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S1 Proofs

S1.1 Proof of Theorem 3

We will first state and prove one lemma before going into the proof of the
main theorem.

Lemma 1. If N ′α(∞) is bounded, then we have

C(εg, 0) = ε1+αN ′α(∞)

∫
g1+α,

which is bounded and is also increasing in ε for all α ≥ 0.

Proof. Note that C(εg, 0) =
∫
c(εg, 0). But

c(εg, 0) = lim
f→0

c(εg, f) = lim
f→0

{[
N

(
εg

f
− 1

)]
f1+α

}

= lim
f→0


[
N
(
εg
f − 1

)]
(
εg
f

)1+α (εg)1+α

 = N ′α(∞)(εg)1+α.

The rest of it is straightforward given that N ′α(∞) is bounded and α ≥ 0.

Now we will prove the main theorem.
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Proof of Theorem 3. Let θn denote the minimizer of C(hε,n, fθ) where ε de-
notes the level of contamination. That is, θn = T (Hε,n), the minimum C-
divergence functional at Hε,n. If breakdown occurs, there exists a sequence
{vn} such that |θn| → ∞ as n→∞. Now, consider

C(hε,n, fθn) =

∫
Ln

c(hε,n, fθn) +

∫
Lcn

c(hε,n, fθn), (S1)

where Ln = {x : g(x) > max(vn(x), fθn(x))} and c(g, f) is the integrand of
C(g, f).

Now from Assumption (BP1),
∫
Ln
vn(x)→ 0, and from Assumption (BP2),∫

Ln
fθn(x)→ 0, so under vn(·) and fθn(·), the set Ln converges to a set of zero

probability as n→∞. Thus, on Ln,

c(hε,n, fθn)→ c((1− ε)g, 0) as n→∞.

and so by using Dominated Convergence Theorem (DCT)∣∣∣∣∫
Ln

c(hε,n, fθn)−
∫
Ln

c((1− ε)g, 0)

∣∣∣∣→ 0, (S2)

and further by Assumption (BP1) we have∣∣∣∣∫
Ln

c((1− ε)g, 0)−
∫
g>0

c((1− ε)g, 0)

∣∣∣∣→ 0. (S3)

Thus by Equations (S2) and (S3) we have∣∣∣∣∫
Ln

c(hε,n, fθn)−
∫
g>0

c((1− ε)g, 0)

∣∣∣∣→ 0. (S4)

So, by Lemma 1 and Assumption (C), we get∫
Ln

c(hε,n, fθn)→ C((1− ε)g, 0). (S5)

Next by Assumption (BP1),
∫
Lcn
g(x) → 0 as n → ∞, so under g(·), the

set Lcn converges to a set of zero probability. Hence similarly, we get∣∣∣∣∣
∫
Lcn

c(hε,n, fθn)−
∫
Lcn

c(εvn, fθn)

∣∣∣∣∣→ 0. (S6)

Now by Assumption (BP3) we have,∫
c(εvn, fθn) ≥

∫
c(εfθn , fθn) = N(ε− 1)Mα

f .

Using Equations (S5) and (S6), we get, when breakdown occurs,

lim inf
n→∞

C(hε,n, fθn) ≥ N(ε− 1)Mα
f + C((1− ε)g, 0) = a1(ε). (S7)
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We will have a contradiction to our assumption that {vn} is a sequence for
which breakdown occurs if we can show that there exists a constant value θ∗

in the parameter space such that for the same sequence {vn},

lim sup
n→∞

C(hε,n, fθn) < a1(ε) (S8)

as then the {θn} sequence above could not minimize C(hε,n, fθn) for every n.
We will now show that Equation (S8) is true for all ε < 1/2 under the model

when we choose θ∗ to be the minimizer of
∫
c((1− ε)g, fθ). For any fixed θ, let

Bn = {x : vn(x) > max(g(x), fθ(x))}. From Assumption (BP1),
∫
Bn

g(x)→ 0,∫
Bn

fθ(x)→ 0 and
∫
Bcn

vn → 0. Thus, under vn, the set Bcn converges to a set

of zero probability, while under g and fθ, the set Bn converges to a set of zero
probability. Thus on Bn, c(hε,n, fθ)→ c(εvn, 0) as n→∞. So, by using DCT∣∣∣∣∫

Bn

c(hε,n, fθ)−
∫
vn>0

c(εvn, 0)

∣∣∣∣→ 0.

Similarly, we have
∣∣∣∫Bcn c(hε,n, fθ)− ∫ c((1− ε)g, fθ)∣∣∣→ 0. Therefore, by Lemma

1 and Assumption (BP3),

lim sup
n→∞

C(hε,n, fθ) ≤ C((1− ε)g, fθ) + C(εg, 0).

