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Abstract We investigate semiparametric estimation of regression coefficients through
generalized estimating equations with single-index models when some covariates are
missing at random. Existing popular semiparametric estimators may run into difficul-
ties when some selection probabilities are small or the dimension of the covariates is
not low. We propose a new simple parameter estimator using a kernel-assisted estima-
tor for the augmentation by a single-indexmodel without using the inverse of selection
probabilities. We show that under certain conditions the proposed estimator is as effi-
cient as the existing methods based on standard kernel smoothing, which are often
practically infeasible in the case of multiple covariates. A simulation study and a real
data example are presented to illustrate the proposed method. The numerical results
show that the proposed estimator avoids some numerical issues caused by estimated
small selection probabilities that are needed in other estimators.

Keywords Asymptotic efficiency · Generalized estimating equation · Kernel
estimation · Missing at random · Regression · Single-index model

1 Introduction

Standard methods for regression generally require fully observed data. In practice,
however, for the regression analysis of a response, Y , on a set of covariates (X, Z), the
covariate X may be missing for some subjects. This is common in many areas such as
biomedical sciences and clinical trials due to different reasons, including unavailability
of covariate measurements, loss of data and survey non-response. For example, in
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a subset of Canada 2010/2011 Youth Smoking Survey (YSS) data as described in
Sect. 6, 144 students (total n = 493) had their BMI (body mass index) missing. Here
we consider the linear regression model Y = Wβ + ε, where W = (1, X, Z�)� is
the covariate vector, and E(ε|W ) = 0. The objective of this regression analysis is to
estimate the regression coefficients β when the scalar covariate X is assumed to be
missing at random (MAR) in the sense of Rubin (1976).

Much work using the maximum likelihood has been developed in the area of miss-
ing covariate regression analysis. This model-based method is flexible and clear for
inference, and the asymptotic properties can be obtained via the second derivatives of
the log-likelihood. However, the observed likelihood is generally difficult to get in a
closed form for most missing data problems, which needs factorization and reparam-
eterization of the likelihood. These can be achieved with multivariate normal model
(Hartley andHocking 1971) or specificmonotone patterns ofmissing (Little andRubin
2014). When likelihood factorization is not available, the EM algorithm is a popular
technique for obtaining the maximum likelihood estimate (MLE) with ignorable miss-
ing categorical or continuous covariates (Fuchs 1982; Schluchter and Jackson 1989;
Ibrahim 1990).

Another likelihood-based approach is Bayesianmethods, which are straightforward
in termsof concepts and inferences.On the other hand, it canbe challenging to correctly
specify the conditional covariate distribution and the joint priors over parameters.
Ibrahim et al. (2002) considered Bayesian methods for MAR covariates in GLMs
with informative prior based on historical data.

The most popular approach in industry and software packages might be multiple
imputation (MI). The basic idea of MI is to impute missing data to create a new
“complete” sample and then analyze it as if it were a complete data set. MI methods
for MAR covariates in linear regression models are discussed in Rubin (2004) and
Little and Rubin (2014). In terms of specifying the conditional covariate distribution,
MI works similarly to the EM algorithm and the motivation is Bayesian, but the
idea of MI itself is quite general and can be applied to other methods (Ibrahim et al.
2005). Hsu et al. (2014) proposed a nearest neighbor-based nonparametric multiple
imputation approach for missing covariate data by using the distance calculated from
a two-dimensional summary score of information about the missing covariate and the
missingness indicator.

In most situations, all the above three methods depend on the specification of the
likelihood.When thedistributional assumptions are correct, they are optimal.However,
they can give biased estimationwhen the assumptions are violated. Tohavemore robust
estimation with less likelihood assumptions, some semiparametric methods such as
weighted estimating equations (WEEs) are proposed. Robins et al. (1994) proposed a
class of semiparametric estimators based on inverse-probability WEE

Δ(β,ψ) = n−1/2
n∑

i=1

{
Ri

πi
Di (Wi )(yi − W�

i β) +
(
1 − Ri

πi

)
ψi (Qi )

}
= 0,

wheren is the total sample size (including incomplete cases), Qi = (yi , Z�
i )�, Di (Wi )

is a function satisfying a local identification condition as non-singular E{Di (Wi )W�
i },
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Semiparametric estimation in regression 1203

ψi (Qi ) is an arbitrary function of Qi , Ri is the binary indicator such that Ri = 1 if
the covariate Xi is observed and Ri = 0 otherwise, πi = E(Ri |Qi ) is the probability
of observing Xi . Robins et al. (1994) discussed the choices of Di and ψi and showed
that there exist unique D(eff)

i and corresponding ψ
(eff)
i (Qi ) = E{D(eff)

i (Wi )(yi −
W�

i β)|Qi } that can achieve the semiparametric efficiency bound of β̂ . However, D(eff)
i

does not always have a closed form, sowe choose a convenient one as Di = ∂μi/∂β =
Wi , where μi = E(yi |Xi , Zi ). Then ψi (Qi ) = E(Ti |Qi ) with Ti = Wi (yi − W�

i β)

the regular score function. If we let ψi ≡ 0, the resulting estimator is the inverse-
probability weighted estimator (IPW). We usually fit a logistic regression model of
Ri on Qi to estimate πi ’s in the equations. When the logistic regression model is
incorrect for πi , the estimation can be biased. To overcome this difficulty, Wang
et al. (1997) proposed a nonparametric kernel smoother for the selection probabilities
and developed asymptotic theory for the estimator, including the optimal bandwidth
rate. When ψi �= 0, the estimator is the augmented inverse-probability weighted
estimator (AIPW). This estimator is generally more efficient than IPW because it also
incorporates the incomplete cases. The most important advantage of AIPW is that it
has double robustness (DR) in the sense that the estimator will be consistent when
either the selection probability model (πi ) or the augmentation model (ψi (Qi )) is
correctly specified. There aremanyworks discussing theDR estimator and extensions,
such as Bang and Robins (2005), Kang and Schafer (2007) and Robins and Ritov
(1997). AIPW can still fail when both models are misspecified, and it always needs
distributional assumptions on p(xi |yi , zi ) to estimate ψi (Qi ).

Although Robins et al. (1994) restricted πi to be bounded away from 0, in practice
you may still get some positive but near-zero values for the estimates π̂i , which can
make the inverse probabilities highly variable and skewed (Kang and Schafer 2007;
Robins et al. 2007). ExtendingWang et al. (1997), Wang andWang (2001) considered
kernel estimation for both πi and ψi (Qi ), developed several kernel-assisted estima-
tors and showed their asymptotic equivalence. However, when the dimension of the
continuous part in Qi increases, we need multivariate kernel functions and the esti-
mation procedure suffers from the “curse of dimensionality.” This motivates us to
propose using a single-index model on E(Ti |Qi ). Then, we can apply a univariate
kernel function on the single-index Q�

i γ . Han and Wang (2013), Han (2014) and
Han (2016) recently developed some methods to improve the robustness of AIPW
estimators by allowing multiple working models for both the selection probability and
the augmentation. Thus, multiple robustness can be gained, which means the estima-
tors are consistent if any of the working models is correctly specified. In addition,
these estimators are not sensitive to near-zero selection probabilities. Our method,
from another perspective, is numerically stable with near-zero selection probabilities
simply by not including them in the point estimation procedure. Based on Wang and
Wang (2001), we develop asymptotic distribution theory for the resulting estimator
and compare it with IPW and AIPW.We also conduct simulation studies to investigate
the finite-sample performance of the proposed estimator in comparison with existing
methods.

The rest of the paper is organized as follows: In Sect. 2, we briefly review IPW
and AIPW. We then describe our new estimator in Sect. 3. In Sect. 4, we present
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asymptotic theory of the above estimators ofβ and compare their asymptotic efficiency.
In particular, we show that under certain conditions and assumptions, our proposed
estimator is as efficient as the existing methods based on standard kernel smoothing,
which are often practically infeasible in the case of multiple covariates. In Sect. 5,
we provide the results of our simulation studies. In Sect. 6, we apply our methods to
Canada 2010/2011 Youth Smoking Survey (YSS) data. We make some concluding
remarks in Sect. 7. Technical proofs are given in “Appendix.”

2 Brief review of existing methods

2.1 Inverse-probability weighted estimator

Robins et al. (1994) proposed a class of estimators based on weighted estimating
equations. One of them is IPW through the estimating equation

Δ1(β, π) = n−1/2
n∑

i=1

Ri

πi
Wi

(
yi − W�

i β
)

= 0. (1)

The selection probabilities πi ’s are usually unknown in observational studies. One
can assume a parametric model for πi , for example, a logistic regression model under
MAR

πi (α) = P (Ri = 1|yi , Zi , α) =
{
1 + exp

(
−α0 − α1yi − α�

2 Zi

)}−1

=
{
1 + exp

(
−α�Qi

)}−1
,

where α is unknown. In our estimation problem, α is a nuisance parameter and
can be estimated by maximum likelihood estimator α̂. We denote the solution of
Δ1(β, π(α̂)) = 0 as β̂PIP in the rest of the paper.

Another approach is to estimateπi nonparametrically.Wang et al. (1997) considered
nonparametric kernel smoothers for the selection probabilities. Let d be the number of
continuous components of Q, K be an r th-order kernel function, h1 be the bandwidth
parameter, and define Kh1(·) = K (·/h1). Then the kernel estimator of π(q) is given
by

π̂(q) =
∑n

i=1 Ri Kh1(q − Qi )∑n
i=1 Kh1(q − Qi )

. (2)

The resulting estimator is consistent, but is difficult to implement when Q is multi-
dimensional.

A complete-case (CC) analysis is to use the observed data only treating the partial
data set as a completely observed data set. This approach generally not only leads
to inconsistent estimates when the missing mechanism is not MCAR, but also loses
efficiency due to discarding information from incomplete cases. We will illustrate
these points through simulations in Sect. 5.
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Semiparametric estimation in regression 1205

2.2 Augmented inverse-probability weighted estimator

The IPWdoes not incorporate the incomplete cases,which generally leads to inefficient
estimates. Robins et al. (1994) proposed theAIPWby solving the following equations:

Δ2(β, π,ψ) = n−1/2
n∑

i=1

{
Ri

πi
Ti +

(
1 − Ri

πi

)
ψi

}
= 0, (3)

where ψi = E(Ti |Qi ). Further, it also obtains the DR property. We can still estimate
the selection probability πi using a parametric model or a kernel smoother such as (2).
To estimate ψi , Wang and Wang (2001) proposed to use a kernel estimator similar to
that for πi given by

ψ̂(q) =
∑n

i=1 Ri Ti Kh2(q − Qi )∑n
i=1 Ri Kh2(q − Qi )

(4)

for another kernel bandwidth h2. It can share the same order of kernel function and
same rate of bandwidth with π̂(q) in (2). It is possible to use a parametric model on
ψ or specify the conditional distribution p(xi |Qi ), but then it will fall into the same
area of techniques as EM algorithm, Bayesian or MI.

