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Abstract This study considers the problem of testing whether the tail index of the
GARCH innovations undergoes a change according to the values of conditional
volatilities. Special attention is paid to power-transformed and threshold general-
ized autoregressive conditional heteroscedasticity processes that can accommodate
the GARCH family. We show that the proposed test asymptotically follows a func-
tional of a standard Brownian motion under some regularity conditions. To evaluate
our method, we carry out a simulation study and real data analysis using the return
series of the Google stock price and DowJones index.

Keywords Constancy test for tail index · Heavy-tailed distribution · Conditional
volatility · GARCH model · PTTGARCH model

1 Introduction

Financial asset returns are characterized by volatility clustering, heavy-tailedness
violating normal assumption and mild skewness. In order to accommodate such
properties, Bollerslev (1986) introduced the generalized autoregressive conditional
heteroscedasticity (GARCH) models, and thereafter, several authors have proposed
various GARCH-type models. In most cases, asymmetry and nonlinearity are the
main objectives that give rise to various GARCH models. Among such models, we
refer to the exponential GARCH (Nelson 1991), nonlinear GARCH (Engle and Ng
1993), GJR-GARCH (Glosten et al. 1993), threshold GARCH (TGARCH) (Zakoian
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1994), and power-transformed and threshold GARCH (PTTGARCH) (Pan et al. 2008)
models; see also Higgins and Bera (1992), Li and Li (1996), Hwang and Kim (2004),
and Hwang and Basawa (2004) for relevant references. To cope with heavy-tailedness
and skewness, Bollerslev (1987) introduced the t-GARCH models, and later, Hansen
(1994) proposed to use the skewed t-distribution for several GARCH-type models.
Since then, the various extensions of the t-distribution have been explored by numer-
ous researchers: see, for instance, Zhu and Galbraith (2010) and the articles cited
therein. For the GARCH-type models with heavy-tailed innovations, we refer to Peng
and Yao (2003), Berkes and Horváth (2004) and Pan et al. (2008).

Value-at-risk (VaR) has been playing an important role as a risk measurement in
quantitative risk management. Its estimating method has been explored by numerous
researchers: for a general review of quantitative risk management, see Embrechts et al.
(2005). In practice, the risk of financial assets is highly influenced by the structure
of time-varying volatility and the possibility of an extreme loss. Engle and Man-
ganelli (2004) propose to use conditional autoregressive VaR (CAViaR) models and
the quantile regression to obtain the conditional VaR (see also Lee and Noh 2013).
Alternatively, the VaR can be estimated by assuming the models and their innova-
tion distribution family and then by substituting suitable estimators into the closed
form of given VaR formulas: see Lee and Lee (2011), Kim and Lee (2016a) and Kim
and Lee (2016c), who study VaR forecasting using Gaussian mixture and asymmet-
rically skewed ARMA–GARCH models. Much attention should be paid in dealing
with heavy-tailed financial time series, because the VaR estimation should be con-
ducted for extremely small tail probabilities. For relevant references, see Drees (2003)
who examine the VaR estimation in heavy-tailed distributions, and Chan et al. (2007)
who consider the VaR estimation in the GARCH models with innovations having a
regularly varying tail, wherein the tail heaviness is measured with the negative expo-
nent called ‘tail index,’ and the extreme quantile of the innovation is used for VaR
estimation. Owing to the time-varying nature of conditional volatility, this estimator
can vary dynamically, and thus, it becomes more important to check the constancy of
conditional volatility and the shape of innovation distribution. It is well known that
ignoring a change could lead to a false conclusion and finally result in a critical loss.

To our knowledge, researchers have paid little attention to the interaction between
the tail index of innovation distribution and the value of conditional volatility of
GARCH processes, and few studies rigorously investigate whether the high and low
values of conditional volatilities could affect the characteristics of innovation distri-
butions. Motivated by this, we investigate this issue within the framework of a change
point analysis on the tail index for GARCH models. In particular, we consider this
problem on a larger family that accommodates GARCHmodels, namely PTTGARCH
models, because the task of extension to the PTTGARCH family is not difficult to carry
out. It is noteworthy that unlike the conventional methods, such as those of Quintos
et al. (2001) and Kim and Lee (2011), the test is designed to check the constancy of
tail index over the values of conditional volatilities rather than over time flow. The
proposed test is shown to asymptotically follow the law of a functional of a standard
Brownian motion: see Theorems 1 and 3 stated below. We demonstrate its validity
through a simulation study and real data analysis.
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The remainder of this paper is organized as follows. Section 2.1 introduces a
constancy test for tail index and presents its asymptotic null distribution; Sect. 2.2
considers the PTTGARCH models that use heterogeneous innovations to formulate
an alternative hypothesis and proposes a residual-based test; Sect. 3 conducts a sim-
ulation study and analyzes the return series of the Google stock price and DowJones
index; Sect. 3.2 gives concluding remarks; Sect. 5 provides the proofs of the theorems
stated in Sect. 2.