Now if g = fθg then substituting θ = θg in the above equation, and using
the fact that C((1− ε)fθg , fθg ) = N(−ε)Mα

f , we get that θ∗ = θg satisfies

lim
n→∞

C(hε,n, fθ∗) = N(−ε)Mα
f + C(εg, 0) = a3(ε), say.

Consequently, asymptotically there is no breakdown for ε level contamina-
tion when a3(ε) < a1(ε). Notice that a1(ε) and a3(ε) are strictly decreasing and
increasing respectively in ε by Lemma 1 and a1(1/2) = a3(1/2). Hence asymp-
totically there is no breakdown and lim sup

n→∞
|T (Hε,n)| <∞ for ε < 1/2.

S1.2 Proof of Theorem 4

To prove the consistency and asymptotic normality of the minimum C-divergence
estimator, we will, from now on, assume that Conditions (A1)–(A7), presented
in Section 4 of the main paper, hold. We will first prove some preliminary lem-
mas. Define ηn(x) =

√
n(
√
δn −

√
δg)

2.

Lemma 2. For any k ∈ [0, 2], we have

1. E[ηkn(x)] ≤ n k2E[|δn(X)− δg(X)|]k ≤
[
g(x)(1−g(x))

f2
θ (x)

] k
2

.

2. E[|δn(X)− δg(X)|] ≤ 2g(x)(1−g(x))
fθ(x)

.
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Proof. For a, b ≥ 0, we have the inequality (
√
a−
√
b)2 ≤ |a− b|. So we get

E[ηkn(x)] = n
k
2E[(

√
δn −

√
δg)

2]k ≤ n k2E[|δn − δg|]k.

For the next part, see that, ndn(x) ∼ binomial(n, g(x)) for all x. Now, for
any k ∈ [0, 2], we get by the Lyapounov’s inequality that

E[|δn(X)− δg(X)|]k ≤
[
E(δn(X)− δg(X))2

] k
2

=
1

fkθ (x)

[
E(dn(X)− g(X))2

] k
2 =

1

fkθ (x)

[
g(x)(1− g(x))

n

] k
2

.

For the second part, note that

E[|δn(X)− δg(X)|] =
1

fθ(x)
[E|dn(X)− g(X)|] ≤ 2g(x)(1− g(x))

fθ(x)
,

where the last inequality follows from the result about the mean-deviation of
a binomial random variable.

Lemma 3. E[ηkn(x)]→ 0, as n→∞, for k ∈ [0, 2).

Proof. This follows from Theorem 4.5.2 of Chung (1974) by noting that

n1/4(d
1/2
n (x)−g1/2(x))→ 0 with probability one for each x ∈ X and by Lemma

2, sup
n
E[ηkn(x)] is bounded.

Let us now define, an(x) = K(δn(x)) − K(δg(x)) and bn(x) = (δn(x) −
δg(x))K ′(δg(x)). We will need the limiting distributions of

S1n =
√
n
∑
x
an(x)f1+αθ (x)uθ(x) and S2n =

√
n
∑
x
bn(x)f1+αθ (x)uθ(x).

Define τn(x) =
√
n|an(x)− bn(x)|.

Lemma 4. Suppose Assumption (A5) holds. Then E|S1n − S2n| → 0 as n→
∞, and hence S1n − S2n

P−→ 0 as n→∞.

Proof. By Lemma 2.15 of Basu et al. (2011) [or, Lindsay (1994), Lemma 25],
there exists some positive constant β such that

τn(x) ≤ β
√
n(
√
δn −

√
δg)

2 = βηn(x).

Also, by Lemma 2, E[τn(x)] ≤ β g
1/2(x)
fθ(x)

. And by Lemma 2, E[τn(x)] = βE[ηn(x)]→
0 as n→∞. Thus we get,

E|S1n − S2n| ≤
∑
x

E[τn(x)]f1+αθ (x)|uθ(x)|

≤ β
∑
x

g1/2(x)fαθ (x)|uθ(x)| <∞ (by Assumption A5).

So, by using DCT, E|S1n−S2n| → 0 as n→∞. Hence, by Markov’s inequality,

S1n − S2n
P−→ 0 as n→∞.
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Lemma 5. Suppose Vg = Vg [K ′(δg(X))fαθ (X)uθ(X)] is finite. Then

S1n → N(0, Vg).

Proof. Note that, by the Lemma 4, the asymptotic distribution of S1n and
S2n are the same. Now, we have

S2n =
√
n
∑
x

(δn(x)− δg(x))K ′(δg(x))f1+αθ (x)uθ(x)

=
√
n
∑
x

(dn(x)− g(x))K ′(δg(x))fαθ (x)uθ(x)

=
√
n

(
1

n

n∑
i=1

[K ′(δg(Xi))f
α
θ (Xi)uθ(Xi)− Eg{K ′(δg(X))fαθ (X)uθ(X)}]

)
→ N(0, Vg),

where the last relation follows by the central limit theorem.

