > Nn2 > Nn3, the
benefit being shorter intervals in the left tail at the expense of longer intervals in the
right tail.

Note that the ranking of municipalities within the n groups of size k = 3 was
based on the population sizes in 2010 and thus imperfect. Indeed, a reasonable model
for the pairs of log-transformed population sizes in 2010 and 2015 seems to be a
bivariate Gaussian distribution with correlation 0.9986. As a consequence, in our MC
simulations the average proportion of imperfect ranks Ri turned out to be 3.1%.

Analogous simulations for k = 4, 5 anddifferent choices of Nn led to similar results.
Enlarging k without changing n leads to larger coverage probabilities, presumably an
effect of sampling without replacement, while the modulus of the bias of F̂M

n and the
proportion of imperfect ranks get larger.

4.2 Imperfect rankings

In case of sampling with replacement, the previous data example would fit the model
of Dell and Clutter (1972) for ranked set sampling with imperfect rankings quite well.
They consider 2nk independent random variables Xi j ∼ F and εi j ∼ N (0, τ 2) with
1 ≤ i ≤ n and 1 ≤ j ≤ k. Instead of the true rank of Xi j among Xi1, . . . , Xik one
obtains the ranks
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Fig. 6 Performance of F̂L
n in balanced setting with Nn1 = Nn2 = Nn3 = 70: Bias and root mean squared

error (left panel) and relative efficiency versus F̂S
n (right panel) for correlations ρ = 1 (dotted), ρ = 0.95

(dashed) and ρ = 0.9 (solid)

Ri j :=
k∑

�=1

1[Yi�≤Yi j ]

of the concomitant variables Yi j := Xi j +εi j . If σ > 0 denotes the standard deviation
of the Xi j , the correlation between Xi j and Yi j equals ρ = (1 + τ 2/σ 2)−1/2. Finally
we obtain for 1 ≤ i ≤ n the observation (Xi , Ri ) = (Xi1, Ri1) in JPS and (Xi J (i), Ri )

in RSS, where J (i) is the unique index in {1, . . . , k} such that Ri J (i) = Ri .
In this model, the stratified estimator F̂S

n is still unbiased, see Presnell and Bohn
(1999) for the RSS setting with Nn1, . . . , Nnk > 0 and Dastbaravarde et al. (2016)
for the JPS setting. For that reason, we considered F̂S

n as a gold standard in our
simulation study: We simulated 105 RSS data sets from this model with standard
Gaussian distribution function F = �, sample size n = 210 and different options for
Nn and ρ. With these simulations, we estimated the bias and root mean squared error,

BIASZ(x) := IE F̂Z
n (x) − F(x) and RMSEZ(x) := (

IE (F̂Z
n (x) − F(x))2

)1/2
,

for Z = S,M,L. In addition we estimated the relative efficiency

REZ(x) := RMSES(x)2/RMSEZ(x)2

of F̂Z
n versus the stratified estimator F̂S

n .
Firstly we considered Nn1 = Nn2 = Nn3 = 70. Here F̂S

n ≡ F̂M
n ≡ F̂n . In Fig. 6,

one sees on the left-hand side the functions BIASL and RMSEL for three different
values of the correlation ρ. While F̂S

n ≡ F̂M
n is unbiased, the bias of F̂L

n gets worse
as ρ decreases. For all three estimators F̂Z

n , the root mean squared error increases
as ρ decreases. The right-hand side of Fig. 6 depicts the relative efficiency function
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Fig. 7 Performance of F̂M
n and F̂L

n in unbalanced setting with Nn = (100, 70, 40): Biases and root mean
squared errors (upper panels) and relative efficiencies versus F̂S

n (lower panels) for correlations ρ = 1
(dotted), ρ = 0.95 (dashed) and ρ = 0.9 (solid)

REL. As predicted by asymptotic theory, REL > 1 in case of ρ = 1, but for smaller
correlations the relative efficiency drops below 1 in the tails.

