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Abstract

This study considers the residual-based CUSUM test for location-scale time series
models with heteroscedasticity. The estimates- and score vector-based CUSUM tests
are widely used for detecting abrupt changes in time series models. However, their
performance is often unsatisfactory with severe size distortions when the underlying
model is complicated and the sample size is small. To circumvent this defect, the
residual-based CUSUM test is suggested as an alternative. However, this test can
only detect scale parameter changes and suffers severe power loss against location
parameter changes. To remedy this, we introduce a modified residual-based CUSUM
test and demonstrate its validity for both location and scale parameter changes. We
conduct a simulation study and data analysis for illustration.

Keywords Location-scale time series models with heteroscedasticity - Parameter
change test - CUSUM test - Residual-based test - Score vector-based test

1 Introduction

This study considers the residual-based CUSUM test for location-scale time series
models with heteroscedasticity. Since Page (1955), the problem of testing for a param-
eter change has been an important issue in economics, engineering and medicine, and
amultitude of articles have been published in various research areas. The change point
problem has drawn much attention from many researchers in time series analysis, as
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time series often exhibit structural changes owing to changes in policy and critical
social events. It is widely appreciated that detecting a change point is crucial and
ignoring it can lead to a false conclusion. The literature on the change point tests for
time series models is quite extensive. The CUSUM test of Brown et al. (1975) was
first applied by Inclan and Tiao (1994) to detect multiple changes of variance in inde-
pendent samples. Since then, numerous studies have been conducted on the CUSUM
test for GARCH-type models: See Kim et al. (2000) and Kokoszka and Leipus (1999)
for earlier studies. Kulperger and Yu (2005) study high moment partial sum processes
based on residuals and apply them to the residual CUSUM test for GARCH models.
Berkes et al. (2004) and Gombay (2008) consider the score vector-based CUSUM test
in GARCH and AR models. Lee and Na (2005) propose the CUSUM test based on
conditional least squares estimators. Lee and Song (2008) and Lee and Oh (2016) also
study the estimates-based CUSUM test in ARMA-GARCH and ACD models.

The conventional estimates-based CUSUM test is designed to compare the dis-
crepancy among sequentially obtained estimators: See Lee et al. (2003). This
estimates-based test performs well in general but suffers from severe size distortions
and produces low powers on some occasions; particularly when the underlying model
is complicated and has many unknown parameters, the parameters lie near the border
of stationary domains, the sample size is relatively small and the error distribution is
highly nonnormal: See Kang and Lee (2014) and Lee and Lee (2015). The residual-
based CUSUM test has been proposed as a remedy, since it develops a more stable test
owing to the removal of the dependency of time series: See Lee et al. (2004), Kang and
Lee (2014) and Lee and Lee (2015). The advantages of the residual-based CUSUM
test over the estimates-based CUSUM test are also advocated by de Pooter and van
Dijk (2004). However, the residual-based CUSUM test for location-scale models often
suffers from a severe power loss in detecting location parameter changes as seen in
AR(1) models, since it only responds to scale parameter changes, where “location
parameter’ and “scale parameter,” respectively, indicate the parameters in conditional
mean and variance of location-scale models. To overcome this drawback, Oh and Lee
(2017a) suggest using the score vector-based CUSUM test for ARMA-GARCH mod-
els. However, despite its own merits, the test still exhibits nontrivial size distortions
in some situations.

To resolve this problem, we introduce a modified residual-based CUSUM test that
can effectively detect both location and scale parameter changes. This test is much sim-
pler to implement than the score vector-based CUSUM test because no extra steps are
required to calculate the derivatives of location and scale components and the proposed
test statistic is only two-dimensional, representing the location and scale components,
whereas the score vector-based CUSUM test statistic is multi-dimensional, propor-
tional to the number of model parameters. Moreover, it performs better in terms of
stability and power than the estimates- and original residual-based CUSUM tests and
the score vector-based CUSUM test, as seen on some occasions in our simulation
study.

The organization of this paper is as follows. In Sect. 2, we introduce a modified
residual-based CUSUM test. In Sect. 3, we perform a simulation study. Section 4 gives
an example of real data analysis using Dow30 datasets. Section 5 provides concluding
remarks, and Sect. 6 contains all the lemmas and proofs.
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2 Residual-based CUSUM test
2.1 CUSUM test for location-scale models
Let us consider a conditional location-scale model of the form:
yi = & (o) +vhi(Oo)n:, t € Z, (1)

where g, (1) = g(yi—1, yi—2, ... @) and hy(0) = h(yi—1, Yr—2, ...;0) for u € Oy,
6 = (,LLT, DT € ® = ©; x ® C R” with compact subsets ®; C R™! and
O CR™;g:R® x©® — Rand h : R® x ® — R are known measurable
functions; 6y = (,ug, )»g)T is the true parameter belonging to the interior of @; {n;}
is a sequence of i.i.d. random variables with mean zero and unit variance. Model (1)
includes a broad class of conditionally heteroscedastic time series models, covering
invertible ARMA models and stationary GARCH models.

In what follows, we denote by F; = o(ns : s < t) the o-field generated by
{ns : s <t} and assume the following conditions:

(M1) {y;}is {F;}-adapted, strictly stationary and ergodic with Ey; = 0.
(M2) 7, is independent of F; for s < ¢ and Er/f < 0.

Given observations yi, ..., y,, our objective is to test the following hypotheses:

Ho : 6 = (u, A1) remains the same for the whole series v.s.
H, : not Hy. )

To conduct a test, we approximate g;(u) and n; with their counterparts recur-

sively computed with initial values: g;(n) and 7,(0) = (y; — &)/ ,(9

1 <t < n. For instance, we can use g&(n) = g(ys—1, ¥1-2,---,51,0,...; ) and
ﬁ,(e) = h(yt—1, Y+-2, ..., 51,0, ...;60). Then, we consider the CUSUM test based
on {(&: (w7, (9), 712(6))} with 6y replaced by its estimator 6, = (2T, AT)T as follows:

T

o 3 (D000~ £ 500)) 57 (0. () - Do),

t=1

where U,(0) = (& ()n: (6), ~2(6‘))T Y, is a consistent estimator of Xy =
Var(U, (6)). and Uy (6) = (g1(o)m . n7)T. Note that {g; (22)7; (6,)} is newly intro-
duced to enhance the capability to detect the change in location parameter n, whereas
{ﬁ,z(én)} remains to detect the change of scale parameter A. We do this because
under the null of no changes, the mean of g;(w)#n; remains constant, viz. zero, while
& ()7, (én) can detect achange in u when used in the construction of the CUSUM test.
In fact, the behind reasoning is essentially the same as the case of the scale parameter
change based on {f][2 (én)} (cf. Lee et al. 2004).