2 Main result

2.1 Change point test for tail index

Let {U i := (Ui,1, Ui,2) : i ∈ Z} and {si : i ∈ Z} be sequences of random elements
defined on probability space (�,F ,P) such that

U i , i ∈ Z, are i.i.d. random vectors; (1)

si are uniformly distributed over [0, 1] and measurable with respect to σ {U j : j<i}.
Moreover, {(si ,U i ) : i ∈ Z} is ergodic and strictly stationary.

(2)

Note that U i is independent of {s j : j ≤ i} for each i ∈ Z.
For any τ ◦ ∈ (0, 1], assume that

Ui := Ui,1I(si ≤ τ ◦) + Ui,2I(si > τ ◦) for i ∈ Z. (3)

Later, the {Ui } and {si } in (3), respectively, play the role of the innovations and the
probability transforms of the logarithm of conditional volatilities of PTTGARCH
models: see (13) in Sect. 2.2.

Suppose that one wishes to check whether the tail heaviness of Ui depends on si ,
that is, 0 < τ ◦ < 1. For this task, we assume that Fj , the distribution function of U0, j

for j = 1, 2, has positive numbers α1 �= α2 satisfying

1 − Fj (x) = x−α j � j (x) for j = 1, 2, (4)

where α j is the tail index of Fj and each � j (x) is slowly varying as x → ∞. Further,
we set up the following hypotheses:

H0 : τ ◦ = 1 vs. H1 : 0 < τ ◦ < 1. (5)

Assume that {(si , Ui ) : i = 1, . . . , n} are observed (n ∈ N). Let k = kn < n be a
positive integer satisfying k → ∞ and k = o(n) as n → ∞. Then, for 0 ≤ τ1 < τ2 ≤
1 with either τ1 = 0 or τ2 = 1, we set

U(τ1,τ2):=
{ �k(τ2 − τ1)+1	-th largest order statistic of {Ui : τ1 < si ≤ τ2}, τ1 = 0;


k(τ2 − τ1)+1�-th largest order statistic of {Ui : τ1 < si ≤ τ2}, τ2 = 1,
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and define the Hill estimator:

Hn(τ1, τ2) := 1

k(τ2 − τ1)

n∑
i=1

(
logUi − logU(τ1,τ2)

)
+ I(τ1 < si ≤ τ2 ),

which is consistent with the reciprocal of tail index (cf. Hall 1982; Hsing 1991). To
test (5), we employ

Qn := k sup
τ0≤τ≤1−τ0

τ(1 − τ)

{
log

Hn(τ, 1)

Hn(0, τ )

}2
, 0 < τ0 <

1

2
. (6)

Clearly, the above test statistic diverges to ∞ under H1.
Now, we investigate the asymptotic distribution of Qn under H0. Under the null,

we particularly have Ui = Ui,1 for every i ∈ Z. By setting

α := α1, F := F1, � := �1, b(x) := inf
{

y : F(y) ≥ 1 − x−1
}

, x ≥ 1, (7)

we impose some regularity conditions as follows:

(A1) There exist C > 0, γ < 0, and nonzero D ∈ R such that

�(x) = C
(
1 + Dxγ + xγ �(x)

)
,

where �(x) is differentiable in x ,

�(x) → 0 and
d

dx
�(x) = o(x−1) as x → ∞.

Furthermore, there exists 0 ≤ M < ∞ such that

lim
n→∞

√
k(b(n/k))γ = M.

(A2) Let 	(h) := supm∈N E sup{|P(B|Am) − P(B)| : B ∈ Am+h}, where Ai :=
σ {(s j , U j ) : j ≤ i} and Ai := σ {(s j , U j ) : j ≥ i} for i ∈ N. Then,

{(si , Ui ) : i ∈ Z} is absolutely regular, i.e., 	(h) → 0 as h → ∞.

(A3) There exist ln, sn ∈ N and 
 = 
n > 0 such that as n → ∞,

ln → ∞; ln = o(n); lnk

n
→ 0; √

k
 → 0; l3n
k
log42

1



→ 0;

sn = o(ln); n

ln
	(sn) → 0.
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Theorem 1 Suppose that (A1)–(A3) hold.
Then, under H0,

Qn ⇒ sup
τ0≤τ≤1−τ0

{B(τ ) − τB(1)}2
τ(1 − τ)

, (8)

where B stands for a standard Brownian motion.

Remark 1 Although the result of Theorem 1 looks similar to Theorem 1 of Kim and
Lee (2016b), the motivation and approach taken for the two are quite different in that
Kim and Lee (2016b) deal with a change point test for α over time flow, whereas this
is not the case here as seen in Sect. 2.2: the change is assumed to occur in terms of
the values of si ’s. If {si } is independent of {U i }, (8) could be proven by following the
lines similar to those in the proof of Theorem 1 in their paper, because {si } can play
the same role as the time flow technically.

Remark 2 For p-value calculation, we use

P

(
sup

τ0≤τ≤1−τ0

{B(τ ) − τB(1)}2
τ(1 − τ)

> x

)

=
√

xe−x/2

√
2π

{(
1 − 1

x

)
log

(1 − τ0)
2

τ 20
+ 4

x
+ o(x−2)

}
,

as x → ∞ (cf. Csörgö and Horváth 1997, p. 25).

