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Abstract This paper studies maximum likelihood estimation of autoregressive mod-
els of order 1 with a near unit root and Cauchy errors. Autoregressive models with an
intercept and with an intercept and a linear time trend are also considered. The maxi-
mum likelihood estimator (MLE) for the autoregressive coefficient is n3/2-consistent
with n denoting the sample size and has a mixture-normal distribution in the limit.
The MLE for the scale parameter of Cauchy distribution is n1/2-consistent, and its
limiting distribution is normal. The MLEs of the intercept and the linear time trend
are n1/2- and n3/2-consistent, respectively. It is also shown that the t statistic for the
null hypothesis of a unit root based on the MLE has a standard normal distribution in
the limit. In addition, finite-sample properties of the MLE are compared with those
of the least square estimator (LSE). It is found that the MLE is more efficient than
the LSE when the errors have a Cauchy distribution or a distribution which is a mix-
ture of Cauchy and normal distributions. It is also shown that empirical power of the
MLE-based t test for a unit root is much higher than that of the Dickey–Fuller t test.
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1 Introduction

Since the original works of Fama (1965) and Mandelbrot (1963, 1967), researchers
have long been interested in studying properties of stochastic processes with infinite
variance. Empirical papers applying econometric models with infinite variance to
financial data include, among others, Akgiray and Booth (1988), Lau et al. (1990),
Falk and Wang (2003), and Koedijk and Kool (1992).

Because asymptotic properties of the stochastic processes with infinite variance are
significantly different from thosewith finite variance, it is important to study properties
of econometric estimators and tests under the assumption of infinite variance. For the
AR(1) model (autoregressive model of order 1) with a unit root and errors having
infinite variance, Chan and Tran (1989) and Phillips (1990) study the least squares
estimator (LSE). Chan and Tran (1989) derive limiting distributions of the Dickey–
Fuller test statistics, while Phillips (1990) studies those of the Phillips–Perron test
statistics. Extensions of these works to the AR(1) model with an intercept and with
an intercept and a linear time trend are made in Ahn et al. (2001) and Callegari et al.
(2003), respectively. See Choi (2015, pp.75–78) for further discussions.

It is well known that LSEs are not robust to outliers and less efficient than M- and
least absolute deviation (LAD) estimators for fat-tailed errors. Pollard (1991) derives
convergence rate of the LAD estimator for the causal AR(1) model with Cauchy
errors. Knight (1989, 1991) studies the M- and LAD estimators for the unit root
AR(1) model with i.i.d. errors that lie in the domain of attraction of a stable law
with the index of stability α ∈ (0, 2). Andrews et al. (2009) study asymptotics of the
maximum likelihood estimator (MLE) for AR coefficients in stationary processes with
α ∈ (0, 2). Furthermore, Zhang and Chan (2012) study the MLE for a near unit root
AR(1) process with i.i.d. α-stable errors. They estimate the AR(1) coefficient and the
parameters of the characteristic function of stable errors jointly byMLE. They find that
the rate of convergence of the MLE of the AR(1) coefficient depends on the stability
parameter α and the mean parameter of errors and that the MLE is more efficient than
LSE in finite samples. But the case of α = 1 (i.e., Cauchy errors) is not considered in
their paper, probably because they estimate the stable parameter α and because there
is a discontinuity of the characteristic function with respect to α at α = 1.

Themain purpose of this paper is to derive limiting distributions ofMLEs for nearly
non-stationary AR(1) models with Cauchy errors. This is not considered by Zhang and
Chan (2012) as mentioned above. Although the assumption of Cauchy errors is more
specialized than that of α-stable errors, the Cauchy distribution has a long history in
statistics and it seems worthwhile to study the MLE under Cauchy errors. Another
difference of this paper and Zhang and Chan (2012) is that this paper also considers
the AR(1) models with an intercept and with an intercept and a linear time trend, while
Zhang and Chan study only the AR(1) model without nonstochastic regressors.

There are some contributions of this paper. First, it shows that theMLE of theAR(1)
coefficient converges faster than the LSE (the convergence rate of MLE is n3/2, while
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that of LSE is n with n denoting the sample size) and that it has a mixture-normal
distribution in the limit. The former finding implies that the MLE is more efficient
than the LSE for Cauchy errors. Simulation results also show that the MLE based on
the assumption of Cauchy errors performs better than the LSE.

Second, it is shown that the MLE-based t statistic for the AR(1) coefficient has
a standard normal distribution in the limit. The t statistic can be used to test the
null hypothesis of a unit root. By contrast, the LSE-based test statistics for a unit
root have a nonstandard distribution in the limit (cf. Phillips 1990). Samarakoon and
Knight (2009) propose test statistics for the unit root null hypothesis that are based on
M-estimators. These statistics converge in distribution to normal distributions under
some regularity conditions. But these limiting normal distributions include nuisance
parameters which have to be estimated. The t-ratio of this paper, however, does not
involve any nuisance parameters in its limiting distribution.

This paper is planned as follows. Section 2 introduces the MLE for the AR(1)
model without nonstochastic terms and derives its limiting distribution. Section 3
extends the results of Sect. 2 to the AR(1) models with nonstochastic regressors.
Section 4 proposes MLE-based t test for the AR(1) coefficient and derives its limiting
distribution. Section 5 contains a summary of simulation results, the details of which
are relegated to a supplementary file. Section 6 provides a summary of the paper and
further remarks. Proofs are in appendices.

There are a few words on our notation. R, R
+ and N denote the sets of real

numbers, positive real numbers and natural numbers, respectively. Weak convergence

in the Skorokhod topology and convergence in probability are denoted by
d→ and

p→ ,

respectively. A
d= B signifies that A and B have the same distribution.D[0, 1] denotes

the space of right-continuous functions with left limit on the unit interval. The (i, i)-th
element of the matrix X is written as Xii .

2 Maximum likelihood estimation of the AR(1) model with Cauchy
errors

This section studies asymptotic properties of the MLE for the AR(1) model with a
near unit root and Cauchy errors. The model we are concerned with is

Yt = ρnYt−1 + εt (t = 1, 2, . . . , n), (1)

where ρn = 1 − γ /n (γ ∈ R), Y0 is a fixed constant and {εt } is a sequence of i.i.d.
Cauchy errors with pdf f (ε1, σ ) = σ

π(ε21+σ 2)
(σ ∈ R

+, ε1 ∈ R).

Given observations Y0,Y1, . . . ,Yn , the likelihood function L(ρn, σ ) of the obser-
vations is written as

L(ρn, σ ) =
n∏

t=2

f (yt − ρn yt−1, σ )

=
n∏

t=2

σ

π((yt − ρn yt−1)2 + σ 2)
.
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The MLE of (ρn, σ ) is defined by

(ρ̂n, σ̂n) = argmax
ρn ,σ

L(ρn, σ ).

Using the standard method for MLEs (cf. Newey and McFadden 1994), we derive
the limiting properties of ρ̂n and σ̂n as follows.

