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Abstract The oracle property of model selection procedures has attracted a large
volume of favorable publications in the literature, but also faced criticisms of being
ineffective and misleading in applications. Such criticisms, however, have appeared
to be largely ignored by the majority of the popular statistical literature, despite their
serious impact. In this paper, we present a new type of Hodges’ estimators that can
easily produce model selection procedures with the oracle and some other desired
properties, but can be readily seen to perform poorly in parts of the parameter spaces
that are fixed and independent of sample sizes. Consequently, the merits of the oracle
property for model selection as extensively advocated in the literature are questionable
and possibly overstated. In particular, because the mathematics employed in this paper
are at an elementary level, this finding leads to new discoveries on the merits of
the oracle property and exposes some overlooked crucial facts on model selection
procedures.
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1 Introduction

Model selection is undoubtedly an extensively employed technique in data analysis
and has attracted a great deal of research interests in the literature. It has become
increasingly popular and ubiquitous partly due to rapid advance in computational
power. A large volume of literature on model selection has been published and widely
used statistical software packages contain more or less routines for model selection. In
particular, almost all textbooks on linear regressions (including those at undergraduate
level) dedicate a whole chapter or a few sections to variable (model) selection.

Theoretically, there are two purposes for model selection in general: model iden-
tification and inference. The latter is often referred to as post-selection inference in
practical data analyses (Berk et al. 2010, 2013). Typically in post-selection inference,
model identification is an intermediate step in data analysis after that the analysts then
perform further statistical analyses based on the selected model, pretending it is the
“true” model.

This amounts to a two-step procedure in data analysis (Berk et al. 2010, 2013).
Many textbooks on linear regression oriented in practical data analysis taught students
how to use well-known techniques such as AIC (Akaike’s information criterion),
BIC (Bayesian information criterion), adjusted R2, Mallows’ Cp to select “good” or
“best” models, then draw statistical inference based on the selected models. Popular
softwares, such as SAS and R, generally select a model by some criterion (such as
AIC/BIC) and output the estimated coefficients of the selected explanatory variables as
well as their corresponding p values computed as if the selectedmodels truly represent
the nature. Berk et al. (2010) provides an exemplified but limited list of remarkable
research works of this type. More and interesting discussions on how model selection
methods perform for model identification and inference can be found in Yang (2005,
2007).

In this paper, we focus on the parameter estimation for model selection based on an
overall model with a fixed parameter space of dimension p (less than the sample size
n). The models are selected by setting some of its parameters to zero. Thus, selecting
a model corresponds to estimating some parameters by zero. Statistical inference is
drawn from the nonzero estimates of the other parameters on the selected model. In
this sense, the parameter estimation we consider covers both model identification and
inference.

More recently, based on the idea of penalized maximum likelihood/least squares
inherited from AIC and BIC, some researchers found a smart way to integrate this
two-step analysis into a single-step procedure. It associates some cleverly designed
penalties to the likelihood function (or squared errors in regression models) so that, by
maximizing the penalized likelihood function (or minimizing the penalized squared
errors in regression models), a part of parameters are estimated by zero and the others
by nonzero quantities. This enables model identification and inference to be carried
out together—referred to as a one-step procedure for model selection.

This new approach began with the famous LASSO algorithm (least absolute selec-
tion and shrinkage operator) proposed by Tibshirani (1996). Generally, let l(Y, θ)

denote the log-likelihood of the parameters θ = (θ1, θ2, . . . , θp)
′. Then the esti-

mators of θi s are obtained by maximizing the penalized log-likelihood PL(θ) =
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Hodges’ supereffciency and oracle property 1095

l(Y, θ)+∑p
i=1 fi (θi , λn),where Y is the sample of size n, fi (θi , λn) the penalty asso-

ciated with parameter θi , and λn a known tuning parameter. In parallel, the estimators
for a linear regression model Y = Xn×pθ + ε are obtained by minimizing penalized
squares PS(θ) = (Y − Xθ)′(Y − Xθ) + 2

∑p
i=1 fi (θi , λn). For particularly designed

penalty fi , maximizing PL(θ) produces such estimators that automatically estimate
some θi by zero, so as to simultaneously select model and estimate the parameters
of the selected model. Different designs of the penalties generate different selec-
tion estimation algorithms, such as LASSO (Tibshirani 1996), adaptive LASSO (Zou
2006), hard thresholding estimators, soft thresholding estimators, bridge regression
estimators (Frank and Friedman 1993), SCAD (smoothly clipped absolute deviation
penalty, Fan and Li 2001), elastic net method (Zou and Hastie 2005) and MCP (min-
imax concave penalty, Zhang 2010).

The first theoretical justification of the penalized maximum likelihood method
appeared in Fan and Li (2001), who proved an appealing property of their SCAD
estimators, referred to as the oracle property, as defined below.

Definition 1 Let b(θ) = {i : θi �= 0, i = 1, 2, . . . , p} and b̄(θ) = {1, 2, . . . , p} −
b(θ) and rearrange the parameter vector as θ = (θ ′

b(θ), θ
′̄
b(θ)

)′ without loss of generality.
An estimator θ̂n is said to possess the oracle property or an oracle estimator if

1. lim
n→∞Prθ (θ̂n,b̄(θ) = 0) = 1; and

2.
√

n(θ̂n,b(θ)−θb(θ))
d→ N (0,F−1

b(θ)),where
d→ indicates convergence in distribution

and Fb(θ) is the Fisher’s information matrix of θb(θ) knowing θb̄(θ) = 0.

The oracle property defined above is described in limit sense as the sample size
tends to infinity. It states that an oracle estimator is asymptotically equivalent to the
ideal estimator with the active (nonzero) parameters only. This has extensively been
promoted as a justification to using the single-step procedure SCAD estimation. The
follow-ups of Fan and Li (2001) can be summarized in two aspects:

1. Many researchers have focused on finding model selection procedures for linear
regression so as to produce oracle estimators that perform better in their finite
sample simulations. Significant works in this line include adaptive LASSO by Zou
(2006), adaptive group LASSO by Wang and Leng (2008), elastic net method
by Zou and Hastie (2005), adaptive elastic net method by Zou and Zhang (2009),
MCP by Zhang (2010), Orthogonalizing EM algorithm with nonconvex penalties
by Xiong et al. (2017) and other variants by, e.g., Leng et al. (2014), Gefang (2014)
and Wang et al. (2011), among a vast number of others.

2. More papers have aimed at extending the ideas growing up in linear regression
to other models so as to derive estimators with the oracle property. Important
examples include generalized linear models (Friedman et al. 2010; Geer 2008),
Cox regressionmodels (Fan andLi 2002;Zhang andLu2007), network exploration
(Fan et al. 2009), additive models (Horowitz et al. 2006; Huang et al. 2010),
panel data models (Fan and Li 2004 and Kock 2013) and propensity score models
(Brookhart et al. 2006), among others.

What is worth special mention is the explosion of the literature in model selection
with the oracle property under a huge number of statistical models, which have led
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to thousands of citations to many of the papers mentioned above by following papers
and books.

Such a popular property, however, is not universally accepted without criticisms.
The Vienna school, led by H. Leeb and B. M. Pötscher, argued that the oracle property
is “too good to be true” and seriously questioned the advertised merits of oracle model
selection procedures in a series of papers, including Leeb and Pötscher (2008a, b),
Pötscher (2009), Pötscher and Leeb (2009), Pötscher and Schneider (2009) and the
references therein. They considered oracle estimators as a return ofHodges’ estimators
(Le Cam 1953), which provided a typical counterexample to a conjecture by R. A.
Fisher that theMLEshaveminimumasymptotic variance (referred to as asymptotically
efficient) and are known to perform poorly at some parameter values in finite sample
size. Their arguments are summarized below.

1. Theoretically, the overall risk of a sparse estimator can be unbounded as n → ∞.
2. Numerous Monte Carlo simulations were conducted to demonstrate that, in finite

sample size, a number of oracle estimators perform quite poorly when the param-
eters take values in a vicinity of zero.

In particular, by replicating and extendingMonteCarlo simulations of the performance
of theSCADestimator inExample 4.1 of Fan andLi (2001), Leeb andPötscher (2008b)
demonstrated that this estimator, when tuned to enjoy sparsity and oracle properties,
can perform poorly in finite samples. Even if not tuned to sparsity, the SCAD estimator
performs worse than the least squares estimator in parts of the parameter space. It is
interesting to note that the simulation study in Fan and Li (2001) was conducted only
at some points that happened to avoid the parts of the parameter space examined
by Leeb and Pötscher (2008b). This phenomenon highlights the fact that simulations
may produce results to support either side of a controversy and thus are unreliable
to judge the goodness of an estimator. This is generally recognized in the statistical
community but often overlooked. (More details will be discussed in “The power of
simulations” in Sect. 5.) Consequently, Leeb and Pötscher (2008b) argued that the
oracle property is highly misleading and cannot be relied upon to justify an estimator.