This test merits not to require the calculation of derivatives of g; and /; and escalates
the efficacy of test compared with the score vector-based CUSUM test in application
to more complicated time series models with many unknown parameters.
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We impose some regularity conditions, wherein L2(RP), p > 1 and L2(R°°),
respectively, denote the class of all random vectors X = (X1, ..., X,) and sequences
= (X1, X7, ...) with sup; ]EXI2 < 00,and 0 < p < 11is a generic constant.

(A1) h(-;0) is continuous in # € @; for any X, X’ € L>(R®), Y € L>R'™1)
and integrable random variable Vj,(-), supyeg |A(Y, X;0) — h(Y, X';0)| <
VY, X, X") - pl as.

(A2) g(-; ) is continuous in u € @p; for any X, X' € L>(R®), Y € LR
and integrable random variable V,(-), supgeg 18(Y, X; ) — g(Y, X'; p)| <
VoY, X, X')- plas.

(A3) The function 4 is bounded below from O, that is, & > h = inf(x g)erxxo
h(X;0) > 0.

(A4) h(-;0) is continuously differentiable with respect to 6 on @; for any
X, X ¢ L2(R°°) Y € Lz(Rl_l) and integrable random variable Vg (-),
SUpyep | ah(Y X 6) ah(Ya,g(/;e) | < Van(Y, X, X') - pl as.

(AS) g(-; ) is contmuously differentiable with respect to u on ®i; for any
X, X' € L>(R®), Y € L*(R'"!) and integrable random variable Vg, (-),
SUPgco I dg(Yli( 1) dg(Ya,li(/;M) | < Vdg(Yy X, X/) . ,Ol as.

(A6) The following moment conditions hold:

) t \
@ IE( SUPgeo |gt(,u)|) < 00, ]E(suPeeo | 28c) 08 (M) “)

(ii) E(log" supgeq |1 (0)]) < 00, E(supgee gy | 55~ B (o) ||)

(A7) Under the null, the estimator 6, = (ir, AT of 6y = (3, 20)T satisfies (i)
(i, — po) = Op(1) and (ii) \/n (A, — A0) = Op(1).

For example, the above conditions hold for the AR(1)-GARCH(1,1) model:

Vi = Qyi—1+ €,
€ = \/}Ttnh hy = w+016t2,1 + Bhi—1,

where {n,} is a sequence of i.i.d. random variables with En, = 0, En? = 1 and
En} < co. We assume [¢p| < 1, ¢ #0,0 < a, B < 1, and «’*Ent + 208 + p% < 1.
Then, {y;} is strictly stationary and ergodic (see Sect. 2.3.2) with Eyl“ < o00. In
this case, p = ¢, L = (0, a,p)', 0 = (,0,0,8)", g(1) = ¢y—1 and
h(8) = % +ad e, ,Bk_lgy,_k — ¢y,—x—1)>. We assume that for some_posi-
tivenumbersg,d),g,&,é,ﬂ,g <w < oo < a=< &,é < B < B and
o+ B < po with 0 < pp < 1. Then, parameter space @ is a compact subset of
R*, consisting of members satisfying these conditions. Let 6y = (1o, Ao)T be an
interior of ®, where o = ¢¢ and L9 = (wp, a9, Bo). For any X, X' € L2(R°°),
Y e L*R'™), we have h(Y, X;0) = %5 + a VA BN — oY) +
ap!2(Y o1 — o X1 +a Y02, BT (Xy — ¢ Xi41)?. Notice that (A1) holds since
SUpgep 1A (Y, X;0)—h(Y, X'; 0)| = supgep %((YH —X1)?—(Yi_1— X))+

YR Xk — X 1) — (X, —¢X,/<+])2}> < pb-Va(Y, X, X') as. Itis also easy to
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check that (A2)—(A5) hold. Since Gaussian QMLE 0, in AR(1)-GARCH(1,1) models
is strongly consistent and asymptotic normal (see Sect. 2.3.2), (A7) holds.
We then obtain the following result.

Theorem 1 Assume that (M1), (M2) and (A1)—(A7) hold. Then, under Hy, asn — oo,

T, - sup W3], 3)
0<s<l

where W3 (+) denotes a d-dimensional Brownian bridge (with independent compo-
nents).

We reject Hy if f"n > C at the nominal level «, where C, is the 100(1 — «) quantile
value of supy;; W3 (s)||> with d = 2. The critical values are provided in Table 1
in Kiefer (1959) ford = 1,...,5 and Table 1 in Lee et al. (2003) ford =1, ..., 10.
In implementation, as an estimate of X, we can employ

% ( F i1 8 )i Gn) § Y0y ézmn)ﬁ?(én)) @
= A A .
IS AU IR RS S A
If one wishes to test for a parameter change in the following model:
yr = & (o) +oon; for t € Z (&)
with 6y = (ug, 00) T, one can construct the CUSUM test based on {g; (f1,)7; (6,)} and
obtain the following.

Corollary 1 Assume that (M1), (M2), (A2), (AS), (A6)(i) and (A7) hold. Then, under
Hy, asn — oo,

k n
~ ~ k ~
L. _ 5 ()7 o (L) 7
T, : \/—K” max Zgz(un)nz <9n> - ;gz (£in) e (9n>
5 sup [Wi(s)l, (6)
0<s<l1

where /23 = rll Yoy gwf (ﬁn)ﬁtz(én) and L stands for “location.”
On the other hand, for the scale parameter change test in the following model:
yi=co+vhi O, t€Z (N
with 8y = (co, Ag)T, we can use the CUSUM test based on the {ﬁ,2 (én)}, and obtain
the following.

