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Abstract
Due to the coexistence of ultra-high dimensionality and right censoring, it is very chal-
lenging to develop feature screening procedure for ultra-high-dimensional survival
data. In this paper, we propose a joint screening approach for the sparse additive haz-
ardsmodel with ultra-high-dimensional features. Our proposed screening is based on a
sparsity-restricted pseudo-score estimatorwhich could be obtained effectively through
the iterative hard-thresholding algorithm. We establish the sure screening property of
the proposed procedure theoretically under rather mild assumptions. Extensive sim-
ulation studies verify its improvements over the main existing screening approaches
for ultra-high-dimensional survival data. Finally, the proposed screening method is
illustrated by dataset from a breast cancer study.
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1 Introduction

As the rapid development of science and technology, high-dimensional data are
more frequently encountered in various scientific fields, such as molecular biology,
clinical genomics, brain image research and so on. A distinguishing feature of high-
dimensional data is that the number of predictors p is larger or much larger than that
of observations n. When the dimension of data p grows exponentially with the sample
size n, they have been called ultra-high-dimensional data in the literature. Further-
more, they are called ultra-high-dimensional survival data with the outcome being
a time-to-event subject to right censoring. One basic task of statistical inference for
such kind of data is to select only a small number of important variables to establish
a parsimonious model. It is very challenging to develop reliable procedures for this
target both methodologically and theoretically due to the coexistence of ultra-high
dimensionality and right censoring, where regularized methods (Tibshirani 1997; Fan
and Li 2002; Cai et al. 2005; Bradic et al. 2011; Huang et al. 2013; Leng andMa 2007;
Martinussen and Scheike 2009; Lin and Lv 2013) are inapplicable due to their com-
putational expediency, statistical accuracy and algorithmic stability (Fan et al. 2009).
A useful alternative method is feature screening or variable screening, which could
handle the ultra-high dimensionality efficiently.

In the seminal work of Fan and Lv (2008), a marginal Pearson correlation screening
method was proposed for linear model to reduce the ultra-high dimensionality of the
feature space to a moderate size. This approach enjoys the sure screening property,
which means that all important features are selected out with a probability tending
to 1. So they named it sure independence screening (SIS). To improve the efficiency
further, an iterative SIS (ISIS) method was further suggested. Inspired by Fan and Lv
(2008), many researchers have paid attention to the investigation of feature screening
methods in recent years. See, for example, Fan and Song (2010), Li et al. (2012), He
et al. (2013), Chang et al. (2013), Fan et al. (2014), Song et al. (2014), Xu and Chen
(2014), Chen et al. (2017), Liu and Chen (2018), Chen (2018) and so on.

In the past several years, investigation of feature screening for ultra-high-
dimensional survival data has achieved rapid development. Literature about this aspect
includes Fan et al. (2010), Zhao and Li (2012), Gorst-Rasmussen and Scheike (2013),
He et al. (2013), Zhao and Li (2014), Song et al. (2014), Wu and Yin (2015), Zhou
and Zhu (2017), Zhang et al. (2017), Chen et al. (2018) and so on. Fan et al. (2010)
extended the SIS/ISIS to the Cox model without the theoretical justification. Zhao and
Li (2012) proposed a principled sure independence screening method under the Cox
model and established the corresponding sure screening property. Motivated by the
pseudo-score estimator of the additive hazards model, Gorst-Rasmussen and Scheike
(2013) proposed a method called the feature aberration at survival times (FAST) for
the single-index hazard ratemodels. Zhao and Li (2014) suggested a score test variable
screening approach, which could be used for several models, including the Coxmodel,
the additive hazards model, the accelerated failure time model and so on. He et al.
(2013) considered the variable screening for the quantile regressionmodel based on the
marginal spline estimator and inverse probability censoring weighting. Subsequently,
Wu and Yin (2015) investigated an analogous model by combining a marginal utility
and the technique of redistribution of the mass. Zhou and Zhu (2017) extended the
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Joint feature screening for additive hazards model 1009

model-free feature screening method of Zhu et al. (2011) to the survival data. Zhang
et al. (2017) proposed a correlation rank screening method based on the correlation of
survival function of the response and each predictor. Chen et al. (2018) studied two
robust feature screening procedures through the distance correlation.

It is noted that most of the existingmethods are based on somemarginal utility mea-
sures and thus have obvious shortcomings. For example, they fail to pick up features
who are jointly related to the response with other covariates but marginally uncorre-
lated with the response. They could also recruit predictors who have strong marginal
correlation but are actually unrelated with the response. To overcomemarginal screen-
ing procedure’s disadvantages, Xu and Chen (2014) proposed a novel, interesting
and efficient joint screening procedure for linear and generalized linear model based
on sparsity-restricted maximum likelihood estimator, which estimates the ultra-high-
dimensional model coefficients on a low-dimensional subspace. The joint screening
approach screens out features with zero-estimated coefficients and thus could nat-
urally takes the joint effects of features in the screening process and improves the
performances of marginal screening methods. Because of the superiority of this kind
of approach, Yang et al. (2016) and Yang et al. (2018) generalized the joint screening
idea from linear and generalized linear model to the Cox model and the additive Cox
model for survival data, respectively.

In this paper, we consider the feature screening for ultra-high-dimensional survival
data under the additive hazards model (Lin and Ying 1994), which takes the following
form

λ(t |Z) = λ0(t) + ZT β∗, (1)

where λ0(t) is an unspecified baseline hazard function, Z = (Z1, Z2, . . . , Z p)
T is the

p-dimensional covariate vector, and β∗ = (β∗
1 , β∗

2 , . . . , β∗
p)

T is the true regression
coefficient vector. For j = 1, . . . , p, the j th feature Z j is deemed to be important if
β∗

j �= 0, otherwise unimportant. According to the sparsity principle, there are only
a small number of nonzero β∗

j ’s. Let M denote an arbitrary subset of {1, . . . , p}.
Denote by M0 the set of indices of all important features, i.e., M0 = { j : β∗

j �= 0}. We
assume that the cardinality of M0 is small. Several papers have investigated regularized
variable selection for this model, see, Leng and Ma (2007), Martinussen and Scheike
(2009), Lin and Lv (2013) for example. However, there is little relevant research for
feature screening. Although the approaches in Gorst-Rasmussen and Scheike (2013)
and Zhao and Li (2014) could be used for that purpose, the current literature still lacks
special methods tailored for the additive hazards model. Motivated by the success of
joint screening in linear and generalized linear model (Xu and Chen 2014) and Cox
model (Yang et al. 2016) based on the maximum likelihood estimator and maximum
partial likelihood estimator, respectively, we proposed a joint screening method for
the additive hazards model based on the sparsity-restricted pseudo-score estimator,
which could be efficiently obtained by the iterative hard-thresholding algorithm. This
proposed procedure is referred to as sparsity-restricted pseudo-score estimator-based
screening (SPES for short). Compared with Gorst-Rasmussen and Scheike (2013)
and Zhao and Li (2014), the SPES method has two significant advantages. First, it
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could adequately capture the association between the features and thus improve the
efficiency significantly, which has been verified in our simulation studies. Second,
the proposed method could achieve the purpose of simultaneous feature screening
and estimation of regression coefficients numerically, in the sense that it not only
identifies the important features, but also gives empirically consistent estimates of the
corresponding regression coefficients.