Remark 3 Since Qn can depend on k, the optimal choice of k could be a concern for
practitioners. Kim and Lee (2016b) consider to use the average of test statistics on a
range of k in dealing with the problem of testing for the constancy of α over time.
Such a method is not available at this stage and is beyond the scope of this paper.
Since this issue deserves a further investigation, it is left as our future study. For a
practical usage, though, we recommend to use k with k/n ≤ 0.1 at which Hn(0, 1) is
stable, which is usually unstable for too small k’s. In case H0 is rejected by Qn , it is
recommendable to confirm the tail index change again by a further analysis as done
for the DowJones data in Sect. 3.2.

2.2 Change point test for PTTGARCH model

2.2.1 PTTGARCH(1,1) processes with heterogeneous innovations

In this subsection, we introduce PTTGARCH processes with heterogeneous innova-
tions: see Pan et al. (2008) for the PTTGARCH model with i.i.d. innovations. For
simplicity, here we focus on the PTTGARCH(1,1) model case: PTTGARCH models
of higher order will be considered later in Sect. 2.2.2.

Let ω◦, φ◦
1,1, φ

◦
1,2, β

◦
1 , δ

◦, and υ◦ be strictly positive constants, and {(Ui,1, Ui,2) :
i ∈ Z} be a sequence of i.i.d. random vectors with E|U0, j |ν < ∞, j = 1, 2 for some
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ν > 0. Further, let {h◦
i } be a Markov process satisfying

h◦
i = ω◦ + h◦

i−1

(
φ◦
1,1 (Ui−1,1)

2δ◦
+ + φ◦

1,2 (Ui−1,1)
2δ◦
− + β◦

1

)
I
(
h◦

i−1 ≤ υ◦)
+ h◦

i−1

(
φ◦
1,1 (Ui−1,2)

2δ◦
+ + φ◦

1,2 (Ui−1,2)
2δ◦
− + β◦

1

)
I
(
h◦

i−1 > υ◦) . i ∈ N.

(9)

Assume that U0,1 and U0,2 are absolutely continuous. If f j denotes a density function
of sgn(U0, j )|U0, j |2δ◦

for j = 1, 2, the transition density of (9) is given by

p(x, y) :=
{
f∗1 (y|x)I(x < υ◦) + f∗2 (y|x)I(x ≥ υ◦), y > ω◦ + β◦

1 x;
0, y ≤ ω◦ + β◦

1 x,

f∗1 (y|x) := 1

φ◦
1,1x

f1

(
y − ω◦ − β◦

1 x

φ◦
1,1x

)
+ 1

φ◦
1,2x

f1

(
− y − ω◦ − β◦

1 x

φ◦
1,2x

)
,

f∗2 (y|x) := 1

φ◦
1,1x

f2

(
y − ω◦ − β◦

1 x

φ◦
1,1x

)
+ 1

φ◦
1,2x

f2

(
− y − ω◦ − β◦

1 x

φ◦
1,2x

)
. (10)

Without loss of generality, we can assume that the state space of the Markov process
in (9) is [ω◦/(1 − β◦

1 ),∞) when β◦
1 < 1. The following guarantees the stationarity

and ergodicity of {h◦
i } in (9) under regularity conditions.

Theorem 2 Suppose that {(Ui,1, Ui,2) : i ∈ Z} are i.i.d. random vectors and U0, j ,
j = 1, 2, are absolutely continuous with E|U0, j |ν < ∞ for some ν > 0. Then, (9)
has a strictly stationary and ergodic solution {h◦

i } when

∫ ∞

−∞
log
(
φ◦
1,1z+ + φ◦

1,2z− + β◦
1

)
f2(z)dz < 0, (11)

where f2 is a density of sgn(U0,2)|U0,2|2δ◦
, z+ and z− are the positive and negative

parts of z, respectively.

Remark 4 Argument (11) corresponds to the negative top Lyapunov exponent condi-
tion in the i.i.d. innovation case, and further, implies that β◦

1 < 1: see Bougerol and
Picard (1992) for the top Lyapunov exponent. In (9), different φ◦

1,2 and φ◦
1,2 could

be considered in the case of h◦
i−1 > υ◦. However, we used the same coefficients for

simplicity. Moreover, their estimation can be an interesting issue in practice when
0 < τ ◦ < 1, which, however, is beyond the scope of this work and is carried over to
our future project.

Theorem 2 implies that the invariance distribution of theMarkov process (9) exists (cf.
Tweedie 1975, Theorem 3.1). As an initial random variable, we take h◦

0 that follows
the invariance distribution and is measurable with respect to σ {(Ui,1, Ui,2) : i ≤ 0},
thus, is independent of {(Ui,1, Ui,2) : i ∈ N}. Then using (9), we recursively define

Ui :=Ui,1I
(
h◦

i ≤υ◦)+ Ui,2I
(
h◦

i > υ◦) , σi :=
{
h◦

i

}1/(2δ◦)
, Xi :=σiUi for i ∈ N.