Corollary 2 Assume that (M1), (M2), (A1), (A3), (A4), (A6)(ii) and (A7) hold. Then,
under Hy, as n — o0,

TRes —

T, me)——z @) — sup [Wi(s)l,

n 1<k<n 0<s<l
where ¥ v 1 Z, n (9,,) — 1 and Res stands for “residuals.”
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Table 1 Empirical sizes and powers for the ARMA(1,1)-GARCH(1,1) model with N (0, 1) errors

(P, ¥, w,a, B) n =500 n = 800
Nominal level 0.05 0.10 0.05 0.10
T, 0.046 0.084 0.052 0.092
Size 7L 0.050 0.090 0.056 0.098
(0.5,0.1,0.2,0.4,0.2) 7 Res 0.036 0.082 0.040 0.094
73 0.042 0.100 0.064 0.116
TE 0.278 0.346 0.178 0.234
T, 0.414 0.532 0.620 0.726
@ Tk 0.496 0.582 0.702 0.784
05— 0.7 TRes 0.030 0.076 0.040 0.094
75 0.400 0.506 0.636 0.742
TE 0.722 0.780 0.852 0.892
Ty 0.234 0.354 0.398 0.510
v 7L 0.358 0.432 0.480 0.564
0.1 — 0.3 7 Res 0.030 0.062 0.046 0.094
7s 0.284 0.378 0.424 0.530
TE 0.390 0.484 0.436 0.554
T 0.724 0.816 0.948 0.968
o Tk 0.046 0.088 0.062 0.112
02— 0.4 7 Res 0.830 0.896 0.976 0.992
73 0.606 0.750 0.918 0.956
TE 0.768 0.844 0.928 0.968
Ty 0.128 0.206 0.212 0.316
o Tk 0.062 0.102 0.070 0.102
0.4 — 0.6 TRes 0.170 0.258 0.276 0.354
7S5 0.106 0.180 0.156 0.260
TE 0.500 0.584 0.534 0.620
Ty 0.374 0.522 0.650 0.784
B TL 0.058 0.108 0.066 0.104
02— 0.4 7 Res 0.526 0.638 0.766 0.860
s 0.252 0.410 0.494 0.670
TE 0.736 0.786 0.876 0.904
v T, 0.564 0.710 0.864 0.918
0.1 — 0.3 TL 0.310 0.424 0.472 0.572
B 7Res 0.470 0.604 0.766 0.860
02— 0.4 73 0.582 0.690 0.818 0.898
TE 0.846 0.882 0.950 0.974
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2.2 Consistency of the CUSUM test

We investigate the consistency of the modified CUSUM test under the alternative
of one change point. We introduce the two independent time series {y; ;} and {y2}
generated from model (1) with 6; = (MIT, AIT)T # 6 = (ug, Ag)T in @, respectively.
We then consider yq, ..., y, as follows:

y — yl,l tE k07
! Y > k().

We assume that the following conditions hold:

(M3) {y1.}and {y>,} are {F;}-adapted, strictly stationary and ergodic.
(M4) The change point fulfills kg = [n7g] for some 0 < 79 < 1.

For notational convenience, we express g(yi:—1, Yir—2,..-; M) as g () and
Vit —8Vit—1,Yit=25-+-314)

as n; ;(0) for i = 1, 2 and assume the following conditions:
NG 1.Yii—2,10) ’

(C1) There exist fip € ©; and positive constants E; ; for A = Ao and Xo defined in
(C2), such that

1) /n(f, — flo) = Op(1),
(i) E1n = |Eg1,1(o)n1,1(iko, &) — Ega, 1(fto)n2,1(fto, M)

(C2) There exist )Zo € > and constants E> , for ;& = o and fig, such that

() /Gy — ko) = Op(1), i
(i) Eau = [En (1. %o) — En3 | (1. Ro)l.

Instead of (M3), one may consider an alternative setting in Berkes et al. (2004),
where {yy;} is a stationary process not dependent on the past values of {y,} before
the change point. In our setup, we regard initial values of {yy;}, which are actually
from {y;}, as fixed real numbers. Concerning (C1) and (C2), we refer to Gombay
(2008), Kirch and Kamgaing (2012) and Franke et al. (2012) who study the asymptotic
properties of the quasi-maximum likelihood (QML) estimates of linear AR(p) models,
the nonlinear least squares (NLLS) estimates for nonlinear AR models and conditional
least squares (CLS) estimates for the general Poisson AR models under the alternative
of one change point. Although no results are available for other cases in the literature,
they are not unrealistic assumptions and quite likely to hold in many situations.

As seen in Theorems 2 and 3, conditions (C1)(ii) and (C2)(ii) play an important
role. In fact, if Egi,,(/l)ni,t(é), i = 1,2, are distinct (nonzero) constants, we have
E1, > 0, and further, if E’?,%,(é), i = 1,2, are distinct, we have E>;, > 0. These
are easy to conjecture conceptually, but in general, are not easy to show analytically.
We provide an empirical evidence in our simulation study, wherein £ j and E; ;, are
calculated for TAR(1)-GARCH(1,1) and Logistic STAR(1)-STGARCH(1,1) models:
See Tables 8 and 9.
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Theorem 2 Assume that (M2)—(M4) and (A1)—(A6) and (C1), (C2)(i) hold. Then, as
n— oo,

~7 P p
TnL — 00 and — 10,

ky
n

where kb = argmax{lﬁfkl 1 < k < n} and fnLk = th(:lgt(/ln);]t(én) .
Y & )i ).

Theorem 3 Assume that (M2)—(M4) and (A1)—(A6) and (C1)(i), (C2) hold. Then, as

n — 0o,

ARes P P
TnRC“ — 00 and 22— — 19,
7 Res ~Res| . fRes . k=24
where k,® = argmax{|T}°| : 1 < k < n}and T}° = Yo 117 On) —

2.3 Some applications

In this section, we consider AR and ARMA-GARCH models as examples. We verify
that the AR(1) model satisfies the regularity conditions in Sects. 2.1 and 2.2 under
mild conditions. In ARMA-GARCH models, more concrete conditions are discussed
to check the regularity conditions.

2.3.1 AR(1) models
Consider the AR(1) model:

Yr = Poyr—1 +on,

where {1,} are i.i.d random variables with En, = 0, Entz = 1, and o is a positive con-
stant. The parameter ¢ belongs to compact subset of R, containing the true parameter
¢o as its interior point. In this case, the conditional mean g;(¢) is ¢y,—;. Moreover,
the CLS(or QML) estimator of ¢ is given by

o dor=n ViYi—1 _ Doy ViFi-i
n — - ~
Yot Vi Yot Vi
where yg is 0 and y; = y; for 1 <t < n. Suppose that
(al) [¢ol <1,
(a2) 1} < o0.

Then, we can easily check that conditions (M1), (A2), (A5), (A6)(i) and (A7) are
satisfied. Hence, when there is no parameter change in ¢, (6) holds.
Next, assume that

’
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(b1) |p1] < 1, |p2| < 1 and ¢1 7 ¢2.