2.3 Mean-score estimator

The mean-score estimator (MS) solves

Δ3(β, ψ) = n−1/2
n∑

i=1

{Ri Ti + (1 − Ri )ψi } = 0. (5)

Reilly and Pepe (1995) proposed this estimator with all components of Q discrete,
where ψi is estimated by

ψ̂i = 1

n(o)
yi ,Zi

∑

j∈V (o)
yi ,Zi

Tj (X j ;β|yi , Zi )

with V (o)
yi ,Zi

denoting the subset of complete cases for y = yi , Z = Zi , n
(o)
yi ,Zi

the size

of V (o)
yi ,Zi

, Tj (X j ;β|yi , Zi ) the score function for the samples in V (o)
yi ,Zi

. It simply uses
the averaged score of the complete cases with the same Qi as the estimate ofψi . Wang
and Wang (2001) extended it to the setting where some components are continuous
by (4). Unlike IPW or AIPW, MS does not need to estimate the selection probabilities
πi .
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3 Proposed methodology

3.1 The issues of small selection probabilities and curse of dimensionality

Although theoretically the IPW and AIPW estimators are unbiased estimators when
either the model for selection probabilities (π) or for augmentation (ψ) is correctly
specified, they may encounter numerical problems if some πi ’s are small so that
the inverse-probability weights are highly variable. In this case, some subjects may
have very large weights to significantly influence the weighted averages, and the
sampling distribution of a locally semiparametric efficient estimator (IPW, AIPW)
can be markedly skewed and highly variable, leading to biased estimation. We will
illustrate this point through simulations in Sect. 5. This phenomenon is observed and
discussed by Kang and Schafer (2007) and Robins et al. (2007), existing at least when
parametrically modeling πi . In this sense, the mean-score estimator has its advantage
as it does not need to model and use inverse-probability weights.

However, all the kernel-estimation-based estimators mentioned above, including
the MS estimator, have the same problem: curse of dimensionality. If the dimension
d of the continuous part in Q is more than one, the performance of kernel functions
can be unsatisfying.

3.2 Single-index model and the proposed estimator

To overcome the problem discussed above, we consider a single-index model on ψ .
Notice that

ψi = E(Ti |Qi ) = E
{
Wi

(
yi − W�

i β
)∣∣∣Qi

}
= E (Wi |Qi ) yi − E

(
WiW

�
i |Qi

)
β

=
⎛

⎝
1

E (Xi |Qi )

Zi

⎞

⎠ yi −
⎛

⎝
1 E (Xi |Qi ) Z�

i
E (Xi |Qi ) E

(
X2
i |Qi

)
E (Xi |Qi ) Z�

i
Zi Zi E (Xi |Qi ) Zi Z�

i

⎞

⎠β. (6)

Thus we only need to model E(Xi |Qi ) and E(X2
i |Qi ). Assume a single-index model

(SIM)

Xi = g
(
Q�

i γ
)

+ ei , (7)

where g is an unknown smooth univariate function, γ is the parameter of the model
with the same dimension of Qi , ei ’s are random errors with zero mean. To guarantee
identifiability, we assume the first nonzero element of γ is positive 1. If the number
of complete cases is n1, one estimator of g(·) based only on the complete cases is

ĝ(u|γ ) =
∑n1

j=1 X
(o)
j Kh

(
u − Q(o)

j

�
γ
)

∑n1
j=1 Kh

(
u − Q(o)

j

�
γ
) =

∑n
k=1 Rk XkKh

(
u − Q�

k γ
)

∑n
k=1 RkKh

(
u − Q�

k γ
) ,
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where (X (o)
j , Q(o)

j ) are pairs of the complete cases. Then under the SIM condition, we
have

Ê (Xi |Qi ) = Ê
(
Xi |Q�

i γ
)

= ĝ
(
Q�

i γ
)

=
∑n

k=1 Rk XkKh
(
(Qi − Qk)

� γ
)

∑n
k=1 RkKh

(
(Qi − Qk)

� γ
) . (8)

We can also apply this model to get an estimate of E(X2
i |Qi ) as

Ê
(
X2
i |Qi

)
=

∑n
k=1 Rk X2

k Kh
(
(Qi − Qk)

� γ
)

∑n
k=1 RkKh

(
(Qi − Qk)

� γ
) . (9)

We can construct

π̂∗
i (γ ) = Ê

(
Ri |Q�

i γ
)

=
∑n

k=1 RkKh
(
(Qi − Qk)

� γ
)

∑n
k=1 Kh

(
(Qi − Qk)

� γ
) (10)

as the estimated selection probabilities modeled by the SIM using the same (γ, h).
Notice that (8) and (10) have the same forms as (4) and (2) (NW-estimators). But the
former two are conditional on the single-index and thus can just use univariate kernel
functions with the additional parameter γ . Due to this similarity, we can extend the
asymptotic results by Wang and Wang (2001) to the single-index models. The details
will be shown in Sect. 4. On the other hand, compared to Wang and Wang (2001),
here we only estimate the first two moments of Xi given Qi by using the local average
when estimatingψi but keep the original yi , Zi since they are always observed, instead
of using the local average of the whole score function like (4).

Let

ψ̂i (γ ) =
∑n

k=1 RkTi,k Kh
(
(Qi − Qk)

� γ
)

∑n
k=1 RkKh

(
(Qi − Qk)

� γ
) ,

where Ti,k = Wi,k(yi − W�
i,kβ) with Wi,k = (1, Xk, Z�

i )�. This ψ̂i (γ ) is a kernel

estimate of ψi by estimating only E(Xi |Qi ) and E(X2
i |Qi ) with a kernel smoother

via (6). Then, the AIPW (3) and MS (5) estimators in the previous section can be
extended using the SIM as follows:

(a) AIPW with a parametric model on selection probabilities:

Δ2

(
β, π(α̂), ψ̂(γ )

)
= n−1/2

n∑

i=1

{
Ri

πi
(
α̂
)Ti +

(
1 − Ri

πi (α̂)

)
ψ̂i (γ )

}
= 0;

(11)

(b) MS without inverse-probability weights:

Δ3(β, ψ̂(γ )) = n−1/2
n∑

i=1

{
Ri Ti + (1 − Ri )ψ̂i (γ )

}
= 0. (12)
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We use β̂PIPA and β̂A to denote the solutions of Eqs. (11) and (12), respectively.
Generally, besides the main parameter β, γ is an unknown nuisance parameter

which also needs to be estimated. However, in our case with the linear relationship
between Y and (X, Z�)�, we have a special form of γ as γ = (1,−β�

Z )�, where βZ

is the regression coefficient of Z as E(Y |X, Z) = β0 +β1X +β�
Z Z . In that sense, the

single index is ui = Q�
i γ = yi − β�

Z Zi and γ is a part of β so that we do not need to
estimate γ separately. Note also that the choice of bandwidth h is crucial. Technical
details about bandwidth selection will be discussed in Sect. 4.

Under certain conditions, we can show that these two estimators are asymptotically
equivalent (see Corollary 1 below), and they are both as efficient as the existing esti-
mators using standard kernel smoothing, which are often practically infeasible in the
case of multi-covariates. In practice, we prefer β̂A because the estimation procedure
of β̂A has the clear advantage of not involving inverse of selection probabilities to
avoid modeling πi ’s; thus, it is simpler. Moreover, it is important to note that unlike all
inverse probability weighted estimators, β̂A is not sensitive to the positive near-zero
πi ’s since we do not use them in the point estimation procedure.

Of course, β̂A no longer has the property of double robustness and thus needs a
consistent estimator of ψ . In this setting, the performance of β̂A depends on whether
the single-index model (7) is reasonable. Since the relationship between the response
and covariates is assumed to be linear, it is not unreasonable to assume this model.
Actually, it is validwhen (yi , Xi , Zi ) jointly follows amultivariate normal distribution.
More generally, it can still give reasonably robust results under other distributions, as
is to be shown in our numerical studies in Sect. 5.

4 Asymptotic properties

In this section, we will show the asymptotic behavior of the proposed estimator β̂A,
and its asymptotic equivalence to some other estimators described above under certain
conditions. For simplicity, we define π∗

i (γ ) = E(Ri |Q�
i γ ) as the selection probabil-

ities conditional on the single-index Q�
i γ with parameter γ , πi (α) as the selection

probabilities based on a parametric model with parameter α. We need some regularity
conditions to establish the asymptotic theory, which can be found in “Appendix A.1.”
Recall that r is the order of the kernel function used in the estimation. From regularity
condition (i), r is related to the rate of the bandwidth h. Since we are considering a
SIM for estimation, a standard 2nd-order (r = 2) univariate kernel function seems
reasonable in practice.

Let ηn = {nh2r + (nh2)−1}1/2. The following lemmas are important to prove our
main theorems.
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Semiparametric estimation in regression 1209

Lemma 1 Under regularity conditions (i)–(vii) given in “Appendix A.1” and assum-
ing that the single-index model (7) is true, we have

n−1/2
n∑

i=1

(1 − Ri )
{
ψ̂i (γ ) − ψi (γ )

}

= n−1/2
n∑

i=1

Ri

{
T 0
i − ψ0

i (γ )
}
a
(
Q�

i γ
)

+ Op(ηn),

where a(Q�
i γ ) = {1 − π∗

i (γ )}/π∗
i (γ ), T 0

i = EZi |ui ,Ri=0(Ti ) = ∫
Ti f (Zi |ui , Ri =

0)dZi , ψ0
i (γ ) = EZi |ui ,Ri=0{ψi (γ )} = ∫

ψi (γ ) f (Zi |ui , Ri = 0)dZi with ui =
Q�

i γ as the single index.

This is an extension of Lemma 1 in Wang and Wang (2001). The proof of this lemma
is given in “Appendix A.2.”