(12)
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Test for tail index constancy of GARCH innovations based 953

It can be seen that σi is measurable with respect to σ {(U j,1, U j,2) : j < i} for each
i ∈ N, and {Xi } in (12) becomes an ergodic and strictly stationary process whose
innovation distribution at time i depends on conditional volatility σi . Moreover, the
following equation:

{
Xi = {

h◦
i

}1/(2δ◦)
Ui ,

h◦
i = ω◦ +

{
φ◦
1,1(Xi−1)

2δ◦
+ + φ◦

1,2(Xi−1)
2δ◦
−
}

+ β◦
1h

◦
i−1

for i ∈ N (13)

can be derived, and the {h◦
i } in (9) is ergodic and strictly stationary. If the distribution

G of log h◦
0 is continuous, and

si = G(log h◦
i ), τ ◦ =

{
G(log υ◦), υ◦ < ∞;
1, υ◦ = ∞ for i ∈ Z

+ := N ∪ {0},

{(si , Ui,1, Ui,2) : i ∈ N} satisfies (1)–(3).

2.2.2 Residual-based test

In this subsection, we consider the constancy test Qn in (6) for the ergodic and strictly
stationary PTTGARCH(p, q) process driven by i.i.d. innovations {Ui = Ui,1} with
p, q ∈ N as follows:

{
Xi = {h◦

i }1/(2δ
◦)Ui ,

h◦
i = ω◦ +∑p

j=1

{
φ◦

j,1(Xi− j )
2δ◦
+ + φ◦

j,2(Xi− j )
2δ◦
−
}

+∑q
j=1 β◦

j h
◦
i− j ,

for i ∈ Z, (14)

(cf. (13)): we refer to Pan et al. (2008) for the existence of such processes. Let G be
the distribution function of log h◦

i , where {h◦
i } is ergodic and strictly stationary, and

let si = G(log h◦
i ) for each i ∈ Z. Since si and Ui are unobservable, we consider the

residual-based test Qn in (6). Recall that H0 in (5) is equivalent to υ◦ = ∞ in (12).
Suppose that X1−mn , . . . , Xn are observed frommodel (14),wheremn ∈ N satisfies

mn := �nν	 for some ν > 0. (15)

Let θ◦ := (ω◦, φ◦
1,1, . . . , φ

◦
p,1, φ

◦
1,2, . . . , φ

◦
p,2, β

◦
1 , . . . , β

◦
q , δ◦) be the true parameter

vector and θ = (ω, φ1,1, . . . , φp,1, φ1,2, . . . , φp,2, β1, . . . , βq , δ) denote a generic
one. For given θ , we recursively define

ĥn,i (θ) = ω +
p∑

j=1

{
φ j,1(X̃i− j )

2δ+ + φ j,2(X̃i− j )
2δ−
}

+
q∑

j=1

β j ĥn,i− j (θ)

for i = 1 − mn, . . . , n (16)

123



954 M. Kim, S. Lee

by setting X̃i = Xi for i ≥ 1 − mn and X̃−mn = · · · = X̃1−mn−p = ĥn,−mn (θ) =
· · · = ĥn,1−mn−q(θ) = 0. In recursion system (16), i = 1 − mn, . . . , 0 is a burn-in
period for obtaining stable estimates of h◦

1, . . . , h
◦
n .

Let θ̂n = (ω̂, φ̂1,1, . . . , φ̂p,1, φ̂1,2, . . . , φ̂p,2, β̂1, . . . , β̂q , δ̂) be an estimator of θ◦.
Setting

ĥn,i := ĥn,i (θ̂n), ŝn,i := Ĝn(log ĥn,i ), Ûn,i := Xi/{ĥn,i }1/(2δ̂) for i = 1, . . . , n,

(17)

where

Ĝn(x) := 1

n

n∑
j=1

I(log ĥn, j ≤ x), x ∈ R, (18)

we define Q̂n in the same fashion as Qn with Ui and si replaced by Ûn,i and ŝn,i ,
respectively (cf. (6)).

We assume that

(B1) {h◦
i } is strongly mixing and satisfies (1.8) in Deo (1973);

(B2) E{(h◦
0)

ν} < ∞ for some ν > 0;
(B3) G is continuous and IG constitutes a nondegenerated interval, where IG :=

{x ∈ R : G(x + ε) − G(x − ε) > 0 for every ε > 0};
(B4) G is Lipschitz continuous on every compact interval contained in the interior

of IG;
(B5) (15) holds and

√
n(θ̂n − θ◦) = OP(1) as n → ∞.

Then, we have the following.

Theorem 3 Suppose that the distribution F of U0 (cf. (7)) satisfies (4), (A1)–(A3)
and (B1)–(B5) hold.

Then, under H0, we have (8) with Qn replaced by Q̂n.

Remark 5 The sufficient conditions for an ergodic and strictly stationary solution of
(14) and (B2) to exist can be found in the Appendix of Pan et al. (2008). Moreover,
several GARCH variants are known to be absolutely regular with an exponentially
decaying rate under mild conditions (cf. Carrasco and Chen 2002). Such variants also
satisfy (A2), (A3) and (B1).

Condition (B5) is fulfilled by the quasi-maximum likelihood estimator (QMLE)
and least absolute deviations estimator (LADE) under some moment conditions (cf.
Berkes and Horváth 2004 and Pan et al. 2008).

