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Abstract
This paper describes a family of divergences, named herein as the C-divergence fam-
ily, which is a generalized version of the power divergence family and also includes
the density power divergence family as a particular member of this class. We explore
the connection of this family with other divergence families and establish several char-
acteristics of the corresponding minimum distance estimator including its asymptotic
distribution under both discrete and continuous models; we also explore the use of the
C-divergence family in parametric tests of hypothesis.We study the influence function
of these minimum distance estimators, in both the first and second order, and indi-
cate the possible limitations of the first-order influence function in this case. We also
briefly study the breakdown results of the corresponding estimators. Some simulation
results and real data examples demonstrate the small sample efficiency and robustness
properties of the estimators.
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1 Introduction

Statistical distances have a natural use in parametric estimation and parametric tests
of hypotheses. By a statistical distance, we mean any measure of discrepancy between
the data and the parametric model, which is nonnegative and equals zero if and only
if the data fit the model perfectly. While we will usually refer to these measures as
divergences, sometimes we will also loosely refer to them as distances.

The minimum distance branch of statistical inference has two primary subtypes.
The first is based on divergences between distribution functions, while the second is
based on divergences between densities. Both classes are known to produce highly
robust inference; however, in this paper our attention will be entirely on density-based
divergences. This is primarily due to the fact that in many cases the density-based
approach leads to asymptotically highly efficient, sometimes even fully efficient, pro-
cedures. See Beran (1977), Tamura and Boos (1986), Simpson (1987, 1989), Lindsay
(1994), Pardo (2006) and Basu et al. (2011) as general representatives providing the
background to this area.

In this paper, we discuss a general family of density-based divergences which,
while not entirely unknown in the literature, has certainly not received the attention it
deserves. Here we will describe the divergences as the natural sequel of some of the
existing divergence measures in the literature. We will study the inference procedures
resulting from the minimization of these divergences and study the related issues
from several angles. Our results will demonstrate that this rich class contains the
power divergence, the density power divergence or even the S-divergence families
as particular members of this new family. In fact, this new family also contains the
recently proposed class of generalized S-divergences (Ghosh and Basu 2018). This
new family will be referred to as the class of C-divergence measures.

This new collection of divergences, therefore, includes practically all the major
density-based single integral (Jana and Basu 2018) divergences. It contains many new
divergences which are not members of any established class of procedures. Yet, as we
will see, these new divergences are often those which provide the best compromise
between efficiency and robustness in real-life situations. While a lot of additional
research has to be done to figure out which divergences are the most desirable in this
respect, the description of the subsequent sections will clearly establish that the family
ofC-divergences allows many possible choices of optimal or near- optimal estimators
in a variety of situations and a thorough exploration of the properties of this family of
divergences will obviously be of significant value. However, it is worthwhile to note
that some logarithmic divergences such as the logarithmic density power divergence
(also referred to as the γ -divergence) of Jones et al. (2001) and Fujisawa and Eguchi.,
S. (2008) are not of the single-integral type and hence do not belong to our class of
C-divergences.

The rest of the paper is organized as follows. Section 2 gives a description of
somewell-known divergences, and Sect. 3 introduces the family ofC-divergences and
explores some of their properties such as the influence function. Asymptotic properties
of the estimators are established inSects. 4 and 5under discrete and continuousmodels,
respectively; hypothesis testing is considered in Sect. 6. Some real data examples and
simulation results are presented in Sect. 7, and concluding remarks are in Sect. 8.
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C-divergence family 1291

Throughout this paper, we will refer to the true data generating distribution by
G, having a density g with respect to an appropriate measure. The density g will be
modeled by a parametric class of densities F = { fθ : θ ∈ � ⊂ R

p}. The distribution
function corresponding to fθ will be denoted by Fθ . Given a divergence measure
D(·, ·), the best-fitting parameter (or the minimum divergence functional) at G will
be denoted by θ g = argminθ D(g, fθ ). When the true distribution belongs to the
model, i.e., G = Fθ for some θ ∈ �, we have θ g = θ . Estimation and tests about the
unknown parameter will be based on a sample X1, X2, . . . , Xn of independently and
identically distributed (i.i.d.) observations from the true distribution.

2 Background: two popular divergences

2.1 Cressie–Read family of power divergences

The power divergence (PD) family, originally proposed by Cressie and Read (1984) in
the context of multinomial goodness-of-fit tests, is a particular subfamily of the class
of disparities. A disparity measure between two densities g and f , both absolutely
continuous with respect to a common dominating measure μ, is defined through the
Pearson residual

δ(x) = g(x)

f (x)
− 1 (1)

and a disparity generating function N (·) as

ρN (g, f ) =
∫

N (δ(x)) f (x)dμ(x). (2)

Weassume that the function N (·) is thrice differentiable and strictly convexon [−1,∞)

with N (0) = 0, N ′(0) = 0 and N ′′(0) = 1. It can be easily verified that ρN (·, ·) is a
valid divergence. Throughout the rest of the paper, wewill suppress the dμ notation for
brevity, but unless otherwisementioned, all integrals arewith respect to the dominating
measure μ. The divergences defined in Eq. (2) are often described as f −divergences
(or φ−divergences). For details, see Csiszár (1963, 1967) and Ali and Silvey (1966).

Under the set up described in Sect. 1, minimum disparity estimation corresponding
to the measure ρN (·, ·) involves the minimization of ρN (ĝn, fθ ) with respect to θ ,
where ĝn is some nonparametric estimate of g based on the data. The corresponding
Pearson residual, defined with ĝn and fθ in place of g and f , respectively, in Eq. (1),
characterizes the potential outliers in the data probabilistically, with large positive
values of the Pearson residual indicating outlying observations. These outliers can be
down-weighted in the analysis by properly choosing the disparity generating function
N (·) that down-weights large δ values. The Cressie–Read power divergence family is
an important subclass of disparities having the disparity generating function

ξλ(δ) = (δ + 1)λ+1 − (δ + 1)

λ(λ + 1)
− δ

λ + 1
, λ ∈ (−∞,∞). (3)
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1292 A. Maji et al.

We reserve the specific symbol ξλ(·) for this family, while N is the generic symbol
for a disparity generating function. The PD measure has the form

ρλ(g, f ) =
∫

ξλ(δ) f =
∫ [

1

λ(λ + 1)

{
g

[(
g

f

)λ

− 1

]}
− g − f

λ + 1

]
. (4)

Several well-known divergences are members of this family. We can get the Pearson’s
Chi-square (PCS), the likelihood disparity (LD), the Hellinger distance (HD), the
Kullback–Leibler divergence (KLD) and the Neyman’s Chi-square (NCS) by putting
λ = 1, 0,−1/2,−1 and −2, respectively, in Eq. (4).

In practice, it has been observed that minimum disparity estimators based on the
PD family with λ < 0 down-weight large Pearson residuals and generate highly robust
estimators, whereas estimators corresponding to λ ≥ 0 fare poorly in terms of outlier
stability. See Basu et al. (2011) and references therein for more detailed discussions.

In continuous models, the construction of the density estimate ĝn requires the use
of some nonparametric smoothing technique such as kernel density estimation. It is
not an insurmountable barrier, of course, but if this step can be avoided, it makes the
inference procedure simpler, both from the theoretical angle and from the point of
view of implementation. However, the only divergence within the Cressie–Read class
(or more generally within the class of disparities) which allows theminimization of the
divergence without the density estimation component is the likelihood disparity which
corresponds to the limiting case λ → 0 in the PD family defined through Eq. (4). This

divergence has the form ρ0(g, fθ ) = LD(g, fθ ) = ∫ g log
(

g
fθ

)
. But

LD(g, fθ ) =
∫

g log

(
g

fθ

)
=
∫

g log(g) −
∫

g log( fθ ) = M −
∫

g log( fθ ).

ThequantityM is independent of θ , and themaximum likelihood functionalmaximizes
the expression

∫
g log( fθ ) alone. One could write this as

∫
g log( fθ ) =

∫
log( fθ )dG, (5)

and when dG is replaced by dGn , where Gn is the empirical distribution function
based on an i.i.d. sample of size n, the quantity to be maximized is n−1∑ log fθ (Xi ),
which is the log likelihood divided by n. Thus, one can avoid the construction of a
nonparametric density estimator ĝ in this case. However, this trick does not work with
any other divergence within the class of disparities.

2.2 Density power divergence family

The density power divergence (DPD) family, introduced by Basu et al. (1998), rep-
resents another rich class of density-based divergences. The DPD measure between
two densities g and f , both absolutely continuous with respect to some common
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C-divergence family 1293

dominating measure μ, is defined as

dα(g, f ) =
∫ {

f 1+α −
(
1 + 1

α

)
g f α + 1

α
g1+α

}
, α ≥ 0. (6)

Here the tuning parameter α controls the trade-off between robustness and efficiency.
The value α = 0 (in a limiting sense) produces the likelihood disparity which is
highly efficient but non-robust estimator, whereas α = 1 gives the L2 distance leading
to highly robust estimators.

Under the parametric estimation set up where f is replaced by fθ , the third term in
the right-hand side of Eq. (6) is independent of the parameter and has no role in the
minimization. The rest of the objective function can be empirically modified using the
same replacement trick as applied to Eq. (5), which generates the empirical objective
function. Given a random sample X1, . . . , Xn from the density g modeled by F , the
minimum DPD estimator (MDPDE) of θ is obtained by minimizing dα(ĝn, fθ ), or,
equivalently, minimizing

∫
f 1+α
θ −

(
1 + 1

α

)
1

n

n∑
i=1

f α
θ (Xi ).

Thus, while the likelihood disparity is the only member of the disparity class which
is “decomposable” (Broniatowski et al. 2012), this properly holds for all members of
the DPD family.