(b2) There is a parameter change from ¢ to ¢ at kg = [n7p] for some 0 < 79 < 1.

Then, (bl) implies (M3) and we can easily see that

bn — B0 = v + (1 — V)¢ 8)

s 70/ (1—¢7) h .
a.s.withv = o A=A =m0/ (1= d)%).Moreover, 1 (¢pn — ¢o) asymptotically follows

a normal distribution: Note that /7 (¢1, — qbl) and \/n($ — ¢2) asymptotically
follow a normal distribution with ¢A>1n = M and ¢2n = M. This

Z; LV hy k0+1>z 1
implies (C1)(@). _
Finally, we show that (C1)(ii) holds with ¢g. Note that

Eg1(¢)ni(9) = Eldy1 (y1 — ¢yo)l,

and thus,

s () 1 () -5 ) s ()
= |o%o @1/ (1= 2) = o2/ (1=93) = do {1/ (1= @) + 1/ (1-83)}] -
11| < 1, Igal < Land g1 # .
[0/ (1=08) =02/ (1= 93) = do {1/ (1= 63) + 1/ (1= 43)}] # 0.

"l:his indicates that |Eg1,1(q~50)m,1(¢~>0) — Egz,l(qso)nz,l(dgoﬂ # 0 unless otherwise
¢o = 0, which will occur with very low possibilities.

2.3.2 ARMA-GARCH models

Consider the ARMA(p,q) models with GARCH(r,s) innovations:

P q
Y = Z¢0i}’t—1 +er + ZWOjet—j,
i=1 =1

N r
er =, hi=wo+ Y aoel+ Y Bojhi—j. ©)
i=1 j=1
where wgp > 0, ag; > 0,i = 1,...,5, Bo; =2 0,j = 1,...,q, and {n,} is a

sequence of i.i.d. r.v.’s such that En, = 0 and Entz =1 Wesetd = (uT, AT)T -
O e RPTIT1IX0, +00[ X0, oo[s‘”, where 1t = (¢1,..., ¢p, V1,..., ¥, T and
A= (w,o,...,0, B, .. /3,) and denote the true parameter by 6y = (,u(f: AT)T

We assume the followmg to guarantee that a strictly stationary solution {e;} exists
with a finite fourth moment (see Chen and An 1998):
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1068 H.Oh,S. Lee

(c0) The spectral radius of E(Ag; ® Ag;) < 1, where ® denotes Kronecker product

and
aoin? -+ aosn? Boin? -+ Born?
0 0 ... 0
I, : - :
0 0 ... 0
Ao, =
or apr - ags Bor - Bor
0 --- 0 0
I
0 0 0

Further, we assume

(c1) Forallf € ©,,(2)¥,(z) = Oimplies |z| > 1, where ®,,(z) = 1-Y"1_, ;2
and ¥, (z) =1— Z(]’-ZI wjzj.

(c2) Foralld € ©, 37, B; < 1.

(€3) 6p lies in the interior of the compact set ©.

(c4) If r > 0, Ay, (2) and By, (z) have no common roots, A;,(1) % 0, and ags +
Bor # 0, where A; (z) = Y0 oz and By(z) = 1 — Z;‘:l Bjz’.

(¢5) ?,,(z) and ¥,,(z) have no common roots, ag, # 0, or by, # 0.

(c6) There exists no set A of cardinality 2 such that P(n; € A) = 1.

(c0) implies IFL‘e;1 < oo and owing to (c0) and (cl), the solution {y;} of (9)
is strictly stationary and ergodic. Thus, (M1) and (M2) hold. Let ¢; = €(un) =
lI/M_ 1(IB3)<DM(IB%) v, where B denotes the lag operator, and let I; = [;(0) = etz /a,2 +

logo?, where 0> = /() is the ergodic strictly stationary solution of

s P
of =w+ Y o€+ Y Bjol . (10)
i=1 j=1

Note that ¢, = € (o) = ¥, 'B)P,,(B)y; and h; = o7 (6y) = B;OI B)(w +
Ay, (B)e;). Hence, model (9) admits the autoregressive representation in (1). More-
over, we can show that (A1)-(A6) hold by the arguments similar to those in the proofs
of Theorems 3.1 and 3.2 of Francq and Zakoian (2004).

To test the hypotheses in (2), we estimate 6y based on the Gaussian QMLE, defined

as follows:

6, = argmin L, (6), (11)
[C)
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where L, (0) = 1 37 1,(9),1(0) = €X(n) /57 (0) +10g 52(9) and & (1), 57(9) are
defined recursively by

P q
€& =¢&(W) =y — Z¢i5Yt—i - ijgt—jy

i=1
;=3 <0>—w+2ale, ,+Zﬁ] 5.

and initial values are properly given as in Francq and Zakoian (2004).

Francq and Zakoian (2004) show that, under (c0)—(c6), 0, — 6o a.s., and further,
Jn (6, — 6o) is asymptotically distributed as N (0, X), where ¥ = J~'Z7! with
finite and positive definite matrices:

2
I:E(alt(%) alt(eo)) andj=E<8 lt(90)>’

990 90T 009071

which implies (A7).
Next, assume that
@1 61 = (u],ADT and 6, = (u, 21)7T satisfy the conditions (¢3)~(c5), respec-
tively, and 61 # 6,.
(d2) There is a parameter change from 6 to 6, at kg = [ntp] for some 0 < 79 < 1.
Then, we redefine /; () by

€|,(M)

11,,(0) = logo? +(0) + ) (9) 1 < ko,
I (0) = ) 0 (12)
b1(0) =logos ,(0) + 022" @ > ko,
2.t

where €; ; (1) and o; ;(0) are constructed by y; ; and y; ; is generated by 6;,i = 1, 2.
Then, [; ;(0) are strictly stationary and ergodic for any 6 € ®. We can write L, (0) =

L0 1140) + Xy 41 2.1(8)), and further,

. 1 <
L©)=—-3 1) = le 1(0) + Z La©) ], (13)
t=1 t=ko+1
= = &, () . ~ .
where [; ;(0) = logh;(0) + ﬁm(e) for i = 1,2. In fact, h; ;(f) and € ;(6)
it
gor t < ko are functions of yo;,...,Yy0,1,C, and thus, we can write ~l,(6‘) =
1h.:0) =116 Y1615 - - -, C; 0). Similarly, for ¢ > ko, we write [;(0) = [>,(0) =
(Y26 -+ Y2,ko+15 Y1,kos - - - » Y1,1, C; 0) with some initial values yj g, ..., ¥1,1, C.
Define
_ T T T . :
0r—r = (Mo_ys Ay ) :=argmin E;(0) (14)

0e®
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where E; (0) = tE[l; 1(0)]4+ (1 —1)E[l2,1(0)], and assume the following conditions:

(d3) 6>, is the unique minimizer of E,,(¢) and lies in the interior of the compact
set ©.