Note that with the SIM and the single index ui = yi − β�
Z Zi , we can write Ti and

ψi (γ ) as

Ti =
⎛

⎝
ui − β0 − β1Xi

ui Xi − β0Xi − β1X2
i

Zi (ui − β0 − β1Xi )

⎞

⎠ ,

ψi (γ ) =
⎛

⎝
ui − β0 − β1E (Xi |ui )

ui E (Xi |ui ) − β0E (Xi |ui ) − β1E
(
X2
i |ui

)

Zi {ui − β0 − β1E (Xi |ui )}

⎞

⎠ .

Since MAR implies (Xi ⊥ Ri )|Qi , we also have

T 0
i =

⎛

⎝
ui − β0 − β1Xi

ui Xi − β0Xi − β1X2
i

Zu|0
i (ui − β0 − β1Xi )

⎞

⎠ ,

ψ0
i (γ ) =

⎛

⎝
ui − β0 − β1E(Xi |ui )

ui E(Xi |ui ) − β0E(Xi |ui ) − β1E(X2
i |ui )

Zu|0
i {ui − β0 − β1E(Xi |ui )}

⎞

⎠

with Zu|0
i = E(Zi |ui , Ri = 0).

Lemma 1 is useful because it converts asymptotically a sum of dependent random
variables to a sum of independent and identically distributed (i.i.d.) random variables.
Then it is easier to be dealt with by applying standard asymptotic theory.

Lemma 2 Under the same conditions as those in Lemma 1, we have

(a) n−1/2
n∑

i=1
Ri

{
ψ̂i (γ ) − ψi (γ )

}
= n−1/2

n∑
i=1

Ri
{
T 1
i − ψ1

i (γ )
} + Op(ηn);

(b) n−1/2
n∑

i=1

Ri
π̂∗
i (γ )

{
ψ̂i (γ ) − ψi (γ )

}
= n−1/2

n∑
i=1

Ri
π∗
i (γ )

{
T 1
i − ψ1

i (γ )
} + Op(ηn);
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1210 Z. Sun, S. Wang

(c) In addition, if the parametricmodel for selection probabilities is correctly specified
and has a single-index model form with the same single index ui = Q�

i γ as the
augmentation, which means πi (α) = πi = π∗

i (γ ), then

n−1/2
n∑

i=1

Ri

πi (α̂)

{
ψ̂i (γ ) − ψi (γ )

}
= n−1/2

n∑

i=1

Ri

πi

{
T 1
i − ψ1

i (γ )
}

+ Op(ηn),

where T 1
i = EZi |ui ,Ri=1(Ti ), ψ1

i (γ ) = EZi |ui ,Ri=1{ψi (γ )}.
The proof of Lemma 2 is given in “Appendix A.3.” The idea of the proof is analogous
to that of Lemma 1.

Define

Ui = Ri Ti + (1 − Ri )ψi (γ ) + Ri {T 0
i − ψ0

i (γ )}a(Q�
i γ ).

Based on Lemmas 1 and 2, we have the following main theorems.

Theorem 1 Under the regularity conditions given in “Appendix A.1” and assuming
that the single-index model (7) is true, β̂A is asymptotically equivalent to the solution
of the following estimating equation:

n−1/2
n∑

i=1

Ui = 0.

Furthermore, we have

n1/2
(
β̂A − β

) D−→ Np (0,Σ A) ,

where Σ A = D−1MD−1 with D = −n−1E(∂T1/∂β�) = E(W1W�
1 ) and M =

cov(U1) = A + B + 2C for

A = E
(
π1T1T

�
1

)
+ E

{
(1 − π1)ψ1ψ

�
1

}
,

B = E
{
π1(T

0
1 − ψ0

1 )(T 0
1 − ψ0

1 )�a2(Q�
1 γ )

}
,

C = E

{
π1T1

(
T 0
1 − ψ0

1

)�
a(Q�

1 γ )

}
.

The main step of the proof is to obtain the asymptotic equivalence between our esti-
mating equation Δ3(β, ψ̂(γ )) = 0, and n−1/2 ∑n

i=1Ui = 0 with true π∗(γ ) and
ψ(γ ). The details can be found in “Appendix A.4.”

The asymptotic covariance matrixΣA of β̂A can be estimated by first estimatingA,
B and C separately. However, this approach cannot guarantee the necessary property
of nonnegative definiteness of the resulting covariance estimate, and it might lead to
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numerically unstable results. For this reason, we propose to estimate ΣA directly as
follows:

Σ̂ A = D̂
−1
n (γ̂ )

(
1

n

n∑

i=1

Ûi Û
�
i

)
D̂

−1
n (γ̂ ), (13)

where

Ûi = Ri Ti
(
β̂A

)
+ (1 − Ri )ψ̂i + Ri

{
T̂ 0
i

(
β̂A

)
− ψ̂0

i

}
a
(
Q�

i γ̂
)

with ψ̂i = ψ̂i (β̂A, γ̂ ), ψ̂0
i = ψ̂0

i (β̂A, γ̂ ) being the estimates of ψi , ψ0
i based on β̂A

and

D̂n
(
γ̂
) = n−1

n∑

i=1

{
RiWiW

�
i + (1 − Ri )Ê

(
WiW

�
i |Q�

i γ̂
)}

.

Here T̂ 0
i is T 0

i with Zu|0
i estimated by

Ẑ u|0
i = Ê(Zi |ûi , Ri = 0) =

∑n
k=1(1 − Rk)ZkKh((Qi − Qk)

�γ̂ )∑n
k=1(1 − Rk)Kh((Qi − Qk)�γ̂ )

with ûi = Q�
i γ̂ .

Note that to get Ê(WiW�
i |Q�

i γ̂ ), we only need to calculate Ê(Xi |Qi ) and

Ê(X2
i |Qi ) through (8) and (9) because of the structure in (6).

Theorem 2 Under the same conditions as in Theorem 1 and the additional conditions
for Lemma 2(c), we have

n1/2
(
β̂PIPA − β

) D−→ Np(0,Σ PA),

where Σ PA = D−1(S− S∗ +V )D−1, with D = E(W1W�
1 ), S = E{T1T�

1 /π∗
1 (γ )},

S∗ = E{ψ1ψ
�
1 /π∗

1 (γ )} and V = E(ψ1ψ
�
1 ).

It is readily seen that a consistent covariance matrix estimate of β̂PIPA is given by

Σ̂ PA = D̂
−1
n (γ̂ )

[
1

n

n∑

i=1

{
Ri

π̂∗2
i (γ̂ )

(
T̂i − ψ̂i

) (
T̂i − ψ̂i

)� + Ri

π̂∗
i (γ̂ )

ψ̂i ψ̂
�
i

}]
D̂

−1
n (γ̂ ) (14)

with T̂i = T̂i (β̂PIPA, γ̂ ), ψ̂i = ψ̂i (β̂PIPA, γ̂ ) being estimates of Ti , ψi based on β̂PIPA.
Since Pr(Ri = 1|ui , Zi ) = Pr(Ri = 1|Qi ) = πi = π∗

i (γ ) = Pr(Ri = 1|ui ), the
additional condition for Lemma 2(c) implies that (Zi ⊥ Ri )|ui . Then T 0

i = T 1
i =

EZi |ui (Ti ), ψ0
i (γ ) = ψ1

i (γ ) = EZi |ui {ψi (γ )}.
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Although the relationship between Σ A and Σ PA is generally not clear even under
the conditions of Theorem 2, numerically the SE of β̂A is competitive (see Sect. 5) and
β̂A does not have the potential danger of having exceedingly high inverse-probability
weights. The theorems also demonstrate the asymptotic normality of the above esti-
mators, which helps us to make inferences with the estimators.

Corollary 1 Under the same conditions as in Theorem 2 and further assuming
E(Zi |ui ) = Zi , we have

(a) β̂A and β̂PIPA are asymptotically equivalent and are both more efficient than β̂PIP;
(b) The estimators β̂A and β̂PIPA based on a single-index model are as efficient as

those based on a standard multivariate kernel smoother.

It is intuitive to see that these estimators are asymptotically more efficient than
β̂PIP because they incorporate the incomplete cases. However, when the conditions
are satisfied, it is surprising to see that the estimators based on the SIM can keep the
efficiency of the standard kernel smoothers [such as (2), (4) proposed by Wang and
Wang (2001)] with a lower dimension of information. Since IPW is asymptotically
equivalent to AIPW and MS estimators with both selection probabilities and augmen-
tation estimated by a standard kernel smoother (Wang and Wang 2001), the proof of
the corollary also shows that IPW using a standard kernel smoother is more efficient
than β̂PIP, which was not discussed by Wang et al. (1997).

We define Σ P as the asymptotic covariance matrix of β̂PIP and Σ̃ for β̂A, β̂PIPA
based on a standard kernel smoother. For two positive semi-definite covariance matri-
ces A and B, we define A 	 B if A − B is positive semi-definite. From the proof
in “Appendix A.6,” we see that Σ P 	 Σ̃ = Σ A = Σ PA under the conditions in
Corollary 1.

The performance of the estimator β̂A depends on the choice of the bandwidth h
used in the kernel function Kh(·). In the regularity conditions in “Appendix A.1,” we
require nh2 → ∞ and nh2r → 0, as n → ∞. Therefore, the classical optimal rate of
the bandwidth O(n−1/5) does not work in our situation, as indicated in Sepanski et al.
(1994). A reasonable choice is h = Cn−1/3, where C is a constant. A plug-in method
can be applied to estimate C . For simplicity, we can use C = σ̂u as suggested by
Wang et al. (1997) and Zhou et al. (2008), where σ̂u is the sample standard deviation
of the single index ui . We use this formula to choose the bandwidth in our following
numerical studies.

5 Simulations

In this section, we investigate the performance of the proposed estimator β̂A compared
to other estimators, in terms of bias and standard error.We also examine the covariance
estimation using the sandwich formula (13), by comparing the asymptotic standard
error with the empirical standard error. The empirical standard error is obtained from
1000 estimates through independent Monte Carlo simulations under the same data-
generating conditions. The asymptotic normality of the estimators is examined by
calculating the 95% coverage probabilities. We also use this numerical study as an
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Semiparametric estimation in regression 1213

example to illustrate the phenomenon of highly variable inverse probabilities, as well
as the robustness of our estimator under non-normal distributions.