The remainder of this article is organized as follows. In Sect. 2, we introduce the
SPESmethod for the sparse additive hazardsmodel and the iterative hard-thresholding
algorithm alongside a convergence theorem. The sure screening properties are also
provided in this section. Section 3 reports the simulation results, while analysis of
data from a breast cancer study illustrates the proposed method in Sect. 4. A brief
discussion is given in Sect. 5. The proofs of the theorems are relegated to “Appendix.”

2 Methodology

2.1 Sparsity-restricted pseudo-score estimator

Let T and C denote the survival time and censoring time, respectively. In addition,
denote by X = T ∧C the observed time and by δ = I (T ≤ C) the censoring indicator,
where I (A) is the indicator function of the set A. Throughout this article, we assume
that T and C are conditionally independent given the p-dimensional covariates Z. Let
{Xi , δi , Zi }, i = 1, . . . , n, be a sample of n independent copies of {X , δ, Z}. Denote
Ni (t) = I (Ti ≤ t, δi = 1) and Yi (t) = I (Xi ≥ t) to be the counting process and
at-risk process, respectively.

For the purpose of estimating regression coefficient β∗ when p is small, Lin and
Ying (1994) proposed the following pseudo-score estimating function

Un(β) = 1

n

n∑

i=1

∫ τ

0
{Zi − Z̄(t)}{dNi (t) − Yi (t)β

T Zidt}, (2)

where τ is the maximum follow-up time, Z̄(t) = S(1)(t)/S(0)(t) and S(k)(t) =
n−1 ∑n

i=1 Yi (t)Z
⊗k
i for k = 0, 1, 2 with a⊗0 = 1, a⊗1 = a and a⊗2 = aaT for

a vector a. The estimating equation Un(β) = 0 gives an explicit estimator for β∗,
denoted by β̆ = V−1

n bn , where

V n = 1

n

n∑

i=1

∫ τ

0
{Zi − Z̄(t)}⊗2Yi (t)dt

and

bn = 1

n

n∑

i=1

∫ τ

0
{Zi − Z̄(t)}dNi (t).
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However, in the scenario where the dimension p is large or very large compared
with the sample size n, it is not feasible to make inference for β∗ in this way. To
identify the truly important features in the ultra-high-dimensional covariates, Gorst-
Rasmussen and Scheike (2013) proposed a method, called FAST, which used bn, j (the
j th component of bn) to measure the influence of j th covariate on the survival time for
j = 1, . . . , p. The utility can be understood from the fact that bn is a (scaled) estima-
tor vector of the regression coefficients from p univariate marginal additive hazards
model. Although this approach escapes from estimating the singular matrix V n , it
makes itself to be a marginal screening means. Thus, it has the disadvantages inher-
ent in the marginal screening procedures. For example, FAST may miss truly active
features which are marginally independent of the survival time, but contribute to the
survival time jointly with other predictors. In addition, when there are many irrelevant
predictors which are highly correlated with some strongly active predictors, FAST
may fail to identify other active predictors with relatively weak marginal signals. To
overcome these drawbacks and enhance the finite sample performance, by combining
the FAST and regularized variable selection, Gorst-Rasmussen and Scheike (2013)
further proposed an iterative version of FAST, named IFAST. However, this kind of
iterative screening approaches still lacks theoretical support.

Different from the method of Gorst-Rasmussen and Scheike (2013), we propose a
new joint screening procedure based on the constrained pseudo-score estimator with
an explicit constraint on the number of nonzero regression coefficients. Specifically,
for some known positive integer k, we define the sparsity-restricted pseudo-score
estimator as

β̂ = argmax
β∈B(k)

{Ln(β)}, (3)

where B(k) = {β|β ∈ B, ‖β‖0 ≤ k} with B being a compact set containing true
regression coefficient, ‖·‖0 being the number of nonzero coordinates and the objective
function Ln(β) = bT

n β − 1
2β

T V nβ. Then, we identify the important features by the

nonzero components of β̂, i.e., the selected model is M̂ = { j : β̂ j �= 0}. It is easy
to see that M̂ may depend on k. However, we omit this notation for simplicity. In
order to detect all important features, it is necessary that k is not less than the true
number of nonzero regression coefficient ofβ∗, say q. The proposed sparsity-restricted
pseudo-score estimator is motivated by two facts. Firstly, solving estimating equation
Un(β) = 0 is equivalent to maximizing the objective function Ln(β). This fact has
been used in the regularized variable selection for additive hazards model by several
researchers, such as Leng and Ma (2007), Lin and Lv (2013) and so on. Secondly,
by the sparsity principle, the number of nonzero components of β∗ is small. Thus, it
is more reasonable to solve the estimating equation Un(β) = 0 under the constraint
on the number of nonzero components. It is easy to see that the suggested screening
procedure is significantly different from the method of Gorst-Rasmussen and Scheike
(2013) in that our procedure is a joint screening means which could take the joint
effects of all the covariates into account naturally. Therefore, it is anticipated that
the SPES approach could improve the FAST and IFAST remarkably, which has been
verified in our simulation studies in Sect. 3.
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For the sake of presenting the sure screening property of the SPES approach, we
introduce somenotations and assumptions. For amodel M , denote ZM = {Z j , j ∈ M}
and βM = {β j , j ∈ M}. Define Mk+ = {M |M0 ⊂ M, ‖M‖0 ≤ k} and Mk− =
{M |M0 �⊂ M, ‖M‖0 ≤ k}. Let s(k)(t) = E{Y (t)Z⊗k} for k = 0, 1, 2, z̄(t) =
s(1)(t)/s(0)(t).

Assumption 1 (i) There exists a compact neighborhood B such that β∗ ∈ B; (ii)∫ τ

0 λ0(t)dt < ∞; (iii) P{Y (τ ) = 1} > 0; (iv) Z is bounded in proba-
bility 1.

Assumption 2 Denote dn = supt∈[0,τ ]‖Z̄(t) − z̄(t)‖∞ and en = supt∈[0,τ ]|S(0)(t) −
s(0)(t)|. The random sequences dn and en are bounded almost surely.

Assumption 3 Define εi j = ∫ τ

0 {Zi j − z̄ j (t)}dMi (t), where z̄ j (t) is the j th component
of z̄(t) and Mi (t) = Ni (t) − ∫ t

0 Yi (s){λ0(s) + ZT
i β∗}ds. Suppose that

the Cramér condition holds for εi j , i.e., E |εi j |l ≤ 2−1l!cl−2
1 σ 2

j for all

j , where c1 is a positive constant, l ≥ 2, and σ 2
j = var(εi j ) < ∞.

Assumption 4 There exist positive constants c2, c3, τ1 and τ2 such thatmin j∈M0 |β∗
j | ≥

c2n−τ1 and q ≤ k ≤ c3nτ2 .
Assumption 5 For any M ∈ M2k+ , it holds that ρmin(V n,M ) ≥ c4, where c4 is a

positive constant, ρmin(A) is the minimum eigenvalue of the matrix A
and V n,M is the version of V n based on model M .

Assumption 1 is very mild and widely used in the survival analysis literature.
Assumptions 2 and 3 are presented here to prove a large deviation result formartingales
under the additive hazardsmodel,which is useful in proving the sure screeningproperty
of the SPES procedure. Let Fti = σ {Ni (u),Zi (u+), Yi (u+), 0 ≤ u ≤ t} for i =
1, . . . , n. Then Mi (t), i = 1, . . . , n are orthogonal local square integrable martingales
with respect to filtrations Fti , i = 1, . . . , n. In Assumption 4, we assume that the
minimum true signal cannot be too small and it is in the order of n−τ1 which allows the
minimum true signal to vanish to zero as the sample size n approaches the infinity. Such
an assumption is regular in the feature screening literature. In addition, Assumption 4
also allows the dimension of important features to diverge to infinity at a polynomial
speed of the sample size n. Assumption 5 is easily to be satisfied in view that k is not
large.