Proof of Theorem 4.
Consistency: Consider the behavior of C(dn, fθ) on a sphere Qa which has
radius a and center at θg. We will show, for sufficiently small a, that with
probability tending to one

C(dn, fθ) > C(dn, fθg ) for all θ on the surface of Qa,

so that the C-divergence has a local minimum with respect to θ in the interior
of Qa. At a local minimum, the estimating equations must be satisfied. There-
fore, for any a > 0 sufficiently small, the minimum C-divergence estimating
equations have a solution θn within Qa with probability tending to one as
n → ∞. Now taking a Taylor series expansion of C(dn, fθ) about θ = θg, we
get

C(dn, fθg )− C(dn, fθ)

= −
∑
j

(θj − θgj )∇jC(dn, fθ)|θ=θg −
1

2

∑
j,k

(θj − θgj )(θk − θgk)∇jkC(dn, fθ)|θ=θg

−1

6

∑
j,k,l

(θj − θgj )(θk − θgk)(θl − θgl )∇jklC(dn, fθ)|θ=θ∗∗

= S1 + S2 + S3, (say) (S9)

where θ∗∗ lies between θg and θ. We will now consider each term one-by-one.
For the linear term S1, we consider

∇jC(dn, fθ)|θ=θg = −
∑
x

K(δgn(x))f1+αθg (x)ujθg (x) (S10)

where δgn(x) is δn(x) evaluated at θ = θg. We will now show that∑
x

K(δgn(x))f1+αθg (x)ujθg (x)
P−→
∑
x

K(δgg(x))f1+αθg (x)ujθg (x), (S11)
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as n → ∞ and note that the right hand side of above is zero by definition of
the minimum C-divergence estimator. By Assumption (A7) and the fact that
dn(x) → g(x) almost surely by the strong law of large numbers (SLLN), it
follows that

|K ′(δ)| = |N ′′(δ)(δ + 1)− αN ′(δ)|
≤ |N ′′(δ)(δ + 1)|+ α|N ′(δ)| ≤ C1, ( say ) (S12)

for any δ in between δgn(x) and δgg(x) (uniformly in x). So, by using the one-
term Taylor series expansion,

|
∑
x

K(δgn(x))f1+αθg (x)ujθg (x)−
∑
x

K(δgg(x))f1+αθg (x)ujθg (x)|

≤ C1

∑
x

|δgn(x)− δgg(x)|f1+αθg (x)|ujθg (x)|.

However, by Lemma 2,

E
[
|δgn(x)− δgg(x)|

]
≤ (g(x)(1− g(x))1/2

fθg (x)
√
n

→ 0 as n→∞. (S13)

and, by Lemma 2, we have

E

[
C1

∑
x

|δgn(x)− δgg(x)|f1+αθg (x)|ujθg (x)|

]
≤ 2C1

∑
x

g1/2(x)fαθg (x)|ujθg (x)| < ∞. (by Assumption A5) (S14)

Hence, by DCT, we get ,

E

∣∣∣∣∣∑
x

K(δgn(x))f1+αθg (x)ujθg (x)−
∑
x

K(δgg(x))f1+αθg (x)ujθg (x)

∣∣∣∣∣→ 0, (S15)

as n→∞, so that by Markov’s inequality we have the desired claim. Therefore,
we have

∇jC(dn, fθ)|θ=θg
P−→ 0. (S16)

Thus, with probability tending to one, |S1| < pa3, where p is the dimension of
θ and a is the radius of Qa.

Next we consider the quadratic term S2. We have,

∇jkC(dn, fθ)|θ=θg = ∇k

(
−
∑
x

K(δn(x))f1+αθ (x)ujθ(x)|θ=θg
)

=
∑
x

K ′(δgn(x))(δgn(x) + 1)f1+αθg (x)ujθg (x)ukθg (x)

−
∑
x

K(δgn(x))f1+αθg (x)ujkθg (x)

−(1 + α)
∑
x

K(δgn(x))f1+αθg (x)ujθg (x)ukθg (x). (S17)
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We will now show that∑
x

K ′(δgn(x))(δgn(x) + 1)f1+αθg (x)ujθg (x)ukθg (x)

P−→
∑
x

K ′(δgg(x))(δgg(x) + 1)f1+αθg (x)ujθg (x)ukθg (x). (S18)

Note that as in Equation (S12), we have

|K ′′(δ)(δ + 1)| ≤ |N ′′′(δ)(δ + 1)2|+ (1− α)|N ′′(δ)(δ + 1)| ≤ C2, say, (S19)

for every δ lying in between δgn(x) and δgg(x) (uniformly in x). So, by using the
one-term Taylor series expansion,

|K ′(δgn(x))(δgn(x) + 1)−K ′(δgg(x))(δgg(x) + 1)|
≤ |δgn(x)− δgg(x)||K ′′(δgn(x))(δgn(x) + 1) +K ′(δgn(x))|
≤ |δgn(x)− δgg(x)|(C2 + C1).