3 Simulation study and real data analysis

3.1 Simulation study

In this subsection, we carry out a simulation study to examine the validity of the
proposed test Q̂n . To examine its size, we assume that under H0, {Xi : i = 1, . . . , n}
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is a PTTGARCH(1,1) process with (δ◦, ω◦, φ◦
1,1, φ

◦
1,2, β

◦
1 ) = (.8, .2, .2, .1, .4) (cf.

(14)). The innovations are assumed to follow a t-distribution with degree of freedom
α > 1. The LADE is used for a fit, and {ĥn,i : i = 1, . . . , n} are constructed through
the recursion formula in (16) with p = q = 1 (cf. Pan et al. 2008). Tables 1 and 2
present the sizes of Q̂n at the level of 5%when n = 1000, 2000, α = 2.5, 3.5, 5.0, 7.0,
k = 50, . . . , 200 (increased by 10), and τ0 = 0.1 is fixed. The sizes are calculated
through 1000 repetitions. Tables 1 and 2 reveal that Q̂n has no severe size distortions.

Next, we examine the power of Q̂n . We assume that {Xi : i = 1, . . . , n} are
generated from the model specified by (9) and (12), wherein the parameters are the
same as above. The {Ui,1} are assumed to follow a scaled t-distribution with the
degree of freedom α1 = 2.5, while {Ui,2} are assumed to follow the same with the
degree of freedom α2 = 7. This particularly renders extreme innovation with a higher
probability, when the returns pass through a low volatility period than a high volatility
period. Here, the common distributions must be suitably scaled so that the change in
tail index does not change the PTTGARCH parameters (cf. Pan et al. 2008, (A4)).
Tables 3, 4 and 5 present the powers of Q̂n at the nominal level of 5% when n =
1000, 2000, 3000 and υ◦ = 0.42, 0.52, 0.75. It can be seen that Q̂n generates higher
powers as n gets larger. It is noteworthy that the power depends on k, which indicates
the importance of the role of k.

Finally, we compare our test with the change point test as in Kim and Lee (2016b),
designed to detect a change over time flow, by checking the performance of the latter
in testing (5). This issue can be of much interest to practitioners since the two tests
commonly share the same null hypothesis. More specifically, we consider Q̂∗

n , defined
in the same style as of Qn , based on

H∗
n(τ1, τ2) := 1

k(τ2 − τ1)

�nτ2	∑
i=�nτ1	+1

(
log Ûi − log Û∗

(τ1,τ2)

)
+ , 0 ≤ τ1 < τ2 ≤ 1,

instead of Hn(τ1, τ2), with

Û∗
(τ1,τ2)

:=
{ �k(τ2 − τ1) + 1	-th largest order statistic of {Ui : τ1 < i/n ≤ τ2}, τ1 = 0;


k(τ2 − τ1) + 1�-th largest order statistic of {Ui : τ1 < i/n ≤ τ2}, τ2 = 1.

From Theorem 2 of Kim and Lee (2016b), we can derive that Q̂∗
n converges weakly

to the same limiting distribution as Qn underH0. Table 6 exhibits the power of Q̂∗
n in

the same setting used for the evaluation of Q̂n and shows that the test produces much
lower powers. This result demonstrates that our test is much more suitable to testing
(5) than Q̂∗

n .

3.2 Real data analysis

3.2.1 Google Stock

We apply Q̂n to the negative returns (unit:%) of Google’s stock price (cf. Fig. 1). The
data period is from August 20, 2004 to July 1, 2016, with n = 2988. Since the series
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Fig. 1 The negative return series of Google stock price from August 20, 2004 to July 1, 2016

reveal the conditional heteroscedasticity as shown in Fig. 1, we fit a GARCH(1,1)
model (p = q = 1, δ◦ = 1, φ◦

1,1 = φ◦
1,2 =: φ◦

1) to the data, and obtain the QMLE
based on the two-sided exponential density function (cf. Berkes and Horváth 2004),
that is, (ω̂, φ̂1, β̂1) = (.109, .051, .834). Figures 2 and 3 list estimated conditional
volatilities and residuals. A standard diagnostic test ensures the validity of theGARCH
fitting. The objective here is to check whether or not the tail index of the residuals is
varying according to the conditional volatility. The upper and lower tails are estimated
for the residuals corresponding to the three different intervals of conditional volatility,
that is, (0,1.09), (1.09,1.32) and (1.32, ∞), where 1.09 and 1.32 are 33 and 66%
quantiles, respectively: the lines in Figs. 2 and 3 indicate these values. Figures 4 and
5 also present the Hill plots of the upper and lower tails, respectively (cf. Drees et al.
2000). The tail index in the upper tail part is seemingly varying, whereas the one in
the low tail part is relatively stable. In order to check the significance of its variation,
we apply Q̂n with τ0 = 0.1 to the upper tail part. Figure 6 indicates that the tail index
variation is not so significant. This suggests that the tail thickness is independent of
the conditional volatility in the upper (and lower) tail part.

