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Abstract A general result concerning the strong universal consistency of local aver-
aging regression estimates is presented, which is used to extend previously known
results on the strong universal consistency of kernel and partitioning regression esti-
mates. The proof is based on ideas from Etemadi’s proof of the strong law of large
numbers, which shows that these ideas are also useful in the context of strong laws of
large numbers for conditional expectations in L.
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1 Introduction

Let (X, Y), (X1, Y1), (X3, Y2),...be independent identically distributed R? x R-valued
random vectors with EY? < oco. In regression analysis we want to estimate Y after
having observed X, i.e., we want to determine a function f with f(X) “close” to Y. If

“closeness” is measured by the mean squared error, then one wants to find a function
f* such that
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E{l£700 ¥’} =minE {1700 ~ Y7}, (1)

Let m(x) := E{Y|X = x} be the regression function and denote the distribution of X
by w. The well-known relation which holds for each measurable function f

E{1£00 - YR} =E(mx) - Py + f| f@) =m@) P pdo) @)

(cf., e.g., Section 1.1 in Gyorfi et al. 2002) implies that m is the solution of the
minimization problem (1), E{|m(X) —Y |2} is the minimum of (2), and for an arbitrary
f, the L error f | £(x) —m(x) |* n(dx) is the difference between E{| f(X) — Y|?}
and E{|m(X) — Y|*}.

In the regression estimation problem the distribution of (X, Y) (and consequently
m) is unknown. Given a sequence D, = {(X1, Y1),....(X,, ¥»)} of independent obser-
vations of (X, Y), our goal is to construct an estimate m,, (x)=m, (x, D,) of m(x) such
thatthe L, errorf|mn (x) —m(x)|2u(dx) is small, i.e., by choice f = m,, the minimum
in (1) is nearly attained.

A sequence of estimators (m,),cN is called weakly universally consistent if

E/Im”(x) — m(x)l2 udx) — 0 (n— o0)

for all distributions of (X, ¥) with EY? < oo. It is called strongly universally con-
sistent if

/|mn(x) — m(x)|2u(dx) -0 (n— o0) a.s.

for all distributions of (X, ¥) with EY? < oo.
Stone (1977) first pointed out that there exist weakly universally consistent estima-
tors. He considered k;,-nearest neighbor estimates

n
my(x) =Y Wyi(x)-¥; 3)
i=1
where
Whi(x) = Wy i(x, X1,..., Xyn) 4)
is 1/k, if X; is among the k,-nearest neighbors of x in {X1, ..., X,;} and zero other-

wise, and where k,, — oo and k,,/n — 0 (n — 00). The strong universal consistency
of nearest neighbor estimates has been shown in Devroye et al. (1994).

Estimates of the form (3) with weight functions (4) are called local averaging esti-
mates. As a basis for his result on nearest neighbor estimates, Stone (1977) established
a general theorem giving sufficient (and in some sense also necessary) conditions on
weak universal consistency of local averaging estimates.
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Local averaging regression estimates 1235

The most popular examples of local averaging estimates are the Nadaraya—Watson
kernel estimates (Nadaraya 1964; Watson 1964), where

—X;
“(5)

Wh,i(x) = Z;'ZIK—W

(&)

(0/0 = 0 by definition) for some function K : R¢ — R, (called kernel) and some
h, > 0 (called bandwidth) usually satisfying

h, -0 (n— 00) and n-hif—>oo (n - 00), (6)

e.g.,
hy = const -n~ 7 forsomey e RwithO0 <y -d < 1. @)

Frequently used kernels are the naive kernel (window kernel)

K(x) = Ijx<yy (x € RY)

(where 14 denotes the indicator function of a set A, and ||x|| is the Euclidean norm of
x € RY), the Epanechnikov kernel

d
K(x) = ]_[ Kox?) (x =D, ..., x@D) e RY
=1

with
Ko™ = (1= 1xOR) - Iy

(Epanechnikov 1969, with a discussion of an optimality property after some standard-
ization) and the Gaussian kernel

Ko =exp (<l¥?)  (x e RY.

Another example for a local averaging estimate is partitioning regression estimation
(regressogram introduced by Tukey 1947).

Weak universal consistency of kernel estimates has been shown for so-called boxed
kernels, i.e., kernels which satisfy

cr- L=y < KO S €2 [rj=r) (x € RY)
for some c1, ¢, 71,72 > 0 (e.g., the naive kernel or the Epanechnikov kernel) and
bandwidths satisfying (6) independently by Devroye and Wagner (1980) and Spiegel-

man and Sacks (1980). Here in the second paper a slight modification of (5) is used,
where the original denominator is replaced by the maximum of 1 and the original
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denominator. Strong universal consistency of kernel estimates for the naive kernel
and suitably defined piecewise constant sequences of bandwidths has been shown
by Walk (2002). Various results concerning strong universal consistency of variants
of kernel estimates can be found in Gyorfi and Walk (1996, 1997) and Gyorfi et al.
(1998). Walk (2005) treated smooths kernels, e.g., the Gaussian kernel, using the
Spiegelman—Sacks modification of (5). Corresponding results for partitioning estima-
tion are obtained by Gyorfi (1991), by Gyorfi et al. (1998) and in Section 23.1 in Gyorfi
et al. (2002). Results concerning strong universal consistency of various least squares
estimates are presented in Lugosi and Zeger (1995) and Kohler (1997, 1999). Kohler
and Krzyzak (2001) and Kohler (2003) showed the universal consistency of suitably
defined penalized least squares estimates and local polynomial kernel regression esti-
mates, respectively. Further references can be found in Gyorfi et al. (2002). Related
results in connection with strong (universal) pointwise consistency can be found in
Devroye (1981), Greblicki et al. (1984), Devroye and Krzyzak (1989), Irle (1997),
Kozek et al. (1998), Walk (2001, 2008) and Biau and Devroye (2015).