There are two main scenarios in our simulations. For both of them, we consider
n = 250 and 500. In the first scenario, we have (yi , Xi , Zi ) generated from a mul-
tivariate normal distribution with Xi ∼ N (0, 1), Zi ∼ N3(0, I3), εi ∼ N (0, 1),
i = 1, 2, . . . , n. Thus we have p = 4. The true regression coefficients β =
(0, 0.5, 1,−1,−0.5)�, and yi = Wiβ + εi with Wi = (1, Xi , Z�

i )�. The selec-
tion probabilities for observing Xi are πi = {1+ exp(−α0 −α1yi −α2Zi1 −α3Zi2 −
α4Zi3)}−1, which satisfy MAR on X . In this setting, the single-index model on the
augmentation is easily seen to be valid. We have three different choices for the values
of α. On average, there are about 20%, 40% and 60% of the cases that have X missing.
We choose to use a second-order Gaussian kernel function (r = 2). The bandwidth
selection has been discussed in the previous section. In practice, since X2

i is more
variable than Xi , we use h = 0.4σ̂un−1/3 when estimating E(X2

i |Qi ). The coefficient
parameters are estimated through the estimating equations (12) by iterations in R.

We use a logistic regression model to model the missing process parametrically
for β̂PIP and β̂PIPA. In this setting, this model is correctly specified so that theoret-
ically they are unbiased estimators. However, the (estimated) selection probabilities
can be positive but near zero, which may lead to numerically biased estimates as
we indicated earlier. Our empirical experience suggests that, since we only use
the information in incomplete cases when estimating Ê(Zi |ui , Ri = 0), it would
be helpful to include a correction factor matrix in the sandwich formula (13) for
small-to-moderate sample sizes, such as those in our simulation studies, espe-
cially when the percentage of missingness is high and the data are believed to
be skewed. For example, we may replace the estimated asymptotic covariance by
Σ̂

∗
A = Fc · Σ̂ A, where Fc = diag{a, . . . , a, b, a, . . . , a}−1, a = 1 − 0.3 × miss%,

b = (1 − 0.7 × miss%) · min(exp{(n − 500)/5000}, 1), and miss% means the per-
centage of missingness of X in the data set. The position of b matches the position of
the coefficient of the missing covariate. This is what we used for β̂A in our numerical
results. For simulation purposes, we also show the results of the full data β̂F as a
benchmark for comparison.

The results for thefirst scenario are displayed inTables 1, 2 and3. For each estimator,
the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error by formula over 1000 replications and the third line is the
95% coverage probability. Since the conditions for Theorem 2 are not satisfied in the
simulation studies, we do not have a closed form for Σ̂PA. Thus, we put an “∗” in
the places of averaged asymptotic SE of β̂PIPA and use the 1% trimmed empirical SE
to calculate the 95% coverage probabilities. The reason to use the trimmed SE is that
we have some extremely “bad” results caused by the near-zero selection probabilities,
and these few extreme values make the empirical SE too large compared to other
estimators. As expected, the CC analysis produces biased estimates in this scenario.
We also observe that β̂PIP always has significant bias for each parameter, and β̂PIPA has
bias at least for β1, the coefficient of X , even with n = 500. Moreover, the above two
estimators have much larger standard errors than β̂A. Given the multivariate normal
data and correctly specified logistic model for the selection probabilities in Tables 1,
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Table 1 Simulation results of 1000 replications for the normal data, Xi ∼ N (0, 1), Zi ∼ N3(0, I3),
εi ∼ N (0, 1), with α = (2.2,−0.9,−0.7, 0, 0), about 20% missing at random on average

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F −0.0024 −0.0014 −0.0001 0.0006 0.0011

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020

0.943 0.936 0.953 0.944 0.943

β̂CC − 0.1527 −0.0307 −0.1051 0.0575 0.0309

0.0023/0.0022 0.0023/0.0022 0.0024/0.0024 0.0023/0.0023 0.0022/0.0022

0.436 0.917 0.712 0.870 0.924

β̂PIP −0.0120 −0.0026 −0.0150 0.0072 0.0068

0.0026/0.0022 0.0029/0.0024 0.0033/0.0025 0.0029/0.0024 0.0028/0.0024

0.909 0.904 0.854 0.905 0.910

β̂PIPA −0.0048 0.0100 0.0002 0.0074 0.0019

0.0021/∗ 0.0025/∗ 0.0022/∗ 0.0021/∗ 0.0021/∗
0.926 0.928 0.927 0.931 0.934

β̂A −0.0009 −0.0059 0.0010 −0.0002 0.0004

0.0021/0.0021 0.0023/0.0024 0.0021/0.0020 0.0021/0.0020 0.0021/0.0020

0.949 0.956 0.934 0.944 0.940

n = 500

β̂F 0.0004 −0.0014 0.0004 −0.0016 0.0024

0.0015/0.0014 0.0015/0.0014 0.0013/0.0014 0.0014/0.0014 0.0015/0.0014

0.941 0.938 0.960 0.948 0.941

β̂CC −0.1512 −0.0299 −0.1045 0.0573 0.0317

0.0017/0.0016 0.0016/0.0015 0.0016/0.0017 0.0016/0.0016 0.0016/0.0016

0.148 0.893 0.501 0.779 0.891

β̂PIP −0.0053 −0.0031 −0.0084 0.0036 0.0044

0.0019/0.0016 0.0021/0.0018 0.0024/0.0020 0.0022/0.0019 0.0021/0.0018

0.903 0.911 0.891 0.904 0.919

β̂PIPA 0.0028 0.0294 0.0090 −0.0154 0.0007

0.0015/∗ 0.0018/∗ 0.0016/∗ 0.0016/∗ 0.0015/∗
0.927 0.934 0.927 0.927 0.928

β̂A 0.0009 −0.0037 0.0005 −0.0018 0.0018

0.0015/0.0015 0.0017/0.0017 0.0014/0.0014 0.0015/0.0014 0.0015/0.0014

0.945 0.953 0.946 0.941 0.940

For each entry, the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error and the third line is the 95% coverage probability. An “∗” indicates the asymptotic
standard error formula unavailable
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Table 2 Simulation results of 1000 replications for the normal data, Xi ∼ N (0, 1), Zi ∼ N3(0, I3),
εi ∼ N (0, 1), with α = (0.5,−1,−0.5, 0, 0), about 40% missing at random on average

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F −0.0024 −0.0014 −0.0001 0.0006 0.0011

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020

0.943 0.936 0.953 0.944 0.943

β̂CC −0.3499 −0.0578 −0.1642 0.1086 0.0536

0.0028/0.0028 0.0025/0.0025 0.0029/0.0028 0.0027/0.0026 0.0026/0.0025

0.027 0.884 0.543 0.727 0.880

β̂PIP −0.0462 −0.0166 −0.0432 0.0258 0.0151

0.0035/0.0028 0.0038/0.0030 0.0044/0.0032 0.0043/0.0031 0.0038/0.0030

0.814 0.869 0.793 0.822 0.861

β̂PIPA −0.0037 0.0197 −0.0075 0.0127 0.0018

0.0026/∗ 0.0040/∗ 0.0028/∗ 0.0026/∗ 0.0025/∗
0.922 0.918 0.926 0.928 0.934

β̂A −0.0002 −0.0127 0.0005 −0.0006 −0.0003

0.0022/0.0023 0.0028/0.0029 0.0021/0.0020 0.0021/0.0021 0.0021/0.0021

0.956 0.959 0.935 0.938 0.941

n = 500

β̂F 0.0004 −0.0014 0.0004 −0.0016 0.0024

0.0015/0.0014 0.0015/0.0014 0.0013/0.0014 0.0014/0.0014 0.0015/0.0014

0.941 0.938 0.960 0.948 0.941

β̂CC −0.3458 −0.0548 −0.1631 0.1080 0.0558

0.0020/0.0020 0.0018/0.0018 0.0020/0.0020 0.0019/0.0019 0.0018/0.0018

0.000 0.824 0.257 0.554 0.831

β̂PIP −0.0278 −0.0111 −0.0292 0.0203 0.0148

0.0027/0.0022 0.0029/0.0024 0.0035/0.0026 0.0033/0.0025 0.0029/0.0024

0.852 0.907 0.819 0.844 0.880

β̂PIPA −0.0088 −0.0210 −0.0023 0.0216 0.0121

0.0018/∗ 0.0027/∗ 0.0019/∗ 0.0018/∗ 0.0018/∗
0.927 0.925 0.928 0.931 0.934

β̂A 0.0020 −0.0065 0.0005 −0.0024 0.0012

0.0016/0.0016 0.0020/0.0021 0.0015/0.0014 0.0015/0.0015 0.0015/0.0015

0.954 0.950 0.947 0.936 0.935

For each entry, the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error and the third line is the 95% coverage probability. An “∗” indicates the asymptotic
standard error formula unavailable
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Table 3 Simulation results of 1000 replications for the normal data, Xi ∼ N (0, 1), Zi ∼ N3(0, I3),
εi ∼ N (0, 1), with α = (−0.5,−0.5,−0.5, 0, 0), about 60% missing at random on average

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F −0.0024 −0.0014 −0.0001 0.0006 0.0011

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020

0.943 0.936 0.953 0.944 0.943

β̂CC −0.2830 −0.0227 −0.0902 0.0447 0.0243

0.0036/0.0036 0.0032/0.0030 0.0035/0.0033 0.0032/0.0031 0.0033/0.0031

0.288 0.929 0.832 0.917 0.915

β̂PIP −0.0269 −0.0037 −0.0174 0.0098 0.0085

0.0037/0.0030 0.0042/0.0035 0.0049/0.0036 0.0046/0.0036 0.0042/0.0035

0.861 0.872 0.827 0.862 0.897

β̂PIPA −0.0063 0.0290 −0.0041 0.0021 < 0.0001

0.0026/∗ 0.0040/∗ 0.0028/∗ 0.0028/∗ 0.0026/∗
0.933 0.922 0.930 0.929 0.922

β̂A −0.0023 −0.0083 0.0003 −0.0006 −0.0003

0.0023/0.0025 0.0032/0.0035 0.0021/0.0021 0.0022/0.0021 0.0022/0.0021

0.964 0.968 0.936 0.937 0.934

n = 500

β̂F 0.0004 −0.0014 0.0004 −0.0016 0.0024

0.0015/0.0014 0.0015/0.0014 0.0013/0.0014 0.0014/0.0014 0.0015/0.0014

0.941 0.938 0.960 0.948 0.941

β̂CC −0.2805 −0.0226 −0.0907 0.0428 0.0261

0.0026/0.0025 0.0022/0.0022 0.0024/0.0024 0.0023/0.0022 0.0023/0.0022

0.062 0.923 0.774 0.888 0.915

β̂PIP −0.0107 −0.0022 −0.0093 0.0033 0.0079

0.0026/0.0023 0.0030/0.0027 0.0036/0.0029 0.0033/0.0028 0.0031/0.0027

0.896 0.908 0.876 0.890 0.908

β̂PIPA 0.0005 0.0107 0.0001 −0.0040 0.0034

0.0019/∗ 0.0026/∗ 0.0020/∗ 0.0019/∗ 0.0018/∗
0.919 0.933 0.926 0.932 0.933

β̂A 0.0015 −0.0055 0.0004 −0.0022 0.0015

0.0017/0.0018 0.0022/0.0025 0.0015/0.0015 0.0015/0.0015 0.0016/0.0015

0.944 0.975 0.954 0.933 0.932

For each entry, the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error and the third line is the 95% coverage probability. An “∗” indicates the asymptotic
standard error formula unavailable
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2 and 3, β̂PIP and β̂PIPA should be consistent. The deviation from the expectation
arises from the estimated positive but near-zero selection probabilities. These inverse-
probability weights make β̂PIP and β̂PIPA unstable and skewed distributed, resulting
in large standard errors and biases. The near-zero selection probabilities also have
influence on the sandwich formula of the asymptotic covariance, making the averaged
asymptotic standard error very different from the empirical standard error and resulting
in low coverages. On the other hand, our proposed estimator β̂A performs well on bias
and standard error. Its asymptotic standard error is also close to the empirical standard
error. The 95% coverage probabilities of β̂A are reasonable.