In the following theorem,we provide the desirable sure screening property of SPES.

Theorem 1 Under Assumptions 1–5, if 2τ1 + τ2 < 1, log(p) = O(nm), 2τ1 + 3τ2 <

1 − 2m, where 0 < m < 1
2 and max1≤ j≤p σ 2

j = O(n
1
2−τ1− τ2

2 ), we have

pr(M0 ⊂ M̂) → 1,

as n goes to infinity.

123



Joint feature screening for additive hazards model 1013

2.2 Implementation

Although the sure screening property has been obtained under rathermild assumptions,
there still exists a great challenge in the computation of the sparsity-restricted pseudo-
score estimator. As noted by Xu and Chen (2014), this kind of estimator resembles
the best-subset selection procedure, and thus can be computationally expensive, espe-
cially for high-dimensional problems. Following Xu and Chen (2014), we propose the
iterative hard-thresholding (IHT) algorithm to solve the suggested sparsity-restricted
pseudo-score estimator.

Specifically, given the current estimate β̂
(t)
, next iterative value β̂

(t+1)
could be

obtained by

β̂
(t+1) = argmax

β∈B(k)

{
Ln

(
β̂

(t)) +
(
β − β̂

(t))T
Un

(
β̂

(t)) − u

2
‖β − β̂

(t)‖22
}

, (4)

for t = 0, 1, 2, . . .. The first two terms in the right side of (4) come from the Taylor’s

expansion of Ln(β) at β̂
(t)

and u
2‖β − β̂

(t)‖22 is a regularization term which controls
how far next iteration moves from the current iterate in terms of Euclidean norm.
For the (t + 1)th iteration, β̂

(t+1)
can be computed by a two-step procedure. We

firstly solve (4) without the L0 norm constraint and denote the solution by β̃
(t+1) =

β̂
(t) + u−1Un(β̂

(t)
). If ‖β̃(t+1)‖0 ≤ k, set β̂

(t+1) = β̃
(t+1)

. Otherwise, pick out

the kth largest component of the absolute β̃
(t+1)

, denoted by β̃
(t+1)
(k) . Then retain the

components of β̃
(t+1)

, whose absolute values are no less than the absolute value of
β̃

(t+1)
(k) , and set the other components to be zeros. Formally,

β̂
(t+1) = H(β̃

(t+1); k) =
(

H
(
β̃

(t+1)
1 ; β̃

(t+1)
(k)

)
, . . . , H

(
β̃(t+1)

p ; β̃
(t+1)
(k)

))T
, (5)

where H(β̃
(t+1)
j ; β̃

(t+1)
(k) ) = β̃

(t+1)
j I (|β̃(t+1)

j | ≥ |β̃(t+1)
(k) |).

In the following theorem,we provide the convergence property of the IHT algorithm
for the solution sequence of the sparsity-restricted pseudo-score estimator.

Theorem 2 For the iterative sequence (5), if u ≥ ρmax(V n), we have that Ln(β̂
(t+1)

) ≥
Ln(β̂

(t)
).

This theorem guarantees the ascent property of the IHT algorithm if step length is
properly selected. From this theorem, we also could conclude that it is necessary that
the step length u should be no less than ρmax(V n) to guarantee the convergence of the
suggested IHT algorithm. However, as is known to all, the smaller the step length u is,
the faster of the IHT algorithm is. Besides, the largest eigenvalue of V n may be large
since the dimension of matrix V n is high. Therefore, it is likely that the convergence
speed of proposed IHT algorithm is very slow. Nevertheless, u ≥ ρmax(V n) is only a
sufficient condition to guarantee the IHT algorithm’s convergence, but not a necessary
condition. This fact motivates us to utilize a well-known adaptive step length double
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scheme (Bertsekas 2016) to increase the convergence, and then reduce the computation
burden. We call this algorithm as the adaptive IHT algorithm, which is summarized
as follows:

Step 1 Obtain an initial estimator β̂
(0)

. Compute Ln(β̂
(0)

) and set t = 0;

Step 2 Compute Un(β̂
(t)

) and update β according to (5). Denote by β̂
(t+1)

the
updated β;

Step 3 Compute Ln(β̂
(t+1)

). If Ln(β̂
(t+1)

) > Ln(β̂
(t)

), go to Step 4; otherwise,
double the current u and go back to Step 2;

Step 4 Repeat Steps 2 and 3 until convergence.

As an iterative algorithm, the IHT algorithm needs an initial estimator to accom-
plish the whole iteration process. In our experiences, a good initial estimator speeds up
the convergence and the LASSO estimator is a suitable choice for the initial estimator.
Theoretically, we have proven that for the LASSO initial estimator with some appro-
priate tuning parameters, the adaptive IHT algorithm has the sure screening property
for any finite number of iterations. This gives a justification for the use of LASSO esti-
mator as an initial estimator. Before presenting the formal result, one more assumption
is required:

Assumption 6 There exists a positive constant c5 such that, for sufficiently large n,

ηT V nη ≥ c5‖ηM0
‖22,

for any η �= 0p, ‖ηMc
0
‖1 ≤ 3‖η

M0
‖1, where Mc

0 is the complement of

M0 in {1, 2, . . . , p}.
Assumption 6 is needed for deriving an error bound for the LASSO estimator.

There are many similar assumptions in the literature, such as Bickel et al. (2009) for
the linear model, Huang et al. (2013) for the Cox model, Xu and Chen (2014) for the
generalized linear model, and so on. Thus, this assumption is rather mild. Throughout
the paper, let ‖ · ‖∞ be the ∞ norm for a vector or matrix.

Theorem 3 Define β̂
(0) = argmaxβ{Ln(β)−λ‖β‖1}, where λ satisfies λn

1
2−m → ∞,

λnτ1+τ2 → 0. Under Assumptions 1–6, if log(p) = O(nm), τ1 + τ2 < 1
2 − m,

‖V n‖∞ = Op(nτ3), and u > c6r with r = O(nτ3) and c6 being a positive constant,
we have

pr(M0 ⊂ M̂ (t)) → 1,

for any finite t ≥ 1 as n goes to infinity, where M̂ (t) = { j : β̂
(t)
j �= 0} is the set of

screened features by β̂
(t)

.

This theorem provides solid theoretical ground for the use of LASSO initial esti-
mator. But it is still hard to determine which estimator to be employed in the entire
solution path of the LASSO. In our simulation studies, we use λ that recruits the first

123



Joint feature screening for additive hazards model 1015

k features in the solution path of LASSO as the chosen tuning parameter value. This
choice works well for all the examples in our simulation studies. Although the exact
sparsity-restricted pseudo-score estimator β̂ could not be obtained and the IHT solver
is only an approximate solution, the sure screening property is not affected by this
approximation. This observation is easily seen from Theorem 3. In addition, from the

proof of Theorem 3, we have ‖β̂(t) −β∗‖∞ = op(w)withw = min j∈M0‖β∗
j ‖ for any

t , which hints that the sparsity-restricted pseudo-score estimator may have desirable
estimation accuracy, which is validated in our simulation studies.

