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Abstract

Consider the following nonparametric model: Y;,; = g(x,i) + €ui, | <i < n, where
Xni € A are the nonrandom design points and A is acompact set of R” for some m > 1,
g(+) is a real valued function defined on A, and ¢,1, ..., &,, are p~-mixing random
errors with zero mean and finite variance. We obtain the Berry—Esseen bounds of the
weighted estimator of g(-). The rate can achieve nearly O (n~Y*) when the moment
condition is appropriate. Moreover, we carry out some simulations to verify the validity
of our results.

Keywords Berry—Esseen bound - p~-mixing random errors - Nonparametric
regression model - Weighted estimator

1 Introduction
Consider the following nonparametric model:
Yui = gCni) +&ni, 1<i=<n, (D

where x,,; € A are the nonrandom design points and A is a compact set of R” for
some m > 1, g(-) is a real valued function defined on A, and ¢,1, . . ., &, are random
errors with zero mean and finite variance.

It is well known that the regression models have substantial applications in prac-
tical problems. Stone (1977) first introduced a weighted regression method to get
the estimator of g(-), and then Georgiev (1985) adapted it to the fixed design case.
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Since then, many authors were devoted to studying the asymptotic properties for the
weighted regression estimator. One can refer to Roussas (1989), Fan (1990), Roussas
et al. (1992), Tran et al. (1996), Hu et al. (2002, 2003), Liang and Jing (2005), Yang
et al. (2012), Shen et al. (2015), Wang et al. (2015), and Shen (2016) among others
for the details.

As we know that, the independent assumption on random errors is not always
reasonable in many stochastic models and realistic applications, since the samples
are usually dependent. So it is more practice to assume that the random errors satisfy
dependent structures. In this work, we will study the Berry—Esseen bounds of the
weighted estimator in a nonparametric regression model based on p~-mixing errors,
the concept of which will be stated below.

Now let us recall some concepts of dependence. The first one is the concept of
negatively associated (NA, for short) random variables, which was introduced by Joag-
Dev and Proschan (1983) as follows.

Definition 1 A finite family of random variables {X;, 1 < i < n} is said to be NA if
for every pair of disjoint subsets A and B of {1, 2, ..., n} and any real coordinatewise
nondecreasing functions f] on R4 and f>» on RB,

Cov(fi(Xi,i € A), fa(X;,j € B)) =0,

whenever the covariance above exists. An infinite family of random variables is NA
if every finite subfamily is NA.

Another important concept of dependent random variables is p*-mixing, which was
introduced by Bradley (1992) as follows.

Definition 2 A sequence {Xy, k > 1} of random variables is called p*-mixing if
0" (s) =sup{p(S,T); S, T C N,dist(S,T) > s} — 0
as s — 00, where

|Cov(X, V)|
/ Var(X)Var(Y)

The following are some examples satisfying p*-mixing structure.

p(S, T)= sup{ X elyo(Xi,kel)),Y e Lo(o( Xk, k € T))} .

Example 1 Let {&,} be a sequence of i.i.d. random variables with zero mean and finite
variance. Define

/

Xn = chénfj

j=0

for some positive integer / and constants ¢;, j =0, 1, ..., [. Then {X,} is known as a
moving average process with older /. It can be easily verified that { X} is a p™-mixing
process.
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Example 2 Let {X,,n > 1} be a strictly stationary, finite-state, irreducible and aperi-
odic Markov chain. Then it is a p*-mixing process with p*(k) = o(e~ %) for some
C > 0. One can refer to Theorem 1.3 in Bradley (1997) for the details.

Zhang and Wang (1999) introduced the following concept of p~-mixing random
variables.

Definition 3 A sequence {Xy, k > 1} of random variables is called p~-mixing if
p (s)=sup{p (S, T):S, T Cc N, dist(S,T) > s} - 0
as s — 00, where

Cov(f1(Xi,i €9), (X, j€T))
VVar(fi(Xi, i € )Var(f2(X;, j € T))

cfi. el

0 (S, T) :o\/{

and C is the set of nondecreasing functions.

An array {X,;,1 < i < n,n > 1} of random variables is said to be rowwise
p~-mixing if for every n > 1, {X,,;, | <i < n} are p~ -mixing.