In the second scenario, we use non-normal distributions to generate data. Specifi-
cally, we generate Xi from a standardized gamma distribution (Gamma(5, 1)−5)/

√
5,

Zi ∼ N3(0, I3) and εi from a standardized t distribution with d f = 5 as t5/
√
5/3.

We keep the same settings for the parameters. The results for the second scenario are
displayed in Tables 4, 5 and 6. In this setting, the parametric model for selection prob-
abilities is still valid, but the single-index model on the augmentation is not. However,
we get conclusions similar to those from the first scenario. Estimators β̂PIP and β̂PIPA
still have large biases and standard errors. Our proposed estimator has a slightly low
coverage for β1, but is much better compared to other estimators in terms of bias,
standard errors and coverage probabilities.

These simulation results illustrate our point on the numerical issues in β̂PIP and
β̂PIPA that aremainly causedby estimatedpositive but near-zero selection probabilities.
Our proposed estimator β̂A has its advantage of not only the simplicity but also that
it does not need to make parametric model assumption on the selection probabilities
or the conditional covariate distribution p(X |y, Z). It is not sensitive to the near-zero
selection probabilities and gives pretty robust estimates even when the single-index
model is misspecified.

Although both scenarios have a continuous missing covariate X , our method can
also be applied to the situations with a categorical missing covariate. The parallel
theory should still be valid as long as the single-index model E(Xi |Qi ) = g(Q�

i γ )

is still true (e.g., GLMs). When X is a binary variable, the estimation procedure can
even be simpler because E(X2

i |Qi ) = E(Xi |Qi ).

6 Illustrative example of data analysis

In this section, we apply our proposed method to the data collected from the Canada
2010/2011 Youth Smoking Survey (YSS). The 2010/2011 Youth Smoking Survey
(YSS) is a Health Canada sponsored pan-Canadian, classroom-based survey of a
representative sample of students in Grades 6 through 12. The 2010/2011 YSS was
implemented in schools between October 2010 and June 2011 by provincial level
teams located in the 9 participating provinces in Canada. More details can be found in
2010/2011 Youth Smoking Survey Microdata User Guide, or from https://uwaterloo.
ca/canadian-student-tobacco-alcohol-drugs-survey.

We focus on data collected from Asian students (Grade 6 through 8). The main
interest is to explore the correlation between the students’ self-esteem scores and
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Table 4 Simulation results of 1000 replications for the normal data, Xi ∼ (Gamma(5, 1) − 5)/
√
5,

Zi ∼ N3(0, I3), εi ∼ t5/
√
5/3, with α = (2.2, −0.9,−0.7, 0, 0), about 20% missing at random on

average

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F −0.0012 0.0009 −0.0018 0.0005 0.0001

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020

0.950 0.940 0.956 0.939 0.949

β̂CC −0.1481 −0.0284 −0.0988 0.0570 0.0294

0.0022/0.0022 0.0023/0.0022 0.0024/0.0024 0.0023/0.0022 0.0022/0.0022

0.447 0.918 0.725 0.859 0.921

β̂PIP −0.0160 −0.0065 −0.0209 0.0091 0.0075

0.0029/0.0022 0.0033/0.0024 0.0032/0.0025 0.0034/0.0024 0.0029/0.0024

0.883 0.884 0.877 0.879 0.906

β̂PIPA −0.0019 0.0029 0.0002 −0.0045 −0.0003

0.0021/∗ 0.0029/∗ 0.0023/∗ 0.0021/∗ 0.0021/∗
0.925 0.930 0.929 0.923 0.929

β̂A −0.0005 −0.0012 0.0001 −0.0008 0.0005

0.0021/0.0021 0.0025/0.0024 0.0021/0.0020 0.0021/0.0020 0.0020/0.0020

0.961 0.945 0.941 0.937 0.945

n = 500

β̂F −0.0009 −0.0015 −0.0006 −0.0012 −0.0006

0.0014/0.0014 0.0014/0.0014 0.0013/0.0014 0.0015/0.0014 0.0014/0.0014

0.957 0.948 0.956 0.943 0.954

β̂CC −0.1479 −0.0317 −0.0980 0.0544 0.0279

0.0016/0.0016 0.0016/0.0016 0.0016/0.0017 0.0016/0.0016 0.0015/0.0015

0.146 0.886 0.558 0.807 0.908

β̂PIP −0.0103 −0.0089 −0.0138 0.0063 0.0041

0.0022/0.0017 0.0023/0.0019 0.0025/0.0020 0.0025/0.0019 0.0023/0.0018

0.895 0.902 0.885 0.914 0.918

β̂PIPA −0.0033 0.0083 −0.0040 −0.0012 0.0007

0.0015/∗ 0.0021/∗ 0.0016/∗ 0.0015/∗ 0.0015/∗
0.930 0.934 0.932 0.923 0.926

β̂A −0.0009 −0.0017 −0.0002 −0.0017 −0.0003

0.0015/0.0015 0.0018/0.0017 0.0014/0.0014 0.0015/0.0014 0.0014/0.0014

0.959 0.930 0.943 0.933 0.943

For each entry, the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error and the third line is the 95% coverage probability. An “∗” indicates the asymptotic
standard error formula unavailable
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Table 5 Simulation results of 1000 replications for the normal data, Xi ∼ (Gamma(5, 1) − 5)/
√
5,

Zi ∼ N3(0, I3), εi ∼ t5/
√
5/3, with α = (0.5, −1,−0.5, 0, 0), about 40% missing at random on average

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F −0.0012 0.0009 −0.0018 0.0005 0.0001

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020

0.950 0.940 0.956 0.939 0.949

β̂CC −0.3292 −0.0527 −0.1561 0.1030 0.0542

0.0031/0.0029 0.0028/0.0027 0.0029/0.0029 0.0027/0.0027 0.0026/0.0025

0.048 0.899 0.594 0.755 0.877

β̂PIP −0.0546 −0.0183 −0.0467 0.0282 0.0166

0.0037/0.0027 0.0040/0.0031 0.0041/0.0030 0.0040/0.0030 0.0038/0.0029

0.758 0.860 0.794 0.842 0.869

β̂PIPA 0.0002 0.0300 0.0035 −0.0077 −0.0020

0.0026/∗ 0.0044/∗ 0.0027/∗ 0.0026/∗ 0.0024/∗
0.931 0.918 0.937 0.930 0.933

β̂A < 0.0001 −0.0012 0.0003 −0.0001 0.0002

0.0022/0.0023 0.0032/0.0030 0.0021/0.0020 0.0022/0.0021 0.0021/0.0021

0.947 0.925 0.942 0.932 0.936

n = 500

β̂F −0.0009 −0.0015 −0.0006 −0.0012 −0.0006

0.0014/0.0014 0.0014/0.0014 0.0013/0.0014 0.0015/0.0014 0.0014/0.0014

0.957 0.948 0.956 0.943 0.954

β̂CC −0.3306 −0.0570 −0.1562 0.1014 0.0526

0.0021/0.0021 0.0020/0.0019 0.0020/0.0020 0.0019/0.0019 0.0018/0.0018

0.000 0.838 0.288 0.592 0.837

β̂PIP −0.0317 −0.0188 −0.0291 0.0189 0.0154

0.0037/0.0023 0.0034/0.0026 0.0040/0.0026 0.0033/0.0025 0.0034/0.0024

0.792 0.863 0.824 0.863 0.882

β̂PIPA 0.0004 0.0306 −0.0015 −0.0140 −0.0108

0.0019/∗ 0.0032/∗ 0.0019/∗ 0.0018/∗ 0.0018/∗
0.924 0.922 0.930 0.924 0.925

β̂A −0.0008 −0.0033 −0.0001 −0.0017 −0.0005

0.0016/0.0016 0.0024/0.0021 0.0015/0.0014 0.0016/0.0015 0.0015/0.0015

0.949 0.921 0.942 0.921 0.942

For each entry, the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error and the third line is the 95% coverage probability. An “∗” indicates the asymptotic
standard error formula unavailable
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Table 6 Simulation results of 1000 replications for the normal data, Xi ∼ (Gamma(5, 1) − 5)/
√
5,

Zi ∼ N3(0, I3), εi ∼ t5/
√
5/3, with α = (−0.5,−0.5,−0.5, 0, 0), about 60% missing at random on

average

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F −0.0012 0.0009 −0.0018 0.0005 0.0001