It is also worth to note that a procedure with oracle property is consistent for
model selection. While consistency is an important and desirable property in limiting
sense for large samples, it is not sufficient to justify the superiority of a procedure for
finite (fixed) sample sizes. As indicated in Yang (2005, 2007), BIC type procedures
are consistent and AIC type procedures are inconsistent but optimal in minimax rate
of convergence. Yang (2005, 2007) also argued that the strength of AIC and BIC
could not be shared. More introduction on optimal model selection in minimax rate
of convergence can be found in the recent work of Wang et al. (2014).

In this paper, we attempt to address this controversy by revisiting the issue of
Hodges’ superefficiency and theoretically analyzing the performance of oracle esti-
mators in a class of generalized Hodges’ estimators without relying on numerical
simulations. As simulations are subject to large variations and may produce different
results in either side of a controversy, they are not capable of resolving the contro-
versy convincingly. The theoretical analysis in this paper can avoid such drawbacks
of the simulation approach and thus provide more convincing conclusions. In partic-
ular, because the mathematics employed in this paper are at a quite elementary level,
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this finding leads to some new discoveries on the merits of the oracle property and
exposes some overlooked crucial facts on model selection procedures. In addition,
some significant but often ignored facts on asymptotic properties are also emphasized
to warn the pitfall of justifying the merits of statistical procedures based on asymptotic
measures that the oracle property relies on.

Our arguments proceed as follows.

1. Generally, asymptotic bias and variance do not reflect their versions in finite sample
size. Thus, the asymptotic superefficiency and the oracle property do not neces-
sarily lead to good performance of the estimators in any fixed sample size.

2. We introduce a new type of Hodges’ estimators, referred to as oracle Hodges’
estimators, which can reduce the asymptotic variance of any given estimator over
certain multi-dimensional subsets of the parameter space and provide an easy way
to obtain oracle model selection procedures.

3. By analyzing the performance of oracle Hodges’ estimators in finite sample size,
we are able to theoretically demonstrate that such estimators perform poorly at
some (true) values of the parameters despite possessing the oracle property.

4. The performance of oracle Hodges’ estimators indicates that the oracle property
alone does not justify the use of oracle model selection procedures, and hence the
merits of the oracle property as advocated in the literature are questionable. In
particular, there has been no rigorous theory, in any case where the MLE/LSE are
available, to prove that oracle estimators are better than MLE/LSE under certain
commonly accepted criteria (such as smallermean squared error)with fixed sample
size.

5. Our results provide theoretical justification to support the view of Leeb and
Pötscher (2008b) regarding the oracle model selection approach and clarified that
the oracle property is not a simple return of classical Hodges’ superefficiency as
suggested by Leeb and Pötscher. Instead, the newly defined oracle Hodges’ esti-
mators, rather than their classical versions, have the same asymptotic behavior as
the estimators from oracle model selection procedures.

In Sect. 2 next, the new oracle Hodges’ estimators are defined and their asymptotic
behaviors (superefficiency) are discussed. Section 3 introduces model selection meth-
ods derived fromHodges’ estimators and discusses their connections to and differences
from penalized maximum likelihood or least squares estimators. The performance of
oracleHodges’ estimators is theoretically analyzed in Sect. 4 after a brief discussion on
the connection of asymptotic biases and variances to their finite sample size versions.
Some concluding remarks are discussed in Sect. 5. All proofs are put in Appendix.

2 Asymptotic efficiency and Hodges’ estimators

The concept of asymptotic efficiency was introduced by Sir R. A. Fisher with the
attempt to justify the goodness of MLEs and has great impacts on statistical inference
in large samples. For a d-dimensional parameter θ = (θ1, θ2, . . . , θd)′, let θ̂n =
(θ̂n1, θ̂n2, . . . , θ̂nd)′ be any sequence of its estimators such that rn(θ̂n − θ)

d→ Z for
some sequence of scalars rn → ∞ and a d-dimensional random vector Z with mean
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zero and variance-covariance matrix V −1 for some matrix V = (vi j )d×d . A sequence

of estimators {θ̂n} of θ such that
√

n(θ̂n − θ)
d→ N (0, �(θ)), whatever is the true

value of θ , is said to be asymptotically efficient (or asymptotically optimal in some
literature) if �(θ) = F−1(θ), where F(θ) is the Fisher’s information matrix of the
distribution. Namely, θ̂n is efficient if it is asymptotically unbiased (in the sense that
the limiting random variable Z has zero mean) and “optimal” (in a certain sense based
on the asymptotic variance) in the class of asymptotically unbiased estimators with
order n−1/2.

The general results state that, under certain regularity conditions, a sequence of roots
of likelihood equations is asymptotically efficient. There have been a huge number
of research efforts aimed at seeking asymptotically efficient estimators. The idea of
measuring efficiency by asymptotic variance, however, appears not as successful as
its counterpart in finite sample size, and the lower bounds defined by F−1(θ) are not
sufficiently low in the class of asymptotically unbiased estimators. The example in
Sect. 2.1 below, whose prototype was made widely known by Le Cam (1953) under
the name Hodges’ estimator, shows that, given any sequence of estimators θ̂n with

rn(θ̂n − θ)
d→ Z , one can construct another estimator sequence with asymptotic

variance no more than that of θ̂n at any value of θ , and strictly less at certain values
of θ . This phenomenon is referred to as (asymptotic) superefficiency. In spirit of this
idea, we introduce variants of Hodges’ estimators in Sect. 2.2, which possess the
oracle property (Definition 1) and can easily serve the purpose of finding oracle model
selection procedures.

Let ‖x‖ =
√∑d

i=1 x2i denote the Euclidean norm of x = (x1, x2, . . . , xd) ∈ R
d ,

d(x, A) = inf y∈A ‖x−y‖ the distance between a point x and a subset A andd(A, B) =
infx∈A,y∈B ‖x − y‖ the distance between two subsets ofRd under the Euclidean norm.

2.1 Classical Hodges’ example of superefficiency

Let θ̂n be any sequence of estimators such that rn(θ̂n − θ)
d→ Z for a sequence of

deterministic scalars rn → ∞, where the distribution of Z may depend on θ , whatever
is the true value of θ .

Definition 2 (Hodges’ estimator) Let {an} be a sequence of scalars and c any fixed
point in the parameter space �. The Hodges’ estimator of θ is defined by

θ̆n(c) = cI (‖θ̂n − c‖ ≤ an) + θ̂n I (‖θ̂n − c‖ > an). (1)

This estimator was initiated by Jr. Hodges with rn = √
n, c = 0 and an = n−1/4 for

one-dimensional θ (reported by Le Cam 1953; see also Lehmann and Casella 1998,
p. 420, Example 2.5) and has been revisited many times by, e.g., Leeb and Pötscher
(2005, 2008a, b) when they discussed the implications of consistent model selections.
While (1) may be slightly generalized to

θ̆n(c) = ((1 − α)c + αθ̂n)I (|θ̂n − c| ≤ an) + θ̂n I (|θ̂n − c| > an),
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where α ∈ [0, 1] (cf., e.g., van der Vaart 1998 for the case with rn = √
n and c = 0),

we here take α = 0 as this is sufficient for our purpose. The asymptotic distribution
of θ̆n(c) in Definition 2 is given in the following theorem.

Theorem 1 For any sequence {an} such that an = o(1) and rnan → ∞ as n → ∞,
we have

rn(θ̆n(c) − θ)
d→ Z I (θ �= c).

It is clear that, in terms of asymptotic variances, θ̆n(c) is no worse than θ̂n at any
θ and strictly better than θ̂n at θ = c because the asymptotic variance of θ̆n(c) is
zero at θ = c. This example revealed an interesting phenomenon that, in terms of the
asymptotic variance, any estimate can be improved at an arbitrary but fixed point in
the parameter space.

2.2 Oracle Hodges’ estimators

We next introduce a few closely linked variants of Hodges’ estimators, which differ
from the classical version in Definition 2, but we have kept Hodges’ name for the
new estimators because they retain the feature of superefficiency. We will refer to the
new type of Hodges’ estimators as oracle Hodges’ estimators because they possess
the oracle property in Definition 1, as will be shown via Theorems 2 to 5 below. The
definition of oracle Hodges’ estimators is presented in four versions: general version,
continuous/smoothing version, MLE version and LSE version, where the first one
is fundamental, the second is a refinement, and the other two are special cases with
origins θ̂n being MLE and LSE, respectively.