3 The C-divergence family and robust parametric estimation

3.1 Formulation

Note that the DPD family in Eq. (6) can be rewritten as dα(g, f ) = ∫
ξ̄α(δ) f 1+α ,

where δ is as defined in Eq. (1) and a scaled version of

ξ̄α(δ) =
{
1 −

(
1 + 1

α

)
(δ + 1) + 1

α
(δ + 1)1+α

}
(7)

satisfies all the properties of a disparity generating function. In fact ξ̄α = (α+1)ξα , as
is seen through a comparison of Eqs. (3) and (7). Based on this formulation, Patra et al.
(2013) provided a nice connection between the DPD and the PD families. Motivated
by this, we consider a general family of divergence measures, which we refer to as the
C-divergence family, defined as

C(g, f ) =
∫

N (δ) f 1+α, (8)

where N (δ) is a regular disparity generating function. The divergence in Eq. (8) indeed
defines a proper statistical distance measure for any α ≥ 0 by the properties of a
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1294 A. Maji et al.

disparity generating function. The function N (·) itself may depend on one or more
tuning parameters. Note that the recently developed S-divergence family of Ghosh
et al. (2013, 2017) becomes a particular subfamily of our generalC-divergence family
where

N (δ) = Nα,λ(δ) = 1

A
− 1 + α

AB
(1 + δ)A + 1

B
(1 + δ)1+α, α ≥ 0, λ ∈ R, (9)

with A = 1 + λ(1 − α) and B = α − λ(1 − α). Note that N (0) = 0 by default.
One prominent newmember of theC-divergence family can be obtained by linking

it with the PD family by choosing N (δ) as the function ξλ(δ) of Eq. (3). The resulting
subfamily, which we refer to as the generalized power divergence (GPDα,λ) family,
has the form

GPDα,λ(g, f ) =
∫

ξλ(δ) f
1+α. (10)

Note that, by substituting α = 0 in Eq. (10), one gets the ordinary power divergence
family in Eq. (4) as a particular member of the GPDα,λ(g, f ) family and α = λ gives
a scaled version of the density power divergence family described by Eq. (6) with
tuning parameter α. (Notice that by using the above scaling, we have also included
all the divergences with negative values of the tuning parameter within the DPD
class without disturbing the divergence properties). This shows that the class of C-
divergences covers two significant families of divergences and we may try to exploit
all their properties related to robustness and efficiency to the full extent. Both α and
λ can vary over the real line, and it may also be noted that α = 0, λ = 0 produces
(in the limiting sense) the likelihood disparity. The N -function corresponding to the
larger family of generalized S-divergences (Ghosh and Basu 2018) is given by

Nα,γ,τ (δ) = 1

τ τ̄ (α − γ )

[(
τ(δ + 1)1+α + τ̄

)
−
(
τ(δ + 1)1+γ + τ̄

) 1+α
1+γ

]
,

for α ≥ 0, τ ∈ [0, 1], γ ∈ R. (11)

Note that the choices γ → −1 or τ → 0 or τ → 1 recover the S-divergence as a
special case of the generalized S-divergence.

Recently,Mattheou et al. (2009) andVonta andKaragrigoriou (2010) have used this
C-divergence family in applications such asmodel selection, survival analysis and reli-
ability theory; however, the (asymptotic) distributional properties of the corresponding
estimators and tests have not been studied, neither has the robustness properties of the
corresponding estimators looked at. We are going to fill this gap through this present
work and establish the inferential properties of this family in the case of independent
and identically distributed data. Although we will discuss the theoretical results for
the general C-divergence family, our examples and numerical illustrations will be
primarily confined to the GPD subfamily throughout the present paper.
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3.2 Estimating equation

Now, let us consider a random sample X1, . . . , Xn from the true density g which we
model by the parametric family F = { fθ : θ ∈ � ⊆ R

p}. We are interested in
estimating the parameter θ . Then, the minimum C-divergence functional T (G) at G
is defined as

C(g, fT (G)) = min
θ∈�

C(g, fθ ),

whereC(·, ·) is as defined in Eq. (8). By the definition of theC-divergence, ifG = Fθ0

then T (Fθ0) = θ0, implying the Fisher consistency of the minimum C-divergence
functional T (G).

Next, in order to estimate θ based on the observed data, we have to minimize
C(ĝn, fθ ) with respect to θ , where ĝn is the vector of relative frequencies or some
continuous density estimate based on the data according towhether the setup is discrete
or continuous. The estimating equation is then given by

−
∫

{(1 + α)N (δn(x)) − N ′(δn(x))(δn(x) + 1)} f 1+α
θ (x)uθ (x) = 0, (12)

with δn(x) = ĝn(x)
fθ (x) −1 and uθ (x) = ∂

∂θ
log fθ (x) is the likelihood score function. For

simplicity, we rewrite Eq. (12) as
∫
K (δn(x)) f

1+α
θ (x)uθ (x) = 0 with

K (δ) = {N ′(δ)(δ + 1) − (1 + α)N (δ)}. (13)

Figure 1 presents the plots of K (δ) versus δ for the GPD subfamily of C-divergences
for a few values of α and λ. These give us an idea of how the large residuals are
controlled by the K (δ) function, although the overall outlier controlling properties of
the divergence also depend on the power (1+α) of the model density in Eq. (10). Note
that when λ = α, the curve becomes a straight line, since in this case K (δ) = δ, as
may be verified through a simple calculation; in this case, the divergence reduces to the
density power divergence with parameter α. The K (δ) curves for all the divergences
satisfy the properties K (0) = 0 and K ′(0) = 1, so that the curves are all tangential
to the K (δ) = δ line at δ = 0. The curves also indicate that for each fixed α, the
down-weighting strength is a decreasing function of λ, while for a fixed λ this power
increases with α. Clearly, large positive α and large negative λ lead to the best results
in terms of robustness. A moderately large negative value of α will require very high
negative values ofλ to offset the outlier sensitivity. Similarly, a very large positive value
of λ will work from a robustness perspective only when α is a proportionately high
positive value. All the above phenomena will be clearly illustrated in our numerical
calculations.

In addition, all members of the C-divergence family generate affine invariant esti-
mators as in the following proposition. The proof is straightforward and hence omitted.

Proposition 1 Consider the transformation Y = UX + v for some fixed non-singular
matrix U and fixed vector v of the same dimension as that of the variable X. Let gX
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1296 A. Maji et al.

Fig. 1 Plot of K (δ) versus δ for different λ and α for the GPD family (dotted line: λ = −0.5; solid line:
λ = 0; dashed line: λ = 0.5; dash-dotted line: λ = 1)

and fX be two probability density functions for the random variable X, and let gY
and fY be the respective probability density functions for the transformed variable
Y . Then, some simple algebra shows that C(gY , fY ) = kC(gX , fX ), where k =
|Det(U )|−(1+α) > 0. Thus, the minimum C-divergence estimator is always affine
equivariant, although the C-divergence itself is not necessarily affine invariant.

3.3 Influence function analysis

3.3.1 Classical first-order influence function

In order to check the robustness of the minimum C-divergence estimator, we first
derive its classical first-order influence function. Consider the contaminated distri-
bution Gε = (1 − ε)G + ε∧y , where G is the true distribution, ε ∈ [0, 1] is the
contaminating proportion and ∧y is the distribution degenerate at y. Then, the first-
order influence function is defined as IF(y; T ,G) = T ′(y) = ∂

∂ε
T (Gε)

∣∣
ε=0 . A

straightforward differentiation of estimating Eq. (12) yields its influence function to be
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Fig. 2 The influence function of
the MGPDE under the
Poisson(θ) model at θ = 5
(dotted line: α = −0.5; solid
line: α = 0; dashed line:
α = 0.5; dash-dotted line:
α = 1)

IF(y; T ,G) = J−1
g

{
uθg (y)K

′(δgg (y)) f α
θg (y) − ζg

}
, (14)

where θ g = T (G) represents the best-fitting parameter (indicating fθg is the
model element closest to g in the C-divergence sense), with δ

g
g (x) = g(x)

fθg (x) − 1,

ζg = Eg
[
uθg (X)K ′(δgg (X)) f α

θg (X)
]
and

Jg = Eg

[
uθg (X)uTθg (X)K ′(δgg (X)) f α

θg (X)
]

−
∫

K (δ
g
g (x))

[
∇uθg (x) + (1 + α)uθg (x)u

T
θg (x)

]
f 1+α
θg (x)dx . (15)

In particular, at the model distribution G = Fθ , we have θ g = θ and the above
(first-order) influence function simplifies to

IF(y; T , Fθ ) =
[∫

f 1+α
θ uθu

T
θ

]−1 {
uθ (y) f

α
θ (y) −

∫
uθ f

1+α
θ

}
, (16)

which is the same as the influence function of the density power divergence under the
model. This influence function at themodel is also independent of the choice of N (and
hence is independent of λ in the GPD subfamily). Figure 2 shows the above influence
function of the minimum GPD estimator (MGPDE) for the Poisson model under dif-
ferent α; the true distribution is Poisson(5). The influence function for α = 0 increases
linearly, while for α > 0 the influence functions are bounded and re-descending. The
α = −0.5 estimator is worse, by far, than even the α = 0 case as it inflates the effect
of the outlier faster. While this influence function is useful in that it can predict the
increasing robustness with increasing α, it fails to capture the role of the λ parameter
in the process as we will subsequently observe.