3 Simulation studies

In this section, we will present extensive simulation studies to evaluate the perfor-
mance of the proposed SPES procedure. In addition, we also report the comparisons
with PSIS (principled sure independence screening) of Zhao and Li (2012), FAST and
IFAST (iterative FAST) of Gorst-Rasmussen and Scheike (2013), CRIS (censored
rank independence screening) of Song et al. (2014), CSIRS (censored sure indepen-
dent ranking and screening) of Zhou and Zhu (2017), CRSIS (correlation rank sure
independent screening) of Zhang et al. (2017) and popular LASSO to study the SPES’s
improvements. For LASSO and FAST/IFAST, we directly use the functions in R pack-
age ahaz. Specifically, we obtain LASSO’s entire regularization path by the function
“ahazpen” and select the LASSO estimator as the first solution with nonzero number
being no larger than the prespecified k according to order of the tuning parameter. In
addition, FAST is carried out by the function “ahazisis” with the features recruited
being k. Moreover, IFAST is also executed by this function with LASSO penalty being
in its iteration process. The iteration are performed five loops.

Let [a] denote the integer part of a. As for the screening bound k, Fan and Lv (2008)
recommended k = [n/log(n)] as a sensible choice under the linear regression model,
while Li et al. (2012) used k = a[n/log(n)] with a being a positive integer for model-
free screening. Xu and Chen (2014) set k = alog(n)n1/3 with a = 1, 2/3 and 1/3 for
linearmodel, Poissonmodel and logisticmodel, respectively. As discussed in Fan et al.
(2009), choosing a larger value of k increases the probability that screening method
will include all of the important variables, but including more inactive variables will
tend to have a slight detrimental effect on the performance of the final variable selection
and parameter estimation method. In addition, it is reasonable to chose a small k for
models in which the response provides less information about the covariates. So Fan
et al. (2009) applied k = [n/(4log(n))] for logistic regression and k = [n/(2log(n))]
for poisson regression. As noted, the estimating function (2) provides less information
comparedwith likelihood basedmethod.Besides, a small k is beneficial to our sparsity-
restricted pseudo-score estimation. So we use k = [n/(5log(n))] throughout our
simulation. And we find that this option works well in all our examples.

Denote by L the number of our Monte Carlo repetitions. For l = 1, . . . , L , let
M̂l and β̂l = (β̂l,1, β̂l,2, . . . , β̂l,p)

T be model selected and estimator of β in the
lth repetition for each method, respectively. To summarize our simulation results,
we will report the following performance measures: RCall, the retaining capac-
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ity of all important features, L−1 ∑L
l=1 I (M0 ⊂ M̂l); RC j , the retaining capacity

of j th important features, L−1 ∑L
l=1 I (β̂l, j �= 0) for j = 1, . . . , q; PSR, the

positive selection rate, L−1 ∑L
l=1 ‖M0 ∩ M̂l‖0/q; FDR, the false discovery rate,

L−1 ∑L
l=1 ‖M̂l − M0‖0/‖M̂l‖0; AMS, the average model size, L−1 ∑L

l=1 ‖M̂l‖0;
TP, the average number of important feature selected, L−1 ∑L

l=1
∑q

j=1 I (β̂l, j �= 0);

L1.err, L−1 ∑L
l=1 ‖β̂l −β∗‖1 = L−1 ∑L

l=1
∑p

j=1 |β̂l, j −β∗
j |; L2.err, L−1 ∑L

l=1 ‖β̂l −
β∗‖2 = L−1 ∑L

l=1
√ ∑p

j=1(β̂l, j − β∗
j )

2. A good procedure should show high RCall,
RC j , PSR, TP and low FDR, L1.err and L2.err. In our simulation results, we do not
present L1.err and L2.err for the method of FAST, because the function “ahazisis” in
R packages ahaz does not compute the marginal regression coefficients, and the cor-
responding estimators from IFAST must be more accurate than those obtained from
FAST. In addition, we also do not give L1.err and L2.err for PSIS, CRIS, CSIRS and
CRSIS because PSIS is tailed for the Cox model and CRIS, CSIRS and CRSIS are
model-free. It is meaningless to list results of L1.err and L2.err for these approaches.

In the following five examples, survival times were generated according to the
additive hazards model (1) with baseline hazard function λ0(t) = 1, and covariates
and regression coefficients described in detail in every example. It should be noted that
in all these examples the covariates are generated under the constraint ZT β∗ > − 1
to ensure the positivity of conditional hazard function. Besides, we simulated the
censoring times according to the uniform distribution on (0, c0), where different c0’s
were set to produce approximate 35% censoring rate in each example. Throughout,
we set the total number of repetitions of each scenario 300 times. Throughout the
paper, 0 represents a vector with all the components being zeros. And the according
dimension is indicated by the subscript. Some other detailed elements of simulation
setup are given as follows:

Example 1 Z = (Z1, . . . , Z p)
T follows the multivariate normal distribution with

mean 0p and the covariance matrix � = (σrs)p×p with σrr = 1 and
σrs = 0 for r �= s. M0 = {1, 2, 3, 4}, βM0

= (3, 3,− 3,− 3)T ,
βMc

0
= 0p−4, and (n, p) = (400, 5000).

Example 2 Same as Example 1 except that σrs = ρ|r−s| with ρ = 0.2 and (n, p) =
(400, 3000).

Example 3 Same as Example 2 except that ρ = 0.5 and (n, p) = (400, 2000).
Example 4 Z = (Z1, . . . , Z p)

T follows the multivariate normal distribution with
mean 0p and the covariance matrix � = (σrs)p×p with σrr = 1.
M0 = {1, 2, 3, 4}. When r �= s, σrs = 0.15 for r , s ∈ M0 and σrs =
0.3 for r or s ∈ Mc

0 . βM0
= (3, 3,− 3,− 3)T , βMc

0
= 0p−4, and

(n, p) = (400, 2000).
Example 5 Z = (Z1, . . . , Z p)

T follows the multivariate normal distribution with
mean 0p and the covariance matrix � = (σrs)p×p with σrs = ρ|r−s|
and ρ = 0.5. M0 = {1, 2, 3, 4}, βM0

= (3,− 3, 3,− 3ρ + 3ρ2 −
3ρ3)T , βMc

0
= 0p−4, and (n, p) = (400, 1000).