Secondly we considered the unbalanced situation with Nn = (100, 70, 40). Now
the three estimators F̂Z

n are different, and only F̂S
n is unbiased. In Fig. 7, we show bias

and root mean squared errors of F̂M
n and F̂L

n . Clearly, the bias of F̂M
n and F̂L

n gets
worse as ρ decreases, where F̂M

n is a bit more robust than F̂L
n . Nevertheless, the plots

of the relative efficiencies REM andREL show that for ρ = 0.95 themoment-matching
estimator outperforms the stratified one everywhere, and also the likelihood estimator
is better at most places. For ρ = 0.9, the likelihood estimator is less favorable than
the other two.
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Conclusions and future research

The present paper confirms and generalizes previous findings that the estimator F̂L
n

is the most efficient one in case of perfect ranking, both in balanced and unbalanced
situations. In terms of computational efficiency, however, the estimator F̂M

n has clear
advantages and is particularly convenient as an ingredient for simultaneous confidence
bands. Further, it is closely related to pointwise confidence bands for F . For now, we
restricted ourselves to Kolmogorov–Smirnov-type bands, but other variants might be
worthwhile to study.

The simulations in Sect. 4.2 indicate that even in case of imperfect rankings, both
F̂M
n and F̂L

n perform well compared to F̂S
n , as long as the ranking precision is high.

While F̂L
n appears to be most sensitive to imperfect rankings, F̂M

n seems to offer a
good compromise in terms of efficiency (for perfect rankings) and robustness against
ranking errors. Investigating and understanding these differences thoroughly would
be an interesting topic for future research.

Acknowledgements Constructive comments by an associate editor and two referees are gratefully acknowl-
edged.

Appendix

We first recall two well-known facts about uniform empirical processes, see Shorack
and Wellner (1986).

Proposition 6 Let U1,U2,U3, . . . be independent random variables with uniform dis-
tribution on [0, 1]. For N ∈ N and u ∈ [0, 1] define

V
(N )(u) := N−1/2

N∑

i=1

(
1{Ui ≤ u} − u).

Then, as N → ∞,V(N ) converges in distribution in �∞([0, 1]) to a standardBrownian
bridge V on [0, 1]. Moreover, for any fixed δ ∈ [0, 1/2) and ε > 0,

sup
N≥1

IP

(
sup

u∈(0,1)

|V(N )(u)|
uδ(1 − u)δ

≥ C

)
→ 0 as C ↑ ∞,

sup
N≥1

IP

(
sup

u∈(0,c]∪[1−c,1)

|V(N )(u)|
uδ(1 − u)δ

≥ ε

)
→ 0 as c ↓ 0.

For the estimators F̂M
n , F̂L

n we need some basic facts and inequalities for the aux-
iliary functions wk and Bk which are proved in the supplement:

Lemma 7 (a) For r = 1, 2, . . . , k, the functionwr on (0, 1)may bewritten aswr (t) =
w̃r (t)/(t(1− t))with w̃r : [0, 1] → (0,∞) continuously differentiable. Moreover,
for r = 1, 2, . . . , k and t ∈ (0, 1),
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1 ≤ w̃r (t) ≤ max(r , k + 1 − r).

(b) For any constant c ∈ (0, 1) there exists a number c′ = c′(k, c) > 0 with the
following property: If t, p ∈ (0, 1) such that

|p − t |
t(1 − t)

≤ c,

then for r = 1, 2, . . . , k,

max

{∣∣∣∣
wr (p)

wr (t)
− 1

∣∣∣∣ ,
∣∣∣∣
Br (p) − Br (t)

βr (t)(p − t)
− 1

∣∣∣∣

}
≤ c′ |p − t |

t(1 − t)
.