Theorem 1 Suppose that the true value of (ρn, σ ) is (ρo
n , σ

o), where ρo
n = 1 −

γ o/n, γ o ∈ R and σ o ∈ R
+. Assume (ρo

n , σ
o) ∈ � for every n, where � is a

compact subset of R × R
+. Then, as n → ∞,

(i) ρ̂n − ρo
n

p−→ 0 and σ̂n
p−→ σ o;

(ii) (
n3/2(ρ̂n − ρo

n )

n1/2(σ̂n − σ o)

)
d→ 2σ o2

(∫ 1
0 S2(r)dr 0
0 1

)−1 (∫ 1
0 S(r)dB(r)
Q(1)

)
,

where S(r) = Z(r) − γ o
∫ r
0 eγ o(s−r)Z(s)ds, Z(s) is a Cauchy process with char-

acteristic function φ(t) = exp {−(sσ o) |t |} and (B(r), Q(s))′ is a Brownian motion

with mean zero and the covariance matrix

( r
2σ o2 0
0 s

2σ o2

)
.

This theorem shows that the MLE for the autoregressive coefficient is n3/2-
consistent and converges in distribution to a random variable involving a Cauchy
process and a Brownian motion and that the MLE for the scale parameter of Cauchy
distribution has the conventional

√
n-consistency property and is asymptotically nor-

mal. Since the convergence rate of the LSE for the AR(1) coefficient is n (cf. Chan
and Tran 1989; Phillips 1990), we find that the MLE is more efficient than the LSE
when the errors are from a Cauchy distribution.

Since S(r) and B(s) are independent for 0 ≤ r ≤ 1 and 0 ≤ s ≤ 1 (cf. Resnick
and Greenwood 1979), the result for the MLE of ρo

n can be written as

n3/2(ρ̂n − ρo
n )

d→ 2σ o2

∫ 1
0 S(r)dB(r)
∫ 1
0 S(r)2dr

d= N

(
0,

2σ o2

∫ 1
0 S(r)2dr

)

|{S(r):0≤r≤1}
d= N

(
0,

2
∫ 1
0 S∗(r)2dr

)

|{S∗(r):0≤r≤1}
, (2)

where S∗(r) = S(r)/σ o = Z∗(r) − γ o
∫ r
0 eγ o(s−r)Z∗(s)ds, Z∗(s) is a standard

Cauchy process with characteristic function φ(t) = exp {−s |t |}. The first equality
relation follows from Arnold (1974, p. 77). Relation (2) shows that n3/2(ρ̂n −ρo

n ) has
a mixture-normal distribution in the limit and does not depend on the scale parameter
σ o.
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In addition, we deduce from part (ii) of Theorem 1

n1/2(σ̂n − σ o)
d→ N (0, 2σ o2).

By applying the delta method to this relation, the asymptotic distribution of σ̂ 2
n can be

derived as
n1/2(σ̂ 2

n − σ o2)
d→ 2σ o · N (0, 2σ o2)

d= N (0, 8σ o4).

The limiting distributions of the MLEs of ρo
n and σ o are independent.

Assuming a stable distribution for {εt }, Zhang and Chan (2012) derive the limiting
distributions of the MLEs of ρo

n and other parameters associated with the error distri-
bution. But they do not consider the case of Cauchy errors, perhaps because it brings
complications in estimating the parameters associated with the error distribution (see
DuMouchel 1973, for discussion on the parameter space for the MLE of the parame-
ters related to stable distributions). Thus, Theorem 1 is not a special case of Theorem
1 of Zhang and Chan (2012). Moreover, it seems difficult to find any clue regarding
asymptotic distribution of the MLE of ρo

n under Cauchy errors ffrom the results of
Zhang and Chan (2012).

3 Extensions to the AR(1) models with nonstochastic regressors

This section extends the results of the previous section to the AR(1) models with a
near unit root and nonstochastic regressors.

3.1 AR(1) model with an intercept

This subsection considers an unobserved components model

Yt = a0 + Xt , Xt = ρn Xt−1 + εt , (a0 ∈ R).

This model can be written as

Yt = μ + ρnYt−1 + εt , (t = 1, 2, . . . , n), (3)

where μ = a0(1 − ρn).
The likelihood function for model (3) is given as

L(ρn, μ, σ ) =
n∏

t=2

f (yt − μ − ρn yt−1, σ )

=
n∏

t=2

σ

π((yt − μ − ρn yt−1)2 + σ 2)
.

The MLE of (ρn, μ, σ ) is defined by

(ρ̂n, μ̂n, σ̂n) = arg max
ρn ,μ,σ

L(ρn, μ, σ ).
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The limiting properties of ρ̂n, μ̂n and σ̂n are reported in the following theorem.

Theorem 2 Suppose that the true value of (ρn, μ, σ ) is (ρo
n , μ

o, σ o), where ρo
n =

1 − γ o/n, γ o ∈ R, μo ∈ R and σ o ∈ R
+. Assume (ρo

n , μ
o, σ o) ∈ � for every n,

where � is a compact subset of R × R × R
+. Then, as n → ∞,

(i) ρ̂n − ρo
n

p−→ 0, μ̂n
p−→ μo and σ̂n

p−→ σ o;
(ii)

⎛

⎝
n3/2(ρ̂n − ρon )

n1/2(μ̂n − μo)

n1/2(σ̂n − σ o)

⎞

⎠ d→ 2σ o2

⎛

⎜⎝

∫ 1
0 S2(r)dr

∫ 1
0 S(r)dr 0∫ 1

0 S(r)dr 1 0
0 0 1

⎞

⎟⎠

−1 ⎛

⎝
∫ 1
0 S(r)dB(r)
B(1)
Q(1)

⎞

⎠ ,

where S(r) and (B(r), Q(s)) are as defined in Theorem 1.

This theorem shows that the asymptotic distribution of the MLE of ρo
n changes

when an intercept term is included in the model while that of σ o does not. But the
rates of convergence of ρ̂n and σ̂n are the same as in Theorem 1. The MLE of the
intercept term is

√
n-consistent.

Letting V (r) = (S(r), 1)′, the results of Theorem 2 can be rewritten as

(
n3/2(ρ̂n − ρo

n )

n1/2(μ̂n − μo)

)
d→ 2σ o2

(∫ 1
0 V (r)V (r)′dr

)−1 ∫ 1
0 V (r)dB(r)

d= N

(
0, 2σ o

(∫ 1
0 V (r)V (r)′dr

)−1
)

|{S(r):0≤r≤1}
. (4)

This shows that the MLE of (ρo
n , μ

o) has a multivariate mixture-normal distribution
in the limit. Moreover, we obtain from relation (4)

n3/2(ρ̂n − ρo
n )

d→ 2σ o2
(∫ 1

0 S̄(r)2dr
)−1 ∫ 1

0 S̄(r)dB(r)

d= N

(
0,

2
∫ 1
0 S̄∗(r)2dr

)

|{S∗(r):0≤r≤1}
,

where S̄(r) = S(r) − ∫ 1
0 S(r)dr and S̄∗(r) = S∗(r) − ∫ 1

0 S∗(r)dr . This shows that
the limiting distribution of ρ̂n is free of nuisance parameters as in Theorem 1.

3.2 AR(1) model with an intercept and a linear time trend

This subsection considers an unobserved components model

Yt = a0 + b0t + Xt , Xt = ρn Xt−1 + εt , (a0, b0 ∈ R),

which can be rewritten as

Yt = μ + βt + ρnYt−1 + εt , (t = 1, 2, . . . , n), (5)
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where μ = a0(1 − ρn) + ρnb0, β = b0(1 − ρn).
The likelihood function L(ρn, μ, β, σ ) for model (5) is given as

L(ρn, μ, β, σ ) =
n∏

t=2

f (yt − μ − βt − ρn yt−1, σ )

=
n∏

t=2

σ

π((yt − μ − βt − ρn yt−1)2 + σ 2)
,

and the MLE of (ρn, μ, β, σ ) is defined by

(ρ̂n, μ̂n, β̂n, σ̂n) = arg max
ρn ,μ,β,σ

L(ρn, μ, β, σ ).