It is easy to see that p~(s) < p*(s) and p~-mixing implies NA if and only if
p~ (1) = 0. Therefore, p~-mixing random variables include p*-mixing random vari-
ables and NA random variables as special cases. Consequently, the study of the limit
properties for p~-mixing random variables is of great interest. Since the concept of
o~ -mixing random variables was introduced by Zhang and Wang (1999), many inter-
esting results have been established. For instance, Zhang and Wang (1999) obtained
moment inequalities and the complete convergence for partial sums, Zhang (2000a, b)
obtained the central limit theorems, Wang and Lu (2006) established some inequali-
ties for the maximum of partial sums and weak convergence, Wang and Zhang (2007)
obtained the law of the iterated logarithm, Liu and Liu (2009) showed moments of
the maximum of normed partial sums and so on. However, as far as we know, there is
no literature investigating the asymptotic properties for the estimator of the model (1)
with p~-mixing errors.

Remark 1 We point out that p*-mixing and NA are both p~-mixing. Hence, the
sequences {X,,n > 1} in Examples 1 and 2 are both p~-mixing. However, the con-
verse is not always true. The following gives an example of a p~-mixing sequence
which is neither NA nor p*-mixing.

Example 3 Let {§,,n > 1}, {n,,n > 1} and {r,,n > 1} be three independent

sequences of independent and identically distributed standard normal random vari-
ables. Let

. Nms if n =221
, ifn=2m-—1
X, = 15m =T oy =y, ifn=22m
- Em, ifn =2m .
Tn, otherwise
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and Z,, = Xﬁ+Y,,. Then {X,,n > 1} and {Y,,, n > 1} are two independent sequences
of identically distributed NA normal random variables. Also, {X,,,n > 1} is a two-
dependent sequence, so {X,,n > 1} is a p*-mixing sequence with p*(2) = 0. From
Property P3 of Zhang and Wang (1999), we can see that {Z,,n > 1} is ANA with
p~(2) =0.But {Z,,n > 1} is neither NA nor p*-mixing, since

Cov (Zam—1. Zom) = Cov <X§m_1, X§m> — Eg* —(E£2)2=2>0
and

Cov (Zrom— ,Z m 1
(Zomt, Zm) 1 dist(22m=1 22my — 22m=1 _, o,
Var(Z22m—l)VaI'(222m) 3

This example can be found in Zhang and Wang (1999).

In this paper, we will study the Berry—Esseen bounds for the weighted estimator
of model (1) based on p~-mixing errors. The Berry—Esseen bounds of the weighted
estimator can achieve O(n~!/#) when the moment condition is appropriate. Finally
we carry out some simulations to verify the validity of our theoretical results.

Throughout this paper, the symbol C represents some positive constant which may
vary in different places. Let /(B) be the indicator function of the set B and |x |
denote the integer part of x. Denote x* = xI(x > 0), x~ = —xI(x < 0), and
I€ll2,1 = fo~ P'/?(1€] = x)dx. @ (u) is the distribution function of N (0, 1).

The layout of this paper is as follows: In Sect. 2, we introduce the estimators of
unknown functions in model (1) and present the results. Some numerical simulations
are provided in Sect. 3. Some lemmas and the proof of the main result are stated in
Sect. 4.

2 Main results

In model (1), a normal estimator of g(-) is the following general linear smoother:

n
gn(X) =) i (¥)Yni, )
i=1
where the weight functions wy,; (x),7 = 1,2, ..., n depend on the fixed design points
Xnls Xn2, - - -, Xnn and the number of observations 7.

For convenience, we need to define some notations as follows. Denote by
wp = 0p(x) = Maxj<i<y Wpi(x), A2 = A2(x) = Var(g,(x)), Sy = Sp(x) =
A;l(x)(g,,(x) — Eg,y(x)), and F,(u) = P(S,(x) < u). To present the results, the
following assumptions are needed.

(A1). (i) g(-) is a bounded real valued function defined on A; (ii) {&;,i > 1} is a
sequence of mean zero o~ -mixing random variables with sup; Eél.z < 00; (iii) for
each n, the joint distribution of {€,;, | <i < n}is the same as that of {§;, 1 <i < n}.
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The Berry—Esseen bounds in a nonparametric regression model 1147

(A2). () wyi(x) > 0foralll <i <nandn > 1;(ii) Z?:l wpi(x) < Cforalln > 1,
(iil) @, (x) = O(AZ(x)) and A2(x) > 0.