Proof of Theorem 2 We start with the weight functions γ Z
nr : Note that by Lemma 7,

γ S
nr (t) = 1

k
√

πnr
,

γM
nr (t) = √

πnr
/ k∑

s=1

πnsβs(t),

γ L
nr (t) = √

πnr w̃r (t)
/ k∑

s=1

πnsw̃s(t)βs(t)

with the probability weights πnr := Nnr/n and continuous functions w̃r : [0, 1] →
[1, k]. Since the beta densities βr are also continuous with β1(0) = βk(1) = k, this
shows that γ Z

nr is well-defined and continuous, provided that its denominator is strictly
positive, i.e.,

{
πn1, . . . , πnk > 0 if Z = S,

πn1, πnk > 0 if Z = M,L.

For sufficiently large n this is the case, because limn→∞ πnr = πr for all r . The
functions γ Z

r in Corollary 4 are continuous, too, and elementary considerations reveal
that

max
t∈[0,1], 1≤r≤k

∣∣γ Z
nr (t) − γ Z

r (t)
∣∣ → 0 (5)

as n → ∞. In particular, maxt∈[0,1],1≤r≤k γ Z
nr (t) = O(1).

Note that for n ≥ 1 and 1 ≤ r ≤ k, the empirical process Vnr is distributed as
V

(Nnr ) in Proposition 6. Note also that the distribution functions Br satisfy B1 ≥ B2 ≥
· · · ≥ Bk , because for 1 ≤ r < k the density ratio βr+1/βr is a positive multiple of
t/(1 − t) and thus strictly increasing. Consequently, for 1 ≤ r ≤ k,

Br (t) ≤ B1(t) ≤ kt and 1 − Br (t) ≤ 1 − Bk(t) ≤ k(1 − t),

123



176 L. Dümbgen, E. Zamanzade

so

Br (t)(1 − Br (t))

t(1 − t)
≤ k.

Consequently,

sup
t∈(0,1)

|Vnr (Br (t))|
tδ(1 − t)δ

≤ kδ sup
u∈(0,1)

|Vnr (u)|
uδ(1 − u)δ

= Op(1) and

sup
u∈(0,c]∪[1−c,1)

|Vnr (Br (t))|
tδ(1 − t)δ

≤ kδ sup
u∈(0,kc]∪[1−kc,1)

|Vnr (u)|
uδ(1 − u)δ

→p 0

as n → ∞ and c ↓ 0. All in all, we may conclude that

sup
t∈(0,1)

|VZ
n (t)|

tδ(1 − t)δ
= Op(1), (6)

sup
t∈(0,c]∪[1−c,1)

|VZ
n (t)|

tδ(1 − t)δ
→p 0 as n → ∞ and c ↓ 0. (7)

It remains to be shown that the process
√
n(B̂Z

n − B) may be approximated by VZ
n .

In case of Z = S it follows from
∑k

r=1 βr ≡ k that
∑k

r=1 Br = kB, and this implies
that

√
n(B̂S

n − B) =
k∑

r=1

√
n(B̂nr − Br )

k
=

k∑

r=1

γ S
nr Vnr ◦ Br = V

S
n .

For Z = M,L it suffices to show that for any fixed number b �= 0 and

pZn (t) := t + V
Z
n (t) + btδ(1 − t)δ√

n

the following statements are true: If b < 0, then with asymptotic probability one,

inf
t∈(0,1)

(
nB̂n(t) −

k∑

r=1

Nnr Br (p
M
n (t))

)

inf
t∈(0,1)

L ′
n(t, p

L
n (t))

⎫
⎪⎪⎬

⎪⎪⎭
≥ 0. (8)

If b > 0, then with asymptotic probability one,

sup
t∈(0,1)

(
nB̂n(t) −

k∑

r=1

Nnr Br (p
M
n (t))

)

sup
t∈(0,1)

L ′
n(t, p

L
n (t))

⎫
⎪⎪⎬

⎪⎪⎭
≤ 0. (9)

123



Inference on a distribution function 177

Here we use the conventions that L ′
n(t, ·) := ∞ and Br := 0 on (−∞, 0] while

L ′
n(t, ·) := −∞ and Br := 1 on [1,∞).
To verify these claims, we split the interval (0, 1) into (0, cn], [cn, 1 − cn] and