2.2.1 General version

For any subset b ⊂ {1, 2, . . . , d} and its complement b̄ = {1, 2, . . . , d}−b, rearrange
the components of θ and θ̂n as θ ′ = (θ ′

b, θ
′̄
b
) and θ̂ ′

n = (θ̂ ′
n,b, θ̂

′
n,b̄

), respectively, such

that rn(θ̂n − θ)
d→ Z , where the current Z = (Z ′

b, Z ′̄
b
)′ is also a rearrangement of the

original Z in the same way as θ . Clearly, the mean of Z is still a zero vector but the
covariance matrix changes to V −1 with

V =
(

Vbb Vbb̄
Vb̄b Vb̄b̄

)

=
(

(vi j )i, j∈b (vi j )i∈b, j∈b̄
(vi j )i∈b̄, j∈b (vi j )i, j∈b̄

)

.

It is also easy to see that, if b �= ∅, then the marginal vector θ̂n,b has an asymptotic

distribution given by rn(θ̂n,b − θb)
d→ Zb with mean zero and covariance matrix

�b = (Vbb − Vbb̄V −1
b̄b̄

Vb̄b)
−1. (2)

Note that the distribution of Z , and hence the variance matrix V −1, may be related to
parameters θ . The only requirement is that V −1 is a continuous function of θ . We use
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V̂ −1 to denote any of consistent estimators of V −1, e.g., obtained by substituting θ̂n

for θ , so that the symbols V̂bb, V̂bb̄ and so on are self-explained.
Let c = (c1, c2, . . . , cd)′ be a known d-vector. For every nonempty and proper

subset b of {1, 2, . . . , d} (i.e., ∅ �= b �= {1, 2, . . . , d}), denote

θ̌n,b = θ̂n,b + V̂ −1
bb V̂bb̄(θ̂n,b̄ − cb̄) and θ̌n(b) = (θ̌ ′

n,b, c′̄
b
)′ (3)

with the convention θ̌n,{1,2,...,d} = θ̌n({1, 2, . . . , d}) = θ̂n . Moreover, we redefine b(θ)

and b̄(θ) by

b(θ) = { j : j ∈ {1, 2, . . . , d}, θ j �= c j } and b̄(θ) = {1, 2, . . . , d} − b(θ). (4)

The following definition introduces a sequence θ̃n(c) of oracle Hodges’ estimators in
multi-dimensional case derived from θ̂n .

Definition 3 (Oracle Hodges’ estimators) Let (anj ) = (an1, . . . , and), n = 1, 2, . . .,
denote a sequence of d-vectors with positive components. For every n = 1, 2, . . .,
define two complementary random sets by

bn(c) = { j : |θ̂nj − c j | > anj } and b̄n(c) = { j : |θ̂nj − c j | ≤ anj } (5)

and the corresponding oracle Hodges’ estimator by

θ̃n(c) = θ̌n(bn(c)) =

⎧
⎪⎨

⎪⎩

θ̂n if bn(c) = {1, 2, . . . , d},
(θ̌ ′

n,bn(c), c′̄
bn(c)

)′ if bn(c) �= ∅, bn(c) �= {1, 2, . . . , d},
c if bn(c) = ∅,

(6)

where θ̌n(bn(c)) and θ̌n,bn(c) are obtained from the two equations in (3) by substituting
bn(c) for b, and bn(c) is defined in (5).

For later reference, denote

Žb =
{

V −1
bb (Vbb Vbb̄)Z , if b �= ∅,

0, if b = ∅.
(7)

The asymptotic properties of θ̃n(c) defined in (6) are provided in the next theorem.

Theorem 2 If the sequence of d-vectors {(anj )} satisfies

max
1≤ j≤d

anj → 0 and rn min
1≤ j≤d

anj → ∞ as n → ∞, (8)

then for any b ⊂ {1, 2, . . . , d}, θb̄ = cb̄ implies lim
n→∞Pr(θ̃n,b̄(c) = θb̄) → 1 and

rn(θ̃n(c) − θ)
d→

(
Žb(θ)

0

)

under Prθ , (9)
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whatever is the true value of θ , where Žb(θ) is defined as in (7) with b replaced by
b(θ) in (4).

2.2.2 Continuous/smoothing version

As a function of θ̂n , the estimator θ̃n(c) is not continuous at any point θ̂n =
(θ̂n1, θ̂n2, . . . , θ̂nd) such that |θ̂nj − c j | = anj for some j ∈ {1, 2, . . . , d}. Some
authors think of the continuity as an important property (see, e.g., Fan and Li 2001)
but others may disagree. If preferred, a continuous version of θ̃n(c) can be easily
achieved by the following procedure.

Let (a(1)
nj ) and (a(2)

nj ) be two sequences of d-vectors both satisfying conditions (8) on

(anj ) and a(1)
nj < a(2)

nj , j = 1, 2, . . . , d. A possible choice is a(1)
nj = r−1/2

n and a(2)
nj =

2r−1/2
n , j = 1, 2, . . . , d. Define two sequences of oracle Hodges’ estimators θ̃

(1)
n (c)

and θ̃
(2)
n (c) by (a(1)

nj ) and (a(2)
nj ), respectively, as in Definition 3. Let f1(x), . . . , fd(x)

be any d continuous and increasing functions on x ∈ R
+ such that f j (cnj ±a(1)

nj ) = cnj

and f j (cnj ± a(2)
nj ) = cnj ± a(2)

nj . Define

θ̃nj (c; f ) =

⎧
⎪⎨

⎪⎩

cnj if |θ̂nj − c j | ≤ a(1)
nj ,

f (θ̂nj ) if a(1)
nj ≤ |θnj − c j | ≤ a(2)

nj ,

θ̃
(2)
nj (c) otherwise.

(10)

Then θ̃nj (c; f ) is a continuous version of θ̃n(c) such that

|θ̃ (2)
nj (c) − cnj | ≤ |θ̃nj (c; f ) − cnj | < |θ̃ (1)

nj (c) − cnj |.
These inequalities ensure the following result.

Theorem 3 The estimators θ̃n(c; f ) defined in (10) have the same asymptotic prop-
erties of θ̃

(i)
n (c), i = 1, 2, as presented in Theorem 2.

2.2.3 MLE version

We next discuss the maximum likelihood estimation with the simplest i.i.d. case as an
example. It is not difficult to extend the results to general situations.

The log-likelihood function of θ from i.i.d. X1, . . . , Xn with a common density
f (x; θ) is

l(θ) = l(θ; X1, . . . , Xn) =
n∏

i=1

log f (Xi ; θ).

It is well known that under certain regularity conditions, there exists a sequence of

asymptotically efficient MLE θ̂n , i.e.,
√

n(θ̂ − θ)
d→ N (0,F−1(θ)), where

F(θ) = −Eθ

[
∂2

∂θ∂θ ′ log f (X1; θ)

]
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is the Fisher’s information matrix. For any b ⊂ {1, 2, . . . , d} and the corresponding
rearrangement of θ = (θb, θb̄), F(θ) can be rewritten as

F(θ) = −

⎛

⎜
⎜
⎜
⎝

Eθ

[
∂2 log f (X1; θ)

∂θb∂θ ′
b

]

Eθ

[
∂2 log f (X1; θ)

∂θb∂θ ′̄
b

]

Eθ

[
∂2 log f (X1; θ)

∂θb̄∂θ ′
b

]

Eθ

[
∂2 log f (X1; θ)

∂θb̄∂θ ′̄
b

]

⎞

⎟
⎟
⎟
⎠

=
(
Fbb′(θ) Fbb̄′(θ)

Fb̄b′(θ) Fb̄b̄′(θ)

)

, say.

For any constant vector c = (c1, . . . , cd), Theorem 2 yields the following immediate
results.

Theorem 4 If {θ̂n} is an efficient sequence of maximum likelihood estimators, then
the oracle Hodges’ estimators θ̃ (c) in Definition 3 have the following properties: For
any b ⊂ {1, 2, . . . , d}, θb̄ = cb̄ implies lim

n→∞Pr(θ̃n,b̄(c) = θb̄) = 1 and

√
n(θ̃(c) − θ)

d→ N

(

0,

(
F−1

b(θ)b′(θ)
(θ) 0

0 0

))

.