(A3). There exist positive integers p = p(n) and g = g (n) such that for some positive
constant ¢ and all n large enough,

p+qg<n, gp ' <c, 3)

and as n — 00,

nqpilw,,(x) — 0, pw,(x) = 0, u(q) =: sup Z [Cov(§i, &) — O,
IZLii—jlzq

(@) =) p (D) = 0.
i=q

Remark 2 The assumptions above are similar to those of Yang (2003). As is stated
in Yang (2003), the assumption imposed upon u(g) can be easily satisfied. Moreover,
if Var(§;) = og > (O foreachi > 1, then the restriction on v(g) can be canceled, since

v(g) =05 7 SUPj1 Y ji=g COV(EL E)T < 05 u(g).
Our main result on Berry—Esseen bounds for the weighted estimator (2) is presented
as follows.

Theorem 1 Suppose that Assumptions (A1) — (A3) hold. If sup; - E|§; 1>+ < oo for
some § > 0, then

Sup | F 1) = @ )] = O ((peon)*’? + ((g) + v(@)" + (ngp™" ) T+H/€+20

+(pwn)(2+a)/(6+25)) '
If we take p = |n?| and g = [n*’~'| for some 1/2 < 6 < 1, we can obtain the

following result.

Corollary 1 Suppose that Assumptions (A1) — (A2z) hold. If sup; - E§; 1>+ < oo for
somed > 3—1, w, = 0(n™"), u(n)+vn) = On30=NC)/EI-2G+0)) yhere
1/2 <6 <r <1, then

sup | F,(u) — ®(u)| = O (n—(r—e)(2+5>/(6+za)) _
u
If we take p = [n!/2] and ¢ = |logn] in Theorem 1, we can also obtain the
following result.

Corollary 2 Suppose that Assumptions (A1) — (Az) hold. If sup; - E|§; |2 < oo for
somed >3 —1, 0, =0n"), u(n) + v(n) = 0(e3F—DCTON/A2+48)) yphope
1/2 <r <1, then
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up | F (1) = )] = O (== log m) +9/(€29))
u

Remark 3 1t is easy to check that if § = 1, the Berry—Esseen bound for g, (-) approx-
imates to O(n_3/ 16) for & =~ 1/2 and r = 1, and if § can be sufficiently large,
the Berry—Esseen bound is nearly O (n~!/%). Hence, the results above generalize the
corresponding ones of Yang (2003) from NA setting to o~ -mixing setting.

Remark 4 Since p*-mixing implies p~-mixing, our results are also available for p*-
mixing random errors. Itis worth to mention that as far as we know, there is no literature
investigating the Berry—Esseen bound for the estimator (2) under the assumption of
p*-mixing errors.

3 Simulation

In this section, we will carry out some simulations to study the asymptotic normality
of the estimator (2). The data are generated from model (1). We will consider the
following two cases.

Case1 For0 < p < landn > 3,let (&1, &, ..
zero vector and

., &) ~ N(0, X), where 0 represents

1 —p 0 -~ 0 0 0
—p 1 —p -~ 0 0 0
0 —p 1 0 0 0

= R
0 0 0 1 —p 0
0O 0 O - 1 —p
0 0 0 0 —p 1

nxn

By Joag-Dev and Proschan (1983), it can be seen that (1, &>, ...,&,) is a NA
vector, and thus a p~-mixing vector. In order to verify the asymptotic normality of
the estimator (2), we choose p = 0.1 and, respectively, p = 0.3, p = [n!/ 2J and
q = llogn]. For w,;(x), we choose w,;(x) = 1/n for simplicity. One can easily
check that the conditions of Corollary 2 are all satisfied. Take the sample sizesn asn =
200, 500, 800, respectively. We use the R software to compute S, = A,/ L) (gn(x)—
Eg,(x)) for 1000 times and obtain the Quantile—Quantile plots in Figs. 1, 2, 3,4, 5
and 6.