Surprisingly, despite the many existing results in the literature on strong universal
consistency, there is still a gap in the literature concerning the strong universal con-
sistency of the classical kernel regression estimate with weights (5). The only known
result in this context (Walk 2002) requires that the kernel is the naive kernel and that
the sequence of bandwidths is piecewise constant. The purpose of this paper is to
fill this gap. In particular, we show that the classical kernel regression estimate with
a boxed kernel (e.g., the Epanechnikov kernel) and with a sequence of bandwidths
satisfying

h, } 0 (n—> o0) and n~hzToo (n — 00)

(e.g., the bandwidths defined in (7)) is strongly universally consistent. Thus, essentially
the general result of Devroye and Wagner (1980) is sharpened from weak to strong
universal consistency.

To achieve this result, at first a general theorem of Stone type on strong universal
consistency of local averaging estimates with weights satisfying

Y IWai) <D (x eRY
i=1

for some D > 1 is presented (Theorem 1). Because strong universal consistency of
nearest neighbor estimates is known (Devroye et al. 1994), only applications of this
result to kernel estimates and partitioning estimates are presented. The application
to kernel estimates (Theorem 2) yields the above-described result for boxed kernels.
And the application to partitioning estimates (Theorem 3) sharpens the general weak
universal consistency result on partitioning estimation of Theorem 4.2 in Gyorfi et al.
(2002) to strong universal consistency in the case of nested partitioning (where the
sets in the partitions are subsequently refined). In both applications the crucial step is
the verification of the first condition in the strong consistency theorem, which allows
the extension from bounded Y to square integrable Y. An essential tool is here the
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Local averaging regression estimates 1237

idea of “thinning” via majorization developed by Etemadi (1981) for proving the
strong law of large numbers, together with refined covering arguments. The structure
of kernel and partitioning weights allows a direct treatment of variances via binomial
and multinomial distributions, avoiding the use of the Efron—Stein inequality (cf., e.g.,
Gyorfi et al. 2002, Theorem A.3), which seems to be too rough.

Throughout this paper we use the following notation: N, R and R are the sets of
positive integers, real numbers and nonnegative real numbers, respectively. For z € R
we denote the smallest integer greater than or equal to z by [z]. ||x|| is the Euclidean
norm of x € R?. For z > 0, log(z) is the natural logarithm and log,(z) the logarithm
with basis 2. For A € RY we denote the diameter of A by

diam(A) = sup |lx —z|,

X,z€A

and we let 14 be the indicator function corresponding to A (which is one on A and
zero otherwise). And for x € R? and h € R we set

x+h-A={x+h-z:z€A}.

S, denotes a closed Euclidean ball in R centered at 0 with radius r > 0. If P is a
partition of R? and x € R?, then Ap(x) is the unique set A € P with x € A.

The outline of this paper is as follows: The main results are presented in Sect. 2
and proven in Sect. 3.

2 Main results

The following theorem is a tool for proving strong consistency for local averaging
regression function estimates and corresponds to Stone’s (1977) general theorem on
weak consistency. It will be applied to establish strong universal consistency of boxed
kernel and nested partitioning regression estimates (Theorems 2 and 3).

Theorem 1 Ler (X,Y), (X1, Y1), (X2, Y2), ...be independent and identically dis-
tributed R? x R valued random vectors. Assume that the weights

Wn,i(x) = Wn,i(x7X17 7Xn)

of the local averaging regression estimate
n
mu(x) = Z Wn,i(x) Y
i=1

satisfy the following five conditions:
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(Al) There exists a constant ¢ > 0 such that we have for every distribution of Y with
Y>0as.and EY < o0

n
1imsup/Z|Wn,,-(x)| Y u(dx) <c-EY a.s.
n—o0 im
(A2) Forall § > 0:

n

fz Wi Q)] - I x; —x>5y1(dx) — 0 a.s.

i=1

(A3)

n 2
log(n) Z (/ |W,,,,~(x)|u(dx)) — 0 a.s.
i=1

(A4)

/

(AS5) There exists D > 1 such that for all n and for p—almost all x € R¥:

n
D Wailx) - I‘M(dx) -0 a.s.
i=1

n

D Wi <D as.

i=1

Then (my)nen is strongly universally consistent.

Theorem 2 Let K : RY — R be a boxed kernel, i.e., assume that K satisfies
cr-Is, (1) < K(x) <y Is, (x) (x € RY)

for some cy, c2, 11,2 > 0. Let h, > 0 be such that

hy >0 (n —> o0) ®)

n-hd - 0o (n— o) ©)
and ool o)
. max\np, Np41, .-, N2n

lim su - 10

n%OOp min{f,, hyt1, ..., hon} (1

Define the kernel regression estimate by
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Local averaging regression estimates 1239

Then (my)nen is strongly universally consistent.

Remark 1 Assumption (10) is satisfied, if (8) and (9) are sharpened to %, | 0 and
n- hz 1 oo (n — 00). Indeed, if /,, | 0 holds, then (10) is equivalent to

B

lim sup
n—o00 2-n

< 00,

and in case that this condition does not hold we can find a subsequence () of (n),
such that

d
2 - ng 'h2-nk . <h2»nk

d
— 0 — 00),
ng - hd, > 4 )

ng

which implies that 7 - hjf 1 00 (n — o0) does not hold.

Theorem 3 Forn € Nlet P, = (A, : j} be a partition of RY. Assume that for all
x e R4
diam(Ap,(x)) - 0 (n — 00) (11)

and that for each sphere S centered at the origin
1
—{AeP, : ANS#P} -0 (n— 00). (12)
n

Assume furthermore that (Py), is nested in the sense that each set in ‘P, is the union
of finitely many sets in P,y 1, and that there exists an L € N with the property that for
eachn € N each set of P, is the union of at most L sets in P;.,,. Define the partitioning
regression estimate corresponding to P, by

Yoici lap, 0 (Xi) - Yi
Yt lap, (X))

my(x) =

Then (my)nen is strongly universally consistent.