Thus, we get∣∣∣∣∣∑
x

K ′(δgn(x))(δgn(x) + 1)f1+αθg (x)ujθg (x)ukθg (x)

−
∑
x

K ′(δgg(x))(δgg(x) + 1)f1+αθg (x)ujθg (x)ukθg (x)

∣∣∣∣∣
≤ (C1 + C2)

∑
x

|δgn(x)− δgg(x)|f1+αθg (x)|ujθg (x)ukθg (x)|.

Since by Assumption (A5), we have
∑
x
g1/2(x)f1+αθg (x)|ujθg (x)ukθg (x)| < ∞,

the desired result of Equation (S18) follows by an approach similar to the
proof of Equation (S11). Similarly, we also get that∑

x

K(δgn(x))f1+αθg (x)ujkθg (x)
P−→
∑
x

K(δgg(x))f1+αθg ujkθg (x),

and∑
x

K(δgn(x))f1+αθg (x)ujθg (x)ukθg (x)
P−→
∑
x

K(δgg(x))f1+αθg (x)ujθg (x)ukθg (x).

Thus, combining Equation (S18) with the above two, we get that

∇k

(∑
x

K(δn(x))f1+αθ (x)ujθ(x)|θ=θg
)

P−→ −Jj,kg . (S20)

But

2S2 =
∑
j,k

{
∇k

(∑
x

K(δn(x))f1+αθ (x)ujθ(x)|θ=θg
)
− (−Jj,kg )

}
(θj − θgj )(θk − θgk)

+
∑
j,k

{
−
(
Jj,kg

)
(θj − θgj )(θk − θgk)

}
. (S21)
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Now the absolute value of the first term in the above Equation (S21) is < p2a3

with probability tending to one. And, the second term in Equation (S21) is
a negative definite quadratic form in the variables (θj − θgj ). Letting λ1 be

the largest eigenvalue of Jg, the quadratic form is < λ1a
2. Combining the two

terms, we see that there exists c > 0 and a0 > 0 such that for a < a0, we have
S2 < −ca2 with probability tending to one.

Finally, considering the cubic term S3, we have

−∇jklC(dn, fθ)|θ=θ∗∗

=
∑
x

K ′′(δ∗∗n (x))(δ∗∗n (x) + 1)2f1+αθ∗∗ (x)ujθ∗∗(x)ukθ∗∗(x)ulθ∗∗(x)

+
∑
x

K ′(δ∗∗n (x))(δ∗∗n (x) + 1)f1+αθ∗∗ (x)ujθ∗∗(x)ukθ∗∗(x)ulθ∗∗(x)

− (1 + α)
∑
x

K ′(δ∗∗n (x))(δ∗∗n (x) + 1)f1+αθ∗∗ (x)ujθ∗∗(x)ukθ∗∗(x)ulθ∗∗(x)

−
∑
x

K ′(δ∗∗n (x))(δ∗∗n (x) + 1)f1+αθ∗∗ (x)ujθ∗∗(x)uklθ∗∗(x)

−
∑
x

K ′(δ∗∗n (x))(δ∗∗n (x) + 1)f1+αθ∗∗ (x)ukθ∗∗(x)ujlθ∗∗(x)

−
∑
x

K ′(δ∗∗n (x))(δ∗∗n (x) + 1)f1+αθ∗∗ (x)ulθ∗∗(x)ujkθ∗∗(x)

+ (1 + α)
∑
x

K(δ∗∗n (x))f1+αθ∗∗ (x)ulθ∗∗(x)ujkθ∗∗(x)

+
∑
x

K(δ∗∗n (x))f1+αθ∗∗ (x)ujklθ∗∗(x)−
∑
x

K(δ∗∗n (x))f1+αθ∗∗ (x)ujθ∗∗(x)uklθ∗∗(x)

− (1 + α)
∑
x

K ′(δ∗∗n (x))(δ∗∗n (x) + 1)f1+αθ∗∗ (x)ujθ∗∗(x)ukθ∗∗(x)ulθ∗∗(x)

+ (1 + α)2
∑
x

K(δ∗∗n (x))f1+αθ∗∗ (x)ujθ∗∗(x)ukθ∗∗(x)ulθ∗∗(x)

−
∑
x

K(δ∗∗n (x))f1+αθ∗∗ (x)ukθ∗∗(x)ujlθ∗∗(x), (S22)

where δ∗∗n (x) = dn(x)
fθ∗∗ (x)

−1. We will now show that all the terms in the RHS of

the above Equation (S22) are bounded. Let us denote the terms in Equation
(S22), in order, by (i), (ii),. . ., (xii), respectively.