Clearly, Fbb′(θ) is the Fisher’s information matrix for parameter θb depending on
the unknown θb̄. The asymptotic variance of

√
n(θ̂n,b − θn,b) is

(F−1(θ))bb′ = (Fbb′(θ) − Fbb̄′(θ)F−1
b̄b̄′(θ)Fb̄b′(θ))−1 ≥ F−1

bb′(θ) (11)

with strict inequality if b �= {1, 2, . . . , d}.
Note that Fb(θ)b′(θ) is the Fisher’s information matrix of the marginal vector θb(θ)

knowing that θb̄(θ) = cb̄(θ). Taking b = b(θ), Theorem 4 shows the superefficiency of

θ̃n(c) over the MLE θ̂n at any θ in the parameter space such that b(θ) �= {1, 2, . . . , d}
(i.e., θ j = c j for some j ∈ {1, 2, . . . , d}). This result covers such parametric models
as linear regression with normally distributed errors and generalized linear regression.

2.2.4 LSE version

For a linear regression model Y = Xβ + ε with E[ε] = 0 and Var(ε) = σ 2 In ,
we can generate the oracle Hodges’ estimator β̃(c) from the least square estimate
β̂LS = (X′X)−1X′Y. Under certain regularity conditions (see, e.g., van de Vaart, 2000,

Example 2.28), β̂LS is asymptotically distributed as
√

n(β̂LS − β)
d→ N (0, σ 2�−1

X ),
where �X = lim

n→∞ n−1X′X. By Theorem 2 again, the following result is obvious.

Theorem 5 Given any fixed d-vector c and subset b ⊂ {1, 2, . . . , d}, βb̄ = cb̄ implies
that lim

n→∞Pr(β̃n,b̄(c) = βb̄) = 1 and
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√
n(β̃(c) − β)

d→ N

(

0,

(
σ 2�−1

b(β)b(β) 0
0 0

))

, where �b(β)b(β)

= lim
n→∞

1

n
X′

b(β)Xb(β). (12)

This theorem shows that
√

n(β̃b(β)(c)−βb(β)) has the same asymptotic distribution
as the oracle estimator β̂o

b(β) = (X′
b(β)Xb(β))

−1X′
b(β)(Y −Xb̄(β)cb̄(β)) if the true value

of β is (β ′
b(β), c′̄

b(β)
)′.

2.3 Two remarks

We conclude this section with the following two remarks.

Remark 1 By Theorems 1, the classical version θ̆n(c) has an asymptotic distribution

given by rn(θ̆n(c)− θ)
d→ Z I (θ �= c). That is, θ̆n(c) can only improve the asymptotic

variance of θ̂n at θ = c in the parameter space �, which is much more restrictive than
the improvement achieved by the limit in (9) for θ̃n(c) defined by (6). To see this, note
that the variance of Žb(θ) is

Ṽb(θ) = V −1
b(θ),b(θ)(Vb(θ),b(θ) Vb(θ),b̄(θ))V −1

(
Vb(θ),b(θ)

Vb(θ),b̄(θ)

)

V −1
b(θ),b(θ)

= V −1
b(θ),b(θ) ≤ �b(θ),

where �b(θ) is the asymptotic variance of rn(θ̂n,b(θ) − θb(θ)) by (2), and the equality
holds only when θ̂n,b(θ) and θ̂n,b̄(θ) are asymptotically independent. Therefore, θ̃n(c)

can improve the asymptotic variance of θ̂n at any θ with b̄(θ) �= ∅. Note also that
rn(θ̃n(c) − θ) → 0 in probability at θ = c. In terms of asymptotic variances, θ̆ (c)
improves θ̂n and θ̃n(c) further improves θ̆ (c). A further important feature of θ̃n(c) is
its ability to produce oracle model selection procedures due to its form of asymptotic
variance, as we will show in the next subsection. In contrast, neither θ̆n(c) nor θ̂n has
such a capacity. These together highlight the significant differences between the new
oracle Hodges’ estimator θ̃n(c) and the classical version θ̆ (c).

Remark 2 Note thatMLE and LSE and their versions of oracle Hodges’ estimators are
of root-n consistency under relevant regularity conditions. But this is not necessary for
Definition 3. The general version of θ̃n(c) and its continuous version do not require
those regularity conditions, and they are not necessarily of root-n consistency. For
example, letYi = (Yi1, . . . , Yid)′, i = 1, 2, . . . ,be independentwith identical uniform
distributions over

∏d
k=1[−θk, θk], θk > 0, so that the MLE of θ = (θ1, . . . , θd)

is θ̂n = (θ̂n1, . . . , θ̂nd) with θ̂nk = max(|Y1k |, . . . , |Ynk |), k = 1, 2, . . . , d. Then

n(θ̂n − θ)
d→ Z = (Z1, . . . , Zd) with mutually independent components Z1, . . . , Zd

such that
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1104 X. Wu, X. Zhou

Prθ (Zk ≤ xk) =
{

exk/θk if xk < 0
1 if xk ≥ 0

, k = 1, 2, . . . , d.

In this case, the general version θ̃n(c) in (6) and its continuous version θ̃n(c, f ) in (10)
are still valid even though the regularity conditions of the likelihood function are not
satisfied, but they are not of root-n consistency.

3 Model selection function and oracle property of θ̃n(c)

Definition 3 and Theorem 2 clearly indicate the following properties of θ̃n(c):

1. θ̃n(c) is a sparse estimate in the sense that some components of θ , say θ j , may be
estimated by component c j of c.

2. lim
n→∞Pr(θ̃n,b̄(θ)(c) = cb̄(θ)) = 1 for whatever true value of the parameter θ .

3. For any sequence of estimators θ̂n , it is possible to define a new sequence θ̃n(c)
such that its asymptotic covariance matrix (with the same convergence rate as θ̂n)
is
– equal to that of θ̂n if θ j �= c j for all j ∈ {1, 2, . . . , d}, i.e.,b(θ) = {1, 2, . . . , d},
– positive definite and strictly less than that of θ̂n if ∅ �= b(θ) �= {1, 2, . . . , d};
in this case θ̃n(c) is asymptotically more efficient than θ̂n because

Cov

(
Žb(θ)

0

)

=
(

V −1
b(θ)b′(θ)

0
0 0

)

≤ V −1,

– zero at θ = c, i.e., b = ∅.
Taking the center parameter c = 0, the estimator θ̃n(0) obtained from any θ̂n

provides a model selection procedure that removes any parameter θ j estimated by
c j = 0 from θ = (θ1, . . . , θd). This allows any model that omits some or all θ j to be
selected. In contrast, the classical Hodges’ estimator θ̆ (0) can only choose between
two extreme models: the full model (corresponding to θ̆ (0) �= 0) or the null model
(corresponding to θ̆ (0) = 0), provided, with no loss of generality, that every element
of the original θ̂n is nonzero.

The model selection methods derived from θ̆ (0), θ̃ (0), penalized maximum likeli-
hood estimation (PMLE) and penalized least square estimation (PLSE) are discussed
in more details below:

1. While both Hodges’ estimators θ̆ (0) and θ̃ (0) can be applied as long as a good
estimator θ̂n is available (rn consistent for some constant sequence rn → ∞),
PMLE can only be applied when likelihood functions are available and PLSE is
limited to regressionmodels, both under certain regularity conditions (see, e.g., Fan
and Li for a set of regularity conditions) to produce root-n consistent estimators.
This is demonstrated by the example discussed in Remark 2, where both θ̆ (0) and
θ̃ (0) can be applied, but neither PMLE nor PLSE because the regularity conditions
fail to hold.
The above comparison is limited to a fixed parameter space of dimension p < n.
The case of p > n, with p varying with n, is not considered in this paper. It is noted
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that PMLE/PLSE to a large extent aremotivated by the need to deal with p > n and
may have certain advantages in such a case. The performance of PMLE/PLSE, and
whether there are better estimators than PMLE/PLSE for p > n, may be interesting
subjects for further research, which is, however, beyond the intention and scope
of the present paper.

2. If θ̆n(0) is used to select model by removing the parameters estimated by zero,
then either all parameters are selected, or all excluded (cf. Remark 1), so that
the resulting model selection does not possess oracle property. This highlights
a major difference between the new type of Hodges’ estimators θ̃n(c) and the
classical version θ̆n(c).

3. Due to point (2) above, the model selection method based on θ̆ (0) is limited to two
candidate models only: the null model and the full model. In contrast, the other
methods allow all submodels of the full model to be candidates with certain θi set
to zero.

4. The classical Hodges’ estimators are a special type of preliminary test estimators.
It appears, however, that the finite sample behaviors of preliminary test estimators
have not been adequately addressed in the literature either, despite the impor-
tance of this problem in statistics. Some exceptions can be found in, e.g., the
book by Judge and Bock (1978) and the review paper of Giles and Giles (1993).
Although PMLE/PLSE and oracle Hodges’ estimators may look like a preliminary
test estimation, there are fundamental differences:
• Existing preliminary test procedures are essentially based on a single hypoth-
esis that is either accepted or rejected as a whole.