3 Proofs

3.1 Proof of Theorem 1

Lemma 23.3 in Gyorfi et al. (2002), which is due to Gyorfi (1991), with its proof
together with the conditions (A1) and (AS), implies that it suffices to show the assertion
in case that we have |Y| < L a.s. for some L > 0. So from now on we assume that

this condition holds.
We have

f iy (x) — m(x)|* p(dx)
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<L / I () — m ()] ()

§2L'/

D Wai(x) - (Vi — m(X))

i=1

pm(dx)

427 - / Z Wi (x) - (m(X;) — m(x))| p(dx)
i=1
4oL / (Z Wi (x) — 1) -m ()| p(dx)
i=1

= 2L-J,+2L -1, +2L - M,.

Assumption (A4) implies

M, - 0 a.s.

Hence, it suffices to show
I, — 0 a.s.

and
J, —> 0 a.s.

13)

(14)

In order to prove (13), let € > 0 be arbitrary and choose a uniformly continuous
function /i : RY — R with bounded support such that f [m(x) —mx)|u(dx) < €
(cf., e.g., Gyorfi et al. 2002, Theorem A.1). By assumption (A5) we get

D Wi () - (m(X;) — m(X)| p(dx)

Iy 5/ 2
g
o

< fz (Wi (0] - [m(X;) —m(X;)| pn(dx)
i=1

Z Wi (x) - (m(X;) —m(x))| pu(dx)

i=1

D Wi (x) - (G (x) — m(x))| u(dx)

i=1

[ 30 Wsol 60 = ()] (@)
i=1
- [ o) = me o).
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Application of assumption (A1) and the choice of m yields

n
limsupl, <c-e+ limsup/ Z [Whi(x)] - Im(X;) —m(x)|u(dx) + D -€ a.s.
i=1

n—o00 n—oo

Because of (AS), for arbitrary § > 0, we have

lim sup/ D Wi (0] - 1m(X;) — m(x)] p(dx)

n—00 ;
i=1

n—oo

< lim sup |:f Z (Wi ()] - Im(X;) —m(x)] - Iy x; —x)>sym(dx)
i=1
+/Z|Wn,i(x)| S|m(Xi) —m(x)| - 1{|x,«—x|saw(dx)}
i=1

n
<2- sup |m(x)| - lim sup / D Wi (O] Ix, - > sy (d)
i=1

xeRd n—00

+D - < sup [m(x) — nﬁ(z)l) .

x,z€RY [x—z||<8

The first term on the right-hand side above is zero with probability one because of
assumption (A2). The second term will become arbitrarily small for small § because
of the smoothness of m. From this and the above inequality, we get (13).

Now (14) will be shown. For an arbitrary ¢ > 0 choose ¢3 > 0 such that ¢c3 <
€2/(2L%). With the notation

n 2
B, = {Z( / |Wn,i<x>|u<dx)) 563/10g(n)}
i=1

we have

limsup J, = limsup [J, - Ipc + Jy - I,| <O+ limsup J, - I, a.s.

n—o00 n—o00 n—o00

because of (A3). It remains to show

limsup J, - Ip, <€ a.s.
n—oo

Because of the lemma of Borel-Cantelli, it suffices to show

o0

ZP(Jn -Ip, > €) < 0.

n=1
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Therefore, set

F(yl,.--,yn)=/

Then forevery i € {1,...,n}

D i = m(X) - Wy i (x) | pe(dx).
i=1

[FG1 e yn) = FOta oo Yiets Vi Vit - oo Y| < | = ¥ / | Wi ()]s (dx).

Using the inequality of McDiarmid (cf., e.g., McDiarmid 1989 or Theorem A.2 in
Gyorfi et al. 2002), we get

9]

> P (Jy-Ig, > €)
n=1
oo
=Y E{P(J, >€lX1,.... X,)  Ip,}
n=1
0 )
§ZE 2 - exp — 2¢ -Ip,
n=1 AL2 3 (f Wi (0)]p(dx))?

i=1

The proof is complete. O

Remark 2 Assumption (A3) in Theorem 1 follows from

) n 4
(A3) Z (log(n))2 n- ZE { </ |Wn,,~(x)|u(dx)> } < 00
n=1 i=1

by using the lemma of Borel-Cantelli together with the inequality of Markov and
Jensen’s inequality. On the other hand, in Theorem 1 the assumption (A3) may be
replaced by

o0 n 4
Z”'ZEK/an,i(X)IM(dx)) } < 00.
n=1 i=1
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To show this, in the proof of (14) one avoids the introduction of B, and notices

2 4 [ n 2\ 2
—€ 8- L
2 - exp - == (E ( |Wn,i(x)|,u(dx)>>
i=1

202 Y (f (Wi (0)|e(dx))

i=1

n

8. L 4
— -n-Z( / |Wn,i(x>|u(dx>>

i=1

IA

because of 72 - e ¢ <1 (z € R4).

Remark 3 As mentioned above, choice of the L, metric is induced by the minimum
property of the regression function 7. An obvious modification of the proof of Theorem
1 yields strong consistency in the L, norm (I < p < 00) under the assumption
E{|Y |} < oo.

3.2 Proof of Theorem 2

The crucial part in the proof of Theorem 2 is the verification of “’Stone’s technical
condition” (A1). It is done by use of Etemadi’s ”thinning” argument and the covering
Lemma 4.

Lemma 1 Assume that the assumptions of Theorem 2 hold and set

—X;
k()

Wh,i(x) = m

Then W, ; satisfies the assumption (A1) from Theorem 1.

In the proof of Lemma 1 we will need the following auxiliary results (Lemmas 2,
3,4 and 5).

Lemma 2 Letn € Nand p € (0, 1]. Then we have:
(a)

1 Yy ker_ ok _ 1= (= py*!
(k>p(1 O P TR

(b)
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1244 M. Hansmann et al.