For the first term (i), we use Equation (S19) to get∣∣∣∣∣∑
x

K ′′(δ∗∗n (x))(δ∗∗n (x) + 1)2f1+αθ∗∗ (x)ujθ∗∗(x)ukθ∗∗(x)ulθ∗∗(x)

∣∣∣∣∣
≤ C2

∑
x

|δ∗∗n (x) + 1|Mj,k,l(x)fθ∗∗(x) = C2

∑
x

dn(x)Mj,k,l(x) (by CLT)

→ C2 Eg[Mj,k,l(X)] <∞. (by Assumption (A6)) (S23)
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Thus term (i) is bounded. Now for the terms (ii), (iii), (ix) we again use
Equation (S12) to get∣∣∣∣∣∑

x

K ′(δ∗∗n (x))(δ∗∗n (x) + 1)f1+αθ∗∗ (x)ujθ∗∗(x)ukθ∗∗(x)ulθ∗∗(x)

∣∣∣∣∣
≤ C1

∑
x

|δ∗∗n (x) + 1|Mj,k,l(x)fθ∗∗(x) = C1

∑
x

dn(x)Mj,k,l(x) (by CLT)

→ C1 Eg[Mj,k,l(X)] <∞. (by Assumption (A6)) (S24)

so that the terms (ii), (iii) and (ix) are also bounded. Similarly, the terms (iv),
(v) and (vi) are bounded as in case of term (ii) and using Equation (S12) and
Assumption (A6). Next for the terms (vii), (viii), (x), (xi) and (xii) we will
consider the relation.

|K(δ)| = |
∫ δ

0

K ′(δ)dδ| ≤ C1|δ| < C1|δ + 1|. (S25)

Also, the terms (vii), (viii), (x), (xi) and (xii) are individually bounded by

C1

∑
x

|δ∗∗n (x) + 1|M(x)fθ∗∗(x) (or some suitable multiple of C1)

= C1

∑
x

dn(x)M(x)→ C1 Eg[M(X)] <∞, (S26)

by the CLT and Assumption (A6), where M(x) = Mjkl(x) + Mjk,l(x) +
Mjl,k(x) + Mj,kl(x) + Mj,k,l(x). Hence, we have |S3| < ba3 on the sphere
Qa with probability tending to one.

Combining the three inequalities we get that

max(S1 + S2 + S3) < −ca2 + (b+ p)a3 < 0 for

[
a <

c

b+ p

]
.

Thus, for any sufficiently small a, there exists a sequence of roots θn = θn(a) to
the minimum C-divergence estimating equation such that P (||θn − θg||2 < a)
converges to one, where ||.||2 denotes the L2-norm.

It remains to show that we can determine such a sequence independent of
a. For let θ∗n be the root which is closest to θg. This exists because the limit
of a sequence of roots is again a root by the continuity of the C-divergence.
This completes the proof of the consistency part.

Asymptotic Normality: We expand
∑
x
K(δn(x))f1+αθ (x)uθ(x) in Taylor se-

ries about θ = θg to get a θ′ lying in-between θ and θg such that∑
x

K(δn(x))f1+αθ (x)uθ(x) =
∑
x

K(δgn(x))f1+αθg (x)uθg (x)

+
∑
k

(θk − θgk)∇k

(∑
x

K(δn(x))f1+αθ (x)uθ(x)

)∣∣∣∣
θ=θg

+
1

2

∑
k,l

(θk − θgk)(θl − θgl )∇kl

(∑
x

K(δn(x))f1+αθ (x)uθ(x)

)∣∣∣∣
θ=θ′

. (S27)
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Now, let θn be the solution of the minimum C-divergence estimating equa-
tion, which can be assumed to be consistent by the previous part. Replace θ
by θn in the above Equation (S27) so that the LHS of the equation becomes
zero and hence we get

−
√
n
∑
x

K(δgn(x))f1+αθg (x)uθg (x)

=
√
n
∑
k

(θnk − θgk)×

{
∇k

(∑
x

K(δn(x))f1+αθ (x)uθ(x)

)
|θ=θg

+
1

2

∑
l

(θnl − θgl )∇kl

(∑
x

K(δn(x))f1+αθ (x)uθ(x)

)
|θ=θ′

}
. (S28)

Note that, the first term within the bracketed quantity in the RHS of the above
Equation (S28) converges to Jg with probability tending to one, while the
second bracketed term is an op(1) term (as proved in the proof of consistency
part). Also, by using the Lemma 5, we get that

√
n
∑
x

K(δgn(x))f1+αθg (x)uθg (x) =
√
n
∑
x

[
K(δgn(x))−K(δgg(x))

]
f1+αθg (x)uθg (x)

= S1n|θ=θg
D→Np(0, Vg). (S29)

Therefore, by Lehmann (1983, Lemma 4.1), it follows that
√
n(θn − θg) has

an asymptotic Np(0, J
−1
g VgJ

−1
g ) distribution.