The limiting properties of ρ̂n, μ̂n ,β̂n and σ̂n are reported in the following theorem.

Theorem 3 Suppose that the true value of (ρn, μ, β, σ ) is (ρo
n , μ

o, βo, σ o), where
ρo
n = 1− γ o/n, γ o ∈ R, μo ∈ R, βo ∈ R and σ o ∈ R

+. Assume (ρo
n , μ

o, βo, σ o) ∈
� for every n, where � is a compact subset of R × R × R × R

+. Then, as n → ∞,

(i) ρ̂n − ρo
n

p−→ 0, μ̂n
p−→ μo, β̂n

p−→ βo and σ̂n
p−→ σ o;

(ii)

⎛

⎜⎜⎝

n3/2
(
ρ̂n − ρo

n

)

n1/2
(
μ̂n − μo

)

n3/2(β̂n − βo)

n1/2
(
σ̂n − σ o

)

⎞

⎟⎟⎠
d→ 2σ o2

⎛

⎜⎜⎜⎝

∫ 1
0 U 2(r)dr

∫ 1
0 U (r)dr

∫ 1
0 rU (r)dr 0∫ 1

0 U (r)dr 1 1
2 0∫ 1

0 rU (r)dr 1
2

1
3 0

0 0 0 1

⎞

⎟⎟⎟⎠

−1

×

⎛

⎜⎜⎝

∫ 1
0 U (r)dB(r)
B(1)∫ 1
0 rdB(r)
Q(1)

⎞

⎟⎟⎠

where U (r) = S(r) + b0r , S(r) and (B(r), Q(s)) are as defined in Theorem 1.

Because n1/2(σ̂n − σ o)
d→ 2σ o2Q(1), σ̂n has the same limiting distribution as

in Theorems 1 and 2. But the rest have limiting distributions different from those in
Theorems 1 and 2.

Let R(r) = (U (r), 1, r). Then, the results of Theorem 2 can be rewritten as

⎛

⎝
n3/2(ρ̂n − ρo

n )

n1/2(μ̂n − μo)

n3/2(β̂n − βo)

⎞

⎠ d→ 2σ o2
(∫ 1

0 R(r)R(r)′dr
)−1 ∫ 1

0 R(r)dB(r)

d= N

(
0, 2σ o2

(∫ 1
0 R(r)R(r)′dr

)−1
)

|{S(r):0≤r≤1}
, (6)
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which shows that the MLEs of ρo
n , μo and βo have a multivariate mixture-normal

distribution in the limit. The marginal limiting distribution of ρo
n is

n3/2(ρ̂n − ρo
n )

d→ 2σ o2
(∫ 1

0 S̃(r)2dr
)−1 ∫ 1

0 S̃(r)dB(r)

d= N

(
0,

2
∫ 1
0 S̃∗(r)2dr

)

|{S∗(r):0≤r≤1}
, (7)

where S̃(r)= S(r)−4
(∫ 1

0 S(r)dr − 3
2

∫ 1
0 r S(r)dr

)
+6r

(∫ 1
0 S(r)dr − 2

∫ 1
0 r S(r)dr

)

and S̃∗(r) is similarly defined. This shows that no nuisance parameters are involved
in the limiting distribution of ρ̂n as in Theorems 1 and 2. Note that S̃(r) is the residual
from the continuous time regression

S(r) = α̂0 + α̂1r + S̃(r)

where (α̂0, α̂1)minimizes the least squares criterion
∫ 1
0 (S(r)−α0−α1r)2dr (cf. Park

and Phillips 1988) and that the Frisch-Waugh theorem is used to derive relation (7)
from relation (6).

4 Tests for autoregressive coefficients

This section studies t test for the autoregressive coefficient ρn using MLEs. The t
statistics for the null hypothesis Ho : ρn = ρo

n are defined as

t (ρ̂n) = ρ̂n − ρo
n

σ̂ρ̂n

,

where

σ̂ 2
ρ̂n

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−

n∑

t=1

∂2 ln f
∂ρ2

n |θn=θ̂n

)−1

for model (1)

⎡

⎣−
n∑

t=1

⎛

⎝
∂2 ln f
∂ρ2

n

∂2 ln f
∂ρn∂μ

∂2 ln f
∂μ∂ρn

∂2 ln f
∂μ2

⎞

⎠

|(ρn ,μ)=(ρ̂n ,μ̂n)

⎤

⎦
−1

11

for model (3)

⎡

⎢⎢⎢⎣−
n∑

t=1

⎛

⎜⎜⎝

∂2 ln f
∂ρ2

n

∂2 ln f
∂ρn∂μ

∂2 ln f
∂ρn∂β

∂2 ln f
∂μ∂ρn

∂2 ln f
∂μ2

∂2 ln f
∂μ∂β

∂2 ln f
∂β∂ρn

∂2 ln f
∂β∂μ

∂2 ln f
∂β2

⎞

⎟⎟⎠

|(ρn ,μ,β)=(ρ̂n ,μ̂n ,β̂n)

⎤

⎥⎥⎥⎦

−1

11

for model (5)

.

The limiting distributions of the t statistics are reported in the following theorem.
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MLE of AR models with a near unit root and Cauchy errors 1129

Theorem 4 For models (1), (3) and (5), we have under H0 : ρn = ρo
n , as n → ∞,

t (ρ̂n)
d→ N (0, 1).

It is shown that the t statistics for the autoregressive coefficient ρn using MLEs
have a standard normal distribution in the limit. This follows from the mixture-normal
limiting distributions of the MLEs and the block-diagonal structure of the information
matrices in the limit.

When ρo
n = 1 (i.e., γ o = 0), this theorem can be used to test the null hypothesis

of a unit root. In addition, we can construct confidence intervals for γ by using this
theorem as described below.