(©)

- 1 n) ' 24
a-prts—
rarfUEaOY (k R A

Proof (a) We have

n n
1 n k —k 1 n—+1 k-1 —
- lpyk—__ ~ L) _ pyntl=k+D)
> l+k(k>p( p) (n+1)-pk§=0<k+1>p (I=p)

k=0

_1_(1_p)n+1
 m+D-p
(b) We have
. 1 <I’l> k n—k
Yo, )Pa-p
k=0(1+k)2 k

¢ 2 n ko1 yn—k
=2 G5y @D <k>p o

2 . <n+2> k+2 n+2—(k+2)
(n+1D-(+2)-p* = k+
2
< — %" 1.
T (n+ D7 p?

(c) We have

- 1 n e
Z—(1+k)4 <k>p"<1 - p*

k=0

" 24 Y\ ey oyn—k
SkX_:O(k+4)-(k+3)~(k+2)-(k+1)(k>p(1 7

24 S (n+4\ s
(n+1)-(+2)-(n+3)-(n+4)-p? ,;(kH)p a=n
24
< —— .1
T (n+DFpt

Lemma 3 Letn € Nand py, po > 0 such that py + p2 < 1. Then

1 n!
’ 2 o kD - (T k) Kitkal(n — (ky + ko)

ki ko
. pl . p2
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(1 = (p1 + poy)r~ k)
1

T D+ piop
+(1 = (1 + p2))"?).

(1= =y = (= o

Proof We have

1 n!
2 o R - (T k) Kilkal(n — (ky + ko)

ko ko
Py P

(1 = (p1 4 po)) itk
1

T+ )+ pop;

Z (n+2)!
1 | _ |
k1,kze{0,...,n}(k1 + DI+ DI +2— (k1 + 1+ k2 4+ 1))!
ki+ky<n

_p11<1+1 ) p12<2+1 (1= (p1 + pz))n+2—(k1+1+k2+l)
_ 1 (n+2)!
S+ D)+ -prop2 kilko!(n + 2 — (ki + k2))!

ki, ko€{l,....n+1}
kit+ko<n+2

PPy - (1= (pr + poyy Rtk

From this and

(n+2)! ki ka n+2—(k1+k2)
> Py Py (L= (py 4 po)) Rtk
Vkn! — |
kel n+1}k1~k2~(n +2 — (ki + k2))!
ki+ka<n+2
_ Z (n+2)' .pkl .pkz
ke kil +2 = (k) TE T2
kyi+ky<n+2
(1= (p1 + pp)y"t2- )
n+2
n+2 k _
- ( ,q >p11<1 — (p1+p2))" 2 7h
k1=0
n+2
n—+2 k _
-y ( t )pf(l — (p1+ p))" R
ko=0

+( = (p1 + p))" 2
=1—(p1+ U~ (p1+p))"™ = (p2+ 1~ (p1 + p))"+?
+(1 = (p1 + p))"+?
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we get the assertion. O

Lemma 4 (a) Let P, P* be partitions of R? such that there exists an L € N with the
property that each set of P* is contained in the union of at most L sets in P. Then for

all t € RY one has:
I,
/ Ip0® iy <1
rd U(Ap(x))

(b) Let O < r1 < rp. Then there exists an L € N such that for alln € Nand allt € R
one has

Litn,.s, (x)
/ $/¢L(dx) <L.
R4 ,LL(.X +hl1 : Srl)

Proof (a) Choose 11, ...t such that
Ap«(t) S UL Ap(n).

Then
IAP*(t)(x) / Lap @) (x)
dx
/ﬂ;d (Apon " )—Z et i(ApGoy MY

Tap ) (x)
—— u(dx L,
/ﬂ;d w(Ap 0 =

I
Mh

=1

since x € Ap(t;) implies Ap(x) = Ap(#).
(b) Choose L € N and cubes Ay, ..., Ay € R? of side length r1/+/d such that

L< < 21 )d d S, cut A
an AL
rl/«/_ ” =

Then

livhy-s,, (X)
———— u(d
/M(x+hn.srl) I’L( .x)

L

It+h,,-A1 ()C)
- d.
;\/\M(x_i_hn.srl) M( .x)

L
Iiipyn, (X)
;/M(th ap 1@

7

IA

I/\

| /\
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where the second inequality followed from x +h,, - S, D t+h,-A;forx € t+h,-A;.
O

Lemmas Let 0 < r1 < rp. Then constants c4,c5 > 0 exist such that for each
ief{l,...,n}

IA
|

2
E / 5 (X”n ) C4

p(dx)
x—X
L2 jett, iy Is, (_j)

and

4
X—X,'
E / 15r2< hin ) cs

u(dx) .
x—X; 4
T Y e 15, () "

A
|

Proof Because of the Cauchy—Schwarz inequality, it suffices to show the second
inequality. By using the independence of the data, by applying twice the Cauchy—
Schwarz inequality and by Lemma 2 c), we getfori € {1,...,n}:

4
ISrz (xhnXl>
2

x—X;
L+ et 15, (55

n

M(dx‘”)M(dx(z))ﬂ(dx(3))u(dx(4))}

1)

xD—Xx;
I=1 1+Zje{1 ..... iy 15, <Tj>

p(dx My p(dx®) p(dx®) p(dx®)

ST ()

4 1
H E *O—x; \\*
I=1 (1 + Zje{l,‘..,n}\{i} Is, ( hn )>

E
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pw(dx My p(dx®) p(dx®) p(dx®)

M-

<[] efme ()]

(dx D)y p(dx®) u(dx®) p(dx®)

l:l

4 I x(’)—Xl-)
24 Srz ( h
_ g " R0
= B s e
4
24 Ix;+ny,-s,, (X)
=—_—.E ot o
e (fﬂ(x-i-hn‘Sr.)M( x))

Application of Lemma 4b yields the assertion.