S1.3 Proof of Theorem 10

We consider the second order Taylor series expansion of Cγ(fθ, fθ0) around

θ = θ0 at θ = θ̂α as,

Cγ(fθ̂α , fθ0) = Cγ(fθ0 , fθ0) +

p∑
i=1

∇iCγ(fθ, fθ0)|θ=θ0(θ̂iα − θi0)

+
1

2

∑
i,j

∇ijCγ(fθ, fθ0)|θ=θ0(θ̂iα − θi0)(θ̂jα − θ
j
0) + o(||θ̂α − θ0||2),

where the superscripts denotes the corresponding components. Now we have
Cγ(fθ0 , fθ0) = 0 and ∇iCγ(fθ, fθ0)|θ=θ0 = 0. Note that the above second
order partial derivative of Cγ(fθ, fθ0) at θ = θ0 is independent of λ and so
we will denote them by aγij(θ0). Then note that Aγ(θ0) =

(
aγij(θ0)

)
i,j=1,...,p

=

∇2Cγ(fθ, fθ0)

∣∣∣∣
θ=θ0

. Now from the above Taylor series expansion it is clear that

TCγ (θ̂α, θ0) = 2nCγ(fθ̂α , fθ0) and
√
n(θ̂α − θ0)TAγ(θ0)

√
n(θ̂α − θ0) have the

same asymptotic distribution. Now we know from Basu et al. (1998) that the

asymptotic distribution of
√
n(θ̂α−θ0) is normal with mean zero and variance

J−1α (θ0)Vα(θ0)J−1α (θ0).
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Further we know that forX ∼ Nq(0, Σ), and a q−dimensional real symmet-
ric matrix A, the distribution of the quadratic form XTAX is the same as that
of
∑r
i=1 ζiZ

2
i , where Z1, . . . , Zr are independent standard normal variables,

r = rank(ΣAΣ), r ≥ 1 and ζ1, . . . , ζr are the nonzero eigenvalues of AΣ (Dik

and Gunst, 1985, Corollary 2.1). Applying this result with X =
√
n(θ̂α − θ0)

we get the theorem.

S1.4 Proof of Theorem 11

Fix some θ∗ 6= θ0. Consider the first order Taylor series expansion of Cγ(fθ̂α , fθ0)
under fθ∗ as

Cγ(fθ̂α , fθ0) = Cγ(fθ∗ , fθ0) +MCγ (θ∗)T (θ̂α − θ∗) + o(||θ̂α − θ∗||)

where MCγ is as defined in the theorem. Now we know that, under θ∗,

√
n(θ̂α − θ∗)→ N(0, J−1α (θ∗)Vα(θ∗)J−1α (θ∗)) as n→∞

and
√
n × o(||θ̂α − θ∗||) = op(1). Thus we get that the random variables

√
n
[
Cγ(fθ̂α , fθ0)− Cγ(fθ∗ , fθ0)

]
and MCγ (θ∗)T

√
n(θ̂α − θ∗) have the same

asymptotic distribution . Therefore, we have

√
n
[
Cγ(fθ̂α , fθ0)− Cγ(fθ∗ , fθ0)

]
→ N(0, σ(θ∗))

where σ(θ∗) is as given in Equation (35) of the main text. Then the desired
approximation to the power function follows from the above asymptotic dis-
tribution.

S1.5 Proof of Theorem 12

From the asymptotic distribution of the MDPDE, we have

√
ni

(
(i)θ̂α − θi

)
→ N(0, J−1α (θi)Vα(θi)J

−1
α (θi))

for i = 1, 2, with n1 = n, n2 = m. Let m
m+n → ω as m,n→∞. Then we have√

mn

m+ n

(
(1)θ̂α − θ1

)
→ N(0, ωJ−1α (θ1)Vα(θ1)J−1α (θ1))

and √
mn

m+ n

(
(2)θ̂α − θ2

)
→ N(0, (1− ω)J−1α (θ2)Vα(θ2).J−1α (θ2)).

Now, under H0 : θ1 = θ2, we get that√
mn

m+ n

(
(1)θ̂α −(2) θ̂α

)
→ N(0, J−1α (θ1)Vα(θ1)J−1α (θ1)).
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Next consider the second order Taylor series expansion of Cγ(fθ1 , fθ2) around

θ1 = θ2 at
(
(1)θ̂α,

(1) θ̂α

)
as follows.