Note that if there is no change, i.e., T = 1,61 becomes a unique minimizer of E[/1 1 (0)].
Especially, 430 defined in (8) is the unique minimizer of tpE(y;1 — q&yl,o)2 + (1 —
10)E(y2.1 — ¢¥2.0)? in AR(1) models.

We can show that under (cl), (c2), (c6) and (d1)—(d3), é,, — 01—, a.s., and further,
Jn = 01—+,) is asymptotically normal by using similar arguments as in the proofs
of Theorem 3.1 and 3.2 of Francq and Zakoian (2004), which implies (C1)(i) and
(C2)(i). Concerning (C1)(ii) and (C2)(ii), we refer to the arguments mentioned above
Theorem 2. As mentioned therein, they are hard to check analytically in ARMA-
GARCH models, too.

3 Simulation study

In this section, we evaluate the performance of the CUSUM test. First, we consider
the model:

e ARMA(1,1)-GARCH(1,1) model:

Ve =¢y—1te& + e, 15)

€t =\/I'TI771’

hy = o+ ae’ |+ Bhi_1.

To investigate empirical size, we consider the following setup:
1. ARMA(1,1)-GARCH(1,1) model with (¢, ¥, w, a, ) = (0.5,0.1,0.2, 0.4, 0.2).

To examine power, we consider the alternative hypothesis:
Hj : 6y change to 61 occurs at t = [n/2].

For each simulation, we generate sets of n = 500 and 800 observations from model
(15) with n; ~ N(0, 1). The empirical sizes and powers are calculated at the nominal
levels of 0.05 and 0.10 with Gaussian QMLE én, which are summarized in Table 1.
The figures in the tables denote the proportion of the number of rejections of the null
hypothesis, from 500 repetitions.

Table 1 reports the empirical sizes and powers for the ARMA(1,1)-GARCH(1,1)
model, showing that the estimate-based CUSUM test an in Lee et al. (2003) has
severe size distortions even when the sample size is moderate (n = 500) and @ + S is
only 0.6: It is well known that the size distortion becomes more severe as the sum gets
closer to 1. The result also reveals that the residual-based CUSUM test f“nRes cannot
effectively detect the change in ARMA parameters ¢ and i, whereas the f"nL cannot
effectively detect the change in GARCH parameters w, o and 8. The score-vector
CUSUM test f"ns in Oh and Lee (2017b) also performs as well as T,,. This finding
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indicates that the both 7;, and f"ns are recommendable in dealing with GARCH models
with conditional locations and that fnReS and f‘nL perform well for pure GARCH and
ARMA models, as might be anticipated.

We compare the performance of 7}, and f"ns for the threshold AR-GARCH (TAR-
GARCH) model and the logistic smooth transition AR-smooth transition GARCH
(STAR-STGARCH) model:

e TAR(1)-GARCH(1,1) model:

yi = (1 4+ Y1yi—1)I(yi—1 > 0) 4+ (¢2 + V2yi—1)1 (yi—1 < 0) + &,

€ = \/}Ttﬁt,

hy = w + ae? | + bh,_;. (16)
e Logistic STAR(1)-STGARCH(1,1) model:

yi =11 +mF (v c) + (o1 + @2 F (i1 v, c)yi-1 + &,

€ = \/Enla

hy =@ + (a1 +2Gle—1; y2, )€l | + 0hi—1 (17)

with F(y; y1, 1) = [1+exp(—=y1(y —c1)]™', G(€; 2, 2) = [1+exp(—ya(e —
el
An and Huang (1996) and Meitz and Saikkonen (2011) give some sufficient conditions
to ensure (M1). We consider the following setup for the null hypothesis:

2. TAR(1)-GARCH(1,1) model with (¢1, V1, ¢2, V2, w, a, b)=(0.2,0.1, 0.1, 0.6,
0.5,0.1,0.2).

3. Logistic STAR(1)-STGARCH(1,1) model with (7, 72, @1, 92, @, o1, @2, 0)
=(0.2,0.4,0.2,0.1,0.2,0.1,0.1,0.2) and transition functions F(y;3,0),
G(e;6,0).

In these cases, sets of n = 300, 500 and 800 observations are generated from mod-
els (16) and (17) with n, ~ N(O, 1), n; ~ /4/5t(10), and n, ~ 0.2N(1.6,1) +
0.8N(—0.4,0.2). The empirical sizes and powers are calculated at the nominal lev-
els of 0.05 and 0.10 with Gaussian QMLE én and 2,000 repetitions. The results are
summarized in Tables 2, 3,4, 5, 6 and 7.

Tables 2, 3, 4, 5, 6 and 7 report the empirical sizes and powers for the TAR(1)-
GARCH(1,1) and Logistic STAR(1)-STGARCH(1,1) models. The fns appears to
oversize when the sample size is 300 and the error distribution is not normal. Table 2
particularly shows the size-corrected powers. As anticipated, it can be seen that the
size-corrected power of T,, increases and that of fnS decreases. Although not reported
here, the same pattern can be seen in other cases as well. The results conclude that T,
is, on balance, better than fns.