O

Proof of Lemma 1. By rescaling the kernel, if necessary, we can assume w.l.o.g. that
wehavecr, < 1.LetY besuchthatY > Qas.and EY < o0o.Fora € [0,1]andb > 0

we have

a 1 1
< <
a+b " 1427 1+4b

(noticing 0/0 = 0), which implies fori € {1, ..., n}
k() K ()
X\ %
Z?:l K (xhn _/) K (xh

n
)C—X,'
1S"2< hn )

L2 et i) K( )
1 IS’Z (xhn )

=X\’
b+ et I, <_th)

IA

A

Consequently, we have

n X—X,'
IS’2 ( iy

. )
an,m Yi<—-)

i=1 DS T Y s

.....

=)

and it suffices to show for some cg > 0

=X .
rz (th ) Y

lim sup/ x—X;
n—0o0 i=1 1+2]€{1 ﬂ}\{l} ISVI ( hn )

@ Springer
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Set Yi* =Y; - I{y,<iy. We show next that (16) follows from

Is,, (x;n ) Y
lim sup/ —x u(dx) < cg - EY. (17)
e Dot LR Y ety Iy (h_]>

To do this, we observe that
[ 0 00
D OPYr £ Y, =) PY, >n} < / P{Y > t}dt = EY < 00
0
n=1 n=1

implies that we have with probability one that Y;* 5 Y,, holds at most for finitely many
n. For eachi € N, one has

Is,, (x;Xl')
/ " — w(dx) — 0 a.s., (18)
1+ Z]e{l ..... n\{i} Isrl (T/)

which follows via the lemma of Borel-Cantelli and Markov inequality from

0 X=X 2 00
XZ:E f ISQ( iz ) x_XA)lL(dx) X_:iz

T+ Y eptmni I, (S

where the first inequality is a consequence of Lemma 5.
From (18) together with ¥,, — ¥;* # 0 only for finitely many n almost surely and
(17), we can conclude

w(dx)

n ISr2 (x;fl) : Yl
limsup/Z
oo ) S p Yy e (=X
i=1 jell,..n\{i} 1Sr hn
_Xi
| Is, (F72) 0
< hmsup/ —X;
n—00 i= 11+Z,e{1 ..... n}\{i}ISr1< hn])
/ IStz X nx) (Y )
X,
i=1 L+ e, i ’Sn( th>
§C6EY+O a.s.

p(dx)

+ lim sup

n—oo

p(dx)
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In the sequel we show (17). Set n; = 2k (k € N). Then we have for any
ne{ng,ng+1,..., ngg1}

Xn: Is,, (x;f(l) 7
x—X;
i=l1 1 + Z./e{ ..... ni\{i} IS’I ( hn j)
Nk+1 ISrz <)C;_Xl> . Yz*
= 1 I x—X;
i=1 I+ Zje Lome i} 45r hn
x—X;
3 N1 15,2 (max{hnk hnk+1 h'lk+1}) . Yi*

x—X; ’
i=1 I+ Z]G{l sssss ne\{i} IS’] (min{hnk»hnkJrljw-ahnkJrl})

Hence, in order to show (17) it suffices to show

lim sup n(dx) < cq - EY,

k— 00

N1 X L L Y*
/i IS"Z (max{h”k’h"kJrl """ h"k+1}> Y’

which is equivalent to

iy x+Smax(hn i 4 hn s (Xi) - Y*
lim sup/ Z i an b1 172 u(dx) < cq - EY.
k—o00 14 Zje{l ,,,,, i\ i) Lt S B By 1o g 171 ( /)
(19)
Set r{ = min{hn, hpggts - ooy hpgy} - 11 and vy = max{hp, hygsts ooy gy} - 12.

Let Py, be a partition of R4 into cubes of sidelength r/ V/d. Then we have for any
x e RY:

Apnk+l x) Sx+ S’i .

Let P*

N1

'p*(l) 7)*(2 ) of P*
: Mgt 1
A ¢ 79*(2 ) with

be a partition of R into cubes of sidelength 2- r5 and choose shifted versions

such that for any x € R there exist cells A € 73*(1),

d
X+ Sré - U12:1A'p*(1) (x).

(Here the shifted partitions can be chosen by choosing first a subset of the d components
of x and by shifting then all sets in each coordinate contained in the subset by r} away
from zero.) Consequently, we have

Livs, (X0) - Y7
"2

; L 2 jettmnin Trs,y (X))
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d

il Zje e\ i) APnkH w (X))
d
24 np41 IAP*(I) ) (Xz) . Yi*

=22 5

I=1 i=1 +Zje{1

..... nen(i) 1m0 (X))
This shows that it suffices to show for some ¢7 > 0

lim sup/ a
k=00 1+ e ) Iap,, @ (X))

p(dx) < c7-EY, (20)

,,,,,

are partitions of R? such that for each set A € P*  there

%
where Py, and P, 1

k+1
exists L € Nand sets Ay, ..., AL € Py, with the properties

d
2.7 Py h o h d
AgUlelAl and LS Iy +2 §C8<maX{ ngs Mng+1, ’ nk+1}> )
r{/«/ﬁ mln{hnk’ hnk+1’ cees hnk_H}

By using the independence of the data and by Lemmas 2a and 4a we have

/% Lagy, 0 Xi) - Y7
k+
(dx)
L2 et oty 1m0 (X))
E {Yl : IAp;Hl ) (Xl)}
< Mgt / p(dx)

Tan, () (%)
= Mk / m(r) - / LM(dx)u(am
n(4m,, @)

d
<2.cg- (m?X{h"’“h”k“’ ""h”"“}) fm(t)u(dt)

min{hy,, hpgi1s .oy Ay}
d
:2'C8 A <méx{hnk1 hnk+11 "'shnk+1}> EY,
mln{hnk’ hnk+1’ T hl’lk+1}

Hence, because of (10), it suffices to show

Nk+1 IAP* (x) (X,) . Yi*

k+1
Z/ <1 + 2 el i) IAPnH, w (X))

,,,,,
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An application of the lemma of Borel-Cantelli and the inequality of Chebyshev yields
that this in turn follows from

T IAPerJrl x) (Xl) ’ Yi*

i=1 / L ettty T, 00 (X))

M(dx)} <o0o. (21

2|

So in order to finish the proof of Lemma 1, it remains to show (21). This will be done

in the sequel.
We have

N1 IAP:;kH o (Xi) - Yi*
v / p(dx)
LD et e} IAP,,HI w (X))

i=1
Nk+1 IAP* (x) (X,) . Yi*
k41
=2ﬁﬂf mwﬁ
i=1

men\li) Lap,,, | @) (X)

.....