3.2.2 DowJones

Next, we apply the test to the negative returns of DowJones index from November 1,
2004 to November 4, 2016, with n = 3026 (cf. Fig. 7). A GARCH(1,1) model is fitted
to the series. The resulting estimates appear to be (ω̂, φ̂1, β̂1) = (.012, .072, .851),
and the residuals are displayed in Figs. 8 and 9. Figures 10 and 11 show the result
on the tail index estimation for the upper and lower tail parts corresponding to the
three different intervals of conditional volatility: (0, 0.52), (0.52, 0.72) and (0.72, ∞),
where 0.52 and 0.72 denote 33 and 66% quantiles, respectively. Since the tail index in
the upper tail part appears to be varying, we apply Q̂n with τ0 = 0.1. Figure 12 shows
that the result depends on the choice of k. More precisely, the test rejects the null at the
level of 10% for k = 80, 90, 100, 110, 120, 140, 150, and further, at the level of 5%
for k = 80, 90, 110. For k = 90, the value of Q̂n is taken at τ = 0.38, corresponding
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Fig. 2 The series of conditional volatilities and residuals with the dashed lines = 1.09 and 1.32
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Fig. 3 The plot of conditional volatilities versus residuals with the dashed lines = 1.09 and 1.32

to the conditional volatility 0.53. Figure 13 shows the tail index estimates for the two
intervals (0, 0.53) and (0.53,∞), where the gray-colored lines stand for the 95%-level
upper/lower limits for the lower/upper intervals, respectively. It is revealed that the tail
indices are significantly distinct for a range of k’s, wherein the estimates are stable.
Our findings suggest that the thickness of the upper tail part depends on the conditional
volatility.
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Fig. 4 The Hill plots of the upper tail for the three different intervals of conditional volatility
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Fig. 5 The Hill plots of the lower tail for the three different intervals of conditional volatility
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Fig. 6 The values of Q̂n against k with the critical values at 10 and 5% in line
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Fig. 7 The negative return series of DowJones from 1 Nov 2004 to 4 Nov 2016

4 Concluding remarks

In this study, we considered the problem of testing whether the tail index of the
innovations of PTTGARCH models experiences a change at some threshold values
of conditional volatility. We showed that under certain conditions, the proposed test
asymptotically behaves like the functional of a standard Brownian motion. We eval-
uated the performance of the test through an empirical study and demonstrated that
the tail index of underlying distributions can be influenced by conditional volatility.
The result indicates that for practical applications, the underlying innovation distri-
bution should be modeled in a more refined manner. For example, in VaR estimation,
one can model the innovation distribution by employing an MLE method using the
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Fig. 8 The series of conditional volatilities and residuals with the dashed lines = 0.52 and 0.72
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Fig. 9 The plot of conditional volatilities vs. residuals with the dashed lines = 0.52 and 0.72

asymmetric Student’s t distribution (cf. Kim and Lee 2016c). Our findings warn that
the direct usage of their method without considering the possibility of the underlying
distributional change might lead to a false conclusion. In this work, we focused only
on the PTTGARCHmodels, and thus, there is a demand to extend the current work to
a more general class of location-scale models with heteroscedasticity. Moreover, the
task of estimating coefficients and VaR forecasting is worth further investigation. All
these issues are left as our future project.
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Fig. 10 The Hill plots of the upper tail for the three different intervals of conditional volatility
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Fig. 11 The Hill plots of the lower tail for the three different intervals of conditional volatility
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Fig. 12 The values of Q̂n against k with the critical values at 10 and 5%
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5 Proofs

5.1 Proof of Theorem 1

In this subsection, we prove Theorem 1. In what follows, K > 0 denotes a generic
constant and D[ a, b ] denotes the complete and separable metric space of all càdlàg
functions defined over a compact interval [ a, b ] (0 ≤ a < b ≤ 1), equipped with the
Skorohod metric (cf. Billingsley 1968).

We define the stochastic processes:

Mn(τ, ζ ) :=
n∑

i=1

Zni (τ, ζ ), Ln(τ, ζ ) :=
n∑

i=1

Yni (τ, ζ ), 0 ≤ τ ≤ 1 and ζ ∈ R,

where

Zni (τ, ζ ) := 1√
k

{
I
(

Ui > e−ζ/
√

kbn, si ≤ τ
)

− P
(

Ui > e−ζ/
√

kbn, si ≤ τ
)}

,

Ani (τ, ζ ) :=
(
logUi − log bn + ζ√

k

)
+
I (si ≤ τ) ,

Yni (τ, ζ ) := 1√
k

{Ani (τ, ζ ) − EAni (τ, ζ )} (19)

with bn = b(n/k).
The proof comprises of three propositions and four lemmas. Among them, Propo-

sition 3 plays a key role to prove the theorem. All the Lemmas and Proposition 2
are used to assert Proposition 3. We start with a lemma useful to prove Proposition
1, which is later used to prove Proposition 2. All the conditions in Theorem 1 are
implicitly assumed without statement.

Lemma 1 Let Ini = I (Ui > bn, τ1 < si ≤ τ2) and Jni = (logUi − log bn)+
I (τ1 < si ≤ τ2) for 0 ≤ τ1 < τ2 ≤ 1. If lnk = O(n) as n → ∞, then there exists
K > 0 such that for 0 ≤ τ1 < τ2 ≤ 1 and n ∈ N,

n

lnk
Var

{ ln∑
i=1

Ini

}
≤ K (τ2 − τ1),

n

lnk
Var

{ ln∑
i=1

Jni

}
≤ K (τ2 − τ1).