In Tables 1 and 2, we have presented the bias and theMSE of the minimumGPDα,λ

estimator (MGPDE, with different α and λ) of the parameter θ under the Poisson(`)
model based on 1000 replications of random samples of size n = 50 simulated from
the 0.9 Poisson(5) + 0.1 Poisson(25) mixture. The target parameter is the mean of
the major component (which equals 5 in this case). The behavior of the estimators
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Table 1 Bias of the MGPDEs of the Poisson mean under contaminated data (sample size 50) for various
values of λ and α

λ ↓ α → −0.9 −0.7 −0.5 −0.3 −0.1 0 0.1 0.3 0.5 0.7 0.9

−0.9 7.88 7.69 7.12 5.04 0.47 −0.37 −0.34 −0.26 −0.2 −0.15 −0.11

−0.7 7.9 7.74 7.33 5.98 1.25 −0.18 −0.2 −0.13 −0.09 −0.06 −0.03

−0.5 7.91 7.76 7.39 6.31 1.91 −0.1 −0.15 −0.08 −0.05 −0.03 0

−0.3 7.91 7.77 7.45 6.56 2.79 −0.01 −0.13 −0.05 −0.03 −0.01 0.02

−0.1 7.92 7.8 7.53 6.86 4.31 0.44 −0.16 −0.04 −0.01 −0.01 0.03

0 7.92 7.81 7.58 7.02 5.17 1.99 −0.17 −0.04 0 −0.01 0.03

0.1 7.93 7.83 7.63 7.17 5.87 4.04 0.39 −0.05 0 0.02 0.03

0.3 7.93 7.86 7.71 7.42 6.75 6.06 4.78 0.05 0 0.02 0.04

0.5 7.94 7.88 7.77 7.59 7.21 6.87 6.35 3.91 0.04 0.02 0.04

0.7 7.94 7.89 7.81 7.69 7.45 7.26 7 5.99 3.23 0.04 0.04

0.9 7.94 7.9 7.84 7.75 7.59 7.47 7.31 6.78 5.64 2.67 0.05

Table 2 MSE of the MGPDEs of the Poisson mean under contaminated data (sample size 50) for various
values of λ and α

λ ↓ α → −0.9 −0.7 −0.5 −0.3 −0.1 0 0.1 0.3 0.5 0.7 0.9

−0.9 65.58 62.56 54.33 29.16 0.56 0.39 0.37 0.32 0.29 0.27 0.26

−0.7 65.71 63.09 56.92 39.19 2.13 0.19 0.2 0.19 0.19 0.19 0.2

−0.5 65.77 63.29 57.72 42.88 4.52 0.14 0.15 0.15 0.16 0.18 0.19

−0.3 65.83 63.54 58.53 45.88 9.18 0.13 0.14 0.14 0.15 0.17 0.19

−0.1 65.93 63.92 59.71 49.72 20.55 0.43 0.15 0.13 0.15 0.17 0.18

0 65.99 64.15 60.43 51.98 28.94 4.88 0.16 0.13 0.15 0.16 0.18

0.1 66.04 64.4 61.19 54.24 36.9 18.16 0.36 0.13 0.14 0.16 0.18

0.3 66.13 64.86 62.55 58.05 48.39 39.42 25.12 0.13 0.14 0.16 0.18

0.5 66.18 65.19 63.54 60.58 54.92 50.17 43.21 17.44 0.14 0.15 0.17

0.7 66.19 65.41 64.18 62.15 58.58 55.78 51.92 38.76 12.41 0.15 0.17

0.9 66.19 65.55 64.6 63.12 60.7 58.91 56.54 49.01 34.78 8.87 0.17

observed in Tables 1 and 2 is in perfect accordance with our observations in Sect. 3.2
based on the shape of the K (δ) functions. Large positive α and large negative λ

generally lead to more robust solutions. When read with Tables S1–S4 of the Online
Supplement, it is clear that there are several members within the GPD class which
provide excellent compromise between efficiency at the model and stability under
data contamination. These include the estimators at α = 0.2 and −0.3 ≤ λ ≤ 0;
α = 0.3 and −0.2 ≤ λ ≤ 0.2; and α = 0.4 and 0.2 ≤ λ ≤ 0.3. Most of these
minimum distance estimators do not belong to any of the previously existing family of
divergences. Thus, there are many new divergences within the GPD family which can
be quite competitive with the existing standard in minimum distance inference. And
this is only the case of GPD.While we have not provided the detailed analysis, outside
this family some other members of the C-divergence class are also quite desirable in
these respect. In short, further in-depth study of the C-divergence family is likely to
produce many other divergences having excellent potential in statistical inference.
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C-divergence family 1299

It is also clear that the (first-order) influence function analysis is inadequate to
predict the behavior of these estimators. For example, the estimators with α = 0 and
moderately large negative values of λ provide highly stable estimators in contradiction
towhat is predicted by their unbounded influence functions. On the other hand, the bias
andmean square errors of several estimators with positiveα and large positive λ are lit-
erally huge, belying the behavior expected in viewof their bounded influence functions.

So we need to consider a second-order influence analysis to get a better understand-
ing of the robustness of the minimum C-divergence estimators.

3.3.2 Higher-order influence function

Consider again the contaminated distribution Gε defined in Sect. 3.3.1; the second-
order influence function of the functional T (G) can be defined as

IF2(y; T ,G) = T ′′(y) = ∂2

∂ε2
T (Gε)

∣∣∣∣
ε=0

,

whose general form can be obtained by differentiating the estimating equation twice.
We present the form of this second-order influence function at the model for the mini-
mum GPD estimator of a scalar parameter θ in the following theorem. The derivation
involves routine differentiation and is omitted.

Theorem 2 Suppose the true distribution belongs to the model family with g = fθ
with a scalar parameter θ . Then, the second-order influence function of the minimum
GPD estimator of θ is

T ′′(y) = (N p
0 D0 − N0D

p
0 )/D2

0,

where

N0 = f α
θ (y)uθ (y) − c1, D0 = c2,

N p
0 = T ′(y)p1 + (α − λ)p2, Dp

0 = T ′(y)q1 + q2,

with u′
θ (y) = ∂

∂θ
uθ (y), ci = ∫ f 1+α

θ uiθ and di = ∫ f 1+α
θ uiθu

′
θ for i = 0, 1, 2, and

p1 = (2α − λ) f α
θ (y)u2θ (y) + f α

θ (y)u′
θ (y) − (2α − λ)c2 − d0,

p2 = 2 f α
θ (y)uθ (y) − f α−1

θ (y)uθ (y) − c1,

q1 = (1 − λ + 3α)c3 + 3d1,

q2 = (2α − λ)(c2 − f α
θ (y)u2θ (y)) + d0 − f α

θ (y)u′
θ (y).

Notice that unlike the first-order influence function, the second- order influence
function of the minimum GPD estimator is quite critically dependent on the value of
λ. In order to interpret the second-order influence function, let us consider the Taylor
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series expansion of the minimum GPD functional T (·) (or, in general, any minimum
C-divergence estimator) as

T (Gε) = T (G) + εT ′(y) + ε2

2
T ′′(y),

which should give a better approximation to the bias [T (Gε) − T (G)] under contam-
ination. A measure of the limitation of the first-order bias approximation (given by
the linear approximation involving the first-order influence function T ′(y) only) can
be described by the ratio

quadratic approximation

linear approximation
= εT ′(y) + ε2

2 T
′′(y)

εT ′(y)
= 1 + [T ′′(y)/T ′(y)]ε

2
.

This specifically shows that if ε is larger than εcritical =
∣∣∣ T ′(y)
T ′′(y)

∣∣∣ , the second-order
approximationwill differ bymore than 50%compared to thefirst-order approximation.
Smaller values of εcritical demonstrate that the second-order approximation deviates
faster from the first, indicating greater inadequacy of the latter in predicting bias under
contamination.

Example: Poisson Mean
We now present a numerical example to show the performance of the second-order
influence analysis through its application in the case of the Poisson model with mean
θ . We compute the first and second-order bias approximations using their respective
expressions. For brevity, we will only present the results of some particular cases with
θ = 4, the contamination point y = 12 and some specific (α, λ) combinations. The
corresponding bias plots are shown in Figs. 3, 4 and 5, respectively, for λ = 0, λ > 0
and λ < 0. The findings in the figures are consistent with our observations in Table 1.

Comments on Fig. 3 (λ = 0): As expected, both the first-order and second-order
influence functions for α = 0 generate the same straight line (the influence function of
the first two orders are identical). For α > 0, the second-order influence function pre-
dicts a smaller bias compared to the first-order one as for all these cases the inequality
α > λ holds. The bias approximation does not vary much over the various values of
α.
Comments on Fig. 4 (λ > 0): As we have already noted large positive values of λ

lead to poor behavior in terms of robustness. This figure demonstrates that values of
α smaller than λ are usually not enough to offset this lack of robustness. The present
figure shows that as long as α < λ holds, the second-order bias approximation is larger
compared to the first order.
Comments on Fig. 5 (λ < 0): This figure highlights a behavior which complements
the observations of Fig. 4. In this case, we have chosen the α values to be larger than
the value of λ and now the second-order approximation consistently predicts a smaller
bias compared to the first- order approximation.
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Fig. 3 Bias approximations (BA; solid line: second order; dashed line: first order) for the MGPDEs with
λ = 0 over contamination proportion ε

3.4 Breakdown point analysis

In this section, we will derive the asymptotic breakdown point of the minimum C-
divergence estimator under the location model Fθ = { fθ (x) = f (x − θ) : θ ∈ �}.
The reason for using the location family for this purpose is simply that the location
family enjoys the property

∫
{ f (x − θ)}1+αdx =

∫
{ f (x)}1+αdx = Mα

f < ∞, (say)

so that the breakdown point proof avoids the problem of having the above integral
depending on the parameter. Since we are interested in the breakdown within the
model family, we will be primarily interested in the case where the true density g
belongs to the model, i.e., g = fθg . Let c(g, f ) = N (

g
f − 1) f 1+α , and define

c(g, 0) = lim f →0 c(g, f ) = lim f →0 N
(
g
f − 1

)
f 1+α. The following discussion

will assume that the class of divergences considered here satisfies the condition given
below.
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Fig. 4 Bias approximations (BA; solid line: second order; dashed line: first order) for the MGPDEs with
λ > 0 over contamination proportion ε

Assumption (C) N (−1) and N ′
α(∞) are both bounded, where N ′

α(∞) :=
limδ→∞ N (δ)

δ1+α .
It is important to note that these assumptions are satisfied by several important

members of the C-divergence family, for example, the S-divergence family—see
Eq. (9)—with B > 0; this includes the DPD family in Eq. (6) with α > 0. These
assumptions also hold for the GPD family in Eq. (10) with λ < α.

To derive the breakdown results for the above setup, we consider the contamination
model Hε,n = (1−ε)G+εVn,where {Vn} is a sequence of contaminating distributions.
Let hε,n , g and vn be the corresponding densities. The functional T is said to break
down at ε level of contamination (see Simpson 1987) if there exists a sequence {vn}
of densities such that

|T (Hε,n) − T (G)| → ∞ as n → ∞.