Tables 8 and 9 report the empirical values of E; ; and E; , in our setup. When
there is no parameter change, both E1 ; and E> ;, get closer to 0 as the sample size
increases. Moreover, it can be seen that £y ; and E> ;, have larger values in case the
corresponding powers are large.
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1074 H.Oh,S. Lee

Table 3 Empirical sizes and powers for the TAR(1)-GARCH(1,1) model with /4 /5¢(10) errors

(@1, V1, ¢2, ¥, w. a, b) n =300 n = 500 n = 800
Nominal level 0.05 010  0.05 010  0.05 0.10

Size 7,  0.024 0.061  0.035 0.072  0.040 0.089
020.1,0.106050.1,02) 75 0117 0.167  0.098 0.153  0.089 0.149
o1 7, 0383 0492 0.604 0.695  0.844 0.894
02 —> 0.6 7S 0491 0.627 0745 0.853  0.948 0.975
1 T, 0.249 0363 0.476 0.583  0.704 0.794
0.1 —> 0.5 7S 0327 0458 0565 0.694  0.847 0.909
o 7, 0233 0364  0.501 0.646  0.823 0.895
01— —03 7S 0446 059  0.732 0842 0.964 0.981
¥ 7, 0168 0252 0273 0381  0.470 0.586
0.6 —> 0.2 7S 0256 0367  0.389 0509  0.645 0.761
w 7, 0230 0363 0.479 0.620  0.731 0.815
0.5 —> 0.9 75 0.181 0298 0323 0448  0.539 0.659
a 7, 0117 0213 0274 0415  0.492 0.615
0.1 — 0.5 7S 0.109 0.193  0.185 0307 0370 0.536
b 7, 0250 0372 0421 0536 0.545 0.647
02— 0.6 75 0.188 028 0303 0414  0.404 0.504

Overall, our findings confirm the validity of the proposed residual-based CUSUM
test and its advantages over the score vector-based CUSUM test in terms of simplicity
and performance.

4 Real data analysis

In this section, we apply our test to daily Dow30 data. We analyze the log returns of
Dow30 data (Fig. 1), from December 15, 2014 to March 17, 2017 with 568 observa-
tions. Inspection of SACF, SPACF, AIC and BIC results suggests that an AR(1) model
is suitable to the data. Moreover, Fig. 1 show that the returns have some volatility clus-
tering phenomenon. Since the Ljung—Box and LM-ARCH tests based on the AR(1)
residuals reveal that the GARCH(1,1) model is reasonable for this series, we fit an
AR(1)-GARCH(1,1) model to the data and obtain the estimated model as follows:

—0.05901(0.04693)y; 1 + €, (18)
7.816 x 107°(2.651 x 1079)
+0.2110(0.05182)€2 | 4 0.6786(0.07452)h,_.

Vi
hy

The figures in parentheses denote the corresponding standard errors of the parameter
estimates.
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Modified residual CUSUM test for time series models 1079

Table 8 Empirical value of E , and E3 , for the TAR(1)-GARCH(1,1) model

Parameter change n =300 n =500 n = 800

EI,A éZ.u El,k E2,M EAI,A EZ,/L
No change 0.0739 0.3149 0.0584 0.2524 0.0468 0.2048
b1 0.1506 0.2245 0.1414 0.1582 0.1349 0.1163
¥ 0.1485 0.2417 0.1377 0.1690 0.1306 0.1213
02 0.1892 0.2400 0.1780 0.1686 0.1696 0.1218
Yo 0.0738 0.2711 0.0646 0.2045 0.0592 0.1468
w 0.0643 0.4811 0.0436 0.4559 0.0315 0.4343

0.0826 0.4275 0.0606 0.3917 0.0412 0.3642

0.0697 0.4904 0.0503 0.4413 0.0371 0.3960

Table9 Empirical value of £ j and E , for the Logistic STAR(1)-STGARCH(1,1) model

Parameter change n =300 n =500 n = 800
EI,A EZ,/L El.k EZ,M E],A EZ,;L

No change 0.0449 0.3318 0.0360 0.2534 0.0289 0.2019
] 0.0921 0.2478 0.0840 0.1617 0.0825 0.1111
b15) 0.0572 0.3207 0.0481 0.2361 0.0411 0.1768
01 0.1768 0.2309 0.1732 0.1419 0.1724 0.1065
@ 0.1241 0.2316 0.1196 0.1492 0.1167 0.1104
(o 0.0410 1.4378 0.0355 1.5453 0.0323 1.4453
oy 0.0442 0.4555 0.0302 0.4143 0.0211 0.3876
ap 0.0450 0.3567 0.0333 0.3021 0.0245 0.2680
] 0.0446 0.9659 0.0342 0.7200 0.0266 0.5994

Next, we perform a parameter change test for (¢, w, «, 8) and get p value 0.046,
which rejects the null hypothesis of no parameter changes at the nominal level of 0.05.
This result coincides with that of the score-based CUSUM test.

Finally, we perform f"nL and YA"nReS to check whether the change occurs in the location
or scale parameters. The location parameter change test (f"nL) has p value 0.4354,
whereas the residual-based CUSUM test (fnRes) has p value 0.016, which rejects the
null of no parameter changes at the nominal level of 0.05. From this, we can conclude
that only a scale parameter change occurs. Using fnReS, we can also see that the change
point is located at March 1, 2016 (dashed lines in Fig. 1). A visual inspection of Fig. 1
clearly shows a dispersion change on this date.

The first subseries in the pre-change period, from December 15, 2014 to March 1,
2016, follows the AR(1)-GARCH(1,1) model with

hy = 1.338 x 107°(8.078 x 107%)
+0.1887(0.07485)€? | +0.6817(0.1333)h,_,
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Fig.1 Log-return of Dow30 data from Dec 15, 2014 to Mar 17, 2017

and the second subseries in the post-change period follows the AR(1)-GARCH(1,1)
model with

h, = 2.088 x 107°(5.572 x 107%)
+0.2637(0.09123)e? | 4+ 0.1410(0.1862)h, ;.

This result also confirms that the parameter experiences a significant change particu-
larly in .

5 Concluding remarks

We proposed a modified residual-based CUSUM test to detect a parameter change
in location-scale heteroscedastic time series models. We derived their limiting null
distributions as the sup of the sum of squares of independent Brownian bridges. We
also demonstrated the validity of the proposed CUSUM tests though Monte Carlo sim-
ulations and performed a data analysis using Dow30 dataset. Our findings confirmed
the validity of the newly proposed residual-based CUSUM test as an “omnibus” test
to detect a parameter change in location-scale GARCH-type models. In this study,
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we only focused on the retrospective change point detection problem and leave the
“on-line monitoring problem” as a future project.

6 Proofs

For notational convenience, we express f1(0) f2(0) as f1 f>(6) for any functions f1, f>:
. . . 1 _ 0f®)
Further, if f} is only a function of w, f1(6) indicates f1(u). We use dg f = =55~ to
stand for the derivatives of functions f. Let ¢,(i) = y; — g:(w), n;(0) = \/6—;7(9),
t

€ (1) = yr — & (n): Notice that n, = n,(6p).