[1 − cn, 1) with numbers cn ∈ (0, 1/2) to be specified later, where cn ↓ 0.
On [cn, 1 − cn] we utilize Lemma 7: For t ∈ [cn, 1 − tn] and p ∈ (0, 1) such that

|p − t | ≤ t(1 − t)/2 we may write

nB̂n(t) −
k∑

r=1

Nnr Br (p)

=
k∑

r=1

√
NnrVnr (Br (t)) −

k∑

r=1

Nnr (Br (p) − Br (t))

=
k∑

r=1

√
NnrVnr (Br (t)) −

m∑

r=1

Nnrβr (t)(p − t) + ρM
n (t, p)

=
k∑

r=1

Nnrβr (t)

(
V
M
n (t)√
n

− (p − t)

)
+ ρM

n (t, p)

and

L ′
n(t, p) =

k∑

r=1

√
Nnrwr (p)Vnr (Br (t)) −

k∑

r=1

Nnrwr (p)(Br (p) − Br (t))

=
k∑

r=1

√
Nnrwr (t)Vnr (Br (t)) −

k∑

r=1

Nnrwr (t)βr (t)(p − t) + ρL
n (t, p)

=
k∑

r=1

Nnrwr (t)βr (t)

(
V
L
n (t)√
n

− (p − t)

)
+ ρL

n (t, p),

where

|ρM
n (t, p)| ≤ O(n)|p − t |2

t(1 − t)
,

|ρL
n (t, p)| ≤ Op(

√
n)tδ(1 − t)δ|p − t |
t(1 − t)

+ O(n)|p − t |2
t2(1 − t)2

.

Note that for t ∈ [cn, 1 − cn],
∣∣pZn (t) − t

∣∣
t(1 − t)

≤ Op(1)tδ(1 − t)δ√
n t(1 − t)

≤ Op(1)√
n c1−δ

n
.
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Hence we choose cn such that cn ↓ 0 but nc2(1−δ)
n → ∞. With this choice, we may

conclude that uniformly in t ∈ [cn, 1 − cn],
∣∣ρM

n (t, pMn (t))
∣∣ ≤ Op(c

δ−1
n )tδ(1 − t)δ,

∣∣ρL
n (t, pLn (t))

∣∣ ≤ Op(c
δ−1
n )tδ−1(1 − t)δ−1.

On the other hand, since β1(t) + βk(t) ≥ β1(1/2) + βk(1/2) = k22−k ,

k∑

r=1

Nnrβr (t) ≥ k22−k min{Nn1, Nnk},

k∑

r=1

Nnrwr (t)βr (t) ≥ k22−kcw

t(1 − t)
min{Nn1, Nnk}.

Consequently,

nB̂n(t) −
k∑

r=1

Nnr Br (p
M
n (t))

=
k∑

r=1

Nnrβr (t)
−btδ(1 − t)δ√

n
+ ρM

n (t, pMn (t))

=
m∑

r=1

Nnrβr (t)
tδ(1 − t)δ√

n

(
−b + Op(c

δ−1
n n−1/2)κM

n (t)
)

and

L ′
n(t, p

L
n (t)) =

k∑

r=1

Nnrwr (t)βr (t)
−btδ(1 − t)δ√

n
+ ρL

n (t, pLn (t))

=
k∑

r=1

Nnrwr (t)βr (t)
tδ(1 − t)δ√

n

(
− b + Op

(
cδ−1
n n−1/2

)
κL
n (t)

)

for some random functions κM
n , κL

n : [cn, 1 − cn] → [−1, 1]. These considerations
show that (8) and (9) are satisfied with [cn, 1 − cn] in place of (0, 1).