Wewrite below θn = T (Hε,n).Given themodel familyFθ ,wewill consider the follow-
ing assumptions for our contamination sequences for the derivation of the breakdown
point result in Theorem 3; the proof is given in the Online Supplement. Park and Basu
(2004) and Ghosh et al. (2017), among others, have utilized similar assumptions.
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Fig. 5 Bias approximations (BA; solid line: second order; dashed line: first order) for the MGPDEs with
λ < 0 over contamination proportion ε

Assumption (BP)The contaminating sequence of densities {vn}, the data density g(x)
and the model fθ (x) satisfy the following.

1.
∫
min{ fθ (x), vn(x)} → 0 as n → ∞ uniformly for |θ | ≤ a for any fixed a. That

is, the contamination distribution is asymptotically singular to specified models.
2.
∫
min{g(x), fθn (x)} → 0 as n → ∞ if |θn| → ∞ as n → ∞. That is, large values

of the parameter θ give distributions which become asymptotically singular to the
true distribution.

3. For any θ ∈ � and 0 < ε < 1, we have C(εvn, fθ ) ≥ C(ε fθ , fθ ) and
lim sup
n→∞

∫
v1+α
n ≤ Mα

f .

Theorem 3 Under Assumptions (C) and (BP), the asymptotic breakdown point ε∗ of
the minimum C-divergence functional is at least 1

2 at the model.

Remark 1 It follows from Rousseeuw and Leroy (1987) that the maximum asymptotic
breakdown point for any affine equivariant location estimator is 1/2. As the minimum
C-divergence estimator is affine equivariant (see Proposition 1), the above theorem
also establishes that the asymptotic breakdown point of the minimum C-divergence
estimator of a location parameter is exactly 1/2 at the model.

Remark 2 Theorem3 above provides a generalization of the available breakdown point
result for the minimum S-divergence estimators as derived in Ghosh et al. (2017),
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which requires both A and B to be positive along with Assumption (BP). But our
result is valid for all the S-divergence measures with only B > 0, since this itself
implies Assumption (C).

4 Asymptotic properties of theminimum C-divergence estimators
under discrete models

Let us consider the setup of discrete models where the true density g and the model
density fθ are supported, without loss of generality, on χ = {0, 1, 2, . . .}withμ being
the counting measure over χ under the notation of the previous sections. Based on n
independent and identically distributed observations X1, X2, . . . , Xn from g, let the
relative frequency at x ∈ χ be denoted as dn(x) = 1

n

∑n
i=1 I (Xi = x) where I (A) is

the indicator function for the event A.
Then, the minimum C-divergence estimator has to be obtained by minimizing the

C-divergence measure between the data dn = (dn(0), dn(1), . . .)T and the model
probability fθ = ( fθ (0), fθ (1), . . .)T with respect to θ . The corresponding estimat-
ing equation is then given by

∑
x K (δn(x)) f

1+α
θ (x)uθ (x) = 0, where now we have

δn(x) = dn(x)
fθ (x) − 1 and K (·) is as defined in Eq. (13).

Let u jθ , u jkθ and u jklθ be the first- order, second-order and third-order partial
derivatives of log fθ with respect to θ , 1 ≤ j, k, l ≤ p. Further, let θ g = T (G)

denote the best-fitting parameter and so fθg is the model element closest to g in the
C-divergence sense. Consider the matrix Jg as defined in Eq. (15) and define

Vg = Vg
[
K ′(δgg (X)) f α

θg (X)uθg (X)
]
, (17)

with δ
g
g (x) = g(x)

fθg (x) − 1.
In order to obtain the asymptotic properties of the minimum C-divergence estima-

tors (MCDEs) under this discretemodel setup,wewillmake the following assumptions
on the model family and the C-divergence generating function N (·).
Assumptions

(A1) The model familyF is identifiable meaning that different values of the parame-
ter must generate different probability distributions of the observable variables.

(A2) The model density fθ has common support {x : fθ (x) > 0} independently of
θ ; the true density g has also the same support.

(A3) There exists an open subset ω ⊂ � such that θ g is an interior point of ω and
for almost all x , fθ (x) admits all third-order partial derivatives for all θ ∈ ω.

(A4) The matrix Jg defined in Eq. (15) is positive definite.
(A5) The quantities

∑
x g

1/2(x) f α
θ (x)|u jθ (x)|, ∑x g

1/2(x) f α
θ (x)|u jθ (x)||ukθ (x)|

and
∑

x g
1/2(x) f α

θ (x)|u jkθ (x)| are bounded for all j, k and all θ ∈ ω.
(A6) For almost all x , there exist functions Mjkl(x), Mjk,l(x), Mj,k,l(x) that domi-

nate, in absolute value, f α
θ (x)u jklθ (x), f α

θ (x)u jkθ (x)ulθ (x) and f α
θ (x)u jθ (x)

ukθ (x)ulθ (x), respectively, for all j, k, l and all these dominating functions are
uniformly bounded in expectation with respect to g and fθ for all θ ∈ ω.
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Fig. 6 Relative efficiency of the MGPDE over various α

(A7) Function K (·) is twice differentiable. Also, for each θ ∈ ω, K ′(δθ (x)) and
K ′′(δθ (x))(1 + δθ (x)) are bounded uniformly in x , where δθ (x) = g(x)

fθ (x) − 1.

The first three assumptions are standard ones for any asymptotic derivation and
hold for most common parametric model families. Assumptions (A4)–(A6) are also
quite common in the literature of minimum distance methods and can be seen to hold
at the model for standard parametric families like Bernoulli, Poisson, geometric; see
Ghosh (2015) for some such illustrations. Finally, Assumption (A7) is indeed exactly
the same as that required for disparity family (Assumption A7, Basu et al. 2011, p.61)
with K (·) playing a role analogous to the residual adjustment function.

The following theorem proves the consistency and asymptotic normality of the
minimum C-divergence estimator. The proof is presented in the Online Supplement.

Theorem 4 Under Assumptions (A1)–(A7), there exists a consistent sequence θn of
roots to the minimum C-divergence estimating Eq. (12) and asymptotically

√
n(θn − θ g) ∼ Np

(
0, J−1

g Vg J
−1
g

)
.

Corollary 5 When the true distribution G belongs to the model family with g = fθ
for some θ ∈ �, then θ g = θ and

√
n(θn − θ) has an asymptotic Np(0, J−1V J−1)

distribution, where

J = Jα(θ) = Eg[uθ (X)uθ (X)T f α
θ (X)] =

∑
uθ (x)u

T
θ (x) f 1+α

θ (x) (18)

V = Vα(θ) = Vg[uθ (X) f α
θ (X)] =

∑
uθ (x)u

T
θ (x) f 1+2α

θ (x) − ιιT, (19)

ι = ια(θ) = Eg[uθ (X) f α
θ (X)] =

∑
uθ (x) f

1+α
θ (x). (20)

Note that the asymptotic distribution at themodel is again independent of the choice
of N (·) and hence is independent of the parameter λ in the GPD family. This implies
that the asymptotic efficiency of the minimum C-divergence estimator at the model
also depends only on the parameter α and in fact coincides with that of the minimum
DPD estimators. Figure 6 shows the plot of the asymptotic relative efficiency over
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α for the binomial and Poisson models; the panel labels (a) and (b) indicate the true
underlying distributions. Clearly, there is a loss in efficiency with increasing α as the
cost for higher robustness, but this loss is not very substantial at small positive values
of α.

5 Asymptotic properties of theminimum C-divergence estimator
under continuousmodels using the Basu–Lindsay approach

When the objective function relating to the minimization of a divergence represents
an i.i.d. sum over the observed data points, establishing the asymptotic properties
of the minimum divergence estimator is simple as the estimator then represents an
M-estimator. Such divergences have been called “decomposable pseudodistances” in
the literature; see, e.g., Broniatowski et al. (2012). As already observed in Section
3.1, the GPD subclass with the restriction α = λ represents a family of decomposable
pseudodistances. However, when the divergence is not decomposable and so cannot be
approximated by the empirical mean of some loss function, one does need a nonpara-
metric estimate of the true unknown density to reconstruct the empirical divergence.
When themodel is discrete, there is a natural estimate of this density given by the vector
of relative frequencies dn , which we have exploited in Section 4 to develop the asymp-
totic distribution of the corresponding estimator. In the continuous case, however, there
is no simple and natural estimate of the population density. The sampled data, even if
the model is a continuous one, are always discrete. To construct a divergence between
two densities under the samemeasure, therefore, one has to first construct a continuous
density estimate of the true unknown data generating density using methods such as
kernel density estimation. This adds an extra layer to the parameter estimation scheme.
In spite of this additional complication, the method has been successfully used in both
parametric estimation and parametric hypothesis testing by several authors including
Beran (1977), Tamura and Boos (1986), Simpson (1989) and Park and Basu (2004)
and others; also see Broniatowski and Vajda (2012). In the subsequent description, we
describe a similar approach for performing minimum divergence estimation involving
non-decomposable divergences under continuous models.

Suppose that the true density g and the model family F represent continuous den-
sities with respect to the Lebesgue measure. Under the above construct, the minimum
C-divergence estimator of θ may be obtained by minimizing C(g∗

n , fθ ), where g∗
n is

a kernel density estimate of the true density g based on the sample data X1, . . . , Xn

given by

g∗
n(x) = 1

n

n∑
i=1

W (x, Xi , νn) =
∫

W (x, y, νn)dGn(y), (21)

with W (x, y, νn) being a smooth kernel function with bandwidth νn . Usual choices
for the kernel W are given in terms of a symmetric nonnegative density function w(·)
as W (x, Xi , νn) = 1

νn
w
(
x−Xi

νn

)
. This approach of density-based minimum distance

estimation under continuous models does depend, sometimes critically, on the choice
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of the bandwidth sequence. The alternative approach of Basu and Lindsay (1994),
which we are going to follow here, attempts to nullify the effect of the bandwidth
sequence by also introducing the same distortion in the model by convoluting it with
the same kernel. Let f ∗

θ be the kernel smoothed model density given by f ∗
θ (x) =∫

W (x, y, νn) dFθ (y). In the Basu–Lindsay approach, we consider the minimization
of C(g∗

n , f ∗
θ ) in order to estimate the parameter θ . The corresponding estimating

equation is then given by

∫
K (δ∗

n)( f
∗
θ )1+α ũθ = 0, (22)

where ũθ = ∇ log f ∗
θ = ∇ f ∗

θ

f ∗
θ
, δ∗

n = g∗
n
f ∗
θ

−1 and K (δ) is as defined in Eq. (13). We will

denote the resulting estimator as the minimum C∗-divergence estimator (MCDE∗)
which is, in general, not the same as the MCDE obtained by minimizing C(g∗

n , fθ ).
However, it is possible to impose some restrictions on the kernel density estimator so
that the asymptotic properties of bothMCDEandMCDE∗ become equivalentwhen the
true density g belongs to the model family F . Unlike the unsmoothed scheme, model
smoothing allows the corresponding estimator to be consistent for fixed bandwidths
νn = ν.