• The model selection procedures derived by PMLE/PLSE and oracle Hodges’
estimation identify every single parameter in the multi-dimensional vector of
parameters and judge if it is estimated by zero or some nonzero value. These are
similar to estimation after multiple tests for a family of hypotheses (multiple
tests are also known as multiple comparisons, see, e.g., Hsu 1996); it would
be appropriate to call it preliminary-multiple-test estimation. In particular, the
oracle Hodges’ estimators provide an instance of such an estimation.

5. Properties (1)–(3) above ensure θ̃ (0) model selection to possess the oracle prop-
erty, provided the original estimator θ̂n is root-n consistent and efficient—which
is the typical case where PMLE/PLSE can be employed to produce oracle model
selection procedures and θ̂n is taken to be the efficient MLE/LSE. See, e.g., Fan
and Li (2001) for a general discussion of the penalties producing oracle model
selection procedures. As a result, Properties (1)–(3) are more general than ora-
cle properties, and both θ̃ (0) and PMLE/PLSE methods are sparse and have the
same asymptotic behavior in the case of regular likelihood functions or regression
models.

6. Note that, in particular, when V is a diagonal matrix, the model selection driven
by θ̃n(0) is a hard threshold model selection mentioned in Fan and Li (2001). If
V is not diagonal, then by Definition 3, θ̃ j (0) = 0 for j ∈ b̄(0) and θ̃ j (0) is
obtained from θ̂nj for j /∈ b̄(0) with adjustments by all estimators θ̂n1, . . . , θ̂nd ,
rather than solely from θ̂nj . This also accounts for why the raw hard thresholding
model selection does not have the oracle property.
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7. Leeb and Pötscher (2005, 2008b) argued that SCAD and other sparse estimators
are a return of Hodges’ estimators by examining their finite sample performance in
the neighborhoods of θ = 0. For any sparse estimator θ̆ satisfying lim

n→∞Pr0(θ̆ =
0) = 1, where Pr0 is the probability computed at θ = 0, the maximum risk over
a neighborhood of θ = 0 tends to the maximum of the employed risk function as
n → ∞, and to infinity if the square loss is used. However, this section shows
that SCAD or other oracle estimators are of the same asymptotic property with the
new type of Hodges’ estimator θ̃n(0), rather than a simple return of the classical
form θ̆n(0) because θ̆n(0) does not have the oracle property.

8. PMLE maximizes the penalized likelihood functions. It is, however, generally
unknown whether a PMLE can be expressed as a function of MLE θ̂ML. In fact,
PMLE is solved by direct maximization using numerical algorithms. In linear
regression Y = Xθ + ε, because PLSE minimizes the penalized squares

(Y − Xθ)′(Y − Xθ) +
d∑

i=1

fi (θi , λn) = Y′(I − P)Y

+(θ − θ̂LS)
′X′X(θ − θ̂LS) +

d∑

i=1

fi (θi , λn),

where P is the projection matrix onto the column space of X, it is clear that
PLSE is a function of the LSE θ̂LS. Its analytical form, however, is also generally
unavailable, and numerical methods are again needed to solve it. In contrast, if
one takes θ̂n to be the MLE θ̂ML or LSE θ̂LS in these two cases, then both θ̆ (c)
and θ̃ (c) can be expressed explicitly by θ̂ML or θ̂LS as in Definitions 2 and 3. Due
to these explicit forms of θ̆ (c) and θ̃ (c), we can theoretically derive lower bounds
for the performance of model selectors driven by θ̆ (c) or θ̃ (c) in finite sample size
in the next section.

4 Performance of Hodges’ estimators

Hodges’ example gives a counterexample to the conjecture of R. A. Fisher that the
MLE is asymptotically efficient with the smallest asymptotic variance (at rate

√
n). To

overcome the difficulty thus caused, Le Cam (1953) and other researchers proved that
the improvement in MLE can only occur in a subset of the parameter space with zero
Lebesgue measure. This argument, however, did not provide any reason to rule out the
use of Hodges’ estimators. An obvious question remains: if a Hodges’ estimator can
outperform the MLE at even one point without paying any price, why not use it as a
preferred one?

We now attempt to answer this question with the following two arguments:

1. Generally, the asymptotic bias and variance are not necessarily connected to their
finite sample size versions; hence, a small asymptotic variance does not imply a
small variance of an estimator even if the sample size is very large. To link the
asymptotics to the finite sample size, a further condition of uniform integrability
is required.
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2. Even if the required uniform integrability is attached, the performance of Hodges’
estimators θ̃n(c) is still poor at the vicinity of θ = c due to a lack of uniformity in
convergence over θ ∈ �.

For post-model-selection estimation in regression analysis, the lack of uniformity in
convergence over parameters has been discussed by Yang (2005, 2007) and Leeb and
Leeb and Pötscher (2008a, b), among others. In Sect. 4.1 below, we discuss this issue
further with a more direct and elementary approach, which is made possible by the
particular form of the oracle Hodges’ estimators.

4.1 Uniform integrability and asymptotics

First we recall some misconception regarding asymptotic mean squared error (MSE)

and asymptotic efficiency of an estimator. Given a normalized sequence rn(θ̂n −θ)
d→

Z , the asymptotic mean and variance (hence MSE) are only the mean and variance of
Z , but not the limit of rnE[θ̂n − θ ] and r2nVar(θ̂n − θ) in general.

It is an easy exercise to construct examples inwhich a sequence of unbiased (biased)
estimates might be asymptotically biased (unbiased), and even in the class of unbi-
ased estimators, a sequence of estimates with smaller variances for every sample size n
might have larger asymptotic variance, and vice versa. Consequently, the concepts of
asymptotically unbiased estimate and asymptotic variance could be highly misleading
when they are considered as analogies to unbiased estimate and variance in finite sam-
ples. Unfortunately, this lesson appears to have been overlooked by many statisticians
for a long time, especially when one proves the oracle property of an estimator.

Let θ̂n be a sequence of estimates such that rn(θ̂n − θ)
d→ Z , where rn → ∞ as

n → ∞ and Z is a random variable with mean zero and finite variance σ 2. In this
context, for Zn = θ̂n − θ and Yn = rn(θ̂n − θ), we have the following two facts by
Theorem 2.20 of van der Vaart (1998):

(i) E[Zn] → 0 (E[Yn] → 0) if and only if {Zn : n ≥ 1} ({Yn : n ≥ 1}) is uniformly
integrable.

(ii) E[Z2
n] → 0 (E[Y 2

n ] → σ 2) if and only if {Z2
n : n ≥ 1} ({Y 2

n : n ≥ 1}) is uniformly
integrable.

Obviously, conditions like these have been completely neglected in the literature
seeking estimators possessing the oracle property.

4.2 Performance of Hodges’ estimators

To ensure the finite sample size quantities to approach their asymptotic versions as
the sample size increases, additional conditions are required. In the remainder of this
section, we assume that the required uniform integrability described above is satisfied,
so that the bias and variance in finite sample size approach their asymptotic versions
when the sample size is large. Even in such a case, however, both numerical and
theoretical analyses below show that the overall performance of Hodges’ estimators
in finite sample does not match its limit as analyzed in this subsection below.
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Fig. 1 MSE (scaled by n) of Hodges’ estimator

Due to the difficulty to obtain the exact MSE of Hodges’ estimator in closed form,
earlier arguments against the use of Hodges’ estimators were largely based on numer-
ical results. For example, a result for Hodges’ estimate of the mean θ in the normal
distribution N (θ, 1) is well known in the literature, see, e.g., van der Vaart (1998)
and Lehmann and Casella (1998), which is recalled here. Let θ̂n = X̄ ∼ N (θ, 1/n).
Taking c = 0 and an = n−1/4 yields the original version of Hodges’ estimator
θ̃n(0) = X̄ I (|X̄ | > n−1/4). Note that the sequences

√
n(θ̂n − θ),

√
n(θ̃n(0) − θ),

n(θ̂n − θ)2 and n(θ̃n(0) − θ)2 are all uniformly integrable so that the asymptotic
means and variances are equal to the respective limits of the means and variances in
finite sample size.While theMSE (scaled by n) of X̄ is constant 1 for all θ ’s, that of the
Hodges’ estimator θ̃n(0) can only be numerically computed. Figure 1 shows the curves
of the MSE of θ̃n(0) in θ for sample sizes n = 5, 50 and 500, which behave poorly
in the vicinity of zero, particularly at large sample size (n = 500). This illustrates a
much worse performance of the Hodges’ estimator θ̃n(0) than the MLE θ̂n near the
center c = 0.