There are a couple of remarkable aspects of the t test of this section under the
null hypothesis of a unit root. First, the limiting distribution of the t-ratio is a stan-
dard normal. This is in contrast to the LSE-based t statistics which have nonnormal
distributions in the limit whether or not the errors have finite variances (cf. Dickey
and Fuller 1979; Phillips 1990). Second, the limiting distribution of the t test of this
section does not change with the inclusion of nonstochastic regressors. Finite-sample
power of the unit root test of this section is not expected to decrease much with the
inclusion of nonstochastic regressors because of that aspect. This is confirmed by the
simulation results in the supplementary file to this paper. By contrast, the limiting dis-
tributions of the Dickey–Fuller and Phillips-Perron tests shift leftward as higher-order
time polynomials are included as regressors, making the tests’ power decrease with
the inclusion of time polynomials as regressors.

What implications does presence of a unit root have for the observed data {Yt }? First,
when the null hypothesis is true, the errors have permanent effects on the trajectory
of {Yt } (see Choi 2015, p.4). Second, {Yt } has stochastic trends in the presence of a
unit root, while it does not when AR(1) coefficient is less than 1. This is illustrated
in Figure 1 which plots typical trajectories of {Yt } with standard Cauchy errors and
ρn = 0.5, 1 (n = 500). We observe many outliers in the simulated data, but stochastic
trends are found only for the data with a unit root.

It is possible to construct confidence intervals for γ using Theorem 4. Because the
limiting distribution of the t-ratio is a standard normal, there are no complications in
constructing the confidence intervals. The (1 − α)-level confidence interval for γ is

[n(1 − ρ̂n − cα/2σ̂ρ̂n ), n(1 − ρ̂n + cα/2σ̂ρ̂n )],

where cα/2 denotes the percentile from a standard normal distribution with the tail
probability α/2. By contrast, constructing confidence intervals of γ for the AR(1)
model with errors having a finite variance is quite complicated as reported in Stock
(1991) and Phillips (2014). See Choi (2015, pp. 140–142) for further discussions.

5 Simulation

This section reports a summary of simulation results that examine finite-sample prop-
erties of the estimators and test statistics of the previous sections. The tables that
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1130 J. Choi, I. Choi

Fig. 1 Simulated AR(1) processes with ρn = 0.5 and 1 (σ o = 1, n = 500)

contain the results can be found in the supplementary file to this paper. The simulation
results we have obtained indicate that the MLE of the AR coefficient for a nearly non-
stationary AR(1) model performs better than the LSE when the errors have a Cauchy
distribution or a distribution which is a mixture of standard normal and Cauchy distri-
butions at sample sizes 50, 100 and 250. Furthermore, the finite-sample distribution of
the MLE-based t statistic becomes closer to a standard normal distribution as sample
size increases. Last, the MLE-based t test works reasonably well in finite samples and
is more powerful than the Dickey–Fuller t test.

6 Summary and further remarks

Wehave studied theMLE of the AR(1)models with a near unit root and Cauchy errors.
The MLE of the AR coefficient is n3/2-consistent and has a mixture-normal distribu-
tion in the limit. TheMLE of the scale parameter is n1/2-consistent and asymptotically
normal. The MLEs of the intercept and the time trend are n1/2 and n3/2-consistent,
respectively. An MLE-based t test for the null hypothesis of a unit root is also pro-
posed. It is shown that the t statistic has a standard normal distribution asymptotically.
Simulation results show that the MLE of the AR coefficient is more efficient in finite
samples than the LSE and that the MLE-based t test for a unit root is more powerful
than the Dickey–Fuller test.

7 Appendix A: Proofs

The following lemma will be used to prove Lemmas 2, 3, 5 which are used for the
proofs of all the theorems of this paper.

Lemma 1 Define Zn(r) = n−1 ∑[nr ]
t=1 εt , Bn(r) = n−1/2 ∑[nr ]

t=1
∂ ln f (εt ,σ o)

∂εt
and

Qn(r) = n−1/2 ∑[nr ]
t=1

∂ ln f (εt ,σ )
∂σ |σ=σ o for 0 ≤ r ≤ 1. Then, (Zn(r1), Bn(r2),
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Qn(r3))
d→ (Z(r1), B(r2), Q(r3)) in D[0, 1]3, where Z(r1), B(r2) and Q(r3) are

defined in Theorem 1.

Proof This lemma is similar to Lemma 1 of Zhang and Chan (2012) except that the
limit results for Bn(r2) and Qn(r3) under the assumption of Cauchy errors are not dealt
with there. Thus, we only need to show marginal weak convergence results for Bn(r2)
and Qn(r3) under the assumption of Cauchy errors. Because E

(∂ ln f (εt ,σ o)
∂εt

) = 0 by

standard theory and E
(∂ ln f (εt ,σ o)

∂εt

)2 = 1
2σ o2 < ∞ by Lemma 7, we can apply the

classical functional central limit theorem for the sequence of i.i.d. random variables{∂ ln f (εt ,σ o)
∂εt

}
, obtaining

Bn(r)
d→ B(r) in D[0, 1].

Likewise, we have

Qn(r)
d→ Q(r) in D[0, 1].

Since E
(∂ ln f (εi ,σ o)

∂εi

) ( ∂ ln f (ε j ,σ )

∂σ |σ=σ o

)
= 0 for every i and j, B(r) and Q(s) are

independent for 0 ≤ r ≤ 1 and 0 ≤ s ≤ 1. 	

The following lemma will be used to prove Theorem 1.

Lemma 2 (i) n−3/2 ∑n
t=1

∂ ln f (εt ,σ o)
∂εt

Yt−1
d→ ∫ 1

0 S(r)dB(r);
(ii) n−2 ∑n

t=1 Yt−1
d→ ∫ 1

0 S(r)dr;
(iii) n−3 ∑n

t=1 Y
2
t−1

d→ ∫ 1
0 S2(r)dr;

(iv) n−3 ∑n
t=1 Y

2
t−1

[
∂2 ln f (εt ,σ o)

∂ε2t
− E

(∂2 ln f (εt ,σ o)

∂ε2t

)] p−→ 0;
(v) n−2 ∑n

t=1 Yt−1

[
∂2 ln f (εt ,σ )

∂εt ∂σ |σ=σ o − E
(

∂2 ln f (εt ,σ )
∂εt∂σ |σ=σ o

)]
p−→ 0;

(vi) n−1 ∑n
t=1

[
∂2 ln f (εt ,σ )

∂σ 2 |σ=σ o − E
(

∂2 ln f (εt ,σ )

∂σ 2 |σ=σ o

)]
p−→ 0.

Proof Because Sn(r)
d→ S(r) in D[0, 1], where Sn(r) = n−1Y[nr ] and S(r) is defined

in Theorem 1, as shown in Chan et al. (2006), parts (i), (ii) and (iii) follow as in

Lemma 4 of Zhang and Chan (2012). Because the variances of
{∂2 ln f (εt ,σ o)

∂ε2t

}
and

{
∂2 ln f (εt ,σ )

∂εt ∂σ |σ=σ o

}
are finite due to Lemma 10, we obtain (iv) and (v) by using the

same method as for equation (16) of Zhang and Chan (2012). Part (vi) is trivial. 	