Lemma 1 Under the same conditions in Theorem 1, we have

—= Imnax

f 1<k<n

= op(1).

f (i () — om0 @) = & > (@i (9n) = eimo) (90))‘

t=1 t=1

Proof We can express (g',f],)(én) as follows:

(&:11) (én> = (gm) (bo) + {(gtﬁt) <én> — (&mr) (én)}
+{ @ (6:) = &m0 @0}
= (gms) B0) + I1r + D2z

We first show that

—= max Zm——Zh, = op(1).
Note that
Ly = 8 (& — Gt)(en)+ (& :2t) €t <én
Jie 3
g — & — € A 1 1 N
L&) @ e <0n) toe | = - L <9n>

~ ~ hl‘
h[ hl

=Jie+ o+ T3+ Jag
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We first deal with J; ;. For any § > 0 and neighborhood N (6p) C ©,

<\/_Z|J1t]>8) =P (b cO\N@D)

n ~
€ — &

s > su AL NN S
\/ﬁ =1 Ge(g & \/ﬁ»t
Note that
n
D sup (9)‘ = Z sup [g1(& — g)(W).

gt(\/;t ,16

Since supgee |8 (1) — & (W] < Vg(yi—1,...) - p' as. and Esupyee |8 (w)]* < o0
implies Elog™ SUpycp 18 ()] < oo, Lemma 2.1 of Straumann and Mikosch (2006)

implies Z;’il SUPgeo 18:(8: — &:)(n)| converges a.s. Thus, using the fact é,, =6y +
Op(1/4/n), we get

=1 6e®

1 n
7 lrg]ggan == ;um = op(D). (19)

Next, we handle J; ;, i = 2, 3, 4. Notice that

(& — gn)e

7

)] < g — g€ (0],

1
\/E [(gr

Gmg@ =€) o LG e

1
< — (g
3 Vh
and

1

1 1 -
81€; \/_T - \/_h_ @) < h3/2 ytgt(ht h)(6) + gtz(ht —h)(0)].
h; !

Thus, similar to (19), we can easily see that

7<§Z|J,,|<TZ|J,,|—@(1) i=2.34. (20)

@ Springer



Modified residual CUSUM test for time series models 1083

Finally, we deal with I5 ;. By the mean value theorem, we have

n ~ 0 0, ogh _
(gmt)(en)—(gm,)(eo):(en—eo)T(eg’e’ 810 g’e’“)(n)

+
Vhi o Ve 2nl?
= 0y — 00)T D, (),

where 6, is an intermediate point between én and 6y. For ¢ > 0,let N(6p, ¢) = {6 :

|16 — 6p|| < ¢}. Note that for any § > O,
k
ZDt(en) ZDt(eo) za>

max
<1<k< t:l
<P, €O \ N(@o, K /1))
1 k
+P(max —>"  sup [ Dy(0) — D(Bo)l| = 8. 1)
I<k=n k = e 6o.K /)

Then, using the fact dge; () = —dpgr (1), (A4), (A8) and Holder’s inequality, one can
readily check that E sup, N(6o) ‘ D; () H < 00 and D;(0) is stationary and ergodic,
which implies that as k — o0,

k

1

% Z sup ” D;(0) — D;(6p) H — E sup H D;(0) —
1 0eN(®0.0) 6eN (60,2)

Hence, for any § > 0, by choosing sufficiently large K > 0, we can get

k
1
lim max — su D;(0) — D;(00)| <6 a.s. (22)
p
noolsk=n k= geN(@y. K /)

Then, combining (21), (22) and the fact that én =0y + Op(1/+/n), we have

< max

Z Dy (0,) — Z Dy (6o)

= op(1), (23)

” ZDz(G ) — = Z D1 (60)

which indicates

— max

f [max. =op(D) (24)

ZIZt— ZIZt

with the fact én = 0 + Op(1/4/n). This together with (19) and (20) validates the
lemma. o
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Lemma 2 Under the same conditions in Theorem 1, we have

n

> (@0 — ) =53 (i — )

=1 t=1

—— max = op(1).

f 1<k<n

Proof We express

~2 2 2 2
~2 A 2 € €; A € A €
0,) = — —— | (6 —(0,) — =6
17 (6n) le‘f‘(ht ht>(")+(h,(") h,(0)>

= 71;2 + Ri:+ Ro;.

Note that
2¢,(8r — 81 4 (& gt) 2 ( 1 1 ) A
R, =~—(9)+—(9)+e ——— |6,
1,1 ht ht n t /’lt ht n
and
26:(8r — &1) 20
=R 0)| < e -
t =
(8 — 81)? Lo
=50 = 1@ - s @)
and
21
(== )©O| =< = | —h)©O)|.
hy
Thus, similar to (19), one can easily show that
1 n
71<,?§,,Z|er| < ﬁ;mm = op(1). (25)

Meanwhile, by the mean value theorem, we have

2 2 2

€ A €; A T [ 2€:0p€r € 0h;\ -
—(6,) — —(60) = (6, — 6, _— = On).
h,( ) hz( o) = (6, — 60) < I, 2 (6n)
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Then, since E supy.y (o)

26,006, € 00he 2091y 26,896, _ € dghs 39ht
(29 — 81 )(0)| < oo and ©) is
stationary and ergodic, we have similar to (24),

2R ——ZRzz

This together with (25) asserts the lemma. O

= op(1).

Proof of Theorem 1 We can write

_1 1 - . kS - .
202—n<z t(@)—;ZU;(%))
=1 =1
1 (&L kI - .
=%y = 1 22 (0:0n) = BU,00)) — 3 (0:(6) — EU:(60))
=1 t=1

n

k
_11 k
=% —= { > (Ui(80) — EU, (60)) — ~ > (Ui(0o) — EU; (90))}

t=1 t=1
k o k n o
{Z (U:On) = U, 00)) = ~ > (Ur(On) - Ut(eo>)} ,
t=1 t=1

wherein the second term of the last equality is asymptotically negligible due to Lem-
mas 1 and 2. Then, the theorem is obtained by using the functional central limit
theorem for martingales (Theorem 23.1 of Billingsley (1968)) and the Cramér-Wold
device. O

Lemma 3 Under the same conditions in Theorem 1, we have that as n — 00,

ZA',L i) 2.

Proof We first show that

n

(877) O > E (g2 @0). 26)

t=1

Note that

1 n 1 n n .
. ; &) ) = (; (&272) @0~ - 3" (s02) <9,,>>
+

t=1 t=1

ly g (én)—an: gin; ) (6o)
n n

=1 t=1

+23 (g) @
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and

@i — gt =+ ]<2y, 8 — 6387 + 48D @ — &)

+ (7 — 6y, + 687 )(gz — ) +2Qg — ) (@& — &)

+ @ - 80 \(9) + = |gel e — )| ©).
Thus, similarly to (19), we can have
1 n
i Z (&) @ -~ ; (97) @) = op(1).