Althoughfinding the exact closed formof theMSE (or other performancemeasures)
of a Hodges’ estimator is difficult, even in the simple case discussed just now, it turns
out that some useful lower bounds of regular losses of Hodges’ estimators θ̃n(c) can
be obtained to see the rationale behind their poor performance in the vicinity of the
center point c as well as of the subsets of the parameter space with θ j = c j for some
j ∈ {1, 2, . . . , d}. This seems to have been overlooked by the community.
The results presented below are from theoretical analyses on a general ground

and distribution-free—they are valid regardless of the underlying distributions of the
population.

4.3 Performance of classical Hodges’ estimators

We first present the results for classical Hodges’ estimators, which are in fact almost
sure results.
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Theorem 6 Under the conditions of Theorem 1, given any k > 0, there exists a
(deterministic) N > 0 such that for all n > N,

rn‖θ̆n(c) − θ‖ ≥ k for all θ satisfying k ≤ rn‖θ − c‖ ≤ anrn − k. (13)

Furthermore, for θn such that ‖θn − c‖ = an/2,

rn‖θ̆n(c) − θn‖ ≥ 1

2
rnan → ∞ as n → ∞. (14)

Proof Since an → 0 and anrn → ∞ as n → ∞ under the conditions of Theorem 1,
the set {θ : k ≤ rn‖θ − c‖ ≤ anrn − k} is a nonempty ring when n is sufficiently large
such that anrn > 2k. For any θ̆n(c) defined in (1), for any values the sample may take,
as long as θ satisfies k ≤ rn‖θ − c‖ ≤ anrn − k, i.e., k/rn ≤ ‖θ − c‖ ≤ an − k/rn , it
is clear that

‖θ̆n(c) − θ‖ =‖c − θ‖I (‖θ̂n − c‖ ≤ an) + ‖θ̂n − θ‖I (‖θ̂n − c‖ > an)

≥‖c − θ‖I (‖θ̂n − c‖ ≤ an) + (‖θ̂n − c‖ − ‖c − θ‖)I (‖θ̂n − c‖ > an)

≥k/rn I (‖θ̂n − c‖ ≤ an) + (an − (an − k/rn)I (‖θ̂n − c‖ > an)

=k/rn .

This proves the first assertion in (13). The second assertion (14) is obvious. ��
The results of Theorem 6 have the following easy implications:

1. Formula (14) proves that even if the MSE of θ̆n(c) (scaled by rn) converges to that
of the asymptotic distribution, the convergence is not generally uniform because

r2n max
θ∈�

Eθ

[‖θ̆n(c) − θ‖2] ≥ r2nEθn

[‖θ̆n(c) − θn‖2] ≥ 1

4
r2n a2

n → ∞.

2. The same arguments also hold for more general loss functions l(θ̂n; θ) = l(‖θ̂n −
θ‖) with some nondecreasing function l(u) in u > 0 satisfying l(0) = 0, so that
the risk function scaled by 1/ l(1/rn) is Rn(θ̂n; θ) = Eθ [l(‖θ̂n − θ‖)/ l(1/rn)].
Let p = min{i ≥ 1 : l(i)(0+) �= 0}. Then under the conditions of Theorem 1, for
any k > 0, there exists N > 0 such that for all n > N ,

l(θ̆n(c); θ)

l(1/rn)
≥ l(k/rn)

l(1/rn)
→ k p as n → ∞

for all θ satisfying k ≤ rn‖θ − c‖ ≤ anrn − k. Furthermore, for all θn such that
‖θn − c‖ = an/2,

l(θ̆n(c); θn)

l(1/rn)
≥ l(an/2)

l(1/rn)
→ ∞ as n → ∞.

The last formula also implies
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max
θ∈�

Rn(θ̆n(c); θ) ≥ Rn(θ̆n(c); θn) ≥ l(an/2)

l(1/rn)
→ ∞ as n → ∞.

3. Another way is to analyze a loss function L(θ̂n; θ) = l(rn‖θ̂n − θ‖) with a nonde-
creasing function l(u) in u > 0 (cf. Leeb and Pötscher 2008b), which corresponds
to a sequence of loss functions ln(u) = l(rnu) (rn = √

n in their paper), so that
Rn(θ̂n; θ) = Eθ [L(θ̂n; θ)].
Then similarly under the conditions of Theorem 1, given any k > 0, there
exists N > 0 such that L(θ̆n(c); θ) ≥ l(k) for all n > N and θ satisfying
k ≤ rn‖θ − c‖ ≤ anrn − k. Moreover, for all θn such that ‖θn − c‖ = an/2,
L(θ̆n(c); θn) ≥ l(rnan/2) → l(∞) as n → ∞. In particular, the last property
indicates that

max
θ∈�

Rn(θ̆n(c); θ) ≥ Eθn [L(θ̆n(c); θn)] → l(∞). (15)

This shows that even if lim
n→∞ Rn(θ̆n(c); θ) = R(Z; θ) = Eθ [l(Z; θ)] for every θ

pointwise, the maximum risk over θ may increasingly tend to l(∞). An example is
l(u) = I(z,∞)(u) for any fixed continuity point z ∈ R

+ of the distribution of Z . The
risk function of an estimator θ̂n with this l(u) is Rn(θ̂n; θ) = Prθ (rn‖θ̂n −θ‖ > z).
Thus,

lim
n→∞ Rn(θ̆n(c); θ) = Prθ (‖Z‖ > z)I (θ �= c).

In contrast, Prθ (rn‖θ̆n(c) − θ‖ > z) = 1 for all θ with k ≤ rn‖θ − c‖ ≤ anrn − k
and z ∈ [0, k], regardless how large is n. Moreover, for any z > 0, if θn = ±an/2
and n is sufficiently large such that anrn > x , then Prθn (rn‖θ̆n(c)− θn‖ > z) = 1.
Consequently,

max
θ∈�

Rn(θ̂n; θ) = max
θ∈�

Prθ (rn‖θ̆n(c) − θ‖ > z) = 1.

4.4 Performance of the oracle Hodges’ estimators

Nowwe turn to analyze the performance of the oracleHodges’ estimators θ̃n(c) defined
in Sect. 2.2. To simplify the exposition, we assume without loss of generality that the
parameter space is � = R

d and define the following subsets of �:

�n1 = {θ : min
1≤ j≤d

|θnj − c j | > anj }, �̄k
n1 = {θ : d(θ,�n1) ≤ k/rn},

�n2 = {θ : min
1≤ j≤d

|θnj − c j | = 0}, �̄k
n2 = {θ : d(θ,�n2) ≤ k/rn},

�̄k
n3 = � − �̄k

n1(c) ∪ �̄k
n2(c),

which are all dependent on the center point c. Under the uniform integrability of θ̂n ,
Theorem 2 indicates that
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lim
n→∞ r2nE

[‖θ̃n(c) − θ‖2] ≤ lim
n→∞ r2nE

[‖θ̂n − θ‖2]

with the strict inequality at certain values of θ . For fixed sample size n, however, we
have the following contrary results, which are extensions of Theorem 6.

Theorem 7 Under the conditions of Theorem 2, for any k > 0, there exists N > 0
such that

rn‖θ̃n(c) − θ‖ ≥ k for all θ ∈ �̄k
n3 ∀n > N , (16)

and for any θ(n) ∈ �̄k
n3 satisfying θ

(n)
j = c j ± anj/2,

rn‖θ̃n(c) − θ(n)‖ ≥ 1

2
rnanj → ∞ as n → ∞. (17)

Proof Again, we assume that N is sufficiently large such that rn max1≤ j≤d anj > k
for all n > N . It can be easily shown that d(�n1,�n2) = min1≤ j≤d anj . Because for
any θ1 ∈ �̄k

n1 and θ2 ∈ �̄k
n2,

d(�n1,�n2) ≤ d(�n1, θ1) + d(θ1, θ2) + d(θ2,�n2) ≤ 2k

rn
+ d(θ1, θ2),

the condition lim
n→∞ rn min1≤ j≤d anj = ∞ implies

d(�̄k
n1, �̄

k
n2) = min

θ1∈�̄k
n1,θ2�̄

k
n2

d(θ1, θ2) ≥ min
1≤ j≤d

anj − 2k

rn
> 0

for sufficiently large n. Consequently, �̄k
n1 ∩ �̄k

n2 = ∅ and �̄k
n3 �= ∅.