Example 1, with the independent covariates, is the most straightforward for feature
screening. In Examples 2 and 3, there exists serial correlation in the covariates with the
correlation decaying as |r − s| increases. ρ = 0.2 and ρ = 0.5 represent the low and
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Table 1 Summary statistics for Example 1

Method PSR FDR AMS TP L1.err L2.err RC1 RC2 RC3 RC4 RCall

PSIS 0.826 0.745 13 3.306 – – 0.836 0.853 0.786 0.830 0.416

FAST 0.687 0.788 13 2.750 – – 0.716 0.670 0.636 0.726 0.136

IFAST 0.958 0.705 13 3.833 8.056 6.958 0.953 0.960 0.960 0.960 0.883

CRIS 0.237 0.926 13 0.950 – – 0.343 0.326 0.093 0.186 0.000

CSIRS 0.606 0.813 13 2.426 – – 0.653 0.606 0.536 0.630 0.060

CRSIS 0.473 0.854 13 1.893 – – 0.483 0.456 0.450 0.503 0.013

LASSO 0.927 0.687 12 3.710 10.590 25.782 0.956 0.930 0.916 0.906 0.756

SPES 0.989 0.695 13 3.956 10.432 9.937 0.986 0.990 0.986 0.993 0.983

Table 2 Summary statistics for Example 2

Method PSR FDR AMS TP L1.err L2.err RC1 RC2 RC3 RC4 RCall

PSIS 0.859 0.735 13 3.436 – – 0.950 0.740 0.783 0.963 0.500

FAST 0.755 0.767 13 3.020 – – 0.860 0.590 0.653 0.916 0.200

IFAST 0.980 0.698 13 3.923 7.519 5.730 0.990 0.966 0.980 0.986 0.926

CRIS 0.303 0.906 13 1.213 – – 0.476 0.253 0.176 0.306 0.000

CSIRS 0.684 0.789 13 2.736 – – 0.823 0.503 0.580 0.830 0.110

CRSIS 0.590 0.818 13 2.360 – – 0.693 0.446 0.466 0.753 0.056

LASSO 0.963 0.675 12 3.853 9.794 22.063 0.996 0.940 0.926 0.990 0.870

SPES 0.998 0.692 13 3.993 10.149 9.305 1.000 0.996 0.996 1.000 0.996

moderate correlations, respectively. Example 4 is a much more difficult setting, which
describes the scenario that every feature is either important or associated with some
other important features. It is very challenging to distinguish the important features
from the unimportant ones under this construction. This example is borrowed fromXu
and Chen (2014). Example 5 depicts a challenging situation where Z4 is marginally
unimportant, but jointly significant. Thus, the marginal screening procedure is likely
to lose it.

Simulation results for Examples 1–3 are presented in Tables 1, 2 and 3, from which
we can see that the SPES method outperforms the other methods in terms of the
above-mentioned measures overall. The proposed method has the highest PSRs, TPs,
RCalls and second lowest FDRs in all the three examples. Only LASSO has better FDR
values than SPES. However, the advantages are so slight that they could be ignored.
In addition, SPES has almost the highest RC j s except RC3s in Table 3. As for L1.errs
and L2.errs, IFAST obtains better results for our proposed method. This phenomenon
is reasonable by noting that IFAST performs the regularized variable selection step in
the iteration process and thus could obtain very accurate estimators.

Tables 4 and 5 report the simulation results for Examples 4 and 5. For Example 4,
we could see that the SPES has the highest PSRs, TPs and second lowest FDRs and
RCalls.We believe that the difference of RCalls of LASSO and SPES aremost probably
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Table 3 Summary statistics for Example 3

Method PSR FDR AMS TP L1.err L2.err RC1 RC2 RC3 RC4 RCall

PSIS 0.755 0.767 13 3.020 – – 0.983 0.513 0.530 0.993 0.190

FAST 0.688 0.788 13 2.753 – – 0.913 0.426 0.450 0.963 0.063

IFAST 0.943 0.709 13 3.773 7.755 7.084 0.996 0.883 0.893 1.000 0.786

CRIS 0.301 0.907 13 1.206 – – 0.566 0.210 0.086 0.343 0.000

CSIRS 0.642 0.802 13 2.570 – – 0.856 0.403 0.400 0.910 0.063

CRSIS 0.534 0.835 13 2.136 – – 0.790 0.260 0.276 0.810 0.003

LASSO 0.871 0.707 12 3.486 10.076 23.519 1.000 0.766 0.720 1.000 0.580

SPES 0.945 0.709 13 3.780 10.425 10.423 0.996 0.896 0.886 1.000 0.873

Table 4 Summary statistics for Example 4

Method PSR FDR AMS TP L1.err L2.err RC1 RC2 RC3 RC4 RCall

PSIS 0.825 0.746 13 3.300 – – 0.846 0.803 0.820 0.830 0.446

FAST 0.746 0.770 13 2.986 – – 0.746 0.730 0.743 0.766 0.290

IFAST 0.955 0.705 13 3.823 7.712 6.673 0.960 0.950 0.950 0.963 0.823

CRIS 0.355 0.890 13 1.420 – – 0.443 0.470 0.233 0.273 0.003

CSIRS 0.700 0.784 13 2.800 – - 0.700 0.663 0.730 0.706 0.193

CRSIS 0.606 0.813 13 2.426 - - 0.630 0.586 0.600 0.610 0.083

LASSO 0.998 0.670 12 3.993 8.956 18.083 0.996 1.000 1.000 0.996 0.993

SPES 0.996 0.693 13 3.986 9.829 8.787 0.996 1.000 0.996 0.993 0.990

Table 5 Summary statistics for Example 5

Method PSR FDR AMS TP L1.err L2.err RC1 RC2 RC3 RC4 RCall

PSIS 0.495 0.847 13 1.980 – – 0.996 0..040 0.930 0.013 0.000

FAST 0.475 0.853 13 1.903 – – 0.986 0.040 0.860 0.016 0.000

IFAST 0.806 0.751 13 3.226 6.720 6.356 0.983 0.993 0.833 0.416 0.413

CRIS 0.319 0.901 13 1.276 – – 0.733 0.003 0.530 0.010 0.000

CSIRS 0.453 0.860 13 1.813 – – 0.970 0.026 0.810 0.006 0.000

CRSIS 0.406 0.874 13 1.626 – – 0.906 0.013 0.690 0.016 0.000

LASSO 0.579 0.806 12 2.316 9.852 24.260 0.986 0.416 0.883 0.030 0.023

SPES 0.965 0.703 13 3.860 6.211 3.750 0.990 0.983 0.986 0.900 0.900

caused by the randomness. It is understandable that LASSOperforms comparablywith
SPES by noting that it could be deemed as a joint screening procedure. However, in our
limited experience, LASSO is not very stable under complex data structure. When we
decrease the sample from 400 to 300, the RCall of LASSO reduces significantly, while
SPES only has a small loss in RCall. To save space, we did not list the simulation results
for Example 4 with n = 300. This point is further verified by Example 5, in which a
marginally unimportant, but jointly significant predictor exists. From Table 5, we can
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Table 6 Biases of coefficient
estimators for Examples 1–5

Setup Method β1 β2 β3 β4

Example 1 LASSO − 2.506 − 2.522 2.536 2.500

IFAST − 0.494 − 0.512 0.516 0.460

SPES 0.208 0.168 − 0.159 − 0.226

Example 2 LASSO − 2.241 − 2.413 2.392 2.222

IFAST − 0.316 − 0.476 0.413 0.282

SPES 0.260 0.204 − 0.240 − 0.275

Example 3 LASSO − 2.081 − 2.678 2.693 2.067

IFAST − 0.212 − 0.765 0.790 0.227

SPES 0.263 − 0.119 0.158 − 0.297

Example 4 LASSO − 2.090 − 2.106 2.096 2.089

IFAST − 0.437 − 0.469 0.445 0.422

SPES 0.236 0.210 − 0.214 − 0.212

Example 5 LASSO − 2.587 2.906 − 2.777 1.123

IFAST − 0.712 0.890 − 1.058 0.680

SPES 0.129 − 0.089 0.094 0.051

see that LASSO could not identify this marginally unimportant, but jointly significant
variable, even if it could be seen as a joint screening method. In this example, we
also could see that SPES has the highest PSRs, TPs, RCalls and lowest FDRs and
L1.errs and L2.errs. These results indicate the reliability of SPES under complex data
structure.