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020

0.950 0.940 0.956 0.939 0.949

β̂CC −0.2777 −0.0279 −0.0964 0.0449 0.0266

0.0040/0.0037 0.0034/0.0033 0.0035/0.0034 0.0032/0.0032 0.0033/0.0031

0.329 0.924 0.842 0.918 0.916

β̂PIP −0.0314 −0.0137 −0.0327 0.0068 0.0100

0.0038/0.0029 0.0043/0.0036 0.0047/0.0036 0.0046/0.0034 0.0043/0.0034

0.839 0.879 0.849 0.877 0.886

β̂PIPA −0.0477 0.1346 −0.1189 0.0309 0.0571

0.0026/∗ 0.0042/∗ 0.0027/∗ 0.0025/∗ 0.0025/∗
0.931 0.924 0.924 0.925 0.923

β̂A 0.0013 −0.0029 −0.0005 −0.0005 0.0003

0.0023/0.0025 0.0035/0.0035 0.0022/0.0021 0.0022/0.0021 0.0022/0.0021

0.960 0.947 0.937 0.927 0.929

n = 500

β̂F −0.0009 −0.0015 −0.0006 −0.0012 −0.0006

0.0014/0.0014 0.0014/0.0014 0.0013/0.0014 0.0015/0.0014 0.0014/0.0014

0.957 0.948 0.956 0.943 0.954

β̂CC −0.2790 −0.0256 −0.0958 0.0447 0.0284

0.0027/0.0026 0.0023/0.0023 0.0024/0.0024 0.0022/0.0023 0.0024/0.0022

0.067 0.924 0.768 0.897 0.906

β̂PIP −0.0168 −0.0104 −0.0196 0.0041 0.0101

0.0030/0.0023 0.0034/0.0028 0.0037/0.0029 0.0036/0.0028 0.0033/0.0027

0.877 0.902 0.868 0.908 0.893

β̂PIPA 0.0016 0.0118 0.0073 −0.0031 −0.0012

0.0018/∗ 0.0029/∗ 0.0019/∗ 0.0018/∗ 0.0019/∗
0.928 0.933 0.922 0.929 0.926

β̂A −0.0002 < 0.0001 −0.0002 −0.0019 −0.0003

0.0016/0.0017 0.0025/0.0025 0.0015/0.0015 0.0016/0.0015 0.0016/0.0015

0.962 0.963 0.938 0.921 0.927

For each entry, the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error and the third line is the 95% coverage probability. An “∗” indicates the asymptotic
standard error formula unavailable
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smoking status, controlling other covariates as sex, marks and BMI. The variables
used are displayed below:

1. esteem a 0–12 score measuring the student’s overall self-esteem;
2. sex a binary variable indicating the student’s gender (0 for female and 1 for male);
3. marks a categorical variable with five levels describing the student’s marks during

the past year: mostly A’s (1), mostly A’s and B’s (2), mostly B’s and C’s (3), mostly
C’s (4) and mostly below C’s (5);

4. smoke originally a categorical variable with 3 levels: currently smokes, formerly
smoked and never smoked. In this data set of Asian students from Grade 6 to 8,
we do not have students in status of “formerly smoked.” Thus, we can regard this
variable as binary for smoking (smoke = 1) or not (smoke = 0);

5. BMI a continuous variable that measures the respondent’s body mass index.

We take a subset with size n = 493, which has complete observations on esteem,
sex, marks and smoke. In this data set, there are 121, 160 and 212 students in Grades
6 through 8, respectively. There are 252 female students and 241 male students, and
only 9 smokers and 484 non-smokers. But 29.2% (144 out of 493) students have BMI
missing. We consider a linear model on the self-esteem score as

esteem = β0 + β1BMI + β2sex + β3marks + β4smoke + ε.

Assume that the missing mechanism is MAR and that the parametric model for selec-
tion probabilities is

logit(π) = α0 + α1esteem + α2sex + α3marks + α4smoke.

After fitting a logistic model, we find the p values for α1, α2 and α3 as 0.0321,
0.0431 and 0.0159, respectively, so that esteem, sex and marks are significant at the
significance level of 0.05.

Before estimating the regression coefficients β, we first look at the self-esteem
scores of the eight smokers: {0, 0, 0, 2, 7, 8, 9, 9, 12}. We find most of them are lower
than the average self-esteem score of the non-smokers of 9.24, and 4 of them have
extremely low scores. This in some sense implies that the smokers among the students
have a lower self-esteemscore compared to the non-smokers. The results of the analysis
can be found in Table 7. In the estimating procedure of β̂PIPA, we find πi (α̂) and π̂i (γ̂ )

are very close. This indicates that the assumptions in Theorem 2 might be reasonable
in this situation. The values in brackets are the standard errors of the corresponding
estimators using the sandwich formulas (13) and (14).

In Table 7, we observe that all methods conclude that BMI andmarks are significant
in the linear model, while sex is insignificant. The significant effects show that higher
body mass index and worse marks lead to lower self-esteem scores. The main differ-
ence lies in the effect of smoke. The complete-case analysis and inverse-probability
method give insignificant results, but the rest of the methods conclude significance.
The difference is caused mainly by the smaller absolute value of the point estimates of
the first two methods, compared to β̂PIPA and β̂A. Since the missing mechanism is not
completely missing at random, the results of β̂CC are likely to be biased. Combined
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Table 7 2010/2011 YSS data analysis focusing on Asian students (n = 493)

β̂0 (intercept) β̂1 (BMI) β̂2 (sex) β̂3 (marks) β̂4 (smoke)

β̂CC 12.1476(0.6649) −0.0975(0.0291) −0.0177(0.2322) −0.6646(0.1747) −1.1455(0.9920)

p value < 0.0001 0.0009 0.9392 0.0002 0.2488

β̂PIP 12.0189(0.7695) −0.0966(0.0314) 0.0388(0.2251) −0.5395(0.1858) −1.4591(1.1036)

p value < 0.0001 0.0022 0.8633 0.0039 0.1867

β̂PIPA 12.4119(0.6205) −0.1092(0.0338) 0.0038(0.1976) −0.6034(0.1572) −3.0881(1.2228)

p value < 0.0001 0.0133 0.9846 0.0001 0.0119

β̂A 12.2657(0.6332) −0.0991(0.0314) −0.0178(0.2046) −0.6241(0.1512) −3.2420(1.2059)

p value < 0.0001 0.0017 0.9305 < 0.0001 0.0074

with the comparison of the self-esteem scores between smokers and non-smokers
mentioned before, we believe that the results of significance are more reliable. The
performance of β̂PIP might be explained by the misspecification of the model on selec-
tion probabilities. Based on the analysis above, we conclude that Asian students in
Grade 6 through 8 who smoke have a significantly lower self-esteem score compared
to the non-smokers, controlling other covariates, BMI, sex and marks during the past
year.

7 Concluding remarks

In this paper, we have proposed an unweighted mean-score-form estimator of regres-
sion coefficients through GEE with a single-index model when some covariates are
missing at random.This is a semiparametric estimation approach sincewe only assume
a single-index model on augmentation without making any distribution assumptions.
We do not even specify a parametricmodel such as a logisticmodel for themissingness
mechanism. We have also introduced the standard doubly robust estimator β̂PIPA with
the same single-index model on augmentation and parametrically modeled selection
probabilities.We have presented the asymptotic distribution for β̂PIPA and β̂A in Theo-
rems 1 and 2, along with the sandwich formulas of the asymptotic covariances and the
choice of the bandwidth. We also have shown the asymptotic equivalence between the
two augmented estimators under certain conditions. However, one important advan-
tage of our proposed estimator over the (augmented) inverse-probability weighted
estimators is that it does not include selection probabilities in the point estimation
procedure so that it does not need to model πi ’s and avoids the situation of having
highly variable inverse-probability weights, as described in Robins et al. (2007). In
this sense, numerically our proposed estimator is not sensitive to positive but near-zero
selection probabilities, while the performance of the inverse-probability weighted esti-
mators is highly influenced by those near-zero πi ’s. Furthermore, compared to using a
standardmultivariate kernel function, the SIMwe use on augmentation not only avoids
the curse of dimensionality, but also keeps the efficiency of standard kernel smoothing
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in some particular situations. The R code used in our simulations and the example can
be found on the following website: https://github.com/zhuoersun/Missing-Data.

In this work, we only considered a single univariate covariate X in simulation
studies and the real data example. The results can be easily extended to the particular
case of a multivariate X when Ri = 0 means that all the covariates in Xi are missing at
the same time. It would be interesting but more challenging to consider more complex
missingness patterns such as monotone or non-monotone missingness in covariates.
One can refer to Chen (2004) and Sinha et al. (2014) for more information. It would be
natural to extend the proposed methodology to generalized linear models. However,
generalized linear models have a more complicated score function and do not have
the simple form of augmentation like (6). Further investigation will be required in this
important problem. Yet as another future research problem, it would also be interesting
to apply this idea to longitudinal data with some covariates partially missing.

Acknowledgements The authors thank the Associate Editor and two referees for their helpful comments
and suggestions that have led to much improvement of this paper. This research was supported in part
by the Simons Foundation Mathematics and Physical Sciences—Collaboration Grants for Mathematicians
Program Award No. 499650.

Appendix A

A.1 Regularity conditions

To establish the asymptotic theory in this work, we first assume the following general
regularity conditions:

(i) The smoothing parameter h satisfies nh2 → ∞ and nh2r → 0, as n → ∞.
(ii) All the selection probabilities πi ’s are bounded away from zero.
(iii) The selection probability function on the single-index π∗(γ ) has r continuous

and bounded partial derivatives a.e.
(iv) The density function f (u) ofU and the conditional density function fU |R(u) of

U |R have r continuous and bounded partial derivatives a.e.
(v) The conditional distributions fU |R=0(u) and fU |R=1(u) have the same support,

and b(u) = fU |R=0(u)/ fU |R=1(u) is bounded over the support.
(vi) The conditional expectations ψ(u|γ ) = E(T |Q�γ = u) and E(T T�|Q�γ )

exist and have r continuous and bounded partial derivatives a.e.
(vii) For score T , E(T T�) and E{(∂/∂β)T } exist and are positive definite, and

(∂2/∂β∂β�)T exists and is continuous with respect to β a.e.

A.2 Proof of Lemma 1

Proof The idea in the proof is similar to that in the proof of Lemma 1 in Wang and
Wang (2001). Recall that ui = Q�

i γ = yi − β�
Z Zi is the single index and that n1 is

the number of complete cases. Let
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f̂U |R=1(u) = 1

n1h

n∑

k=1

RkKh(u − uk), En(u) = f̂U |R=1(u) − fU |R=1(u),

Vni = f̂U |R=1(ui ), Wni = 1

n1h

n∑

k=1

RkTi,k Kh(ui − uk).

Under the regularity conditions, we have E{En(u)} = O(hr ) and var{En(u)} =
O{(nh)−1} by the Taylor expansions. Then by the Chebyshev inequality, En(u) −
E{En(u)} = Op{(nh)−1/2}, which implies En(u) = Op{hr + (nh)−1/2}, and thus
En(ui ) = Op{hr +(nh)−1/2}. Similarly, we haveWni −ψi Vni = Op{hr +(nh)−1/2}.