By Definition 3 of θ̃n(c), θ̂n ∈ �n1 implies θ̃n(c) = θ̂n ∈ �n1 and θ̂n ∈ � − �n1
implies b̄n(c) �= ∅, so that θ̃n(c) ∈ �n2 because θ̃n,b̄n(c)(c)−cb̄n(c) = 0. That is, θ̃n(c)

takes values only in �n1 ∪ �n2. For any θ ∈ �̄k
n3, it is clear that d(θ,�k

n1 ∪ �k
n2) ≥

k/rn . As a result, θ ∈ �̄k
n3 implies

‖θ̃n(c) − θ‖ ≥ d(θ,�k
n1 ∪ �k

n2) ≥ k

rn
.

Thus, the assertion in (16) follows. The second assertion in (17) is easy to check. ��
The following extensions of Theorem 16 are minor modifications of the points

presented earlier for classical Hodges’ estimators.

1. Formulas (16) and (17) prove that, under the conditions in Theorem 2, for any
k > 0, there exists N > 0 such that

r2nEθ

[‖θ̃n(c) − θ‖2] ≥ k2 for any θ ∈ �̄k
n3 if n > N

and

max
θ∈�

r2nEθ

[‖θ̃n(c) − θ‖2] ≥ 1

4
r2n a2

nj → ∞ as n → ∞.
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2. If we use the loss function L(θ̂n; θ) = l(‖θ̂n − θ‖) with a nondecreasing function
l(u) in u > 0, so that the risk function scaled by 1/ l(1/rn) is Rn(θ̂n; θ) =
Eθ [l(‖θ̂n − θ‖)/ l(1/rn)], then for sufficiently large n,

l(θ̃n(c); θ)

l(1/rn)
≥ l(k/rn)

l(1/rn)
→ k p as n → ∞ for all θ ∈ �̄k

n3;

and for θ(n) with θ
(n)
j = c ± anj/2 for some j ,

l(θ̃n(c); θ(n))

l(1/rn)
≥ l(anj/2)

l(1/rn)
→ ∞ as n → ∞.

The last formula also implies that

max
θ∈�

Rn(θ̃n(c); θ) ≥ Rn(θ̃n(c); θ(n)) ≥ l(anj/2)

l(1/rn)
→ ∞ as n → ∞.

3. If we analyze a loss function L(θ̂n; θ) = l(rn‖θ̂n − θ‖) with a nondecreasing
function l(u) in u > 0, as in Leeb and Pötscher (2008b), so that Rn(θ̂n; θ) =
Eθ [L(θ̂n; θ)], then under the conditions of Theorem 2, for any given k > 0, there
exists N > 0 such that for all n > N , L(θ̃n(c); θ) ≥ l(k) for all θ ∈ �̄k

n3; and

L(θ̃n(c); θ(n)) ≥ l(rnanj/2) → l(∞) as n → ∞ for θ(n) with θ
(n)
j = c ± anj/2

for some j . The last property implies

max
θ∈�

Rn(θ̃n(c); θ) ≥ Eθn [L(θ̃n(c); θn)] → l(∞). (18)

Because of this fact, even if lim
n→∞ Rn(θ̃n(c); θ) = R(Z; θ) = Eθ [l(Z; θ)] for every

θ pointwise, the maximum risk over θ may increasingly tend to l(∞).

Remark 3 We conclude this section by the following two points that highlight the
difference between our work and those of others, such as Leeb and Pötscher (2008b).

1. Leeb and Pötscher (2008b) proved a result similar to Eq. (18), which is more
general with an arbitrary sparse estimator (say, θ̃n), but restricted to the regular
case of rn = √

n, c = 0 and normally distributed Z . It also requires the condition
that Pn,k/

√
n is contiguous with respect to Pn,0, where Pn,θ is the distribution of θ̃n ,

or a stronger condition that Pn,θ is locally asymptotically normal. In comparison,
we obtained stronger results expressed in (16) and (17) for classical and oracle
Hodges’ estimators, which hold almost surely without such conditions as

√
n-

consistency and contiguity.
2. Leeb and Pötscher revealed the erratic behavior of a sparse estimator only in the

vicinity of 0, whereas we here showed that the erratic behavior of the oracle model
selection procedure derived by a Hodges’ estimator occurs not only in the vicinity
of the point c but also in the vicinity of every subset of � with some component
θ j = c j .
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5 Further discussions

To sum up, we have in this paper demonstrated that:

1. the oracle model selection procedures are not a simple return of the classical
Hodges’ estimators but more like oracle Hodges’ estimators in asymptotic sense;

2. properly constructed oracle Hodges’ estimators can easily generate oracle model
selection procedures that satisfy the requirements of continuity or smoothing;

3. under the MSE criterion, the oracle Hodges’ estimator θ̃n(c) does not outperform
its origin θ̂n in finite sample size, despite having a smaller asymptotic variance
than θ̂n ; and

4. Hodges’ estimators possessing the oracle property can perform much worse than
their origins under the minimax criterion.

Similar results to (3) and (4) can be found in Yang (2005, 2007) and the works
by Leeb and his collaborators as mentioned above. The difference here is that the
particular form of the oracle Hodges’ estimators makes the proof quite obvious.

Points (3) and (4) above also provide an answer to the question why Hodges’
estimators are not preferable to use even if they can improve the asymptotic efficiency at
no cost. The key reasons behind this answer, as discussed earlier, are the disconnection
between the performances of finite sample statistics and their asymptotics in certain
situations (principally due to the lack of uniformity in integrability of the statistics),
and the universal lack of uniformity in the convergence in the situations where even
the convergence is guaranteed.

In addition, a few points worth for further discussions are listed below.

5.1 Uniformity in integrability and the convergence

By ignoring the uniformity in integrability and convergence, the widely adopted con-
cept of asymptotically efficient estimation tends to place too much weight on the
asymptotic distribution, leading to inappropriate use of asymptotic variance tomeasure
the goodness of estimators. This creates the concept of superefficiency and supports
Hodges estimators as superior, despite their poor performance in finite sample size.
Because Hodges’ estimators can be easily applied to generate model selection proce-
dures possessing the oracle property, as demonstrated in point (2) above, our results
also suggest that the oracle property itself is not a convincing reason to recommend the
application of such oracle model selection procedures in theoretical studies or real-life
applications.

This phenomenon was in fact recognized by statisticians decades ago. See, for
example, Hájek (1971, p. 153)’s warning quoted below (which can also be found in
Hušková et al. 1998, pp. 613–614):

“Having obtained an asymptotic result we are not usually able to tell how far it
applies to particular cases with finite n. . . . . Consequently, in applications we
are guided by two epistemologically very different knowledge: (i) we have limit
theorems giving some hope, but not assurance, of practical sample sizes; (ii) we
work with some numerical experience, which we extend to cases that seem to
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us to be similar. . . . . Especially misinformative can be those limit results that
are not uniform. Then the limit may exhibit some features that are not even
approximately true for any finite n. . . . . Superefficient estimates produced by
L.J. Hodges (see Le Cam 1953) have their amazing properties only in the limit.
For any finite n they behave quite poorly for some parameter values. These
values, however, depend on n and disappear in the limit.”

Therefore, in the cases relying on asymptotic distribution of a statistic, uniform inte-
grability and convergence of the statistic are important and desired properties to ensure
the proximity between the finite sample version and its asymptotics, especially when
the statistic does not have an analytical form and can only be obtained by numerical
computations.

5.2 The power of simulations

Undoubtedly, with the development of contemporary computing facilities, Monte
Carlo simulations provide more and more accessible and powerful tools in explor-
ing properties of statistical inferences. This powerful tool, however, appears being
applied excessively to justify certain theoretical properties that are difficult to prove
mathematically. It is even a common practice that, instead of providing theoretical
results on finite sample behaviors, many statisticians justify their statistical methods
by finding and theoretically proving asymptotic properties of their statistical methods
and then supporting their finite sample properties by Monte Carlo simulations.

Therefore, another point worth to mention is the need to avoid the pitfall of relying
too much on simulations to judge the merits of a property or a method, particularly in
the era of fast advancing computer technology and capacity, as demonstrated by Leeb
and Pötscher (2008b) on the SCAD estimator in Example 4.1 of Fan and Li (2001).
This pitfall is generally recognized in the statistical community, but appears often
overlooked or ignored in a large volume of publications in the pursuit of finding new
and exciting ideas and methods. Logically, simulation results can be convincing to
counter a claim or conjecture made on a general ground, but not to support such
a claim or conjecture, because it is impossible to exhaust all possible scenarios by
simulations. An assertion on property or goodness of a statistical procedure should be
theoretically examined whether it is to be claimed on a general ground, rather than
relies on limited numerical simulations only.