Cγ(f(1)θ̂α
, f(2)θ̂α

) =
1

2

p∑
i,j=1

(
∂2Cγ(fθ1 , fθ2)

∂θ1i∂θ1j

)
θ1=θ2

(θ̂1iα − θ1i)(θ̂1jα − θ1j)

+

p∑
i,j=1

(
∂2Cγ(fθ1 , fθ2)

∂θ1i∂θ2j

)
θ1=θ2

(θ̂1iα − θ1i)(θ̂2jα − θ2j)

+
1

2

p∑
i,j=1

(
∂2Cγ(fθ1 , fθ2)

∂θ2i∂θ2j

)
θ1=θ2

(θ̂2iα − θ2i)(θ̂2jα − θ2j)

+o
(
||(1)θ̂α − θ1||2

)
+ o

(
||(2)θ̂α − θ2||2

)
.

But for i = 1, . . . , p, we have

∂Cγ(fθ1 , fθ2)

∂θ1i
=

∫
N ′
(
fθ1
fθ2
− 1

)
fαθ2

∂fθ1
∂θ1i

.

We also have,(
∂2Cγ(fθ1 , fθ2)

∂θ1i∂θ1j

)
θ1=θ2

= aγij(θ1),(
∂2Cγ(fθ1 , fθ2)

∂θ1i∂θ2j

)
θ1=θ2

= −
(
∂2Cγ(fθ1 , fθ2)

∂θ1i∂θ1j

)
θ1=θ2

= −aγij(θ1),(
∂2Cγ(fθ1 , fθ2)

∂θ2i∂θ2j

)
θ1=θ2

=

(
∂2Cγ(fθ1 , fθ2)

∂θ1i∂θ1j

)
θ1=θ2

= aγij(θ1).

Therefore, we get

2Cγ(f(1)θ̂α
, f(2)θ̂α

) = ((1)θ̂α − θ1)TAγ(θ1)((1)θ̂α − θ1)

−2((1)θ̂α − θ1)TAγ(θ1)((2)θ̂α − θ1)

+((2)θ̂α − θ1)TAγ(θ1)((2)θ̂α − θ1)

+o
(
||(1)θ̂α − θ1||2

)
+ o

(
||(2)θ̂α − θ2||2

)
= ((1)θ̂α −(2) θ̂α)TAγ(θ1)((1)θ̂α −(2) θ̂α)

+o
(
||(1)θ̂α − θ1||2

)
+ o

(
||(2)θ̂α − θ2||2

)
,

with

o
(
||(1)θ̂α − θ1||2

)
= op

(
1

n

)
and o

(
||(2)θ̂α − θ2||2

)
= op

(
1

m

)
.

Thus the asymptotic distribution of

Sγ,λ((1)θ̂α,
(2) θ̂α) =

2nm

n+m
Cγ(f(1)θ̂α

, f(2)θ̂α
)

coincides with the distribution of the random variable
∑r
i=1 ζγ,αi (θ1)Z2

i .
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S2 Lehmann Conditions

The following four conditions from Lehmann (1983, page 429) are referred to
as the Lehman Conditions in the main paper; we report them here for the
shake of completeness.

(A) There exists an open subset ω of Θ containing the true parameter point
θ such that for almost all x the density fθ(x) admits all third derivatives

(∂3/∂θj∂θk∂θl)fθ(x) for all θ ∈ ω.

(B) The first and second logarithmic derivatives of f satisfy the equations

Eθ

[
∂
∂θj

log fθ(x)
]

= 0, for all j and the information matrix I(θ) with (j, k)th

element is defined as

Ijk(θ) = Eθ

[
∂

∂θj
log f(X, θ).

∂

∂θk
log f(X, θ)

]
= Eθ

[
− ∂2

∂θj∂θk
log f(X, θ)

]
.

(C) The matrix I(θ) is a positive definite matrix.
(D) There exist functions Mjkl such that∣∣∣∣ ∂3

∂θj∂θk∂θl
log fθ(x)

∣∣∣∣ ≤Mjkl(x) for all θ ∈ ω

where mjkl = Eθ [Mjkl(X)] <∞ for all j, k, l.

S3 Additional Numerical Illustrations: The MGPDEs under
Poisson Model

Here we report the bias and MSE of the MGPDEs for several more values of
(α, λ) combination near the optimum region under the simulation set-up (with
sample size n = 50) as described in Section 3.3 of the main paper. Tables S1-S2
present the bias and MSE values, respectively, under the pure data scenarios
whereas the same under contamination scenario are presented in Tables S3-S4.
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Table S1 Bias of the MGPDEs of the Poisson mean under pure data (n = 50) for various
values of λ and α

λ_α → 0 0.1 0.2 0.3 0.4 0.5
−0.9 −0.347 −0.3082 −0.2739 −0.2436 −0.2168 −0.1928
−0.8 −0.234 −0.2097 −0.1872 −0.1666 −0.1477 −0.1303
−0.7 −0.17 −0.1544 −0.139 −0.1243 −0.1103 −0.097
−0.6 −0.1266 −0.117 −0.1067 −0.0962 −0.0857 −0.0753
−0.5 −0.094 −0.089 −0.0826 −0.0754 −0.0676 −0.0596
−0.4 −0.068 −0.0667 −0.0635 −0.059 −0.0535 −0.0474
−0.3 −0.0462 −0.0481 −0.0476 −0.0454 −0.042 −0.0375
−0.2 −0.0271 −0.0319 −0.0339 −0.0338 −0.0321 −0.0292
−0.1 −0.0099 −0.0173 −0.0216 −0.0234 −0.0233 −0.0218