Define δn = h2r + (nh)−1. Under the SIM condition,

ψ̂i − ψi = Wni − ψi Vni
fU |R=1(ui )

− (Wni − ψi Vni )En(ui )

Vni fU |R=1(ui )

= Wni − ψi Vni
fU |R=1(ui )

+ Op(δn). (A.1)

Let Q∗
i = Ri Qi , X∗

i = Ri Xi for i = 1, . . . , n as the values of the complete cases.
Then

E

{
Wni − ψi Vni
fU |R=1(ui )

∣∣∣∣Ri = 0, all (R, Q∗, X∗)
}

= 1

n1

n∑

k=1

Rk

∫
(Ti,k − ψi )Kh(ui − uk)

h fU |R=1(ui )
fQ|R=0(Qi )dQi

= 1

n1

n∑

k=1

Rk

∫∫
(Ti,k − ψi )Kh(ui − uk)

h fU |R=1(ui )
fU,Z |R=0(ui , Zi )dZidui

= 1

n1

n∑

k=1

Rk

∫ {∫
(Ti,k − ψi )Kh(ui − uk)

h fU |R=1(ui )
fZ |U,R=0(Zi )dZi

}
fU |R=0(ui )dui

= 1

n1

n∑

k=1

Rk

∫
(
T 0
i,k − ψ0

i

)
Kh(ui − uk)

h fU |R=1(ui )
fU |R=0(ui )dui

= 1

n1

n∑

k=1

Rk

(
T 0
k − ψ0

k

)
b(uk) + Op(h

r ),

where T 0
i,k = EZi |ui ,Ri=0(Ti,k) = ∫

Ti,k f (Zi |ui , Ri = 0)dZi , b(u) is defined in
regularity condition (iv). The last step is because of the concentration of ui on uk .
Using the same idea and {· · ·} to denote a repeat of the preceding term, we also have
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var

{
Wni − ψi Vni
fU |R=1(ui )

∣∣∣∣Ri = 0, all (R, Q∗, X∗)
}

= 1

n21

n∑

k=1

Rk

[∫ {
(Ti,k − ψi )Kh(ui − uk)

h fU |R=1(ui )

}
{· · · }� fQ|R=0(Qi )dQi

−
{

n∑

k=1

Rk

∫
(Ti,k − ψi )Kh(ui − uk)

h fU |R=1(ui )
fQ|R=0(Qi )dQi

}
{· · ·}�

]
+ Op

(
1

nh

)

= Op

(
1

nh

)
.

Let

Sn = n−1/2
n∑

i=1

(1 − Ri )

{
Wni − ψi Vni
fU |R=1(ui )

− 1

n1

n∑

k=1

Rk

(
T 0
k − ψ0

k

)
b(uk)

}
.

Then the summations with Ri = 0 in Sn are i.i.d. random variables conditioning on
all (R, Q∗, X∗). Thus, we have

var{Sn|all (R, Q∗, X∗)} = n − n1
n

var

{
Wn1 − ψ1Vn1
fU |R=1(u1)

∣∣∣∣ all (R, Q∗, X∗)
}

= Op

(
h2r + 1

nh

)
.

Then E(Sn) = O(hr ) and var(Sn) = O(h2r + (nh)−1) imply Sn = Op(ηn). Back to
(A.1), we have

n−1/2
n∑

i=1

(1 − Ri )
(
ψ̂i − ψi

)
= n−1/2

n∑

i=1

{
(1 − Ri )

1

n1

n∑

k=1

Rk

(
T 0
k − ψ0

k

)
b(uk)

}
+ Op(ηn)

= n−1/2
n∑

k=1

Rk

(
T 0
k − ψ0

k

)
a(uk) + Op(ηn).


�

A.3 Proof of Lemma 2

Proof (a) The proof is analogous to that of Lemma 1. The main difference is that this
is the summation of the complete cases. Thus we need to condition on Ri = 1. Then
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E

{
Wni − ψi Vni
fU |R=1(ui )

∣∣∣∣Ri = 1, all (R, Q∗, X∗)
}

= 1

n1

n∑

k=1

Rk

∫
(Ti,k − ψi )Kh(ui − uk)

h fU |R=1(ui )
fQ|R=1(Qi )dQi

= 1

n1

n∑

k=1

Rk

∫∫
(Ti,k − ψi )Kh(ui − uk)

h fU |R=1(ui )
fU,Z |R=1(ui , Zi )dZidui

= 1

n1

n∑

k=1

Rk

∫ {∫
(Ti,k − ψi )Kh(ui − uk)

h fU |R=1(ui )
fZ |U,R=1(Zi )dZi

}
fU |R=1(ui )dui

= 1

n1

n∑

k=1

Rk

∫
(
T 1
i,k − ψ1

i

)
Kh(ui − uk)

h fU |R=1(ui )
fU |R=1(ui )dui

= 1

n1

n∑

k=1

Rk

(
T 1
k − ψ1

k

)
+ Op(h

r ),

where T 1
i,k = EZi |ui ,Ri=1(Ti,k) = ∫

Ti,k f (Zi |ui , Ri = 1)dZi . The rest of the proof
follows in the same manner as in the proof of Lemma 1.

(b) Similarly to the proof of (a), we have

n−1/2
n∑

i=1

Ri

π∗
i (γ )

{
ψ̂i (γ ) − ψi (γ )

}
= n−1/2

n∑

i=1

Ri

π∗
i (γ )

{
T 1
i − ψ1

i (γ )
}

+ Op(ηn).

According to the Hölder inequality for the sum of the product terms in the second term
below, we have

n−1/2
n∑

i=1

Ri

π̂∗
i (γ )

{
ψ̂i (γ ) − ψi (γ )

}

= n−1/2
n∑

i=1

Ri

π∗
i (γ )

{
ψ̂i (γ ) − ψi (γ )

}

+ n−1/2
n∑

i=1

Ri

π̂∗
i (γ )π∗

i (γ )
{π∗

i (γ ) − π̂∗
i (γ )}

{
ψ̂i (γ ) − ψi (γ )

}

= n−1/2
n∑

i=1

Ri

π∗
i (γ )

{
T 1
i − ψ1

i (γ )
}

+ Op(ηn).

(c) The proof can be obtained analogously as in (b). 
�
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A.4 Proof of Theorem 1

Proof Based on the conclusion of Lemma 1,

Δ3

(
β, ψ̂(γ )

)
= n−1/2

n∑

i=1

Ri Ti + (1 − Ri )ψi (γ ) + (1 − Ri )
{
ψ̂i (γ ) − ψi (γ )

}

= n−1/2
n∑

i=1

Ri Ti + (1 − Ri )ψi (γ )

+ Ri

{
T 0
i − ψ0

i (γ )
}
a
(
Q�

i γ
)

+ Op(ηn)

= n−1/2
n∑

i=1

Ui + Op(ηn).

Since Δ3(β, ψ̂(γ )) is asymptotically equivalent to a sum of i.i.d. random variables,
β̂A is asymptotically normally distributed and has the asymptotic covariance Σ A =
D−1MD−1 with

M = cov

(
n−1/2

n∑

i=1

Ui

)
= cov(U1)

= cov {R1T1 + (1 − R1)ψi } + cov
[
Ri

{
T 0
i − ψ0

i (γ )
}
a(Q�

i γ )
]

+ 2cov
(
R1T1 + (1 − R1)ψi , Ri

{
T 0
i − ψ0

i (γ )
}
a
(
Q�

i γ
))

= A + B + 2C.


�

A.5 Proof of Theorem 2

Proof We first consider the first part, Δ1(β, π(α̂)), of its estimating Eq. (11). By
assumption, a correctly specified parametric model for the selection probabilities with
parameter α is given by

πi = πi (α) = E(Ri |Qi ) = π(α|Qi ).

The log-likelihood is

l(α) =
n∑

i=1

Ri log{πi (α)} + (1 − Ri )log{1 − πi (α)}.
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The corresponding estimating equation for MLE α̂ is given by

n−1/2
n∑

i=1

π ′
i (α)

πi (α){1 − πi (α)} {Ri − πi (α)} = 0.

Then we have

n1/2(α̂ − α) =
[
E

{
π ′
1(α)π ′

1(α)�

π1(α){1 − π1(α)}

}]−1

{
n−1/2

n∑

i=1

π ′
i (α)

πi (α){1 − πi (α)} {Ri − πi (α)}
}

+ Op(n
−1/2).

Moreover,

Δ1(β, π(α̂)) = n−1/2
n∑

i=1

Ri

πi (α̂)
Ti

= n−1/2
n∑

i=1

Ri

πi (α)
Ti − n−1/2

n∑

i=1

Ri

π2
i (α)

Tiπ
′
i (α)�(α̂ − α) + Op(n

−1/2)

= n−1/2
n∑

i=1

Ri

πi (α)
Ti − E

{
1

π1(α)
ψ1π

′
1(α)�

}
n1/2(α̂ − α) + Op(n

−1/2)

= n−1/2
n∑

i=1

Ri

πi
Ti − E

{
1

π1(α)
ψ1π

′
1(α)�

}[
E

{
π ′
1(α)π ′

1(α)�

π1(α){1 − π1(α)}

}]−1

{
n−1/2

n∑

i=1

π ′
i (α)

πi (α){1 − πi (α)} {Ri − πi (α)}
}

+ Op(n
−1/2)

= Δ1(β, π) − F(α)C−1(α)Pn(α) + Op(n
−1/2),

where F(α) = E
{

1
π1(α)

ψ1π
′
1(α)�

}
, C(α) = E

{
π ′
1(α)π ′

1(α)�
π1(α){1−π1(α)}

}
, Pn(α) =

n−1/2 ∑n
i=1

π ′
i (α)

πi (α){1−πi (α)} {Ri −πi (α)}.
We now consider the second part of the estimating equation. By Lemmas 1 and 2(a),

we obtain that

n−1/2
n∑

i=1

{
ψ̂i (γ ) − ψi (γ )

}
= n−1/2

n∑

i=1

Ri

{
ψ̂i (γ ) − ψi (γ )

}

+ n−1/2
n∑

i=1

(1 − Ri )
{
ψ̂i (γ ) − ψi (γ )

}
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= n−1/2
n∑

i=1

Ri

{
T 1
i − ψ1

i (γ )
}

+ n−1/2
n∑

i=1

Ri

{
T 0
i − ψ0

i (γ )
}
a
(
Q�

i γ
)

+ Op(ηn).