Figures 1, 2 and 3 are the Quantile—Quantile plots of S,, with p = 0.1, and Figs. 4,5
and 6 are the Quantile—Quantile plots of S,, with p = 0.3. One can see from Figs. 1, 2,
3,4, 5 and 6 that for different values of p, S, converges to standard normal distribution
as n increases.

e jid.
Case 2 For fixed positive integer m, let ¢; HE U(—+/3/m+1),+/3/(m+ 1)) and
& = kazo ei+k for each i > 1. It is easy to show that {§&;,i > 1} is a sequence
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Quantiles of S,
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Fig.2 500 sample with p = 0.1
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3 I
2
- 1
%)
k]
(%2}
Q
g 0
(]
p=}
(e)
-1
-2
-3 L
T T T T T T T
-3 -2 -1 0 1 2 3
Standard

Normal Quantiles
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Quantiles of S,

T T T T T
-4 -2 0 2 4
Standard Normal Quantiles

Fig.7 200 sample with m =2

of p*-mixing random variables and thus a sequence of p~-mixing random variables
with E§; = 0 and Var(§;) = 1. For simplicity, take m = 2 and m = 3, respectively.
The other settings are the same as in Case 1. We also use the R software to obtain the
Quantile—Quantile plots of S, in Figs. 7, 8,9, 10, 11 and 12.

From Figs. 7, 8, 9, 10, 11 and 12, we can also derive the same conclusion as that
in Case 1, i.e., S, also converges to standard normal distribution as the sample size n
increases, no matter m = 2 or m = 3.

To compute the uniform Berry—Esseen bounds for the estimator (2) under Case 1
and Case 2, we first compute the empirical distribution function of S, to estimate
F,, (1) and then estimate the maximum value of | F, (1) — @ (u)| for u € [—3, 3]. The
results are shown in Table 1. These simulations show a good fit of our main results
established in Sect. 2.

4 Proof of main result

Before proving our main result, we first present some important lemmas as follows.
The first one comes from Zhang and Wang (1999).

Lemma 1 Increasing functions defined on disjoint subsets of a p~ -mixing field {X;, i €

N4} with mixing coefficients p~(s) are also p~-mixing with mixing coefficients not
greater than p~ (s).
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Quantiles of S,
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Quantiles of S,
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Fig. 10 200 sample withm =3
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Fig. 11 500 sample withm =3

@ Springer



The Berry—Esseen bounds in a nonparametric regression model 1155

Quantiles of S,
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Fig. 12 800 sample withm =3

Remark5 From Lemma 1 and Definition 3, we can see that decreasing functions
defined on disjoint subsets of a p~-mixing random variables with mixing coefficients
o~ (s) are also p~-mixing with mixing coefficients not greater than p~ (s).

The following lemma can be found in Wang and Lu (2006).

Lemma 2 Suppose that {X;,i > 1}is a sequence of p~ -mixing random variables with
EX; =0and E|X;|? < oo for some p > 2. Then there exists a positive constant C,
depending only on p and p~ (-) such that for alln > 1,

p/2

m
>
i=1

4 n n
) <Cp Y EIXilP + (Z EX,?)
i=1 i=1

E | max
1<m=<n

Zhang (2000a) obtained the following lemma for p~-mixing random variables.
Lemma 3 Suppose that fi(x) and f>(y) are real, bounded, absolutely continuous

functions on R with |f1, x)| < cy and |f2/ (»)| < c2. Then for any random variables X
andY,

|Cov(f1(x), f2(y)I = cre2{=Cov(X,Y) +8p (X, V)| X2, 1Y [[2.1}-

With Lemma 3 accounted for, we can obtain the following result, which plays an
important role to prove the main result of the paper.
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1156 X.Wang et al.

Table 1 The uniform

Berry-Esseen bounds Cases n =200 n =500 n = 800
Case 1 with p = 0.1 0.0306 0.0280 0.0257
Case 1 with p = 0.3 0.0327 0.0277 0.0248
Case 2 withm =2 0.0333 0.0271 0.0238
Case 2 withm =3 0.0267 0.0226 0.0206

Lemma4 Let {X;,i > 1} be a sequence of p~-mixing random variables and

{aj,i > 1} be a sequence of nonnegative (or nonpositive) constants. Denote by
Y, = Z(l—l)(p+q)+p a:
L= == (prq)+1 %
Then for any t € R,

m m
Eexp [i sz} — [ ] Eexpliny}
=1

=1

X; for 1 <1 < m, where p and q are positive integers.

(=D (p+g)+p (k=D(p+q)+p
<4 Y Jullnl{—Cov(¥r, Vi) +8 > aiX > ax;
I<i#k<m i=(=1)(p+q)+1 2.1 li=t=D(p+g)+1 a1

o (=0

Proof Note that {Y;, 1 <[ < m} is still a sequence of p~-mixing random variables
by Lemma 1. By Lemma 3 we can easily prove the inequality above by adopting the
method used in the proof of Theorem 3.3 in Zhang (2000a). The details are omitted.