Proof of Theorem 1 (i) We need to check the four conditions of Newey andMcFad-

den (1994) Theorem 2.5. Conditions (i), (ii) and (iii) are trivially satisfied. To
check condition (iv), write

ft (ρn, σ ) = σ

π{σ 2 + (Yt − ρnYt−1)2}
= σ

π{σ 2 + ε2t + 2(ρo
n − ρn)εt Yt−1 + (ρo

n − ρn)2Y 2
t−1}

.
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Suppose that Yt−1 is given. Then, as in Newey and McFadden (1994; p.2125),

|ln ft (ρn, σ )| ≤ ln σ − ln π − ln{σ 2 + ε2t + 2(ρo
n − ρn)εt Yt−1 + (ρo

n − ρn)
2Y 2

t−1}
≤ C1 + ln(C2 + C3ε

2
t )

for some positive constants C1, C2 and C3. Since E
[
ln(C2 + C3ε

2
t )
]

< ∞ for
every t, we obtain

E

(
sup
ρn ,σ

|ln ft (ρn, σ )|
)

= EE

(
sup
ρn ,σ

|ln ft (ρn, σ )| | Yt−1

)
< ∞,

as desired.
(ii) Let θn = (ρn, σ ), θ̂n = (ρ̂n, σ̂n), θon = (ρo

n , σ
o) and θ∗

n be on the line joining θon
and θ̂n . Because

∑n
t=1

∂ ln f
∂θn |θn=θ̂n

= 0, we obtain by the mean value theorem

0 =
n∑

t=1

∂ ln f

∂θn |θn=θon

+
n∑

t=1

∂2 ln f

∂θn∂θ ′
n |θn=θ∗

n

(
ρ̂n − ρo

n
σ̂n − σ o

)
,

which gives

(
n3/2

(
ρ̂n − ρo

n

)

n1/2
(
σ̂n − σ o

)
)

= −
⎡

⎣J−1
n

n∑

t=1

∂2 ln f

∂θn∂θ ′
n |θn=θ∗

n

J−1
n

⎤

⎦
−1

J−1
n

n∑

t=1

∂ ln f

∂θn |θn=θon

= −
(
An|θn=θ∗

n

)−1
J−1
n

n∑

t=1

∂ ln f

∂θn |θn=θon

, say,

where Jn = diag(n3/2, n1/2). Because θ∗
n − θon

p−→ 0 as n → ∞, it follows that

An|θn=θ∗
n

− An|θn=θon

p−→ 0. (8)

Since

An|θn=θon
=

⎡

⎣n−3 ∑n
t=1 Y

2
t−1

∂2 ln f (εt ,σ )

∂ε2t
−n−2 ∑n

t=1 Yt−1
∂2 ln f (εt ,σ )

∂εt ∂σ

−n−2 ∑n
t=1 Yt−1

∂2 ln f (εt ,σ )
∂εt ∂σ

n−1 ∑n
t=1

∂2 ln f (εt ,σ )

∂σ 2

⎤

⎦

|θn=θon

,
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parts (iv), (v) and (vi) of Lemma 2 show that An|θn=θon
has the same limiting distribution

as
⎡

⎣n−3 ∑n
t=1 Y

2
t−1E

(∂2 ln f (εt ,σ )

∂ε2t

) −n−2 ∑n
t=1 Yt−1E

(∂2 ln f (εt ,σ )
∂εt∂σ

)

−n−2 ∑n
t=1 Yt−1E

(∂2 ln f (εt ,σ )
∂εt ∂σ

)
n−1 ∑n

t=1 E
(∂2 ln f (εt ,σ )

∂σ 2

)

⎤

⎦

|θn=θon

,

which is equal to, due to Lemmas 8 and 9,

− 1

2σ o2

[
n−3 ∑n

t=1 Y
2
t−1 0

0 1

]
.

Thus, using relation (8) and part (iii) of Lemma 2, we obtain

An|θn=θ∗
n

d−→ − 1

2σ o2

[∫ 1
0 S2(r)dr 0
0 1

]
. (9)

In addition, Lemmas 1 and 2 yield

J−1
n

n∑

t=1

∂ ln f

∂θn |θn=θon

=
(

−n−3/2 ∑n
t=1

∂ ln f (εt ,σ o)
∂εt

Yt−1

n−1/2 ∑n
t=1

∂ ln f (εt ,σ )
∂σ |σ=σ o

)

d−→
(− ∫ 1

0 S(r)dB(r)
Q(1)

)
. (10)

The stated result follows, once the continuous mapping theorem is applied to relations
(9) and (10). 	


It is straightforward to show that Sn(r) = n−1Y[nr ]
d→ S(r) for model (3). Thus,

we continue to use Lemma 2 to prove Theorem 2. In addition to Lemma 2, we need
the following lemma to prove Theorem 2.

Lemma 3 (i) n−2 ∑n
t=1 Yt−1

[
∂2 ln f (εt ,σ o)

∂ε2t
− E

(∂2 ln f (εt ,σ o)

∂ε2t

)] p−→ 0;
(ii) n−1 ∑n

t=1

[
∂2 ln f (εt ,σ )

∂εt ∂σ |σ=σ o − E
(

∂2 ln f (εt ,σ )
∂εt∂σ |σ=σ o

)]
p−→ 0;

(iii) n−1 ∑n
t=1

[
∂2 ln f (εt ,σ o)

∂ε2t
− E

(∂2 ln f (εt ,σ o)

∂ε2t

)] p−→ 0.

Proof Using the same method as for Eq. (16) of Zhang and Chan (2012), we obtain
(i). Parts (ii) and (iii) are trivial. 	

Proof of Theorem 2 (i) Use the same method as for the proof of Theorem 1 (i).
(ii) Let θn = (ρn, μ, σ ), θ̂n = (ρ̂n, μ̂n, σ̂n), θon = (ρo

n , μ
o, σ o) and θ∗

n be on the line
joining θon and θ̂n . Because

∑n
t=1

∂ ln f
∂θn |θn=θ̂n

= 0, the mean value theorem yields

0 =
n∑

t=1

∂ ln f

∂θn |θn=θon

+
n∑

t=1

∂2 ln f

∂θn∂θ ′
n |θn=θ∗

n

⎛

⎝
ρ̂n − ρo

n
μ̂n − μo

σ̂n − σ o

⎞

⎠ ,
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which gives

⎛

⎝
n3/2

(
ρ̂n − ρo

n

)

n1/2
(
μ̂n − μo

)

n1/2
(
σ̂n − σ o

)

⎞

⎠

= −
⎡

⎣K−1
n

n∑

t=1

∂2 ln f

∂θn∂θ ′
n |θn=θ∗

n

K−1
n

⎤

⎦
−1

K−1
n

n∑

t=1

∂ ln f

∂θn |θn=θon

= −
(
En|θn=θ∗

n

)−1
K−1
n

n∑

t=1

∂ ln f

∂θn |θn=θon

, say,

where Kn = diag(n3/2, n1/2, n1/2). Because θ∗
n − θon

p−→ 0 as n → ∞, it follows
that

En|θn=θ∗
n

− En|θn=θon

p−→ 0. (11)