Recall that the additional condition for Lemma 2(c) requiresπi = π∗
i (γ ). This implies

that T 0
i = T 1

i = EZi |ui (Ti ), ψ0
i (γ ) = ψ1

i (γ ) = EZi |ui {ψi (γ )}. Let T ∗
i = EZi |ui (Ti ),

ψ∗
i (γ ) = EZi |ui {ψi (γ )}. Then

n−1/2
n∑

i=1

{
ψ̂i (γ ) − ψi (γ )

}
= n−1/2

n∑

i=1

Ri

πi

{
T ∗
i − ψ∗

i (γ )
} + Op(ηn). (A.2)

Equation (A.2) and Lemma 2(c) imply that

n−1/2
n∑

i=1

{
1 − Ri

πi (α̂)

}
{ψ̂i (γ ) − ψi (γ )} = Op(ηn).

Then

n−1/2
n∑

i=1

{
1 − Ri

πi (α̂)

}
ψ̂i (γ ) = n−1/2

n∑

i=1

{
1 − Ri

πi (α̂)

}
ψi (γ ) + Op(ηn).

As in the proof for the first part Δ1(β, π(α̂)), we can show that

n−1/2
n∑

i=1

Ri

πi (α̂)
ψi (γ ) = n−1/2

n∑

i=1

Ri

πi
ψi (γ ) − F(α)C−1(α)Pn(α) + Op(n

−1/2).

Finally we have

Δ2

(
β, π(α̂), ψ̂(γ )

)
= n−1/2

n∑

i=1

Ri

πi (α̂)
Ti +

{
1 − Ri

πi (α̂)

}
ψ̂i (γ )

= n−1/2
n∑

i=1

Ri

πi
Ti − F(α)C−1(α)Pn(α) + n−1/2

n∑

i=1

ψi (γ )

− n−1/2
n∑

i=1

Ri

πi
ψi (γ ) + F(α)C−1(α)Pn(α) + Op(ηn)

= n−1/2
n∑

i=1

Ri

πi
Ti + n−1/2

n∑

i=1

(
1 − Ri

πi

)
ψi (γ ) + Op(ηn)
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= n−1/2
n∑

i=1

Ri

π∗
i (γ )

Ti + n−1/2
n∑

i=1

{
1 − Ri

π∗
i (γ )

}
ψi (γ ) + Op(ηn)

= Δ2
(
β, π∗(γ ), ψ

) + Op(ηn).

In summary, we have shown that Δ2(β, π(α̂), ψ̂(γ )) is asymptotically equivalent
to Δ2(β, π∗(γ ), ψ), which is a sum of i.i.d. terms. Hence, β̂PIPA is asymptotically
equivalent to the solution of Δ2(β, π∗(γ ), ψ) = 0, having asymptotic normality with
asymptotic covariance

Σ PA = D−1(S − S∗ + V )D−1.


�

A.6 Proof of Corollary 1

Proof By the fact that

Δ1
(
β, π(α̂)

) = Δ1(β, π) − F(α)C−1(α)Pn(α) + Op(n
−1/2),

where F(α) and C(α) are given in the proof of Theorem 1, and by (A.1) in Wang
et al. (1997), with an extension to a general parametric model, we have the asymptotic
covariance for β̂PIP as

Σ P = D−1
{
S̃ − F(α)C−1(α)F(α)�

}
D−1,

where S̃ = E(T1T�
1 /π1). By Wang and Wang (2001),

Σ̃ = D−1(S̃ − S̃
∗ + V )D−1

is the asymptotic covariance matrix for β̂ when ψ̂ is based on a standard kernel
smoother, where S̃

∗ = E(ψ1ψ
�
1 /π1).

First we show that Σ P 	 Σ̃ . By the construction of the covariances, we only need

to show that S̃
∗ − V 	 F(α)C−1(α)F(α)�. Define ξ =

(√
1−π1
π1

ψ1,
π ′
1(α)√

(1−π1)π1

)�
.

Then we have

E(ξξ�) =
⎛

⎜⎝
E
(
1−π1
π1

ψ1ψ
�
1

)
E
{

1
π1

ψ1π
′
1(α)�

}

E
{

1
π1

π ′
1(α)ψ�

1

}
E

{
π ′
1(α)π ′

1(α)�
(1−π1)π1

}

⎞

⎟⎠

=
(
S̃

∗ − V F(α)

F(α)� C(α)

)
	 0.
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By the Schur complement condition of the matrix above, we have

(S̃
∗ − V ) − F(α)C−1(α)F(α)� 	 0.

Therefore, S̃
∗ − V 	 F(α)C−1(α)F(α)�, which implies that Σ P 	 Σ̃ .

Next, we show that Σ̃ = Σ A = Σ PA and thus the asymptotic equivalence between
β̂A and β̂PIPA. Based on the results of Theorem 1, we can rewrite Δ3(β, ψ̂(γ )) as

Δ3

(
β, ψ̂(γ )

)
= n−1/2

n∑

i=1

Ui + Op(ηn)

= n−1/2
n∑

i=1

[
Ri

π∗
i (γ )

Ti +
{
1 − Ri

π∗
i (γ )

}
ψi

+Ria(Q�
i γ )

{
(T 0

i − ψ0
i ) − (Ti − ψi )

}]
+ Op(ηn).

The condition E(Zi |ui ) = Zi implies that T 0
i = T 1

i = Ti and ψ0
i (γ ) = ψ1

i (γ ) =
ψi (γ ). By Theorem 2, both Δ2(β, π(α̂), ψ̂(γ )) and Δ3(β, ψ̂(γ )) are asymptotically
equivalent to Δ2(β, π∗(γ ), ψ) and thus have the same asymptotic covariance matrix
as

Σ A = Σ PA = D−1(S − S∗ + V )D−1.

Recall the condition of Lemma 2(c) that πi = π∗
i (γ ). Then S = S̃, S∗ = S̃

∗
. Thus,

we finally have

Σ P 	 Σ̃ = Σ A = Σ PA.


�

References

Bang, H., Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models.
Biometrics, 61, 962–973.

Chen, H. Y. (2004). Nonparametric and semiparametric models for missing covariates in parametric regres-
sion. Journal of the American Statistical Association, 99, 1176–1189.

Fuchs, C. (1982). Maximum likelihood estimation and model selection in contingency tables with missing
data. Journal of the American Statistical Association, 77, 270–278.

Han, P. (2014). Multiply robust estimation in regression analysis with missing data. Journal of the American
Statistical Association, 109, 1159–1173.

Han, P. (2016). Combining inverse probability weighting and multiple imputation to improve robustness of
estimation. Scandinavian Journal of Statistics, 43, 246–260.

Han, P., Wang, L. (2013). Estimation with missing data: Beyond double robustness. Biometrika, 100, 417–
430.

Hartley, H., Hocking, R. (1971). The analysis of incomplete data. Biometrics, 27, 783–823.
Hsu, C.-H., Long, Q., Li, Y., Jacobs, E. (2014). A nonparametric multiple imputation approach for data with

missing covariate values with application to colorectal adenoma data. Journal of Biopharmaceutical
Statistics, 24, 634–648.

123



1232 Z. Sun, S. Wang

Ibrahim, J. G. (1990). Incomplete data in generalized linear models. Journal of the American Statistical
Association, 85, 765–769.

Ibrahim, J. G., Chen, M.-H., Lipsitz, S. R. (2002). Bayesian methods for generalized linear models with
covariates missing at random. Canadian Journal of Statistics, 30, 55–78.

Ibrahim, J. G., Chen, M.-H., Lipsitz, S. R., Herring, A. H. (2005). Missing-data methods for generalized
linear models: A comparative review. Journal of the American Statistical Association, 100, 332–346.

Kang, J. D., Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies
for estimating a population mean from incomplete data. Statistical Science, 22, 523–539.

Little, R. J., Rubin, D. B. (2014). Statistical analysis with missing data. New Jersey: Wiley.
Reilly, M., Pepe, M. S. (1995). A mean score method for missing and auxiliary covariate data in regression

models. Biometrika, 82, 299–314.
Robins, J. M., Ritov, Y. (1997). Toward a curse of dimensionality appropriate(coda) asymptotic theory for

semi-parametric models. Statistics in Medicine, 16, 285–319.
Robins, J. M., Rotnitzky, A., Zhao, L. P. (1994). Estimation of regression coefficients when some regressors

are not always observed. Journal of the American statistical Association, 89, 846–866.
Robins, J., Sued, M., Lei-Gomez, Q., Rotnitzky, A. (2007). Comment: Performance of double-robust esti-

mators when “inverse probability” weights are highly variable. Statistical Science, 22, 544–559.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.
Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys. New Jersey: Wiley.
Schluchter, M. D., Jackson, K. L. (1989). Log-linear analysis of censored survival data with partially

observed covariates. Journal of the American Statistical Association, 84, 42–52.
Sepanski, J., Knickerbocker, R., Carroll, R. (1994). A semiparametric correction for attenuation. Journal

of the American Statistical Association, 89, 1366–1373.
Sinha, S., Saha, K. K., Wang, S. (2014). Semiparametric approach for non-monotone missing covariates in

a parametric regression model. Biometrics, 70, 299–311.
Wang, C., Wang, S., Zhao, L.-P., Ou, S.-T. (1997). Weighted semiparametric estimation in regression

analysis with missing covariate data. Journal of the American Statistical Association, 92, 512–525.
Wang, S., Wang, C. (2001). A note on kernel assisted estimators in missing covariate regression. Statistics

& Probability Letters, 55, 439–449.
Zhou, Y., Wan, A. T. K., Wang, X. (2008). Estimating equations inference with missing data. Journal of the

American Statistical Association, 103, 1187–1199.

123


	Semiparametric estimation in regression with missing covariates using single-index models
	Abstract
	1 Introduction
	2 Brief review of existing methods
	2.1 Inverse-probability weighted estimator
	2.2 Augmented inverse-probability weighted estimator
	2.3 Mean-score estimator

	3 Proposed methodology
	3.1 The issues of small selection probabilities and curse of dimensionality
	3.2 Single-index model and the proposed estimator

	4 Asymptotic properties
	5 Simulations
	6 Illustrative example of data analysis
	7 Concluding remarks
	Acknowledgements
	Appendix A
	A.1 Regularity conditions
	A.2 Proof of Lemma 1
	A.3 Proof of Lemma 2
	A.4 Proof of Theorem 1
	A.5 Proof of Theorem 2
	A.6 Proof of Corollary 1

	References