(]

The following one can be found in Liang and Fan (2009) for instance.

Lemma5 Let X, Y1, ..., Y, be random variable. For positive numbers w1, . .., Oy,
we have that

m m
wj
sup [P | X + Yi<u]| —@Ww)| <sup|P(X <u)— @)+ —

m
+Y PV > wy).
i=1

To prove the main result, we need some notations as follows. For simplicity, we
omit the argument x everywhere. Let X,;; = A;lwnisni fori =1,2,...,nandn > 1,
and thus §,, = Z?:l Xyui.Letk = [n/(p 4+ q)]. Then S, can be decomposed as

Sn = S,/l + S,: + S;,N7

where
n

k k
S, = Z)’nmv S, = Zyl/’lm’ S, = Z Xni,
m=1 m=1

i=k(p+q)+1
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The Berry—Esseen bounds in a nonparametric regression model 1157

K+ p—1 / Ln+gq—1
and Ynm = Zi:ljmp Xni, Youm = Z _-::1 an’ km - (m - 1)(17 + Q) + 1, lm -
m—-Dp+qg)+p+1,m=1,2,...,k Denote sn = Zf;:l Var(yum).

The following lemmas are the decompositions of the proof; we will state them one

by one.

Lemma 6 Suppose that Assumptions (A1) — (Az) and (3) hold. If sup; - E§; |2+K <
oo for some k > 0, then

E|S, 17 < Cngp~'wn) /2, E|S, ¢ < C(pwy) ' /2.

Proof 1t follows from w, (x) = O (A% (x)) and Lemma 2 that

E|Sn|2+K:E Z Z A;lwnigni
m=1i=ly,
K lntg—1 Int+q—1 /2
<CY > (A 0) T Elen T +C Z > (A oni)Eeni)
m= 1 i= l —lm
Kk lntg—1 K Intg—1 I+e/2
1+x/2 _
<Cy Y e | Y Y o < Clngp™ wn) 72,
m=1 i=l, m=1 i=ly
and similarly,
24k
n
EIS, ™ =E| Y A owen
i=k(p+q)+1
I+« /2
n n
<C Z wrlz+K/2 +C Z Wy = C(Pwn)1+K/2-
i=k(p+q)+1 i=k(p+q)+1
[}

Lemma 7 Under Assumptions (A1) — (A3), we have
57 =11 = € (ap™" o) + (po) " + u(@))
Proof Let W, = Y"1 _;_ ;—, Cov(yui. yny)- Thus s7 = E(S,)” — 2W,. Noting that

EIS.(S, +S)) < EV2S2EV2(S) + 8. ) = EV2(S) + 8. )’
< EV2(S))* + EV2(s))’,
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1158 X.Wang et al.

and
/ " n 2 " n " "
E(S) =E (sn — (S, +5, )) =1+ E(S,+S) —2E (Sn(Sn +s )) ,
we have by Lemma 6 (taking x = 0) that

2

E(5,)" =11 = € (ngp™' o) + (o) ).

On the other hand, we have by (A2) and (A3) that

ki+p—1kj+p—1

W< D> Y Y A wmuon|CoviE, &)
I<i<j<n p=k; v=k;
k—1ki+p—1
<CY > wgusup Y [Covig, &)l < Culg). )
i=1 u=k; rz1 vilv—t|>q
This completes the proof the lemma. O

Suppose that {1,,, | < m < k} are independent random variables and the distri-
bution of 7, is the same as that of y,,, form = 1,2, ..., k. Then Zln(1=1 Var(n,m) =
Sk Var(ym) = s2. Let T, = Y% _ nyms Fu(u), G, () and G, (u) be the distri-
butions of S;l, T, /sy and T, respectively. Obviously,

Gn(u) = Gp(u/sy).
Lemma 8 Under the conditions of Theorem 1, we have

sup |G, (u) — @ ()| < C(pwn)®>.