Moreover, if lnk = o(n) as n → ∞, then

lim
n→∞

n

lnk
Var

{ ln∑
i=1

Ini

}
= (τ2 − τ1), lim

n→∞
n

lnk
Var

{ ln∑
i=1

Jni

}
= 2

α2 (τ2 − τ1).
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Proof We only deal with Ini , since Jni can be handled similarly. Note that

n

lnk
Var

{ ln∑
i=1

Ini

}
= n

k
Var(In,0) + 2

ln∑
h=1

(
1 − h

ln

)
n

k
Cov(In,0, In,h).

Let Ai = {Ui > bn} and Bi = {τ1 < si ≤ τ2} for 0 ≤ τ1 < τ2 ≤ 1 and n ∈ N. Then,
we get

n

k
EIn,0 = n

k
PA0 PB0 = (τ2 − τ1).

Moreover, we have that for h = 1, . . . , ln ,

∣∣Cov(In,0, In,h)
∣∣ = |PAhP (Bh A0B0) − PAhPBhPA0PB0|
= |PAh {PBh B0A0 − PBhPB0PA0}|
≤ PAhPB0PA0 =

(
k

n

)2

(τ2 − τ1),

since P (Bh A0B0) ∨ PBhPB0PA0 ≤ PB0PA0. Hence, the proof is completed. ��
Proposition 1 {Mn(·, 0)} and {Ln(·, 0)} are tight.

Proof First, we deal with Mn(·, 0). Take ln ∈ N and 
 = 
n > 0 so that 1/
 ∈ Z,

ln = o(n),
n

ln
	(ln) → 0,

√
k
 → 0,

l2n
k
log42

1



→ 0,

lnk

n
→ 0 as n → ∞.

(20)

Let mn = �n/(2ln)	, Ini = {2(i − 1)ln + 1, . . . , 2iln − ln}, Jni = {2iln − ln +
1, . . . , 2iln},

B(1)
ni (τ ) =

∑
j∈Ini

Znj (τ, 0), B(2)
ni (τ )

=
∑

j∈Jni

Znj (τ, 0), Bn(τ ) =
n∑

j=2mnln+1

Znj (τ, 0), (21)

M (r)
n (τ ) =

mn∑
i=1

B(r)
ni (τ ), r = 1, 2. (22)

Due to (21) and (22), we can express Mn(τ, 0) = M (1)
n (τ ) + M (2)

n (τ ) + Bn(τ ).
Thus, since Mn(0, 0) = 0 a.s., to prove the tightness of {Mn(·, 0)}, it suffices to
verify that M (1)

n and M (2)
n are asymptotically uniformly equicontinuous, because

sup0≤τ≤1 |Bn(τ )| = oP(1) due to limn→∞ ln/
√

k = 0. Moreover, if we set M∗
n to

be the sum of i.i.d. mn copies of B(1)
n,1, the total variation between M∗

n and M (1)
n should
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go to 0 as n → ∞, since limn→∞ mn	(ln) → 0 (cf. Eberlein 1984). Thus, it suffices
to show that M∗

n is asymptotically uniformly equicontinuous.
Take τu = min{
u, 1} for u ∈ Z

+ := N ∪ {0} to form a partition of [0, 1]. Define
ξ

(n)
u := M∗

n (τu) − M∗
n (τu−1). Then, for u0, u1 ∈ Z

+ with u0 ≤ u1, we get

M∗
n (τu1) − M∗

n (τu0) =
u1∑

u=u0+1

ξ (n)
u ,

and letting Ini = I
(
Ui > bn, τu0 < si ≤ τu1

)−P
(
Ui > bn, τu0 < si ≤ τu1

)
,wehave

E

⎧⎨
⎩

u1∑
u=u0+1

ξ (n)
u

⎫⎬
⎭

4

= mnE

{
1√
k

ln∑
i=1

Ini

}4

+ 3mn(mn − 1)E2

{
1√
k

ln∑
i=1

Ini

}2

.

Moreover, owing to the boundedness of the summands and Lemma 1, there exists
K > 0 such that for u0, u1 ∈ Z

+ with u0 < u1 and n ∈ N,

1

k2
E

{ ln∑
i=1

Ini

}4

≤ l2n
k2

E

{ ln∑
i=1

Ini

}2

≤ K
l3n
nk

(u1 − u0)
,

1

k2
E2

{ ln∑
i=1

Ini

}2

≤ K
l2n
n2 (τu1 − τu0)

2 ≤ K
l2n
n2 (u1 − u0)

2
2. (23)

Thus, there exists K0 > 0 such that for each u0, u1 ∈ Z
+ with u0 < u1 and n ∈ N,

E

⎧⎨
⎩

u1∑
u=u0+1

ξ (n)
u

⎫⎬
⎭

4

≤ K0(u1 − u0)


{
l2n
k

+ (u1 − u0)


}
.