It remains to verify (8) and (9) with (0, cn] in place of (0, 1); the interval [1−cn, 1)
may be treated analogously. Note first that for 2 ≤ r ≤ k,

Br (t) ≤ B2(t) ≤ k(k − 1)t2/2 and βr (t) ≤ k2k−1t,

so

∣∣Br (p) − Br (t)
∣∣ =

∣∣∣
∫ p

t
βr (u) du

∣∣∣ ≤ O(max(p, t))(p − t).
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Furthermore, since B1(t) = 1 − (1 − t)k ,

B1(p) − B1(t) = k(p − t) + O(max(t, p))(p − t).

Hence for t ∈ (0, cn] and p ∈ (0, 2cn],

nB̂n(t) −
k∑

r=1

Nnr Br (p)

=
k∑

r=1

√
NnrVnr (Br (t)) −

k∑

r=1

Nnr (Br (p) − Br (t))

= −Nn1k(p − t) + ρM
n (t, p)

and

L ′
n(t, p) =

k∑

r=1

√
Nnrwr (p)Vnr (Br (t)) −

k∑

r=1

Nnrwr (p)(Br (p) − Br (t))

= −Nn1w1(p)k(p − t) + ρL
n (t, p),

where

|ρM
n (t, p)| ≤ op(

√
n)tδ + O(ncn)(p − t),

|ρL
n (t, p)| ≤ op(

√
n)p−1tδ + O(ncn)p

−1(p − t).

Note also that

sup
t∈(0,cn ]

∣∣∣
√
n(pZn (t) − t)

tδ(1 − t)δ
− b
∣∣∣ →p 0.

In particular, supt∈(0,cn ] p
Z
n (t) = cn + op(n−1/2cδ

n) = cn(1 + op(1)), and in case of
b > 0, IP

(
pZn (t) > 0 for 0 < t ≤ cn

)→ 1.
In case of b > 0, these considerations show that for 0 < t ≤ cn ,

nB̂n(t) −
k∑

r=1

Nnr Br (p
M
n (t))

= −Nn1k(p
M
n (t) − t) + ρM

n (t, pMn (t))

≤ Nn1ktδ(1 − t)δ√
n

(−b + op(1)
)+ op(

√
n)tδ + O(

√
ncn)t

δ

≤ Nn1ktδ(1 − t)δ√
n

(−b + op(1)
)

123



180 L. Dümbgen, E. Zamanzade

and

L ′
n(t, p

L
n (t)) = −Nn1w1(p)k(p

L
n (t) − t) + ρL

n (t, pZn (t))

≤ Nn1w1(p)ktδ(1 − t)δ√
n

(−b + op(1)
)+ op(

√
n)p−1tδ

+ O(
√
ncn)p

−1tδ

≤ Nn1w1(p)ktδ(1 − t)δ√
n

(−b + op(1)
)
.

Analogously, in case of b < 0, for any t ∈ (0, cn] we obtain the inequalities

nB̂n(t)−
k∑

r=1

Nnr Br (p
M
n (t)) ≥

⎧
⎨

⎩

Nn1ktδ(1 − t)δ√
n

(−b + op(1)
)

if pMn (t) > 0,

0 if pMn (t) ≤ 0,

L ′
n(t, p

L
n (t)) ≥

⎧
⎨

⎩

Nn1w1(p)ktδ(1 − t)δ√
n

(−b + op(1)
)

if pLn (t) > 0,

∞ if pLn (t) ≤ 0.

Hence, (8) and (9) are satisfied with (0, cn] in place of (0, 1). ��

Proof of Theorem 3 For symmetry reasons it suffices to prove the first part about the
left tails. Let (cn)n be a sequence of numbers in (0, 1/2] converging to zero. Then for
t ∈ (0, cn] and δ := κ/2 ∈ (0, 1/2),

∣∣√n
(
B̂S
n (t) − t

)− V
(�)
n (t)

∣∣ =
∣∣∣∣∣

k∑

r=2

Vnr (Br (t))

k
√
Nnr/n

∣∣∣∣∣ ≤ t2δop(1) = tκop(1).