0 0.006 −0.0039 −0.0103 −0.0139 −0.0154 −0.0153
0.1 0.0211 0.0089 0.0004 −0.005 −0.008 −0.0092
0.2 0.0356 0.0213 0.0107 0.0035 −0.001 −0.0034
0.3 0.0493 0.0336 0.0209 0.0118 0.0058 0.0021

Table S2 MSE of the MGPDEs of the Poisson mean under pure data (n = 50) for various
values of λ and α

λ_α → 0 0.1 0.2 0.3 0.4 0.5
−0.9 0.3269 0.3037 0.284 0.2677 0.2544 0.2438
−0.8 0.1994 0.1936 0.1888 0.1853 0.1829 0.1819
−0.7 0.1493 0.1499 0.151 0.1526 0.1548 0.1578
−0.6 0.1244 0.1278 0.1316 0.1359 0.1405 0.1456
−0.5 0.1104 0.115 0.1204 0.1261 0.1321 0.1385
−0.4 0.1019 0.1071 0.1131 0.1197 0.1266 0.1337
−0.3 0.0966 0.1017 0.1081 0.1151 0.1225 0.1303
−0.2 0.0932 0.098 0.1044 0.1116 0.1194 0.1275
−0.1 0.0912 0.0954 0.1015 0.1087 0.1167 0.125

0 0.0902 0.0935 0.0992 0.1063 0.1143 0.1228
0.1 0.0903 0.0923 0.0974 0.1042 0.1121 0.1207
0.2 0.0916 0.0916 0.0959 0.1023 0.11 0.1186
0.3 0.0943 0.0918 0.0947 0.1006 0.1081 0.1165

Table S3 Bias of the MGPDEs of the Poisson mean under contaminated data (n = 50) for
various values of λ and α

λ_α → 0 0.1 0.2 0.3 0.4 0.5
−0.9 −0.3273 −0.3004 −0.2558 −0.2201 −0.1896 −0.1627
−0.8 −0.2169 −0.2131 −0.1742 −0.1448 −0.1205 −0.099
−0.7 −0.1521 −0.1663 −0.1296 −0.1039 −0.0833 −0.0651
−0.6 −0.1059 −0.1375 −0.1009 −0.0771 −0.059 −0.0431
−0.5 −0.0682 −0.1196 −0.0811 −0.058 −0.0415 −0.0275
−0.4 −0.0319 −0.11 −0.0673 −0.0436 −0.0282 −0.0155
−0.3 0.0144 −0.1088 −0.0586 −0.0329 −0.0177 −0.006
−0.2 0.1091 −0.1178 −0.0553 −0.0252 −0.0094 0.0018
−0.1 0.4646 −0.1394 −0.0595 −0.0209 −0.003 0.0081

0 1.9957 −0.1476 −0.0752 −0.0216 0.0012 0.0132
0.1 4.0455 0.4136 −0.0981 −0.0304 0.002 0.0168
0.2 5.3173 2.9705 0.1214 −0.0475 −0.0029 0.0182
0.3 6.0811 4.7843 2.2009 0.0681 −0.0145 0.0155
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Table S4 MSE of the MGPDEs of the Poisson mean under contaminated data (n = 50)
for various values of λ and α

λ_α → 0 0.1 0.2 0.3 0.4 0.5
−0.9 0.338 0.3192 0.2924 0.2736 0.2592 0.2481
−0.8 0.2156 0.2142 0.2017 0.1953 0.1919 0.1905
−0.7 0.1674 0.1725 0.1659 0.1651 0.1667 0.1697
−0.6 0.1441 0.1518 0.148 0.1502 0.1546 0.1601
−0.5 0.132 0.1404 0.1378 0.1418 0.1478 0.1548
−0.4 0.1267 0.1342 0.1314 0.1364 0.1435 0.1516
−0.3 0.1283 0.1317 0.1272 0.1326 0.1405 0.1492
−0.2 0.1526 0.1335 0.1243 0.1297 0.138 0.1473
−0.1 0.4363 0.143 0.123 0.1272 0.1359 0.1456

0 4.8308 0.1613 0.1249 0.1252 0.1338 0.1438
0.1 18.0435 0.3685 0.1338 0.1241 0.1317 0.142
0.2 30.4329 10.1105 0.1507 0.1265 0.1297 0.1399
0.3 39.3892 25.0289 5.772 0.1348 0.1294 0.1376