For the true, unknown, data generating density g(x), let

g∗(x) =
∫

W (x, y, ν)g(y)dy

be its kernel smoothed version.We assume that a random sample X1, . . . , Xn is drawn
from the true distributionG (having density function g). A typical density in themodel
family is denoted by fθ , while its kernel smoothed version is represented by f ∗

θ . Let θ
g

represent the best-fitting parameter which satisfies C(g∗, f ∗
θg ) = minθ∈� C(g∗, f ∗

θ ).

The Pearson residuals in this context are defined as δ∗
n(x) = g∗

n(x)/ f
∗
θ (x) − 1 and

δ∗
g(x) = g∗(x)/ f ∗

θ (x) − 1. Corresponding to ũθ (x), we will also define the smoothed
partials ũ jθ (x) = ∇ j log f ∗

θ (x), and ũ jkθ (x) = ∇ jk log f ∗
θ (x).

The influence function for theminimumC∗ estimator, given in the following lemma,
results from a straightforward differentiation of Eq. (22).

Lemma 6 The influence function for the minimumC∗ functional T ∗ at the distribution
G is given by

IF(y;G, T ∗) = [J ∗g(θ g)]−1u∗g
θg (y), (23)

where u∗g
θ (y) = ∫ ũθ (x)K ′(δ∗

g(x)){ f ∗
θ (x)}α{W (x, y, ν) − g∗(x)}dx and

J ∗g(θ) =
∫

ũθ (x)ũθ (x)
TK ′(δ∗

g(x)){ f ∗
θ (x)}αg∗(x)dx

−
∫

K (δ∗
g(x))[∇ũθ (x) + (1 + α)ũθ (x)ũθ (x)

T{ f ∗
θ (x)}1+α]dx . (24)
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Corollary 7 When the true density g belongs to the model family F , i.e., g = fθ ,
the influence function for the minimum C∗ estimator functional T ∗ at the distribution
G = Fθ is given by

IF(y; Fθ , T
∗) = [J ∗(θ)]−1u∗

θ (y) (25)

where u∗
θ (y) = ∫ { f ∗

θ (x)}α ũθ (x){W (x, y, ν) − f ∗
θ (x)}dx and

J ∗(θ) =
∫

ũθ (x)ũθ (x)
T{ f ∗

θ (x)}1+αdx . (26)

Wenowprovide the regularity conditions leading to themain theoremof this section.

(B1) The model family F is identifiable.
(B2) The probability density function fθ of the model distribution has common sup-

port so that the set χ = {x : fθ (x) > 0} is independent of θ . Also the true
distribution g has the same support.

(B3) There exists an open subset ω ⊂ � such that θ g is an interior point of ω, and
for almost all x , f ∗

θ (x) admits all third-order partial derivatives for all θ ∈ ω.
(B4) The matrix J ∗g is positive definite.
(B5) The quantities

∫
g∗1/2(x) f ∗

θ
α(x)|ũ jθ (x)|,

∫
g∗1/2(x) f ∗

θ
α(x)|ũ jθ (x)||ũkθ (x)|

and
∫
g∗1/2(x) f ∗

θ
α(x)|ũ jkθ (x)| are bounded ∀ j, k and ∀θ ∈ ω.

(B6) For almost all x , there exist functions Mjkl(x), Mjk,l(x), Mj,k,l(x) that dom-
inate, in absolute value, f ∗

θ
α(x)ũ jklθ (x), f ∗

θ
α(x)ũ jkθ (x)ũlθ (x) and f ∗

θ
α(x)

ũ jθ (x)ũkθ (x)ũlθ (x), respectively, ∀ j, k, l and that are uniformly bounded in
expectation with respect to g∗ and f ∗

θ for all θ ∈ ω.
(B7) The function K (·) is twice differentiable. Also, for each θ ∈ ω, K ′(δ∗

g(x)) and

K ′′(δ∗
g(x))(1 + δ∗

g(x)) are bounded uniformly in x , where δ∗
g(x) = g∗(x)

f ∗
θ (x) − 1.

Theorem 8 Under the above set of assumptions, there exists a consistent sequence
θ∗
n of roots to the minimum C∗ estimating equation (22). Also, the asymptotic dis-
tribution of

√
n(θ∗

n − θ g) is p-dimensional normal with mean 0 and variance
[J ∗g(θ g)]−1V ∗(θ g)[J ∗g(θ g)]−1, where J ∗g(θ) is as defined in (24) and V ∗(θ) =
Var

[∫
W (x, X , ν)K ′(δ∗

g(x))( f
∗
θ (x))α ũθ (x)dx

]
.

Proof It follows along the lines of Theorem 3.19 of Basu et al. (2011). ��
Corollary 9 When the true density g belongs to the model family F , i.e., g = fθ ,
then the asymptotic distribution will be the same with the variance having the sim-
pler form [J ∗(θ)]−1V ∗

0 (θ)[J ∗(θ)]−1 with J ∗(θ) as defined in Eq. (26) and V ∗
0 (θ) =

Var
[∫

W (x, X , ν)( f ∗
θ (x))α ũθ (x)dx

]
.

6 Testing parametric hypotheses using C-divergencemeasures

Let us now move to the other important domain of statistical inference, i.e., testing of
hypothesis. Following the Basu et al. (2013) approach, we will consider two specific
cases of one- and two-sample problems in this section.
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6.1 One-sample problem

We consider a parametric family of densities F = { fθ : θ ∈ � ⊆ R
p} as in the

previous sections. Based on an observed random sample X1, . . . , Xn from a density
modeled by F , we want to test for the simple null hypothesis

H0 : θ = θ0 against H1 : θ �= θ0. (27)

It is well known that there is no uniformlymost powerful test available for this problem
for most common parametric models and the widely used likelihood ratio test (LRT)
is highly non-robust. We can alternatively perform a robust test for the hypothesis in
Eq. (27) by using the C-divergence measure between fθ0 and f

θ̂
, where θ̂ is the mini-

mumC-divergence estimator of θ based on the given sample. However, for theoretical
and computational ease, wewill introduce certainmodifications in the process. Recall-
ing that the asymptotic distribution of the minimum C-divergence estimator depends
only on the parameter α in Eq. (8), here we identify the C-divergence between the
densities g and f simply by the parameter α as Cα(g, f ), even though we allow a
general N (·) in Eq. (8). We then consider the test statistic given by

TCγ (θ̂α, θ0) = 2nCγ ( f
θ̂α

, fθ0), (28)

where θ̂α is the MDPDE of θ with tuning parameter α. The use of the estimator θ̂α

allows us to avoid the use of any nonparametric smoothing without disturbing the
asymptotic null distribution. Notice that in the test statistic defined in Eq. (28) we
allow the use of two distinct indices γ and α, although in the implementation part
we often use γ = α. In order to prove the asymptotic results related to the above
test statistic, we will make the standard assumptions on model densities as given
by Assumptions (A)–(D) of Lehmann (1983, p. 429), to be referred to herein as the
“Lehmann conditions”; these conditions are provided in the Online Supplement. If the
true data generating density is fθ0 , we have

√
n
(
θ̂α − θ0

) D→
n→∞ Np

(
0, Jα(θ0)

−1Vα(θ0)Jα(θ0)
−1
)

,

where Jα(θ) and Vα(θ) are as in Corollary 5. We then have the following theorem.

Theorem 10 Suppose the model densities satisfy the Lehmann conditions. Then, under
the null hypothesis H0 : θ = θ0, the test statistic TCγ (θ̂α, θ0) has the same asymptotic
distribution as the distribution of

∑r
i=1 ζ

γ,α

i (θ0)Z2
i where Z1, . . . , Zr are indepen-

dent standard normal variables, ζ γ,α
1 (θ), . . . , ζ

γ,α
r (θ) are the nonzero eigenvalues of

Jγ (θ)J−1
α (θ)Vα(θ)J−1

α (θ) and

r = rank(J−1
α (θ0)Vα(θ0)J

−1
α (θ0)Jγ (θ0)J

−1
α (θ0)Vα(θ0)J

−1
α (θ0)).

Notice that the asymptotic null distribution of the test statistic depends only on
the two parameters γ and α. We now give an approximation to the power function
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of the proposed test based on the statistic in Eq. (28). Although the asymptotic null
distribution is independent of the choice of N (·) of theC-divergence family (and hence
the parameter λ of the GPD family), we will see that the approximate (asymptotic)
power function depends on C(·, ·), and therefore obviously on N (·) (equivalently on
λ for the GPD family).

Theorem 11 Suppose the model densities satisfy the Lehmann conditions. An approx-
imation to the power function of test statistic (28) for testing (27) at the significance
level α0 is given by

πn,α0(θ
∗) = 1 − Φ

( √
n

σ(θ∗)

(
tα,γ
α0

2n
− Cγ ( fθ∗ , fθ0)

))
, θ∗ �= θ0 (29)

where Φ is the standard normal distribution function, tα,γ
α0 is the (1 − α0)th quantile

of the asymptotic null distribution of TCγ (θ̂α, θ0), and σ 2(θ) is defined as σ 2(θ) =
MCγ (θ)T J−1

α (θ)Vα(θ)J−1
α (θ)MCγ (θ) with MCγ (θ) = ∇Cγ ( fθ0 , fθ ).