Z IAP;ka () (Xp) - ¥
£ 0l
, L Yjet,mniy Tam,,,, @ (X))

u(dX)}

Tane o (Xp) - Y[
—E{/ ik ’ umw}

IAp*k () (Xr) - Y
E / = pu(dx) )
U+ et mnin Tam,,, o (X))
N+

=: Z Bix + Z Dy.1.r;
i=1

Lre{l,...nk41}

hence, it suffices to show
o0 Mk+1

Z Z Bix < o0 (22)

k=1 i=1

and

Z Z Dy < 00. (23)

k=1Lre{l,...nip1)

1#r
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By the independence of the data, by the inequality of Cauchy—Schwarz and by an
application of Lemmas 2b and 4a we get

Ng+1

Z Bi k
i=1

’% ( IAP*k L) COR S
<) E / - pa(dx)
P U et mantiy 1., o0 (X5)

Ig . X;
= ! 1+ I

IAP'T](+1 @ (Xi)

2

: n(dz) p(dx)
L Yjetmni 1am,,,, @ (X)) }

S [ [rorr St
= E{(Y;") IXi=l}'E{
izl U et iy Tar,,,, @ (X))

,,,,,

IAP;;HI @ ()

: wn(dt) p(dz) p(dx)
L2 jet iy 1ap,,,, @ (X)) }

k1
<> / f / E((P1XG =1} Lapy 0 @) Lap, ()
i=1

E{ ! }
2
\ (1 + Xjett i) amy,,, @ (X ))
1
E 5 ( H(dt) p(dz) p(dx)
\ (1 + 2 el i) APy, @ (X))

njy1
=Y [ [ [warixi=n
i=1
Ia . 1) L. t
Apg,, @ () Apy, @ ()

2.
ni ° /'L(Apnk+1 (x)) ’ M(AP"IHJ (Z))
< mi:l 7. C2 . <max{hnk, hnk—Hs s hnkﬂ})z.d E{(Yi*)2}

wu(dt) u(dz) pu(dx)

min{h,,, by 41, ..., hnk+]} n%
This implies
00 Mi+1 00 NMk41 %
E{(Y )2 }
2.2 Biuwsco: )
k=1 i=1 k=1 i=1
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=& E{(Y*)} — E{(Y7,,)
N I e

k=1 i=1

OOE{( )%} > 1
— §’$_ ) 2.2 R
_4.1{:1 k+1 =4-E Y k:11{Y§2k+1} k+1

> 1 1
_ 2 _ 2
=4-E(Y Y ot =4EY o
2 2
k=[log, Y1—1

<4.EY < o0,

this proves (22).
So it remains to prove (23). To do this, we observe that the independence of the
data implies

Dy ;1 r

= //E {IAP’ka 0 (X1) - Yl*} E {IAP'ka @ Xr)- Y,*}

1
U2 et mnin Tam,,, 0 (X))

1
U2 et mnien Lap,, @ (X)) ]

1
—-E
L2 et mniny 1ap,,,, 0 (X))

1 )
E u(dx)n(dz)
{ L2 ictt i) Lap,, X)) }

< / / ( .>M(dx) u(dz)
R4 Rd\Apnk+| (2)
+/ f (...),u(dx) u(dz)
RY JAPy,, @)

(€8] 2)
=Dy, + D,

Let x, z € R4 and set p1 = /JL(Apnk+l (x)) and py = M(AP"kJrl (z)). It is easy to see
that in case p; = 0 or p» = 0 we have

1 1
E
{ L+ et i) Lap,, o (X; ) 1+ D ietl L) lap,,,, (z)(Xj)}

@ Springer



Local averaging regression estimates 1255

1
—E
[ U4 2 et 1ap,, (X)) ]

1
E
{1‘*E:jeuwwnu\v}lpr+lu>CXj)}

hence, we assume in the sequel w.l.o.g. that we have p; > 0 and p; > 0.
In case x ¢ Apnk+l (z) we have Aypnk+1 x)nN AP"kJrl (z) = @, and we can conclude

by Lemmas 2a and 3

E 1 1
T+ 2 et mnitn 1amy @ X)) 1+ 5e0 i 1ar,,, @ (X))

1
—-E
{ U2 et moniny 1m0 (X)) }
1

‘E
{ T2 et i 1am,,,, @ (X)) }
1
= (== pD)™ =1 = p)™ + (1= (p1 + p2))™)
ng-(ng—1)-p1-p2

L A== ™) —— (= (= p™)

ng - pi ng - p2

ng —ng - (1= p)"™ —ng - (1 = p)™ +ng - (1 — (p1 + p2))™*

m?- (g —1)-p1-p2
=D - A=A =p)"™ =1 = p)" 4+ (1= p)™ - (1= p2)™)
2 (g —1) - pr-pa
1= =p)"™ = =p)"™ +n - (1= (p1+ p2)"™ — (g — 1) - (1 = p1)"™ - (1 — po)"™
B (g —1) - p1-p2
1= (1= p)™ — (1= p2)"™* + (1 - (p1+ p2)™*
2 (g —1) - p1-pa