Since

En|θn=θon

=

⎡

⎢⎢⎢⎢⎢⎢⎣

n−3
n∑

t=1
Y 2
t−1

∂2 ln f (εt ,σ )

∂ε2t
n−2

n∑
t=1

Yt−1
∂2 ln f (εt ,σ )

∂ε2t
−n−2

n∑
t=1

Yt−1
∂2 ln f (εt ,σ )

∂εt ∂σ

n−2
n∑

t=1
Yt−1

∂2 ln f (εt ,σ )

∂ε2t
n−1

n∑
t=1

∂2 ln f (εt ,σ )

∂ε2t
−n−1

n∑
t=1

∂2 ln f (εt ,σ )
∂εt ∂σ

−n−2
n∑

t=1
Yt−1

∂2 ln f (εt ,σ )
∂εt ∂σ

−n−1
n∑

t=1

∂2 ln f (εt ,σ )
∂εt ∂σ

n−1
n∑

t=1

∂2 ln f (εt ,σ )

∂σ2

⎤

⎥⎥⎥⎥⎥⎥⎦

|θn=θon

,

parts (iv), (v) and (vi) of Lemma 2 and parts (i), (ii) and (iii) of Lemma 3 show that
En|θn=θon

has the same limiting distribution as

⎡

⎢⎢⎢⎢⎢⎢⎣

n−3
n∑

t=1
Y 2
t−1E

(∂2 ln f (εt ,σ )

∂ε2t

)
n−2

n∑
t=1

Yt−1E
(∂2 ln f (εt ,σ )

∂ε2t

) −n−2
n∑

t=1
Yt−1E

(∂2 ln f (εt ,σ )
∂εt ∂σ

)

n−2
n∑

t=1
Yt−1E

(∂2 ln f (εt ,σ )

∂ε2t

)
n−1

n∑
t=1

E
(∂2 ln f (εt ,σ )

∂ε2t

) −n−1
n∑

t=1
E
(∂2 ln f (εt ,σ )

∂εt ∂σ

)

−n−2
n∑

t=1
Yt−1E

(∂2 ln f (εt ,σ )
∂εt ∂σ

) −n−1
n∑

t=1
E
(∂2 ln f (εt ,σ )

∂εt ∂σ

)
n−1

n∑
t=1

E
(∂2 ln f (εt ,σ )

∂σ2

)

⎤

⎥⎥⎥⎥⎥⎥⎦

|θn=θon

,

which is equal to, due to Lemmas 8 and 9,

− 1

2σ o2

⎡

⎣
n−3 ∑n

t=1 Y
2
t−1 n−2 ∑n

t=1 Yt−1 0
n−2 ∑n

t=1 Yt−1 1 0
0 0 1

⎤

⎦ .

Thus, using relation (11) and parts (ii) and (iii) of Lemma 2, we obtain

En|θn=θ∗
n

d−→ − 1

2σ o2

⎡

⎣

∫ 1
0 S2(r)dr

∫ 1
0 S(r)dr 0∫ 1

0 S(r)dr 1 0
0 0 1

⎤

⎦ . (12)
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In addition, Lemmas 1 and 2 yield

K−1
n

n∑

t=1

∂ ln f

∂θn |θn=θon

=
⎛

⎜⎝
−n−3/2 ∑n

t=1
∂ ln f (εt ,σ o)

∂εt
Yt−1

−n−1/2 ∑n
t=1

∂ ln f (εt ,σ o)
∂εt

n−1/2 ∑n
t=1

∂ ln f (εt ,σ )
∂σ |σ=σ o

⎞

⎟⎠

d→
⎛

⎝
− ∫ 1

0 S(r)dB(r)
−B(1)
Q(1)

⎞

⎠ . (13)

The stated result is obtained by applying the continuous mapping theorem to relations
(12) and (13). 	


The following two lemmas will be used to prove Theorem 3.

Lemma 4 For model (5), we have Sn(r) = n−1Y[nr ]
d→ U (r) = S(r) + b0r in

D[0, 1].

Proof Because Xt = ρn Xt−1 + εt , n−1X[nr ]
d→ S(r) in D[0, 1], we obtain

Sn(r) = n−1Y[nr ] = n−1 (a0 + b0[nr ] + X[nr ]
) d→ U (r) = b0r + S(r) in D[0, 1],

as stated. 	

Lemma 5 (i) n−3/2 ∑n

t=1
∂ ln f (εt ,σ o)

∂εt
Yt−1

d→ ∫ 1
0 U (r)dB(r);

(ii) n−2 ∑n
t=1 Yt−1

d→ ∫ 1
0 U (r)dr;

(iii) n−3 ∑n
t=1 Y

2
t−1

d→ ∫ 1
0 U 2(r)dr;

(iv) n−3 ∑n
t=1 tYt−1

d→ ∫ 1
0 rU (r)dr;

(v) n−3/2 ∑n
t=1 t

∂ ln f (εt ,σ o)
∂εt

d→ ∫ 1
0 rdB(r);

(vi) n−3 ∑n
t=1 tYt−1

[
∂2 ln f (εt ,σ o)

∂ε2t
− E

(∂2 ln f (εt ,σ o)

∂ε2t

)] p−→ 0;
(vii) n−2 ∑n

t=1 t
[

∂2 ln f (εt ,σ )
∂εt ∂σ |σ=σ o − E

(
∂2 ln f (εt ,σ )

∂εt ∂σ |σ=σ o

)]
p−→ 0;

(viii) n−2 ∑n
t=1 t

[
∂2 ln f (εt ,σ o)

∂ε2t
− E

(∂2 ln f (εt ,σ o)

∂ε2t

)] p−→ 0;
(ix) n−3 ∑n

t=1 t
2
[

∂2 ln f (εt ,σ o)

∂ε2t
− E

(∂2 ln f (εt ,σ o)

∂ε2t

)] p−→ 0.

Proof Because Sn(r)
d→ U (r) in D[0, 1] by Lemma 4, parts (i), (ii), (iii) and (iv)

follow as in Lemma 4 of Zhang and Chan (2012). Part (v) follows from the central
limit theorem. Using the same method as for Eq. (16) of Zhang and Chan (2012), we
obtain (vi), (vii), (viii) and (ix). 	

Proof of Theorem 3 (i) Using the same method as for the proof of Theorem 1 (i), it

is straightforward to prove this.
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(ii) Let θn = (ρn, μ, β, σ ), θ̂n = (ρ̂n, μ̂n, β̂n,σ̂n), θon = (ρo
n , μ

o, βo, σ o) and θ∗
n be

on the line joining θon and θ̂n . Because
∑n

t=1
∂ ln f
∂θn |θn=θ̂n

= 0, we obtain by the

mean value theorem

0 =
n∑

t=1

∂ ln f

∂θn |θn=θon

+
n∑

t=1

∂2 ln f

∂θn∂θ ′
n |θn=θ∗

n

⎛

⎜⎜⎝

ρ̂n − ρo
n

μ̂n − μo

β̂n − βo

σ̂n − σ o

⎞

⎟⎟⎠ .