Proof 1t follows from Lemma 2 and Assumption (A3) that

k k km+p—1 28

248 1
STEmmlPP=CY E| > A oien
m=1 m=1 i=ky,

k kntp—1 k [kmtp—1 145/2
<> Y A o) PEenPP+ Y | Y (A o) Eel
m=1 i=k, m=1 i=kpy
k km+p—1 k  km+p—1
<Co® Y > 0+ Cpon)’? Y Y wwi = Clpan)’*. )
m=1i=ky m=1i=ky

Moreover, by Lemma 7 we can obtain that s, — 1 as n — o0o. Thus
1/s2+8 anzl E|num|*1® < C(pw,)®?, which derives the desired result directly by
applying Berry—Esseen theorem. O
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The Berry—Esseen bounds in a nonparametric regression model 1159

Lemma 9 Under the conditions of Theorem 1, we have
sup | F () = G ()] = € ((pon)®? + (u(g) +v(g)) ).
u

Proof Let ¢(t) and ¥ (¢) be the characteristic functions of S,; and Tj,, respectively. Note
that || X |21 < 28i8 [| X |l2++s from (Ledoux and Talagrand 1991, p. 251). It follows from
Lemma 2, Lemma 4 and some similar arguments as (4) and (5) that

k k
E exp {it Z )’nm} - l_[ E exp{itynm}

m=1 m=1

lp(®) =¥ @) =

<87 > {—Covyur. yam) + 80" (@I yuill2.1 1 ¥nmll21}

1<l<m<k

ki+p—1kn+p—1

<8 Y Y Y A omonlCov(, &)

I<l<m<k p=k v=ky,

ki+p—1 km+p—1
2 42 —
+Ct° A, Z Z Onpnp Z WnvEny p(v—p)
I<l<m<k | wn=k 248 v=ky, 245
ki+p—1km+p—1

< ClPul@+CA Y Y > wwomp” (v — )

I<l<m<k p=k v=ky,

m ki+p—1 00
< Ctzu(q)+CtZZ Z wnuzpi(i)
=1 u=k i=q

< C1* (u(g) +v(g)).

On the other hand, we have by Lemma 8 that
o.(57) -2 ()
Sn Sn
°(57) - (%)
Sn Sn
u u
o(5)- ()
Sn Sn

—) = ¢ ((pon™ +1s1).

Is|
Sn

sup |G, (u +5) — G, ()| < sup
u u

=+ sup
u

+ sup
u
<C ((pwn)‘”2 +

Hence by Esseen inequality (see Pollard 1984), we have that for any 7' > 0 and some
positive constant c,

T —
sup Fuu) = Gotwl = [ |0V
! -T

u

dt—f—Tsup/ |G +5) — Gp(u)|ds
Is|<e/T

1
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The desired result follows immediately by choosing T = (u(q) + v(g))~ V3. O

Lemma 10 Under the conditions of Theorem 1, we have

PS> pn) < Ctn,
P(S| = vp) < Cuy,

where |1, = (nqpfla)n)(2+6)/(6+28) and v, = (pa)ll)(2+8)/(6+28)-

Proof 1t follows from Markov’s inequality and Lemma 6 that

-1 1+8/2
" —2-8 gy (248 ngp wp _
PUS, = wn) < i, P EIS,PH < © <(nqp_lwn)(4+25)/(6+25)) = Cpup.
and
Po 1+8/2
" —2-§ 248 n _
PAS, Tz va) = v, E1S, | =C ((pwn)(4+25)/(6+23)) =Cvn.
This completes the proof of the lemma. O

Now we present the proof of Theorem 1.

Proof of Theorem 1. By Lemmas 7, 8 and 9 we have that for some constant0 < 6 < 1,
sup | Fu) — @ (u)| < sup |Fn(u) — Gn(u)| + sup |G () — D (u/sn)|
+sgp|<1>(u/sn) — P(u)
< sup |Fu(u) — Gn(u)| + sup |G () — @ (u/sy)|
+C sup ule O @si =0 /2 |
< sup |Fu(u) — G ()| + SUp|Gn () = ()| + Clsf — 1|

= € (gp~ o) + (pon) 2 + (pon)*’? + (@) + v(@)'?).

(6)
Thus, it follows from Lemma 5, Lemma 10 and (6) that
sup | Fy () — @ )| < P(S,| = ttn) + PIS, | = vy) + sup | Fy () — @ (u)]
u u
+ _1 (Hn + V)
E— V,
o Mn n
= C {(pon + (@) + 0@ + (ngp™' ) A/ ED)

+(pwn)(2+8)/(6+28)} .

The proof is completed. O
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