Concerning B̂M
n and B̂L

n , for any t ∈ (0, cn] and p ∈ (0, 1),

nB̂n(t) −
k∑

r=1

Nnr Br (p)

=
k∑

r=1

√
NnrVnr (Br (t)) −

k∑

r=1

Nnr (Br (p) − Br (t))

= √
Nn1Vn1(B1(t)) − Nn1k(p − t) + ρM

n (t, p)

= Nn1k
(
Vn1(B1(t))

k
√
Nn1

− (p − t)
)

+ ρM
n (t, p)

123



Inference on a distribution function 181

and

L ′
n(t, p) =

k∑

r=1

√
Nnrwr (p)Vnr (Br (t)) −

k∑

r=1

Nnrwr (p)(Br (p) − Br (t))

= √
Nn1w1(p)Vn1(B1(t)) − Nn1w1(p)k(p − t) + ρL

n (t, p)

= Nn1kw1(p)

(
Vn1(B1(t))

k
√
Nn1

− (p − t)

)
+ ρL

n (t, p),

where

|ρM
n (t, p)| ≤ op(

√
n)t2δ + O(n)max(t, p)(p − t),

|ρL
n (t, p)| ≤ op(

√
n)p−1t2δ + O(n)p−1 max(t, p)(p − t).

Now we proceed similarly as in the proof of Theorem 2, defining

pn(t) := t + V
(�)
n (t) + btκ√

n

for some fixed b �= 0. Note that for t ∈ (0, cn],
|pn(t) − t | ≤ op(n

−1/2)tδ + O(n−1/2)tκ = op(n
−1/2)tδ,

because κ > δ. Note also that

t + V
(�)
n (t)√
n

= t + Vn1(B1(t))

k
√
Nn1

= t − 1 − (1 − t)k

k
+ B̂n1(t)

k
> 0 on (0, 1),

because B̂n1 ≥ 0 and t �→ t − (1 − (1 − t)k)/k is strictly convex on [0, 1] with
derivative 0 at 0. Thus pn(t) > 0 for all t ∈ (0, cn] in case of b > 0.

In case of b > 0, we may conclude that

nB̂n(t) −
k∑

r=1

Nnr Br (pn(t))

= Nn1k
−btκ√

n
+ ρM

n (t, pn(t))

≤ Nn1k√
n

(−btκ + op(1)t
2δ + O(1)(t + op(n

−1/2)tδ)tδ
)

≤ Nn1ktκ√
n

(−b + op(1)
)
,

and

L ′
n(t, pn(t)) ≤ Nn1kw1(p)tκ√

n

(−b + op(1)
)
.
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Hence for any fixed b > 0,

IP
(√

n(B̂Z
n (t) − t) ≤ V

(�)
n (t) + btκ for t ∈ (0, cn]

)
→ 0.

Similarly we can show that for any fixed b < 0, with asymptotic probability one,√
n(B̂Z

n (t) − t) ≤ V
(�)
n (t) + btκ for all t ∈ (0, cn]. ��

Proof of Corollary 4 It follows from Proposition 6 that

sup
1≤r≤k, u∈[0,1]

|Vnr (u)| = Op(1).

Together with (5) this entails that supt∈[0,1]
∣∣VZ

n (t) − Ṽ
Z
n (t)

∣∣ →p 0, where Ṽ
Z
n :=∑k

r=1 γ Z
r Vnr ◦ Br . But γ Z

r ≡ 0 whenever πr = 0. In case of πr > 0 it follows from
Proposition 6 that Vnr converges in distribution to Vr . Consequently, ṼZ

n converges
in distribution to the Gaussian process VZ =∑k

r=1 γ Z
r Vr ◦ Br . ��

Proof of Theorem 5 The asserted inequalities follow from Jensen’s inequality. On the
one hand, it follows from wr = βr/(Br (1 − Br )) and

∑k
r=1 βr ≡ k that

K S(t) = 1

k

k∑

r=1

βr (t)

k
· (πrwr (t))

−1

≥ 1

k

(
k∑

r=1

βr (t)

k
· πrwr (t)

)−1

=
(

k∑

r=1

πrβr (t)wr (t)

)−1

= KL(t).