=< ! s
ng - (g —1) - p1-p2

where the first inequality followed from (1 — (p1 4+ p2)) < (1 — p1) - (1 — po).
Consequently, application of Lemma 4a yields

(1)
Dl,k,r

< / / (E{IAP* (x>(xz)-Y,*}-E{1A7,* <z><xr)~Y,*}
Rd Rd\APrzk+1(Z) k41 Mk+1

1
1} (e — D) u(Ap, | () - 1(Ap, ()

1
Egiajﬁﬂ////mﬂx=ﬂEwm=”

)M(dX) n(dz)
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Tape @0 Tape s
P P - ju(dt) p(ds) pu(dx) pu(dz)
p(Ap, () wpAp, ()
2d
_ 1 o (max{hnk,hnkﬂ,...,hnk+1}> Y.
Tl —1) min{Au,, Rugt1s - fngsy )

In case x € Aypnk+1 (z) we have AP"kJrl x) = AP"kJrl (z). Using this,

1 1 1

(1—|—i)2_(i+1)'(i+2)+(i+1)2~(i+2)
< — 1. + — .3 .
i+D-G+2) (G+D-G+2)-G@+3)

and Lemma 2a we get

1 1
E
{ U2 et mninn Tam,,, 0 (X ) T+ Y et i) Lap, X)) }

1
—E
{ L+ et mn Iap, (X)) }

1
-E
L+ 2 et o) IApnkH(z)(Xj)}

1

2
1
—|E
( { L2 et mn IAPnkH ) (X;) })

_ 1 ng—2\ o 1—1- P1)”k)2
= —_— . . . 1_ nk l_ 1= -=p)™
§(1+i)2< i )Pl( p1) e

ng—2
1 nk—2> ; N
= LN Lo . (1 = ny i
_iz_(:)(i+1)~(i+2)< ;)i d=pD
ng—2
3 nk—2) ; o
* ’ . (1 — k i
g(i+1)'(i+2)~(i+3)( ;)P d=p)
(1_(1—P1)"k)2
Nk - P1

ng—2

n —(
_Z(nk_l) n- DY (HS)‘)M (1= e
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ng—2

" Z& (nx = 1) '”k:‘))(”k +D-py (nik:;) P (1= ppywti=
1= (1= pp™)°
B m.(l_(l_pl)nk _”k'Pl-(l—Pl)"kil)
3

+ (1= = p) T — 4 1) pr - (1= pp)
(g — 1) -nge - (g + 1) - p3 <

)nk—l) _ 1—2'(1—p12)”k;-(1—171)2'"k
- P1
1 . 3
= (nk—1>-n£~p%'(”"_""'(1_’”)k)+<nk—1>-nk-(nk+1)~p%
=D =2 =D - (= p)™
(k — 1) -ni - p?
ol —2) (1= p™ 3
e —1-n}-pd (e — 1) -ng - (e + 1) - p3
5

(g —1)-n2-p3’

1
—z(nk—l-l)'nk'l?%'(l—l’l

IA

where the last inequality follows from

1 1
(g -p1) e P < — maxz-et < —
p1 >0 p1

(e —2) - (1 — pp)™ < K=
n

and p; < 1.
Consequently, we get by an application of the inequality of Cauchy—Schwarz and
by Lemma 4a

2)
Dk,l,r

2
=< // (E {IAP;; (Z)(Xnkﬂ) "k-H })
AP”k-H @
5

5 RO

(= 1) n} - p(Ap, ()
//A {]AP;; @ X)) - V) }'E{IAP;HI@(X)}

(i — 1) -0} - M(AP,,HI @)}

7j”k-*—l

- p(dx)p(dz)
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5

= E 1 * Z Xn +1 n ’ d
/ {AP ()( k ) - (Y, k+1)} (nk—1)'”%'#(’473»11{_,.1(1))“( 2

. '(max{hnk,hnkﬂ,...,h,,kﬂ})d E{(Yy )%

min{hu, hyits - g} ) nf (g — 1)

Summarizing the above results, we get

(E{Y})2+E{( e D)%)

oo
Y. Y Dus=ci Z < o0,

k=11,re{l,...ng41}

which completes the proof. O

Lemma 6 Assume that the assumptions of Theorem 2 hold and set
_Xi
k(5)
=X\’
27:1 K ( hy, J)

Then Wy, ; satisfies the assumptions (A2), (A3), (A4) and (AS) from Theorem 1.

Wn,i ()C) =

Proof Proof of (A2): Let § > 0 be arbitrary and by (8) choose ng € N such that
8/ hy > rp for n > ng. Then we have for n > ng

)C7Xi .

n n_cy- s, <_hn ) I{ nx;-l;xn .

E Wi (X) - I x; —x|>8) < E =0
n x—X;

i=1 i=1 Zj:1K< o )

for each x € R?, which implies (A2).

Proof of (A3): Tt suffices to show (A3’) (compare Remark 2). W.l.o.g. we assume
¢ = 1. Then (15) and Lemma 5 yield (A3’).