5.3 Generality of the center point

The generality of the center point c = (c1, . . . , cd) implies that, mathematically,
one can make model selection not only on pre-specified θi but also on more general
θi − ci , 1, . . . , d. Take the oracle Hodges’ estimators as an example, for any given
constant c = (c1, . . . , cd), one can make a model selection mathematically with the
collectionof candidatemodels definedby setting θi = 0 for oneormore i ∈ {1, . . . , d}.
Similarly for PMLE/PLSE, the common practice is to use penalty fi (|θi |, λn) to select
the “best” with certain θi = 0 from the candidates. By the same method and logic,
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for any fixed c = (c1, . . . , cd), it is equally feasible to use penalty fi (|θi − ci |, λn)

to select the “best” model with θi = ci for certain i . This raises an obvious question
in practice: why does everyone only take c = 0 for model selection, not any other
c? As an example, if m analysts under a common supervisor independently analyze
a same data set with parameter θ of interest using oracle Hodges’ estimation, PMLE
or PLSE with different points c(1), . . . , c(m), including zero or not, then they obtain
m different estimates θ̂ ( j), j = 1, . . . , m. Clearly, all these estimators are of similar
statistical properties and rationales, but there is no statistically sensible guidance for
the supervisor to decide which one should be used. This question appears difficult
to answer both logically and philosophically, and it raises a sobering question on the
validity of the commonly adopted model selection procedures.

5.4 Model selection for predictions

In real applications of regression analysis, as well as in popular textbooks, variable
selection is also discussed with a purpose of prediction, or equivalently, estimation of
the regression function at certain points. In this paper, our efforts are focussed on the
performance of the parameter estimators in model selection. This does not, however,
point to a lack of generality of our results, due to the following two reasons:

1. In the case of linear regressionwith predictors represented as a p-vector x (whether
the intercept term 1 is included or not is irrelevant), taking θ as the vector of
regression coefficients. Suppose that the regression function is to be estimated
at d point x̃1, . . . , x̃d under the performance measure A = E‖X̃θ̂ − X̃θ‖2 =∑d

i=1 E(x̃′
i θ̂ − x̃′

iθ)2, where X̃ = (x̃1, . . . , x̃d)′ collects the data of the predictors
at the d prediction points. Then the fundamental properties of positive definite
matrices state that the order of different estimates under measure A can be derived
from the order of the covariance matrices of the corresponding estimates, given
the presence of the latter, in the sense that for two matrices C and D, C > D if
and only if x′Cx > x′ Dx for any dimension-compatible vector x. As a result, the
performance of the parameter estimators in our discussions is equivalent to that of
the regression function estimator.

2. In case the regression function is possibly nonlinear in the parameters θ , including
generalized linear models and general parametric nonlinear regression models, the
similar arguments work asymptotically with the help of linear approximation of
statistics (i.e., the commonly known delta method).

5.5 Open questions

Back to the controversy on the merits of the oracle property and the efforts to find
oracle model selection procedures, the poor performance of Hodges’ estimators and
their oracle property appear to support the criticisms of the oracle estimators and cast
serious doubts on the usefulness of oracle procedures. This further casts doubts in the
validity and usefulness of prevailing model selection methods. We believe that the
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following open and challenging questions need to be convincingly answered before a
consensus can be reached one way or the other:

1. Without counting on the oracle property, are there any theoretical properties that
ensure good performance of the popular model selection procedures, such as
LASSO and SCAD? For example, is there any reasonable loss function beyond the
regular ones discussed in this paper such that some of the popular model selection
procedures can perform well?

2. Our arguments are limited to the case where the MLE/LSE exists so that n > d
is implicitly assumed. The cases of d > n, d � n, or more generally, the design
matrices of reduced-ranks, have so far been discussed under the assumption of
parsimony with few exception, which are significantly different from the classical
model. We have not yet come up with a clear idea on how the oracle model
selection performs under this significantly different setting in finite sample size.
Further efforts are needed to examine various important topics regarding d > n
or d � n, including model selection, which will be in the agenda of our future
research works.

These open questions call for further research efforts to investigate. Their answers will
help resolve the controversy on the oracle property and thus point to the right direction
of research on model selection.

A Appendix: Proofs of the theorems

A.1 Proof of Theorem 1

Proof Note first that θ̂n
p→ θ . For any θ �= c, the condition an = o(1) implies that,

for any ε > 0,

Prθ (rn‖θ̆n(c) − θ̂n‖ > ε) ≤ Prθ (‖θ̂n − c‖ ≤ an) ≤ Prθ (‖θ − c‖ − ‖θ̂n − θ‖ ≤ an)

= Prθ (‖θ̂n − θ‖ ≥ ‖θ − c‖ − an) → 0 as n → ∞.

Thus, rn(θ̆n(c) − θ) = rn(θ̆n(c) − θ̂n) + rn(θ̂n − θ)
d→ Z . For θ = c, thanks to

rnan → ∞,

Prc(rn‖θ̆n(c) − c‖ > ε) ≤ Prc(θ̆n �= c) = Prθ0(rn‖θ̂n − c‖ > rnan) → 0. (19)

This shows rn(θ̆n(c) − c)
p→ 0. ��

A.2 Proof of Theorem 2

Proof Because we are concerned with the asymptotic distribution of θ̌n,b in this sec-
tion, without loss of generality we can treat the easy case where V is known and θ̌n,b

is defined by
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θ̌n,b = θ̂n,b + V −1
bb Vbb̄(θ̂n,b̄ − cb̄) and θ̌n(b) = (θ̌ ′

n,b, c′̄
b
)′ (20)

with the convention θ̌n,{1,2,...,d} = θ̌n({1, 2, . . . , d}) = θ̂n .
The first assertion is obvious, so we here only prove (9). With the definition of

b(θ) in (4), it is clear that θb(θ) is the sub-vector (θ j : θ j �= c j ) of θ and θb̄(θ) =
(c j : j ∈ b̄(θ)) = cb̄(θ). Note that, by (20), θ̌n,b(θ) = θ̂n,b(θ) and hence θ̌n(b(θ)) =
(θ̌n,b(θ), cb̄(θ)) are only pseudo-estimators that depend on the unknown parameters θ .
However,

rn(θ̌n,b(θ) − θb(θ)) = V −1
b(θ),b(θ)(Vb(θ)b(θ) Vb(θ),b̄(θ))rn

(
θ̂n,b(θ) − θb(θ)

θ̂n,b̄(θ) − θb̄(θ)

)

d→ V −1
b(θ),b(θ)(Vb(θ)b(θ) Vb(θ),b̄(θ))Z = Žb(θ), (21)

where the components of Z have been rearranged according to the order in θ and Žb(θ)

is derived from (7) by replacing b with b(θ).
For any θ , by comparing (6) and (20),

Prθ
(

rn‖θ̃n(c) − θ̌n(b(θ))‖ > ε
)

= Prθ
(

rn‖θ̃n(c) − (θ̌ ′
b(θ), c′̄

b(θ)
)′‖ > ε

)

≤ Prθ
(
θ̃n(c) �= (θ̌ ′

b(θ), c′̄
b(θ)

)′
)

≤ Prθ (bn(c) �= b(θ)).

Since {bn(c) �= b(θ)} = ⋃
j∈b(θ){|θ̂nj − c j | ≤ anj } ⋃

j∈b̄(θ){|θ̂nj − c j | > anj },

Prθ
(

rn‖θ̃n(c) − θ̌n(b(θ))‖ > ε
)

≤ Prθ

⎛

⎝
⋃

j∈b(θ)

{|θ̂nj − c j | ≤ anj }
⋃

j∈b̄(θ)

{|θ̂nj − c j | > anj }
⎞

⎠

≤
∑

j∈b(θ)

Prθ {|θ̂nj − c j | ≤ anj } +
∑

j∈b̄(θ)

Prθ {|θ̂nj − c j | > anj }

≤
∑

j∈b(θ)

Prθ {|θ̂nj − θ j | ≥ |θ j − c j | − anj } +
∑

j∈b̄(θ)

Prθ {rn|θ̂nj − c j | > rnanj }

→ 0 as n → ∞

under the conditions on an . Thus, rn(θ̃n(c) − θ̌n(b(θ)) = op(1). Combining this
with (21), we get

rn(θ̃n(c) − θ) = rn(θ̃n(c) − θ̌n(b(θ))) + rn(θ̌n(b(θ)) − θ)
d→

(
Žb(θ)

0

)

(22)
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under Prθ . Next examine the case b(θ) = ∅. Analogous to (19), under Prc and the
condition rn min

1≤ j≤d
anj → ∞,

Prc(rn‖θ̃n(c) − c‖ > ε) ≤ Prc(θ̃n �= c)

≤
d∑

j=1

Prc(rn|θ̂nj − c| > rnanj ) → 0 as n → ∞. (23)

Hence rn|θ̃n(c) − c| d→ 0. The proof is then complete. ��
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