Equality holds if, and only if,

π1w1(t) = π2w2(t) = · · · = πkwk(t).

But

w1(t) = k

(1 − t)(1 − (1 − t)k)
and wk(t) = k

t(1 − tk)
,

so

wk(t)

w1(t)
= (1 − t)(1 − (1 − t)k)

t(1 − tk)
=
∑k−1

j=0(1 − t) j
∑k−1

j=0 t
j

is strictly decreasing in t . Hence there is atmost one solution of the equationπ1w1(t) =
πkwk(t).

123



Inference on a distribution function 183

Similarly, with ar (t) := πrβr (t)
/∑k

s=1 πsβs(t),

KM(t) =
k∑

r=1

πrβr (t) · wr (t)
−1
/( k∑

s=1

πsβs(t)

)2

=
k∑

r=1

ar (t) · wr (t)
−1
/ k∑

s=1

πsβs(t)

≥
(

k∑

r=1

ar (t)wr (t)

)−1/ k∑

s=1

πsβs(t)

=
(

k∑

r=1

πrβr (t)wr (t)

)−1

= KL(t).

Here the inequality is strict unless

w1(t) = w2(t) = · · · = wk(t).

But w1(t) = wk(t) implies that t = 1/2. Moreover, w1(1/2) = 2k/(1 − 2−k) and

wk−1(1/2) = 2k(k − 1)

(k + 1)(1 − (k + 1)2−k)

are identical if, and only if, k2 + k + 2 = 2k+1. But 2k+1 = 2
∑k

j=0

(k
j

)
is strictly

larger than 2(1 + k + k(k − 1)/2) = k2 + k + 2 if k ≥ 3.
As to the ratios EZ(t) := KZ(t)/KL(t), note first that

ES(t) =
k∑

r=1

Br (t)(1 − Br (t))

k2πr

k∑

s=1

πsβs(t)ws(t)

≥ min
r ,s=1,...,k

Br (t)(1 − Br (t))βs(t)ws(t)

k2

/
min

r=1,...,k
πr

→ ∞ as min
r=1,...,k

πr ↓ 0.

On the other hand, with ar (t) as above,

EM(t) =
k∑

r=1

ar (t)wr (t)
−1

k∑

s=1

as(t)ws(t) = IE(W ) IE(W−1)

with a random variable W with distribution
∑k

r=1 ar (t)δwr (t). But with �(t) :=
minr wr (t) and u(t) := maxr wr (t), convexity of w �→ w−1 on [�(t), u(t)] implies
that
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W−1 ≤ W − �(t)

u(t) − �(t)
u(t)−1 + u(t) − W

u(t) − �(t)
�(t)−1,

so

IE(W ) IE(W−1) ≤ IE(W )

(
IE(W ) − �(t)

u(t) − �(t)
u(t)−1 + u(t) − IE(W )

u(t) − �(t)
�(t)−1

)

= IE(W )(�(t) + u(t) − IE(W ))

�(t)u(t)

≤ (�(t) + u(t))2

4�(t)u(t)
= ρ(t) + ρ(t)−1 + 2

4
.

This upper bound for EM(t) is attained approximately, if the distribution of W
approaches the uniform distribution on {�(t), u(t)}. Hence we should choose (πr )

k
r=1

as follows: Let r(1), r(2) be two different numbers in {1, . . . , k} such that wr(1)(t) =
�(t) and wr(2)(t) = u(t). Then let

πr ≈
{

βr (t)−1/(β−1
r(1) + β−1

r(2)) for r ∈ {r(1), r(2)},
0 for r /∈ {r(1), r(2)}.

The inequality ρ(t) ≤ k follows from Lemma 7 and the fact that ρ(t) remains
unchanged if we replace wr (t) with w̃r (t) = t(1 − t)wt (t) ∈ [1, k]. ��
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