Proof of (A4): We have to show

B

Zy = / I{E I, (‘;fi):o}'u(dx) -0 a.s.,

which follows from
E{Z,} >0 (n —> o0) 24)

and
Z,—E{Z,} = 0 a.s. (25)

By assumption (9) and by arguing as on pages 75, 76 in Gyorfi et al. (2002), it is easy
to see that (24) holds, and hence, it suffices to show (25). For this we use Lemma 4.2 in
Kohler et al. (2003)—an Efron—Stein-type lemma for higher central moments—here
for the fourth central moment.
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Let X ’1 be a d-dimensional random vector such that X ’1, X1, ..., X, are independent
and identically distributed and set

Z/ = /1 X' n . ,LL(d.x)
V) s () ()=

Then Lemma 4.2 in Kohler et al. (2003) implies that there exists a ¢;; > 0 such that
foralln e N 4
E{1Z, - EZ)] <cnn? E|Z, - 7'} (26)

In case Is,, (x;_fl) =1Is, (xz_j(l> =0orls, (";ﬂ&) = 1forsomei € {2,...,n},
we have

which implies

/
|zn—z,’,|5/ s () 4, (X_X‘) ().
'\ ", '\, {IS,I( l)=0 (= )}

Consequently,

E{|z. - 7]}

— Xi 4
<16-E /15,1 ( ; )) p(dx)
_Xi 4
> p(dx)

16 (/,S,l<

16 -E I (X_X‘> ! dx)
. /Srl hn 1+Z [Sr (x X)M( s

)l

=
|
>
N—
3
S
N
p—
|
I~
e
oY
=

IA

=
|
>
N———"
[¢]
>
e}
S
|
=
i)
ey
=
B

IA

where the last inequality followed from (1 4+ z) - ¢7% < 1 (z € Ry). Application of
Lemma 5 yields

Efz.-z,'} <=7,

from which we get the assertion by an application of the lemma of Borel-Cantelli,
Markov inequality and inequality (26).

Proof of (AS): Condition (AS5) follows directly from the definition of W,,; since K is
nonnegative. O
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Proof of Theorem 2. By Lemmas 1 and 6 the assumptions of Theorem 1 are satisfied.
Application of Theorem 1 yields the assertion. O

Remark 4 The use of the Spiegelman and Sacks (1980) modification of the classic
Nadaraya—Watson regression estimate allows an extension of Theorem 2 from boxed
kernels to regular kernels in the sense of Definition 23.1 in Gyorfi et al. (2002), thus
comprehending the Gaussian and also non-smooth kernels. The proof is similar to
that of Theorem 2. Especially, one shows Lemma 1 for W, ; modified by inserting the
additive constant 1 into the denominator, majorizes in the numerator the regular kernel
by an infinite sum of weighted indicator functions in context of a bounded overlap
cover of RY with balls and uses Lemma 4. It remains an open question whether strong
universal consistency holds for the classical Nadaraya—Watson regression estimate
with Gaussian kernel.

3.3 Proof of Theorem 3

Analogously to the proof of Lemma 5, one can show

Lemma 7 Assume that the assumptions of Theorem 3 are satisfied. Then constants
c13, c14 > 0 exists such that for eachi € {1, ...,n}

2
1 X
E / : AP,,(X)( i) 11(dx) < 6‘123
+ 2 et iy Lap, 0 (X)) n

.....

and

IA
|

4
Iy (Xi)
E / P 1u(dx) -
L+ ey Tam, 0 (X)) n
Lemma 8 Assume that the assumptions of Theorem 3 hold and set

Tap, () (Xi)

Wy i(x) = .
" Yot Lap, 0(X))

Then Wy, ; satisfies the assumption (A1) from Theorem 1.

Proof of Lemma 8. Let Y be such that Y > 0 a.s. We have to show for some c15 > 0

n
Tap 0)(Xi) - Yi
lim sup/ o u(dx) < cy5-EY. 27
n—00 ; L+ ety Tam, 0 (X))

Set Yl.* =Y; - I{y,<iy. We show next that (27) follows from

n I (X) . Y*
lim sup / 3 APy ()71 i w(dx) <cis-EY.  (28)
n—00 im 1+ Zje{l n\{i} IApn (x) (Xj)

,,,,,
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To do this, we observe that we have as in the proof of Lemma 1 that Y;* # Y, holds
at most for finitely many n. For each i € N, one has

I Xi
/ Apy (0 (Xi) u(dx) -0 a.s.,

U2 ety Tam, 0 (X))

since Lemma 7 implies

00 2 00
Tap () (Xi) 1
E E / o u(dx) <ci3- E — < o0.
i < L+ 2 ety 1ap, 0 (X)) — n?

,,,,,

As in the proof of Lemma 1, we can conclude that (27) is implied by (28). In the sequel
we show (28). Set ny = 2% (k € N). Since the partitions P, are nested, we have for
anyr <sandallx R4

Ap, (x) 2 Ap, (x),
from which we get for any n € {ng, nx + 1, ..., ng+1}

. Lap, (o) (Xi) - Y/*
e Lap, 0 (X))

< % IAPn (x) (Xl) ) Yi*
TS T ey 1A, 0 (X))

,,,,,

Hence, in order to show (28) it suffices to show

lim sup
k— 00

Ng+1 ). Y*
/ Lap,, @ (Xi) Y, () < ers EY

,,,,,

By the assumptions of Theorem 3 each set in the partition P, is contained in the union
of at most L sets of the partition Py, ,. Consequently, we get the assertion above as
in the proof of Lemma 1. O

Lemma 9 Assume that the assumptions of Theorem 3 hold and set

Tap, (x)(Xi)

Whilx) = .
" >t Lap, 0 (X))

Then W, ; satisfies the assumptions (A2),(A3), (A4) and (AS) from Theorem 1.
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Proof Proof of (A2): Let € > 0 and x € R? be arbitrary. By assumption (11) there
exists ng € N such that diam(Ap, (x)) < € forn > ng. Then we have for any n > ng

n

n
Lap, 1) (Xi) - T Xi—x|>¢)
Wi (x) - I x;—x||>e) = : =0
,; ; Yot Lap, 0 (X))

’

which implies (A2).

Proof of (A3): Lemma 7 yields (A3'), which implies (A3) (compare Remark 2).
Proof of (A4): Analogously to the proof of (A4) in Lemma 6.

Proof of (A5): Condition (A5) trivially follows from the definition of the weights. O

Proof of Theorem 3. By Lemmas 8 and 9 the assumptions of Theorem 1 are satisfied.
Application of Theorem 1 yields the assertion. O

Acknowledgements The authors thank Editors and Reviewers for their comments, which led to a gener-
alization of a result and to an improvement of the presentation.
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