By (M1), (A3) and (A6), one can readily check that for any neighborhood N (6p),

200 o2
E sup |(s7n?) ©|=E sup M(@‘ < o0,
0eN (60) 0eN (8) hy
and thus, similarly to (23), we have
1 n n
‘ S (822) @~ - 3 (207) @) = op1).
gt =1
Using these, we establish (26).
Next, we show that
1 < P
=" (&77) @) = E (sim7) @0)- )
=1

Note that

% 12:; (gtﬁt3> (én) = (rlz Z (gtﬁ?) (én) - % i (gm?) (&1))

=1 t=1

=

n

n n
+ (:l g(gmf’)(én) - % ;(8171?)(90)> + % ; (07 ) ©0).
@2~ s = | (07— 6571+ 9v1sF — 467) Gr = 50 = (30— Ow +67)

X (@ — g% + Gy — 4g) @ — 80° = G — e | ©)

lgin;|

+ 172

|38 e = o) + 30y = 1) + oy — 73| @)

and owing to (Ml), (A3) and (A6), Esupgeng, |(g,r],3)(9)| =
o 3

E Supge y g) |&(>hg—/§f)(9)| < 00. Then, similarly to (26), we get (27).
t
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Finally, we show that

1 <& d A P
=D iy (6) — Ea}. (28)

=1

For this, note that
1n~4A 1n~4A 1;14A
=20 O = | D On) =~ 3 it 6n)
t=1 t=1 t=1
1 n 1 n 1 n
+ (n PIHCAEEDS n?(eo)) + D 0t @),
t=1 t=1 t=1

i 1 i i i
(i =) @ = 5| =401 = 80 G = 80 + 601 — 8@ — 807 = 401 — 20 @& — &)’

- 1 ~ -
+ @ —eo? ‘(9) + h—4\2hte§‘(ht — he) — €} (he — he)?| ©),

. o4
and owing to (M1), (A3)and (A6), E supycy g, 115 (@)] = Esupgey g, | h,égt) )| <
0o. Then, (28) can be yielded similarly to (26). Combining (26)—(28), we establish the

lemma. o

Lemma4 Suppose that (M3), (M4), (A1), (A2), (A4) and (AS) hold. Then, we have
that for t < ko,

sup 12: (1) — g1, (| < Veii—t,...) - p',
fe®

sup |, (1) — b1 (W] < Vie(yig—1,...) - o', as.
e®

and
sup [99&r (1) — dpg1,: ()| < Vag(yie—1-..) - p',
fe®
sup [dghs(w) — dphi (W) < Van(y1—1,...) - p' a.s;
0e®

and further, fort > ko,

sup 13, (10) — g2..()| < Va1, ...) - p' %0,
fed
sup [h1, (1) — ho ()] < Vg1, ...) - p' 7 as.
fe@
and
sup (992 () — 8681, (1) < Vag(yau—1...) - p' 7,
SC
sup |/, (1) — dph1 (W) < Van2s—1,...) - p' 75 as.
0e®
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Proof Due to (A2), for some X’ € L>(R*) and t < ko,

sup |2 (1) — g1 ()| = sup |gV1r—1s -+ V1.1, X5 1) — §V1t—1s Y1t—2, - - -3 W]
0e® e®

< VeWii—1,...) - p" as., (29)

whereas for r > ko,

sup |8 () — 82,0 ()| = SUP |§(V21—1s -+ vy Y2kot1s Yikgs -« s V1,15 X5 )
0e@ He®

—8(y2 -1, Y202, -5 )
< Ve2i-t1,..) - 07 as. (30)

The rest part of the lemma can be proven similarly to (29) and (30). This completes
the proof. o

Lemma5 Suppose that M2)-(M4), (A1)-(A6), (C1)(i) and (C2)(i) hold. Then, as
n— oo,

A P
Xy — 121 + (1 —10) 2,
where £; = Var ((gi.im.0 @), 17, @) fori = 1,2.

Proof We first show that

Z (877) O > wE (g211,) (B0) + (1 = 0)E (83,13, ) @) (3D

Note that
1 n ko
S (@) G0 =3 (87) o+ > (27)én.
t=1 t=1 t=ko+1
Owing to Lemma 4, similarly to (26), we have
ko
,]1 > (5’?77,2) 0n) > ToF (gitni,) (o) 32)
=1
and
n
LS (@) O > - R (3,03, ) o (33)
t=ko+1
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This implies (31). Similarly, we can easily obtain:

% i (g,ﬁ?) @) —> E (&,t’li;) (60) + (1 — 10)E (gz,m%,) o) (34

and
¢ ~4\ 5 P 4 (5 4 (7
=~ (i) @) = wEnt, (6) + (1 = 70)End, (4) (35)
=1
This asserts the lemma. O

Proof of Theorem 2 We first show that

sup = op(1), (36)

| syl — Lo (8)
s€[0,1]

where
s(1—1)E, Fe s < 19,

Lyy(s) = ol —0)E, 5, s =10,
o(l —$)E, ir § > T

We only deal with the case that k < k¢ since the other case can be similarly handled.
Note that

Ty = Z(gmz)(O ) — = Z(gmz)(G )

t=1

— k s n k ko . R n o .
- Z(g’”f>(9") =~ X @@+ Y @i @)

t=k+1 t=ko+1
k)1
S Z(g,ﬁ,)(e,» -2 Z @i @)
t k+1
k(n—ko) 1
t ko+1

Similarly to (32) and (33), we have that for k < ko,

k N
1 — A ~
% ; (&) Gn) RN E(g1.m1.1)(60). o —k [;ﬂ (&:71) (6n) PoE (g1.m1.0) @)
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and

3" @06 — Elga.man @)

n—=k
0 i Zko+1

Hence, due to (C1), for 0 < s < 79 we can find a constant £ io such that

| A
| =51 =) Ey 5, + op(D),

which in turn implies (36). Because /23 = Op(1) (cf. Lemma 5), the lemma can be
established by the arguments similar to those in the proofs of Theorem 5 and Corollary
1 of Kirch and Kamgaing (2012). O

Proof of Theorem 3 The theorem follows from (35) and the arguments similar to those
in the proof of Theorem 2. O
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