6.2 Two-sample problem

We will now consider the case of two independent random samples X1, . . . , Xn and
Y1, . . . ,Ym of sizes n and m, respectively. We will assume that the corresponding
population densities belong the parametric family F = { fθ : θ ∈ � ⊆ R

p} with
parameter values θ1 and θ2, respectively. Our objective is to test for the homogeneity
of the two samples based on the observed data, which is equivalent to testing the
hypothesis

H0 : θ1 = θ2 against H1 : θ1 �= θ2. (30)

As a natural extension of the previous cases, we will use the statistic

SCγ ((1)θ̂α,(2) θ̂α) = 2nm

n + m
Cγ ( f(1)θ̂α

, f(2)θ̂α
), (31)

where (1)θ̂α and (2)θ̂α are the MDPDEs of θ1 and θ2, respectively. The next theorem
presents the asymptotic null distribution of the proposed test statistic.

Theorem 12 Suppose the model densities satisfy the Lehmann conditions. Then, under
the null hypothesis H0 : θ1 = θ2, the test statistic SCγ ((1)θ̂α,(2) θ̂α) has the same
asymptotic distribution as the distribution of

∑r
i=1 ζ

γ,α

i (θ1)Z2
i where Z1, . . . , Zr

and ζ
γ,α
1 (θ), . . . , ζ

γ,α
r (θ) are as defined in Theorem 10 with

r = rank(J−1
α (θ1)Vα(θ1)J

−1
α (θ1)Jγ (θ1)J

−1
α (θ1)Vα(θ1)J

−1
α (θ1).

Once again, one can also derive an approximation to the power for the two-sample
test based on SCγ ((1)θ̂α,(2) θ̂α); this approximation is given in the next theorem. The
proof is similar to that in the one-sample case.
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Theorem 13 Suppose the model densities satisfy the Lehmann conditions. An approx-
imation to the power function of the test statistic SCγ ((1)θ̂α,(2) θ̂α) for testing the
hypothesis in Eq. (30) at the significance level α0 is given by

πm,n,α0(θ1, θ2) = 1 − Φ

⎛
⎝
√

nm
n+m

σ̄ (θ1, θ2)

(
sα,γ
α0

2

n + m

nm
− Cγ ( fθ1 , fθ2)

)⎞
⎠ , θ1 �= θ2

where Φ is the standard normal distribution function, sα,γ
α0 is the (1− α0)th quantile

of the asymptotic null distribution of SCγ ((1)θ̂α,(2) θ̂α) and σ̄ (θ1, θ2) is defined as

σ̄ 2(θ1, θ2) = ωGT
γ J

−1
α (θ1)Vα(θ1)J

−1
α (θ1)Gγ

+(1 − ω)HT
γ J−1

α (θ2)Vα(θ2)J
−1
α (θ2)Hγ (32)

with Gγ = (gγ
1 , . . . , gγ

p )
T, Hγ = (hγ

1 , . . . , hγ
p)

T and gγ

i = ∂C( fθ1 , fθ2 )

∂θ1i
, hγ

i =
∂C( fθ1 , fθ2 )

∂θ2i
for i = 1, . . . , p, and ω ∈ (0, 1) is the limit of m

n+m as n,m → ∞.

Remark 3 While we have described the development of the test statistics with the
continuous models in mind (where avoiding the nonparametric smoothing compo-
nent provides a major benefit), we can continue with the actual minimizers of the
C-divergence (rather than the MDPDEs) in discrete models. A two-sample test of
hypothesis presented in Sect. 7.4 based on the Poisson model and the GPD family
makes use of the MGPDEs, rather than just the MDPDEs. This does not change the
asymptotic null distribution of the test statistics.

Remark 4 We have considered the simple null hypothesis when developing the test
statistics in this section. With some additional machinery, these can be extended to
handle composite nulls. For brevity, we do not consider that situation in this paper.

7 Examples

In this section, we present some examples and numerical simulations for the GPD
family. Other possible choices of N (δ) are explored in Sect. 7.5.

7.1 Drosophila data: estimation problem

We consider the data presented by Woodruff et al. (1984) involving a sex-linked
recessive lethal test in Drosophila (fruit flies). The first two rows of Table 3 show the
frequencies of number of recessive lethal mutations observed among the daughters
of male flies exposed to certain doses of a chemical to be screened. The remaining
rows of the table present the estimated frequencies for several MGPDEs of θ under
the Poisson(θ ) model. A more detailed description of the estimators (without the
frequencies) are given in Table 4. The observations at x = 3 and x = 4 appear to
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1312 A. Maji et al.

Table 3 Fits of the Poisson model to the Drosophila data using MLE and the GPD methods with several λ
and α. ML+D denotes the outlier deleted MLE

Values observed frequency Recessive lethal count θ̂

0 1 2 3 4 ≥ 5
23 3 0 1 1 0

Fits based on MLE

MLE 19.59 7.00 1.25 0.15 0.01 – 0.3571

ML+D 24.95 2.88 0.17 0.01 – – 0.1154

Fits based on MGPDE with parameter λ, α (existing members)

λ = α = −0.5 (DPD−0.5) 13.06 9.96 3.80 0.96 0.18 0.03 0.7624

λ = −0.5, α = 0 (PD−0.5) 24.70 3.09 0.19 0.01 – – 0.1252

λ = 0.5, α = 0 (PD0.5) 15.58 9.13 2.68 0.52 0.08 0.01 0.5862

λ = 0.5, α = 0.5 (DPD0.5) 24.11 3.60 0.27 0.01 – – 0.1493

λ = 1, α = 1 (DPD1) 23.78 3.88 0.32 0.02 – – 0.1633

Fits based on MGPDE with parameter λ, α (new members)

λ = −0.5, α = 0.3 25.02 2.81 0.16 0.01 – – 0.1125

λ = −0.3, α = 0.1 25.12 2.72 0.15 0.01 – – 0.1084

λ = −0.1, α = 0.2 25.08 2.76 0.15 0.01 – – 0.1101

λ = 0, α = 0.2 24.81 3.00 0.18 0.01 – – 0.1211

λ = 0.1, α = 0.3 24.84 2.98 0.18 0.01 – – 0.1199

Table 4 The MGPDEs of θ for various values of λ and α for the Drosophila data

λ ↓ α → −0.9 −0.7 −0.5 −0.3 −0.1 0 0.1 0.3 0.5 0.7 0.9

−0.9 0.65 0.62 0.46 0.24 0.1 0.07 0.07 0.09 0.11 0.12 0.14

−0.7 0.82 0.79 0.67 0.42 0.16 0.1 0.09 0.11 0.13 0.14 0.15

−0.5 0.9 0.87 0.76 0.55 0.23 0.13 0.1 0.11 0.13 0.14 0.15

−0.3 0.94 0.91 0.82 0.65 0.34 0.18 0.11 0.11 0.13 0.14 0.15

−0.1 0.97 0.94 0.85 0.71 0.46 0.29 0.15 0.11 0.13 0.15 0.16

0 0.98 0.95 0.86 0.73 0.51 0.36 0.2 0.12 0.13 0.15 0.16

0.1 0.99 0.96 0.88 0.75 0.55 0.42 0.26 0.12 0.13 0.15 0.16

0.3 1.01 0.97 0.9 0.79 0.62 0.51 0.39 0.17 0.13 0.15 0.16

0.5 1.02 0.98 0.91 0.81 0.67 0.59 0.48 0.27 0.15 0.15 0.16

0.7 1.03 0.99 0.92 0.83 0.71 0.64 0.56 0.37 0.21 0.15 0.16

0.9 1.04 0.99 0.93 0.85 0.75 0.68 0.61 0.45 0.29 0.18 0.16

represent moderate outliers. The rows corresponding to ML and ML+D represent the
analysis based on the method of maximum likelihood on the full data and the outlier
deleted data, respectively. It may be seen that the estimators corresponding to α > 0,
λ < 0, or small positive λ combined with moderately large positive α have the highest
outlier stability and are closest to the outlier deletedMLE in magnitude. Note also that
the five estimators in the lower block of Table 3 do not belong to any existing family of
minimum distance estimators but yet are extremely close to the outlier deleted MLE.
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Fig. 7 Various fits on
Newcomb’s data (solid line:
normal fit based on the MLE for
full data, dashed line: normal fit
based on the MLE for outlier
deleted data, dotted line: normal
fit using GPDλ=−0.5,α=0.5 for
full data)

7.2 Newcomb’s Data

This example has been taken from Stigler (1977, Table 5) and involves data on
speed of light as reported by S. Newcomb. The data clearly show (see histogram
in Fig. 7) that there is a dominant bell-shaped structure, which is, however, blemished
by two large outliers. The maximum likelihood estimates of the location param-
eter and the scale parameter for the full data under the N (μ, σ 2) model come
out to be 26.21 and 10.66, respectively; without these two outliers, the estimates
shift to 27.75 and 5.04, respectively. To calculate the minimum GPD estimates, we
have used the kernel density estimator with the Gaussian kernel for the construc-
tion of the divergence. The bandwidth νn has been taken as νn = 1.06σnn−1/5

where σn = mediani |Xi − median j X j |/0.6745. We have used the smoothed model
approach (Basu and Lindsay 1994) where the model is smoothed with the same kernel
function. The estimates ofμ and σ are given in Tables 5 and 6. The observations match
our previous findings in that the (α, λ) combinations which we have so far been found
to be more robust continue to provide superior performance in this case as well.