Thus, we have

⎛

⎜⎜⎜⎝

n3/2
(
ρ̂n − ρo

n

)

n1/2
(
μ̂n − μo

)

n3/2
(
β̂n − βo

)

n1/2
(
σ̂n − σ o

)

⎞

⎟⎟⎟⎠

= −
⎡

⎣L−1
n

n∑

t=1

∂2 ln f

∂θn∂θ ′
n |θn=θ∗

n

L−1
n

⎤

⎦
−1

L−1
n

n∑

t=1

∂ ln f

∂θn |θn=θon

= −
(
Cn|θn=θ∗

n

)−1
L−1
n

n∑

t=1

∂ ln f

∂θn |θn=θon

, say,

where Ln = diag(n3/2, n1/2, n3/2, n1/2). Because θ∗
n − θon

p−→ 0 as n → ∞, it
follows that

Cn|θn=θ∗
n

− Cn|θn=θon

p−→ 0. (14)

Since

Cn|θn=θon

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n−3
n∑

t=1
Y 2
t−1

∂2 ln f
∂ε2t

n−2
n∑

t=1
Yt−1

∂2 ln f
∂ε2t

n−3
n∑

t=1
tYt−1

∂2 ln f
∂ε2t

−n−2
n∑

t=1
Yt−1

∂2 ln f
∂εt ∂σ

n−2
n∑

t=1
Yt−1

∂2 ln f
∂ε2t

n−1
n∑

t=1

∂2 ln f
∂ε2t

n−2
n∑

t=1
t ∂2 ln f

∂ε2t
−n−1

n∑
t=1

∂2 ln f
∂εt ∂σ

n−3
n∑

t=1
tYt−1

∂2 ln f
∂ε2t

n−2
n∑

t=1
t ∂2 ln f

∂ε2t
n−3

n∑
t=1

t2 ∂2 ln f
∂ε2t

−n−2
n∑

t=1
t ∂2 ln f

∂εt ∂σ

−n−2
n∑

t=1
Yt−1

∂2 ln f
∂εt ∂σ

−n−1
n∑

t=1

∂2 ln f
∂εt ∂σ

−n−2
n∑

t=1
t ∂2 ln f

∂εt ∂σ
n−1

n∑
t=1

∂2 ln f
∂σ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

|θn=θon

,
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Lemmas 2, 3 and 5 show that Cn|θn=θon
has the same limiting distribution as

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n−3
n∑

t=1
Y 2
t−1G n−2

n∑
t=1

Yt−1G n−3
n∑

t=1
tYt−1G −n−2

n∑
t=1

Yt−1H

n−2
n∑

t=1
Yt−1G n−1

n∑
t=1

G n−2
n∑

t=1
tG −n−1

n∑
t=1

H

n−3
n∑

t=1
tYt−1G n−2

n∑
t=1

tG n−3
n∑

t=1
t2G −n−2

n∑
t=1

t H

−n−2
n∑

t=1
Yt−1H −n−1

n∑
t=1

H −n−2
n∑

t=1
t H n−1

n∑
t=1

J

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

|θn=θon

,

where G = E
[∂2 ln f

∂ε2t

]
, H = E

[∂2 ln f
∂εt∂σ

]
and J = E

[∂2 ln f
∂σ 2

]
. Due to Lemmas 8 and 9,

the above matrix is equal to

− 1

2σ o2

⎡

⎢⎢⎣

n−3 ∑n
t=1 Y

2
t−1 n−2 ∑n

t=1 Yt−1 n−3 ∑n
t=1 tYt−1 0

n−2 ∑n
t=1 Yt−1 1 n−2 ∑n

t=1 t 0
n−3 ∑n

t=1 tYt−1 n−2 ∑n
t=1 t n−3 ∑n

t=1 t
2 0

0 0 0 1

⎤

⎥⎥⎦ .

Thus, using relation (14) and parts (ii), (iii) and (iv) of Lemma 5, we obtain

Cn|θn=θ∗
n

d−→ − 1

2σ o2

⎡

⎢⎢⎢⎣

∫ 1
0 U 2(r)dr

∫ 1
0 U (r)dr

∫ 1
0 rU (r)dr 0∫ 1

0 U (r)dr 1 1
2 0∫ 1

0 rU (r)dr 1
2

1
3 0

0 0 0 1

⎤

⎥⎥⎥⎦ . (15)

In addition, Lemmas 1 and 5 yield

L−1
n

n∑

t=1

∂ ln f

∂θn |θn=θon

=

⎛

⎜⎜⎜⎜⎝

−n−3/2 ∑n
t=1

∂ ln f (εt ,σ o)
∂εt

Yt−1

−n−1/2 ∑n
t=1

∂ ln f (εt ,σ o)
∂εt

−n−3/2 ∑n
t=1 t

∂ ln f (εt ,σ o)
∂εt

n−1/2 ∑n
t=1

∂ ln f (εt ,σ )
∂σ |σ=σ o

⎞

⎟⎟⎟⎟⎠
d−→

⎛

⎜⎜⎝

− ∫ 1
0 U (r)dB(r)

−B(1)
− ∫ 1

0 rdB(r)
Q(1)

⎞

⎟⎟⎠ . (16)

The stated result follows from relations (15) and (16). 	


Proof of Theorem 4 This follows straightforwardly from themixture normality results
(2), (4) and (6), and the block-diagonal structure of the information matrices in the
limit. 	
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8 Appendix B: Auxiliary lemmas

Lemma 6

D1 =
∫

R

1

σ o2 + ε21
dε1 = π

σ o
, D2 =

∫

R

1
(
σ o2 + ε21

)2 dε1 = π

2σ o3 ,

D3 =
∫

R

1
(
σ o2 + ε21

)3 dε1 = 3π

8σ o5
, D4 =

∫

R

1
(
σ o2 + ε21

)4 dε1 = 5π

16σ o7 ,

D5 =
∫

R

1
(
σ o2 + ε21

)5 dε1 = 35π

128σ o9 .

Proof The first result follows because
∫
R

1
x+ε21

dε1 = πx−1/2. The rest are obtained

by successively differentiating both sides of this equation with respect to x and setting
x = σ o2. Differentiating within the integral sign is allowed, because for k ∈ N and

x ∈ R
+,

∣∣∣∣
∂
(
x+ε21

)−k

∂x

∣∣∣∣ =
∣∣∣∣

k(
x+ε21

)k+1

∣∣∣∣ ≤
∣∣∣∣

k
ε
2(k+1)
1

∣∣∣∣ and
∣∣∣∣

k
ε
2(k+1)
1

∣∣∣∣ is integrable. 	


Lemma 7 (i) E
[(∂ ln f (ε1,σ o)

∂ε1

)2] = 1
2σ o2 ;

(ii) E

[(
∂ ln f (ε1,σ )

∂σ |σ=σ o

)2] = 1
2σ o2 .