From Tables 1, 2, 3, 4 and 5, we could see that the L1.errs and L2.errs of SPES
are comparable to those of IFAST, which estimates the regression coefficients by the
penalized method in the iterative loop. This motivates us to examine how accurate the
sparsity-restricted pseudo-score estimator of regression coefficients could be. Table 6
presents the biases of coefficient estimators of truly important features, fromwhich we
can see that the sparsity-restricted pseudo-score estimator and estimators from IFAST
are consistent numerically, while estimators from other methods are not. Furthermore,
estimators from SPES have smaller biases than those from IFAST. This phenomenon
indicates that the sparsity-restricted pseudo-score estimator-based screening can also
be used for estimation. In other words, our suggested methods could achieve the goal
of simultaneous feature screening and coefficient estimation.

As suggested by one reviewer, we conducted further simulation studies to inves-
tigate and compare the performances of SPES and the examined approaches under
smaller absolute regression coefficients andmisspecified survivalmodels. The detailed
elements of simulation setup are provided below.

Example 6 Same as Example 5 except that βM0
= (1,− 1, 1,− ρ + ρ2 − ρ3)T .

Example 7 Survival times were generated from the following Cox model:

λ(t |Z) = λ0(t)exp(ZT β∗),
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Table 7 Summary statistics for Example 6

Method PSR FDR AMS TP L1.err L2.err RC1 RC2 RC3 RC4 RCall

PSIS 0.495 0.847 13 1.980 – – 0.996 0.030 0.953 0.000 0.000

FAST 0.488 0.849 13 1.953 – – 0.986 0.030 0.936 0.000 0.000

IFAST 0.830 0.744 13 3.320 2.507 0.663 0.990 1.000 0.913 0.416 0.406

CRIS 0.331 0.897 13 1.326 – - 0.776 0.013 0.516 0.020 0.000

CSIRS 0.465 0.856 13 1.863 – – 0.973 0.023 0.856 0.010 0.000

CRSIS 0.414 0.872 13 1.656 – – 0.913 0.016 0.723 0.003 0.000

LASSO 0.618 0.794 12 2.473 3.206 2.479 0.996 0.526 0.923 0.026 0.006

SPES 0.935 0.712 13 3.740 2.806 0.708 1.000 0.986 0.986 0.766 0.766

Table 8 Summary statistics for Example 7

Method PSR FDR AMS TP RC1 RC2 RC3 RC4 RCall

PSIS 0.923 0.261 5 3.693 0.920 0.923 0.916 0.933 0.713

FAST 0.942 0.246 5 3.770 0.940 0.953 0.933 0.943 0.780

IFAST 0.988 0.209 5 3.953 0.983 0.986 0.993 0.990 0.953

CRIS 0.667 0.466 5 2.670 0.653 0.636 0.733 0.646 0.173

CSIRS 0.938 0.249 5 3.753 0.933 0.930 0.956 0.933 0.763

CRSIS 0.913 0.269 5 3.653 0.923 0.920 0.923 0.886 0.666

LASSO 0.996 0.165 5 3.986 0.996 0.996 0.993 1.000 0.986

SPES 0.989 0.208 5 3.956 0.990 0.990 0.993 0.983 0.956

whereλ0(t) is an unspecified baseline hazard function, Z = (Z1, . . . , Z p)
T

is the p-dimensional covariate vector, and β∗ is the regression coefficient
vector. Let λ0(t) = 1 and Z1, . . . , Z p be independent and identically dis-
tributed N (0, 1) random variables. M0 = {1, 2, 3, 4}, βM0

= (1, 1, 1, 1)T

and βMc
0

= 0p−4. (n, p) = (150, 1000).

Example 6 modifies Example 5 by reducing the absolute regression coefficients
by three times. Thus, it is more challenging to recover all the important features.
In Example 7, survival times were generated from the popular Cox model, which is
misspecified by the additive hazards model (1).

Tables 7 and 8 present the simulation results for Examples 6 and 7. By comparison
with Table 5, it can be seen that performances of SPES under Example 6 are worse than
those under Example 5, which iswithin our expectation. However, our proposedmeans
is still the best among all of the methods and has overwhelming advantages over them.
We believe that the behavior of SPES could become better as the sample size increases.
As for Example 7, IFAST, LASSO and SPES give satisfactory results, while the other
methods’ behavior is not well based on the results in Table 8. Specifically, CRIS
behaves the worst among all the methods. Through this example, we can conclude
that our SPES have robustness to some extent.
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4 The breast cancer study

Dataset for this study contains 24,885 genes for 295 female patients diagnosed with
breast cancer between 1984 and 1995 at the Netherlands Cancer Institute. After initial
screening by the Rosetta error model, 4919 genes were filtered out as significantly
regulated genes, refer to Annest et al. (2009). The time of interest to event is the
survival time. Among the 295 patients, 216 were still alive at the end of follow-up,
producing 73.2% censoring rate. Patients’ times to death or censoring ranged from
0.05 to 18.3 years, with a median of 7.2 years.

This dataset contains 5 samples with 21 missing gene expressions. Instead of dis-
carding these samples or setting the missing values to be zeros directly, we firstly
impute them by the weighted K -nearest neighbor method of Troyanskaya et al. (2001)
with K = 15. Then, we apply the SPES method alongside the marginal screening
methods considered in Sect. 3 to this imputed microarray data with the threshold
being k = [295/(5log(295))] = 10. The selected genes by various methods are listed
in Table 9. From this table, we can observe that fifty-five unique genes are discov-
ered by various methods in total. Among them, the top six frequently selected genes
are NM.001168, NM.001333, Contig38288.RC, D43950, NM.006607 and U96131,
which are selected by five, four, four, three, three and three approaches, respectively. In
addition, four genes (NM.001333, Contig38288.RC, U96131 and D43950) identified
by our SPES are also selected by other methods. Specifically, NM.001333 and Con-
tig38288.RC are selected by 3 methods except our SPES, respectively, while U96131
and D43950 are selected by 2 methods except our SPES, respectively. Our SPES
method obtains 6 genes which are missed by any of the other 7 methods. They are
NM.020974, Contig56390.RC, NM.000909, Contig46937.RC, NM.000125 and Con-
tig14284.RC. This result may provide new insights for practitioners to understand the
effects of these 6 genes on the survival time of patients with breast cancer.

By consulting the literature,wediscovered thatContig38288.RChadbeen identified
as a predictive gene in van’t Veer et al. (2002). After screening, our proposed SPES
ranks Contig38288.RC at the second position, which is the highest ranking among
the eight approaches. It means that it is easier to discover this informative gene by
utilizing our proposed SPES method.

To further reduce the number of genes to a smaller size, we use adaptive LASSO
with generalized cross-validation criteria of Leng andMa (2007). Finally, we fitted the
additive hazards model (1) with each group of adaptive LASSO selected genes. The
final selected genes and estimated regression coefficients from finally fitted model
are given in Table 10. It is easy to see that after utilizing adaptive LASSO, SPES,
CRIRS, CRSIS and LASSO identify the gene Contig38288.RC and the proposed
SPES procedure with adaptive LASSO established the most parsimonious model.