7.3 The hypothesis testing problem: a simulation exercise

In this section, we consider an extensive simulation study where we compare the test
statistics based on GPD with some other possible competitors. Consider the set up
presented in Sect. 6.1, and the hypothesis considered in Eq. (27). For the GPD, the
test statistic presented in Eq. (28) reduces to

TGPDα,λ(θ̂α,λ, θ0) = 2nGPDα,λ( fθ̂α,λ
, fθ0) (33)

where θ̂α,λ is the MGPDE of θ with parameters (α, λ). For comparison, we consider
Wald-type test statistics based on the popular M-estimators given by

Wψ = n(θ̂ψ − θ0)
T(�ψ(θ̂ψ))−1(θ̂ψ − θ0), (34)

where θ̂ψ is an M-estimator of θ defined as the solution of the estimating equation∑n
i=1 ψ (Xi , θ) = 0, for some suitable ψ-function (see, e.g., Hampel et al. 1986).
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Table 5 The MGPDEs of μ for the Newcomb data for various values of λ and α

λ ↓ α → 0 0.1 0.2 0.3 0.4 0.5

−0.9 27.7249 27.6968 27.6551 27.6146 27.5754 27.5374

−0.8 27.7282 27.7015 27.6589 27.6179 27.5784 27.5402

−0.7 27.7309 27.7064 27.6628 27.6212 27.5814 27.5430

−0.6 27.7327 27.7115 27.6668 27.6244 27.5843 27.5457

−0.5 27.7331 27.7172 27.6710 27.6277 27.5872 27.5484

−0.4 27.7300 27.7235 27.6756 27.6312 27.5902 27.5512

−0.3 27.7171 27.7306 27.6808 27.6348 27.5932 27.5539

−0.2 27.6739 27.7379 27.6870 27.6389 27.5963 27.5567

−0.1 27.5418 27.7408 27.6942 27.6436 27.5997 27.5595

0 26.2121 27.7173 27.7013 27.6491 27.6034 27.5625

0.1 26.9916 27.5759 27.7001 27.6552 27.6077 27.5657

0.2 26.7532 26.7253 27.6489 27.6582 27.6125 27.5693

0.3 26.2675 26.5729 26.7820 27.6381 27.6162 27.5732

Table 6 The MGPDEs of σ for the Newcomb data for various values of λ and α

λ ↓ α → 0 0.1 0.2 0.3 0.4 0.5

−0.9 4.9647 4.9291 4.9406 4.9387 4.9234 4.9008

−0.8 4.9786 4.9347 4.9465 4.9450 4.9296 4.9065

−0.7 4.9920 4.9382 4.9512 4.9505 4.9353 4.9121

−0.6 5.0059 4.9393 4.9543 4.9553 4.9406 4.9174

−0.5 5.0229 4.9376 4.9556 4.9591 4.9455 4.9226

−0.4 5.0490 4.9327 4.9545 4.9617 4.9498 4.9274

−0.3 5.1026 4.9246 4.9504 4.9627 4.9534 4.9320

−0.2 5.2405 4.9161 4.9423 4.9615 4.9560 4.9362

−0.1 5.6150 4.9234 4.9302 4.9572 4.9571 4.9398

0 10.6636 5.0142 4.9196 4.9491 4.9560 4.9424

0.1 15.2984 5.4804 4.9426 4.9395 4.9521 4.9435

0.2 17.1436 12.6237 5.1509 4.9448 4.9460 4.9426

0.3 18.2700 15.3856 11.0103 5.0495 4.9472 4.9399

Under the null hypothesis and some regularity conditions,
√
n(θ̂ψ − θ0) is asymptot-

ically p-variate normal with variance �ψ(θ0) and hence the Wald-type test statistics
Wψ has an asymptotic χ2 distribution with p degrees of freedom. In this paper, we
consider two particular M-estimators—(i) the optimal B-robust M-estimator corre-
sponding to the Huber’s ψ-function given by

ψc(x, t) =

⎧⎪⎨
⎪⎩

−c for x ≤ √
t(β − c),

+c for x ≥ √
t(β + c),

x√
t
− β for otherwise,

(35)
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Table 7 Simulated levels for the GPD tests with pure data under the Poisson model (sample size 20) for
various values of λ and α; the nominal level is 5%

λ ↓ α → −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.9 0.182 0.315 0.322 0.296 0.262 0.228 0.189 0.165 0.138

−0.8 0.068 0.192 0.211 0.206 0.187 0.156 0.137 0.122 0.104

−0.7 0.037 0.119 0.148 0.146 0.123 0.117 0.107 0.097 0.089

−0.6 0.024 0.087 0.096 0.099 0.096 0.098 0.087 0.076 0.069

−0.5 0.021 0.076 0.083 0.08 0.081 0.075 0.075 0.068 0.061

−0.4 0.021 0.064 0.079 0.074 0.071 0.066 0.059 0.06 0.055

−0.3 0.027 0.063 0.072 0.067 0.062 0.057 0.053 0.048 0.044

−0.2 0.032 0.068 0.069 0.062 0.057 0.05 0.045 0.045 0.039

−0.1 0.037 0.074 0.069 0.062 0.056 0.049 0.041 0.037 0.033

0 0.045 0.087 0.078 0.06 0.052 0.042 0.037 0.035 0.031

and (ii) the optimal V -robust re-descending M-estimator corresponding to the hyper-
bolic tangent (tanh) ψ-function given by

ψc(x, t) = c tanh

(
x − β

c
√
t

)
, (36)

where β = β(t) is obtained from
∫

ψc(x, t)dFt = 0 in both cases; Simpson et al.
(1987) studied the asymptotic properties of these estimators under discrete models
including our example of the Poisson model.

In addition, we provide some divergence-based competitors of the GPD based
tests. In particular, we choose two members of the tests based on the S-divergence
family (see Ghosh et al. 2015, and Ghosh and Basu 2016 for details of the use of
S-divergence in hypothesis testing problems). The form of the S-divergence based on
tuning parameters (λ, α) is based on the N (·) function given by Eq. (9), and the actual
tuning parameters used in relation to this divergence in described are the relevant table.

We have considered the Poisson model in our simulations. Let θ represent the mean
parameter of interest, and we are interested in testing the null hypothesis H0 : θ = 5
against H1 : θ �= 5. The entire exercise was based on samples of size 20 with 1000
replications. For the first study, data were generated from the Poisson(5) distribution.
The empirical level of the test for this scenario with pure data was computed as the
proportion of test statistics (out of the 1000 replications) that exceed the upper 5%
critical value of the χ2(1) distribution. For the GPD-based tests, these levels are
presented in Table 7. Contaminated data were then generated from the 0.9 Poisson(5)
+ 0.1 Poisson(25) mixture, and the same set of hypotheses were tested with these
contaminated data. The empirical levels of the GPD tests, under these contaminated
data, were computed as in the previous cases and are presented in Table 8. Pure
data were then generated from the Poisson(3) distribution, and the same hypotheses
were again tested to determine the empirical power of the tests under pure data. The
empirical powers for the GPD are presented in Table 9. Contaminated data were
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Table 8 Simulated levels for the GPD tests with contaminated data under the Poisson model (sample size
20) for various values of λ and α; the nominal level is 5%

λ ↓ α → −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.9 0.881 0.873 0.748 0.267 0.311 0.272 0.236 0.206 0.177

−0.8 0.868 0.879 0.814 0.389 0.225 0.205 0.183 0.165 0.143

−0.7 0.865 0.873 0.845 0.511 0.177 0.162 0.145 0.124 0.11

−0.6 0.867 0.874 0.851 0.597 0.128 0.127 0.11 0.099 0.091

−0.5 0.871 0.871 0.86 0.662 0.104 0.101 0.09 0.082 0.073

−0.4 0.872 0.872 0.864 0.736 0.085 0.089 0.076 0.07 0.061

−0.3 0.873 0.874 0.868 0.788 0.078 0.078 0.065 0.059 0.057

−0.2 0.873 0.878 0.873 0.834 0.093 0.074 0.057 0.049 0.051

−0.1 0.875 0.878 0.877 0.858 0.207 0.082 0.049 0.044 0.046

0 0.876 0.88 0.878 0.872 0.707 0.105 0.048 0.039 0.039

Table 9 Simulated powers for the GPD tests with pure data under the Poisson model (sample size 20) for
various values of λ and α; the nominal level is 5%

λ ↓ α → −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.9 0.999 1 0.998 0.998 0.994 0.99 0.983 0.979 0.969

−0.8 0.998 1 1 0.999 0.995 0.99 0.989 0.98 0.969

−0.7 0.989 1 1 1 0.997 0.991 0.989 0.985 0.971

−0.6 0.984 1 1 1 0.998 0.992 0.991 0.987 0.973

−0.5 0.979 0.999 1 0.998 0.998 0.995 0.992 0.988 0.978

−0.4 0.97 0.996 1 0.998 0.998 0.996 0.992 0.986 0.978

−0.3 0.96 0.993 0.999 0.998 0.997 0.996 0.992 0.986 0.981

−0.2 0.95 0.991 0.997 0.998 0.997 0.996 0.993 0.987 0.982

−0.1 0.939 0.99 0.994 0.998 0.996 0.995 0.991 0.987 0.982

0 0.934 0.988 0.993 0.996 0.997 0.995 0.991 0.986 0.983

Table 10 Simulated powers for the GPD tests for contaminated data under the Poisson model (sample size
20) for various values of λ and α; the nominal level is 5%

λ ↓ α → −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.9 0.513 0.593 0.746 0.992 0.994 0.991 0.984 0.976 0.966

−0.8 0.563 0.589 0.635 0.969 0.996 0.993 0.986 0.979 0.967

−0.7 0.586 0.598 0.586 0.919 0.995 0.994 0.992 0.981 0.969

−0.6 0.614 0.608 0.561 0.831 0.995 0.994 0.992 0.981 0.966

−0.5 0.64 0.631 0.563 0.728 0.989 0.995 0.991 0.982 0.964

−0.4 0.665 0.645 0.567 0.637 0.986 0.995 0.991 0.98 0.968

−0.3 0.687 0.672 0.583 0.536 0.977 0.992 0.991 0.981 0.968

−0.2 0.703 0.702 0.612 0.513 0.938 0.989 0.989 0.98 0.967

−0.1 0.727 0.731 0.648 0.514 0.812 0.984 0.988 0.978 0.966

0 0.742 0.759 0.684 0.578 0.535 0.962 0.982 0.975 0.965
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Table 11 Simulated levels and powers with pure and contaminated (Cont.) data under the Poisson model
using different competitive tests (sample size 20); the nominal level is 5%

Test S(−1, 0.5) S(−0.5, 0.3) MH(1) MH(1.5) MH(2) MT

Level Pure data 0.072 0.065 0.055 0.045 0.039 0.105

Cont. data 0.087 0.080 0.057 0.070 0.119 0.116

Power Pure data 0.953 0.994 0.875 0.894 0.903 0.992

Cont. data 0.926 0.987 0.672 0.675 0.668 0.984

S(λ, α): S-divergence-based tests with tuning parameters (λ, α)
MH(c): M-estimator-based Wald-type tests for the Huber ψ-function with different c
MT: M-estimator-based Wald-type tests for the tan-hyperbolic ψ-function with c = 1

Table 12 Frequencies of the
number of recessive lethal
daughters for the Drosophila
data used in the two-sample
testing problem

x 0 1 2 3 4 5 6 7

Observed (control) 159 15 3 0 0 0 0 0

Observed (treated) 110 11 5 0 0 0 1 1

then generated from the 0.9 Poisson(3) + 0.1 Poisson(15) mixture, and the empirical
powers under these contaminated data were computed. For the GPD-based test, these
powers are presented in Table 10. The pure and contaminated levels and powers of the
S-divergence-based tests and the M-estimator-based tests are presented in Table 11.