Proof Using Lemma 6, we obtain

E

[(
∂ ln f (ε1, σ o)

∂ε1

)2
]

=
∫

R

(
2ε1

ε21 + σ o2

)2

· σ o

π(ε21 + σ o2)
dε1

= 4σ o

π

∫

R

ε21

(ε21 + σ o2)3
dε1

= 4σ o

π

[∫

R

ε21 + σ o2

(ε21 + σ o2)3
dε1 −

∫

R

σ o2

(ε21 + σ o2)3
dε1

]

= 4σ o

π

[
D2 − σ o2D3

]
= 1

2σ o2 ,

where D2 and D3 are defined in Lemma 6. In the same manner, we have

E

[(
∂ ln f (ε1, σ )

∂σ |σ=σ o

)2
]

=
∫

R

(ε21 − σ o2)2

σ o2(ε21 + σ o2)2
· σ o

π(ε21 + σ o2)
dε1

= 1

σ oπ

∫

R

(ε21 + σ o2)2 − 4ε21σ
o2

(ε21 + σ o2)3
dε1
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= 1

σ oπ

[∫

R

1

ε21 + σ o2
dε1 − 4σ o2

∫

R

ε21

(ε21 + σ o2)3
dε1

]

= 1

σ oπ

[
D1 − 4σ o2(D2 − σ o2D3)

]
= 1

2σ o2 .

	

Lemma 8 E

[
∂2 ln f (ε1,σ )

∂ε1∂σ |σ=σ o

]
= 0.

Proof Because
∂2 ln f (ε1, σ )

∂ε1∂σ |σ=σ o
= 4ε1σ o

(
ε21 + σ o2

)2 ,

we have

E

[
∂2 ln f (ε1, σ )

∂ε1∂σ |σ=σ o

]
= 4σ o2

π

∫

R

ε1
(
ε21 + σ o2

)3 dε1.

Because the integrand is an odd function, the stated result follows. 	

Lemma 9 E

[
∂2 ln f (ε1,σ )

∂σ 2 |σ=σ o

]
= − 1

2σ o2 and E
[∂2 ln f (ε1,σ o)

∂ε21

] = − 1
2σ o2 .

Proof We begin with the identity

1 =
∫

R

f (ε1, σ )dε1.

By Leibniz’s rule, taking the derivative of the both sides of the above equation with
respect to σ results in

0 =
∫

R

∂ f (ε1, σ )

∂σ
dε1

=
∫

R

∂ f (ε1, σ )/∂σ

f (ε1, σ )
f (ε1, σ )dε1

=
∫

R

∂ ln f (ε1, σ )

∂σ
f (ε1, σ )dε1

= E

[
∂ ln f (ε1, σ )

∂σ

]
.

Differentiating this again, we obtain by Leibniz’s rule

0 =
∫

R

∂2 ln f (ε1, σ )

∂σ 2 f (ε1, σ )dε1 +
∫

R

(
∂ ln f (ε1, σ )

∂σ

)2

f (ε1, σ )dε1,

∫

R

∂2 ln f (ε1, σ )

∂σ 2 f (ε1, σ )dε1 = −
∫

R

(
∂ ln f (ε1, σ )

∂σ

)2

f (ε1, σ )dε1,

E

[
∂2 ln f (ε1, σ )

∂σ 2

]
= −E

[
∂ ln f (ε1, σ )

∂σ

]2
.
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Hence, by Lemma 7,

E

[
∂2 ln f (ε1, σ )

∂σ 2 |σ=σ o

]
= −E

[
∂ ln f (ε1, σ )

∂σ |σ=σ o

]2

= − 1

2σ o2 .

To prove the second result, consider the relation

∂2 ln f (ε1, σ o)

∂ε21
= 2ε21 − 2σ o2

(
σ o2 + ε21

)2 ,

which gives

E

[
∂2 ln f (ε1, σ o)

∂ε21

]
=

∫

R

2ε21 − 2σ o2

(ε21 + σ o2)2
· σ o

π(ε21 + σ o2)
dε1

= σ o

π

∫

R

2ε21 − 2σ o2

(ε21 + σ o2)3
dε1

= σ o

π

(
2
∫

R

ε21

(ε21 + σ o2)3
dε1 − 2σ o2

∫

R

1

(ε21 + σ o2)3
dε1

)

= σ o

π
(2(D2 − σ o2D3) − 2σ o2D3)

= − 1

2σ o2 ,

as stated. 	


Lemma 10 E

[(∂2 ln f (ε1,σ o)

∂ε21

)2]
, E

[(∂2 ln f (ε1,σ )

∂σ 2

)2
|σ=σ o

]
and E

[(∂2 ln f (ε1,σ )
∂ε1∂σ

)2
|σ=σ o

]

are finite.

Proof First, we show that E

[(∂2 ln f (ε1,σ o)
∂ε1∂σ

)2
|σ=σ o

]
= 5

8σ
o−4. By Lemma 6,

E

[(
∂2 ln f (ε1, σ o)

∂ε1∂σ

)2

|σ=σ o

]
=

∫

R

(
4ε1σ o

(
ε21 + σ o2

)2

)2

· σ o

π(ε21 + σ o2)
dε1

= 16σ o3

π

(
D4 − σ o2D5

)

= 5

8
σ o−4.
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Second, E

[(∂2 ln f (ε1,σ o)

∂ε21

)2] = 7
8σ

o−4. By Lemma 6,

E

[(
∂2 ln f (ε1, σ o)

∂ε21

)2
]

=
∫

R

(
2ε21 − 2σ o2

(ε21 + σ o2)2

)2

· σ o

π(ε21 + σ o2)
dε1

= 4σ o

π

(∫

R

(
ε21 + σ o2

)2

(ε21 + σ o2)5
dε1 − 4σ o2

∫

R

ε21

(ε21 + σ o2)5
dε1

)

= 4σ o

π

(
D3 − 4σ o2

(
D4 − σ o2D5

))

= 7

8
σ o−4.

To prove E

[(∂2 ln f (ε1,σ )

∂σ 2

)2
|σ=σ o

]
= 7

8σ
o−4, we should note the following equations

∫

R

ε21(
ε21 + σ o2

)5 dε1 = D4 − σ o2D5,

∫

R

ε41(
ε21 + σ o2

)5 dε1 = D3 − 2σ o2D4 + σ o4D5,

∫

R

ε61(
ε21 + σ o2

)5 dε1 = D2 − 3σ o2D3 + 3σ o4D4 − σ o6D5,

∫

R

ε81(
ε21 + σ o2

)5 dε1 = D1 − 4σ o2D2 + 6σ o4D3 − 4σ o6D4 + σ o8D5.

By using these equations, we have

E

[(
∂2 ln f (ε1, σ )

∂σ 2

)2

|σ=σ o

]
=

∫

R

(
σ o4 − 4ε21σ

o2 − ε41

σ o2(ε21 + σ o2)2

)2

· σ o

π(ε21 + σ o2)
dε1

= 1

πσ o3

∫

R

ε81 + 8σ o2ε61 + 14σ o4ε41 − 8σ o6ε21 + σ o8

(
ε21 + σ o2

)5 dε1

= 1

πσ o3

(
D1 + 4σ o2D2 − 4σ o4D3 − 16σ o6D4 + 16σ o8D5

)

= 7

8
σ o−4.
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