5 Discussion

In this paper, we proposed a joint feature screening procedure for the sparse additive
hazards model based on the sparsity-restricted pseudo-score estimator, which could
be solved approximately via the IHT algorithm.We also established the sure screening
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property of the proposed screening procedure, which are verified through our simula-
tion study. It is shown that the SPES approach behaves well under various situation and
better than them in some complex circumstances by comparing with the main exist-
ing screening methods for ultra-high-dimensional survival data. Besides the ability of
identifying all the important features, we also found that our method could achieve
the purpose of simultaneous feature screening and coefficient estimation.

Although we address the question of feature screening by the IHT algorithm for
the additive hazards model in this article, there are still some problems worthy of
further research. We have found that the sparsity-restricted pseudo-score estimator
is very accurate estimator of regression coefficient in our limited numerical studies.
Thus, it is very interesting to explore convergence rate and error bound for sparsity-
restricted pseudo-score estimator in the high-dimensional sparse additive hazards
model. Although Zhang and Zhang (2012) investigated the error bound of l0 penal-
ized least squares estimate for complete data, it is more challenging to study it for
the approximate solution from IHT algorithm under the right censored data. We will
explore this problem in the near future.
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Appendix: Proofs of the theorems

To prove Theorem 1, we firstly give a large deviation result for martingale under the
additive hazards model. This result could be proved along the similar line as those for
Theorem 3.1 in Bradic et al. (2011). So we omit the proof here for simplicity.

Lemma 1 Under Assumptions 1–3, for any positive sequence {un} bounded away from
zero, if max

1≤ j≤p
σ 2

j = O(un), there exist positive constants c7 and c8 such that

pr(|√nUn, j (β
∗)| > un) ≤ c7exp(−c8un)

uniformly over j , where Un, j (β
∗) is the j th component of Un(β∗).

This large deviation result represents a uniform, nonasymptotic exponential
inequality for martingales under the additive hazards model and is independent of
dimensionality p. So it will be very useful for the high-dimensional additive hazards
model.

Proof of Theorem 1 Denote β̂M to be the (unrestricted) pseudo-score estimator of β

based on model M . In order to establish the sure screening property, we just need to
prove

pr
(
M̂ ∈ Mk+

) −→ 1,
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as n goes to ∞. It suffices to show

pr

(
max

M∈Mk−
Ln(β̂M ) ≥ min

M∈Mk+
Ln(β̂M )

)
−→ 0,

as n goes to ∞.
For any M ∈ Mk−, let M ′ = M ∪ M0 ∈ M2k+ .
Firstly, consider βM ′ being close to β∗

M ′ such that ‖βM ′ − β∗
M ′ ‖2 = c2n−τ1 . After

some algebraic manipulations, we have

Ln
(
βM ′

) − Ln
(
β∗

M ′
)

= (
βM ′ − β∗

M ′
)T Un,M ′

(
β∗

M ′
) − 1

2

(
βM ′ − β∗

M ′
)T V n,M ′

(
βM ′ − β∗

M ′
)
.

Then, by the Cauchy–Schwartz inequality and Assumption 5, we can conclude that

Ln
(
βM ′

) − Ln
(
β∗

M ′
)

≤ ‖βM ′ − β∗
M ′ ‖2‖Un,M ′

(
β∗

M ′
)‖2 − c4

2
‖βM ′ − β∗

M ′ ‖22
≤ c2n−τ1‖Un,M ′

(
β∗

M ′
)‖2 − 1

2
c4c22n−2τ1 .

Thus, we have

pr
(
Ln

(
βM ′

) − Ln
(
β∗

M ′
) ≥ 0

)

≤ pr

(
‖Un,M ′

(
β∗

M ′
) ‖2 ≥ 1

2
c2c4n−τ1

)

≤
∑

j∈M ′
pr

(
U 2

n, j

(
β∗

M ′
) ≥ 1

2k

(
1

2
c2c4n−τ1

)2
)

=
∑

j∈M ′
pr

(
|Un, j

(
β∗

M ′
) | ≥

(
1

2k

)1/2 1

2
c2c4n−τ1

)
,

where the second inequality is obtained by Bonferroni inequality.
Because M0 ⊂ M ′, we can get that Un, j (β

∗
M ′) = Un, j (β

∗). Then under the condi-
tions in Theorem 1 and by Lemma 1, we have

pr

(
|Un, j

(
β∗

M ′
) | ≥

(
1

2k

)1/2 1

2
c2c4n−τ1

)

= pr

(
|√nUn, j

(
β∗

M ′
) | ≥

( n

2k

)1/2 1

2
c2c4n−τ1

)

= pr

(
|√nUn, j

(
β∗

M ′
) | ≥ 1

2
√
2

c2c4c
− 1

2
3 n

1
2−τ1− τ2

2

)

≤ c7exp(−c8n
1
2−τ1− τ2

2 ).
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Then

pr(Ln
(
βM ′

) − Ln
(
β∗

M ′
) ≥ 0) ≤ 2kc7exp

(
−c8n

1
2−τ1− τ2

2

)
.

Then, by the Bonferroni inequality and assumptions in Theorem 1, we can arrive at

pr

(
max

M∈Mk−
Ln

(
βM ′

) ≥ Ln
(
β∗

M ′
)
)

≤
∑

M∈Mk−

pr
(
Ln

(
βM ′

) ≥ Ln
(
β∗

M ′
))

≤ pk2kc7exp
(
−c8n

1
2−τ1− τ2

2

)

≤ 2c7exp
(
log(c3) + τ2log(n) + c9nm+τ2 − c8n

1
2−τ1− τ2

2

)

= o(1),

where c9 is a positive constant.
By the concavity of Ln(βM ′), we can conclude that the above result holds for any

βM ′ that ‖βM ′ − β∗
M ′ ‖ ≥ c2n−τ1 .

For any M ∈ Mk−, let β̌M ′ being β̂M augmented with zeros corresponding to the

elements in M ′/M0. It is easy to see that ‖β̌M ′ − β∗
M ′ ‖ ≥ ‖β∗

M0/M‖ ≥ c2n−τ1 . So we
have

pr

(
max

M∈Mk−
Ln(β̂M ) ≥ min

M∈Mk+
Ln(β̂M )

)

= pr

(
max

M∈Mk−
Ln

(
β̌M ′

)
≥ min

M∈Mk+
Ln(β̂M )

)

≤ pr

(
max

M∈Mk−
Ln

(
β̌M ′

)
≥ Ln

(
β∗

M ′
)
)

= o(1).

Then the proof is finished. ��
Proof of Theorem 2 Denote Qn(β | β̂

(t)
) = Ln(β̂

(t)
)+ (β − β̂

(t)
)T Un(β̂

(t)
)− u

2‖β −
β̂

(t)‖22. Then β̂
(t+1) = argminβ∈B(k){−Qn(β | β̂

(t)
)}.

After some algebraic manipulations, it is easy to see that

Ln

(
β̂

(t))

= Qn

(
β̂

(t)|β̂(t))

≤ Qn

(
β̂

(t+1)|β̂(t))
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= Ln

(
β̂

(t)) +
(
β̂

(t+1) − β̂
(t))T

Un(β̂
(t)

) − u

2
‖β̂(t+1) − β̂

(t)‖22
= Ln

(
β̂

(t+1)) − u

2
‖β̂(t+1) − β̂

(t)‖22 +
(
β̂

(t+1) − β̂
(t))T

Un

(
β̂

(t))

+ Ln

(
β̂

(t)) − Ln

(
β̂

(t+1))

= Ln

(
β̂

(t+1)) − u

2
‖β̂(t+1) − β̂

(t)‖22 + 1

2

(
β̂

(t+1) − β̂
(t))T

V n

(
β̂

(t+1) − β̂
(t))

.