A quick comparison shows that several members of the GPD-based tests, partic-
ularly those with small positive values of α and small negative values of λ provide
excellent compromise between pure data efficiency and stability under contaminated
data. These tests have minimal inflation in level and minimal drop in power under con-
tamination and clearly have superior performance compared to the S-divergence-based
tests and the M-estimator- based tests.

7.4 A two-sample hypothesis testing problemwith Drosophila data

In this section, we will consider a two-sample Drosophila dataset, where the male
flies in the treated group were exposed to 2000 µg butyraldehyde; the other group
was exposed only to control conditions. As in Sect. 7.1, the observations in Table 12
represent the frequencies of the number of recessive lethal mutations among daughter
flies. See Woodruff et al. (1984) and Simpson (1989) for more details of the experi-
mental set up. The responses are assumed to be Poisson with means θ1 (control group)
and θ2 (treated group), respectively. The frequencies corresponding to x = 6, 7 for
the treated group can be considered as outliers. We will demonstrate that our methods
provide stable inference discounting the effects of these outliers.

Let p(θ) denote the Poisson probability mass function with parameter θ , n and m
are the sample sizes from the two populations, (1)θ̂α,λ and (2)θ̂α,λ are the MGPDEs of
the two population parameters corresponding to α and λ, and (0)θ̂α,λ is the common
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Table 13 The MGPDEs of the Poisson parameters for the two-sample Drosophila data (the numbers in the
bracket show the corresponding estimates after deleting the two outliers)

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

(1)θ̂α,λ=0.1 0.1201 0.1135 0.1044 0.1003 0.0995 0.1003
(2)θ̂α,λ=0.1 0.3967 0.1745 0.1266 0.118 0.1179 0.1221

(0.1716) (0.1545) (0.1272) (0.1144) (0.1125) (0.1152)
(0)θ̂α,λ=0.1 0.2568 0.1375 0.1136 0.1077 0.1072 0.1095

(0.1415) (0.1303) (0.1137) (0.1063) (0.105) (0.1066)

MGPDE under the null. We consider the hypothesis

H0 : θ1 = θ2 against H1 : θ1 �= θ2. (37)

As described in Remark 3, the test statistic for testing hypothesis (37) is given, under
obvious modifications of the symbols in Theorem 12, by

∗Sγ,λ(
(1)θ̂α,λ,

(2) θ̂α,λ) = 1

ζ((0)θ̂α,λ)

2nm

n + m
GPDγ,λ(p(

(1)θ̂α,λ), p(
(2)θ̂α,λ)),

where ζ((0)θ̂α,λ) = Aγ ((0)θ̂α,λ)Vα((0)θ̂α,λ)J−2
α ((0)θ̂α,λ) with Aγ (θ)

= ∑∞
x=0

(
e−θ θ x

x !
)1+γ ( x

θ
− 1
)2, Jα(θ) = ∑∞

x=0

(
e−θ θ x

x !
)1+α ( x

θ
− 1
)2 and Vα(θ) =

∑∞
x=0

(
e−θ θ x

x !
)1+2α ( x

θ
− 1
)2 −

[∑∞
x=0

(
e−θ θ x

x !
)1+α ( x

θ
− 1
)]2

. We have used γ = α

in our simulations. The change in the estimators over α is displayed for some specific
cases in Table 13. The Chi-square (1 degree of freedom) p values for various values
of λ and α with and without outliers are shown in Tables 14 and 15, respectively. The
numbers again show that the α > 0 and λ < 0 combinations are most successful in
providing stable decisions with or without the outliers.

7.5 Inference with other forms of N(ı): combined disparities

While the results of our paper are general, all our illustrations so far have been with
respect to the GPD, where the N (δ) function coincides with the function ξλ(δ) of the
power divergence family. In this section, we consider other functions for N (δ) beyond
the ordinary power divergence family. While many forms may be contemplated, we
have taken a combined function approach to enhance the scope of applicability of
our methods where we technically go beyond the GPD class, but use the nature of the
functionswithin theGPDclass in producing divergenceswith improved performances.
Weconsider the general formof theC-divergence as given inEq. (8), but to differentiate
between the treatment of positive (outliers) and negative (inliers) Pearson residuals,
we propose to combine two distinct disparity generating functions within the GPD
family corresponding to two different values of λ. It is clear that a negative value
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Table 14 The p values of the
GPD-based tests for different
tuning parameters with γ = α

for the two-sample Drosophila
data with outliers

λ ↓ α → 0 0.1 0.3 0.5 0.7 0.9

−0.9 0.664 0.778 0.802 0.759 0.685 0.611

−0.7 0.551 0.709 0.775 0.751 0.682 0.608

−0.5 0.459 0.644 0.741 0.739 0.677 0.605

−0.3 0.359 0.587 0.694 0.721 0.67 0.601

−0.1 0.115 0.547 0.636 0.696 0.66 0.595

0 0.006 0.472 0.609 0.679 0.655 0.593

0.1 0 0.179 0.587 0.661 0.648 0.59

0.3 0 0 0.461 0.618 0.627 0.581

0.5 0 0 0.004 0.549 0.602 0.57

0.7 0 0 0 0.055 0.563 0.555

0.9 0 0 0 0 0.193 0.534

Table 15 The p values of the
GPD-based tests for different
tuning parameters with γ = α

for the two-sample Drosophila
data without outliers

λ ↓ α → 0 0.1 0.3 0.5 0.7 0.9

−0.9 0.665 0.764 0.86 0.858 0.828 0.797

−0.7 0.554 0.688 0.835 0.852 0.826 0.796

−0.5 0.463 0.609 0.803 0.844 0.825 0.795

−0.3 0.383 0.526 0.759 0.829 0.819 0.794

−0.1 0.315 0.444 0.698 0.807 0.813 0.791

0 0.288 0.406 0.664 0.792 0.809 0.789

0.1 0.262 0.371 0.627 0.775 0.803 0.788

0.3 0.222 0.312 0.549 0.73 0.786 0.783

0.5 0.194 0.266 0.476 0.674 0.762 0.774

0.7 0.174 0.232 0.412 0.61 0.73 0.761

0.9 0.159 0.208 0.359 0.546 0.687 0.744

of λ is more appropriate for dealing with outliers. However, there is a large body
of the literature which indicates that such values of λ are not adequate in dealing
with inliers, observations with less data than what is expected under the model; see,
e.g., Basu et al. (2011). The inlier concerns are better handled by positive values of
λ. To accommodate all these considerations, one could consider, for example, the
C-divergence corresponding to a disparity generating function N (δ) of the form

N (δ) =
{

ξλ=−0.5(δ) if δ ≥ 0,

ξλ=1(δ) if δ < 0,
(38)

and some fixed value of α. We would not expect the minimum divergence estimator
generated by the above divergence (which we will loosely refer to as the combined
GPD) to be any inferior (in terms of robustness) to the minimum GPD estimator
corresponding to λ = −0.5 and the same α, as the modification in Eq. (38) has not
tampered with the outlier controlling capability of the divergence. However, we do
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Table 16 The MSEs of the estimators corresponding to different values of α for the ordinary GPD at
λ = − 0.5, and the corresponding combined divergence defined in Eq. (38)

α 0 0.2 0.4 0.6 0.8

Pure data (ε = 0)

Ordinary GPD (λ = − 0.5) 0.2873 0.3313 0.3806 0.4351 0.5023

Combined GPD 0.2439 0.2764 0.3241 0.3832 0.4588

Contaminated data (ε = 0.1)

Ordinary GPD (λ = − 0.5) 0.3524 0.4152 0.4804 0.5492 0.6063

Combined GPD 0.2978 0.3129 0.37 0.4493 0.5159

expect such modifications to improve the small sample efficiencies of the minimum
divergence estimators, as they handle the inliers better. We choose data from the
(1 − ε)Poisson(5) + εPoisson(25) mixture and, assuming that the data come from
a pure Poisson model, estimate the value of the mean parameter θ . We do this for
ε = 0, 0.1, so that the performances are evaluated at pure data as well as at a moderate
level of contamination. In Table 16, we present the MSEs of our estimators against
the target parameter 5, using the GPD at λ = −0.5 and several values of α, as well
as the combined GPD as defined in (38) with the same values of α. The sample size
is 20, and the number of replications is 1000. It may be easily seen that in each case
there is a very substantial improvement in the mean square error of the estimator due
to the use of the combined disparity generating function.

8 Conclusion

Statistical divergences, as many authors have noticed, have a natural role in robust
inference. Density-based divergences, in particular, often combine a high degree of
efficiency with strong robustness properties. The power divergence, the density power
divergence, the class of disparities, the family of S-divergences and the class of gen-
eralized S-divergences all come under the larger umbrella of the C-divergence family
described in this paper. In this sense, the latter class provides a very large scheme
of density-based minimum divergence methods, which essentially subsumes all the
major existing single-integral density-based procedures. Here we have studied many
important properties of the inference procedures based on the class of C-divergences.
Extensive numerical evidence has been provided to substantiate the theoretical prop-
erties studied in the paper. On the whole, we expect that this consolidates much of the
previous work done on density-based divergences and could present a wide range of
options for the practitioner.
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