It is easy to see that

(
β̂

(t+1) − β̂
(t))T

V n

(
β̂

(t+1) − β̂
(t)) ≤ ρmax(V n)‖β̂(t+1) − β̂

(t)‖22.

So under the assumptions in Theorem 2, we have

Ln

(
β̂

(t))

≤ Ln

(
β̂

(t+1)) − u

2
‖β̂(t+1) − β̂

(t)‖22 + 1

2
ρmax(V n)‖β̂(t+1) − β̂

(t)‖22
= Ln

(
β̂

(t+1)) − 1

2
(u − ρmax(V n))‖β̂(t+1) − β̂

(t)‖22
≤ Ln

(
β̂

(t+1))
.

This ends up the proof. ��
Before presenting the proof of Theorem 2, let’s introduce a lemma firstly.

Lemma 2 Define β̂
(0) = argmaxβ{Ln(β) − λ‖β‖1}, where λ satisfies λn

1
2−m → ∞,

λnτ1+τ2 → 0. Under Assumptions 1–3 and 6, if max
1≤ j≤p

σ 2
j = O(λn

1
2 ), we have

pr
(
‖β̂(0) − β∗‖1 ≤ 8c−1

5 λq
)

→ 1,

where c5 is defined in Assumption 6.

Proof It is easy to see that

Ln

(
β̂

(0)) − λ‖β̂(0)‖1 − (
Ln(β∗) − λ‖β∗‖1

) ≥ 0,

or equivalently

Ln(β∗) − Ln(β̂
(0)

) ≤ λ‖β∗‖1 − λ‖β̂(0)‖1.
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Define δ = (β̂
(0) − β∗) = (δ1, . . . , δp)

T . By some algebraic manipulations, we have

Ln(β̂
(0)

) − Ln(β∗)

= bT
n β̂

(0) − 1

2
β̂

(0)T
V nβ̂

(0) −
{
bT

n β∗ − 1

2
β∗T V nβ

∗
}

= (β̂
(0) − β∗)T

{
bn − 1

2
V nβ∗

}
− 1

2
(β̂

(0) − β∗)T V n(β̂
(0) − β∗)

= δT Un(β∗) − 1

2
δT V nδ.

Then we have

δT V nδ

= 2δT Un(β∗) + Ln(β
∗) − Ln(β̂

(0)
)

≤ 2δT Un(β∗) + λ‖β∗‖1 − λ‖β̂(0)‖1.

Denote A = {max1≤ j≤p |Un, j (β
∗)| ≤ λ

4 }. Because max
1≤ j≤p

σ 2
j = O(λn

1
2 ), then by

Lemma 1, we have

pr(Ac)

≤
p∑

j=1

pr

(
|Un, j (β

∗)| >
λ

4

)

=
p∑

j=1

pr

(
|√nUn, j (β

∗)| >

√
nλ

4

)

≤ pc7exp

(
−c8

√
nλ

4

)

≤ c7exp

(
c10nm − c8

√
nλ

2

)

→ 0,

where c10 is a positive constant. So we obtain that pr(A) → 1 and ‖Un(β
∗)‖∞ =

Op(λ). Under the event A, it is easy to see that

δT V nδ

≤ 1

2
λ‖δ‖1 + λ‖β∗‖1 − λ‖β̂(0)‖1.

Thus

δT V nδ + 1

2
λ‖δ‖1
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≤ λ‖δ‖1 + λ‖β∗‖1 − λ‖β̂(0)‖1
≤ λ

p∑

j=1

(
|β̂(0)

j − β∗
j | + |β∗

j | − |β̂(0)
j |

)

= λ
∑

j∈M0

(
|β̂(0)

j − β∗
j | + |β∗

j | − |β̂(0)
j |

)

≤ 2λ
∑

j∈M0

|δ j |

≤ 2λ‖δM0‖1.

It is easy to see thatV n is semipositive definite. Thus‖δ‖1 ≤ 4‖δM0‖1, and furthermore
‖δMc

0
‖1 ≤ 3‖δM0‖1. By the Cauchy–Schwarz inequality and Assumption 6,

‖δM0‖21 ≤ q‖δM0‖22 ≤ qc−1
5 δT V nδ ≤ 2c−1

5 λq‖δM0‖1.

So ‖δM0‖1 ≤ 2c−1
5 λq. Then finally we arrive at

‖δ‖1 = ‖δMc
0
‖1 + ‖δM0‖1 ≤ 4‖δM0‖1 ≤ 8c−1

5 λq.

This finishes the proof. ��

Proof of Theorem 3 Recall that w = min j∈M0‖β∗
j ‖. We just need to show pr(‖β̂(t) −

β∗‖∞ < w
2 ) → 1. It suffices to prove ‖β̂(t) − β∗‖∞ = op(w). As in Xu and Chen

(2014), we use the method of mathematical induction to get this result.
When t = 0, by Lemma 2, we have

pr(‖β̂(0) − β∗‖1 ≤ 8c−1
5 λq) → 1.

Because λ = o(n−(τ1+τ2)), q = O(nτ2), w−1 = O(nτ1), λqw−1 = o(n−(τ1+τ2))

O(nτ2)O(nτ1) = o(1). Thus λq = o(w). So we have ‖β̂(0) − β∗‖1 = op(w). It is

noted that ‖β̂(0) − β∗‖∞ ≤ ‖β̂(0) − β∗‖1. Then the desired result is obtained for
t = 0.

Suppose that ‖β̂(t−1) −β∗‖∞ = op(w). In the following, we will show that ‖β̂(t) −
β∗‖∞ = op(w) is also true. From the adaptive iterative hard-thresholding algorithm,

it is noted that β̂
(t) = H(β̃

(t−1); k), where β̃
(t−1) = β̂

(t−1) + u−1 L̇n(β̂
(t−1)

). If

‖β̃(t−1) − β∗‖∞ = op(w) holds, it can be seen that elements of β̃
(t−1)
M0

are among

the ones with top k largest absolute values in probability. Thus ‖β̂(t) − β∗‖∞ ≤
‖β̃(t−1) − β∗‖∞ = op(w). So what remains is to prove ‖β̃(t−1) − β∗‖∞ = op(w).

Note that‖β̃(t−1)−β∗‖∞ ≤ ‖β̂(t−1)−β∗‖∞+u−1‖Un(β̂
(t−1)

)‖∞. By somealgebraic
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manipulations, we could obtain that

‖Un(β̂
(t−1)

)‖∞
= ‖Un(β∗) + Un(β̂

(t−1)
) − Un(β∗)‖∞

≤ ‖Un(β∗)‖∞ + ‖Un(β̂
(t−1)

) − Un(β∗)‖∞
= ‖Un(β∗)‖∞ + ‖V n(β∗ − β̂

(t−1)
)‖∞

≤ ‖Un(β∗)‖∞ + ‖V n‖∞‖β∗ − β̂
(t−1)‖∞.

Thus

u−1‖Un(β̂
(t−1)

)‖∞
≤ u−1Op(λ) + u−1‖V n‖∞op(w)

≤ (c6r)−1λOp(1) + (c6r)−1nτ3op(w)Op(1)

= c−1
6 O(n−τ3)o(n−(τ1+τ2))Op(1) + c−1

6 Op(n
−τ3)nτ3op(w)

= op(w).

This ends up the proof. ��
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