Then, it follows from Theorem 1 inMóricz (1983) that for u0 ∈ Z
+, δ > 0, and n ∈ N

with δ > 
,

E max
{∣∣M∗

n (τu1) − M∗
n (τu0)

∣∣4 : u1 = u0 + 1, . . . , u0 + �δ/
	
}

= Emax

⎧⎪⎨
⎪⎩

∣∣∣∣∣∣
u1∑

u=u0+1

ξ (n)
u

∣∣∣∣∣∣
4

: u1 = u0 + 1, . . . , u0 +
⌊

δ




⌋⎫⎪⎬
⎪⎭

≤ 5K0

2

⌊
δ




⌋



⎡
⎢⎢⎣
⌊
log2

⌊
δ



⌋⌋
∑
i=0

{
l2n
k

+
⌊

δ



⌋
2i




} 1
4

⎤
⎥⎥⎦
4
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≤ 5K0δ

2

⎡
⎣( l2n

k

) 1
4
(
log2

⌊
δ




⌋
+ 1

)
+ 21/4

21/4 − 1
δ
1
4

⎤
⎦
4

≤ 80K0δ

(21/4 − 1)4

[
l2n
k
log42

2δ



+ δ

]
. (24)

Let ε, η > 0. Due to (24), there exists δ0 ∈ (0, 1) and n0 ∈ N such that for each
u0 ∈ Z

+ and n ≥ n0,

δ0 > 
 and P
(
max

{∣∣M∗
n (τu1) − M∗

n (τu0)
∣∣ : u1 = u0 + 1, . . . , u0

+�δ0/
	} > ε) ≤ ηδ0.

On the other hand, take n1 ∈ N such that 6/δ0 < 1/
 for n ≥ n1. Then, for τ ′ ∈ [0, 1)
and n ≥ n1,

max
{|M∗

n (τ ) − M∗
n (τ ′)| : τ ′ ≤ τ ≤ (τ ′ + δ0/2) ∧ 1

}
≤ 4max

{∣∣M∗
n (τu1) − M∗

n (τu0)
∣∣ : u1 = u0 + 1, . . . , u0 + �δ0/
	}+ 2

√
k
,

where u0 ∈ Z
+ satisfies u0
 < τ ′ ≤ (u0 + 1)
. Moreover, since 


√
k → 0 as

n → ∞, we can take n2 ∈ N such that 2
√

k
 < ε for n ≥ n2. Therefore, for
τ ′ ∈ [0, 1] and n ≥ max{n0, n1, n2},

P
(
max

{∣∣M∗
n (τ ) − M∗

n (τ ′)
∣∣ : τ ′ ≤ τ ≤ (τ ′ + δ0/2) ∧ 1

}
> 5ε

)
< ηδ0.

Then, applying Theorem 8.3 in Billingsley (1968), we can check that M∗
n is asymp-

totically uniformly equicontinuous.
We can verify the tightness of Ln(·, 0) in a similar way. As above, we take ln and


 satisfying (20) together with l3n
k log42

1



→ 0 as n → ∞. Then, instead of (23), we
use the fact that

1

k2
E

{ ln∑
i=1

(Ini − EIni )

}4

≤ K
l4n
nk

(u1 − u0)
,

where Ini = (logUi − log bn)+I(τu0 < si ≤ τu1). Since the remaining steps of the
proof are essentially the same as in those for Mn , we complete the proof without
detailing algebras. ��
Proposition 2

Ln(·, 0) ⇒ 2 α−1B, Mn(·, 0) ⇒ B, (25)

Ln(·, 0) − α−1Mn(·, 0) ⇒ α−1B, (26)

in D[0, 1], where B stands for a standard Brownian motion defined over [0, 1].

123



Test for tail index constancy of GARCH innovations based 973

Proof We only prove (26) since (25) can be shown easily. Recall that Ln(·, 0) −
α−1Mn(·, 0) has been proved to be tight by Proposition 1. Thus, it suffices to check
the convergence of its finite-dimensional distributions. Take ln, sn ∈ N and mn =
�n/(ln + sn)	 such that

ln → ∞, sn = o(ln),
n

ln
	(sn) → 0,

l3n
k

→ 0,
lnk

n
→ 0 as n → ∞. (27)

Let Ini = {(i − 1)(ln + sn) + 1, . . . , iln + (i − 1)sn}, Jni = {iln + (i − 1)sn +
1, . . . , i(ln + sn)},

Sni (τ ) = k−1/2
{
(logUi − log bn)+ − α−1 I (Ui > bn)

}
I
(
σ 2

i ≤ τ
)

,

B(1)
ni (τ ) =

∑
j∈Ini

{Snj (τ ) − ESnj (τ )}, B(2)
ni (τ ) =

∑
j∈Jni

{Snj (τ ) − ESnj (τ )},

Bn(τ ) =
n∑

j=mn(ln+sn)+1

{Snj (τ ) − ESnj (τ )}.

Then,

Ln(τ, 0) − 1

α
Mn(τ, 0) =

mn∑
i=1

B(1)
ni (τ ) +

mn∑
i=1

B(2)
ni (τ ) + Bn(τ ), (28)

where Bn(τ ) is negligible for each τ because limn l2n/k = 0. Moreover, as in the proof
of Proposition 1, we can regard the first and second terms in the right-hand side of the
equality as sums of i.i.d. summands due to the mixing condition given in (27). Thus,
below, we assume that they are sums of i.i.d. random variables.

We deal with the first term. Let Tn(τ ) = ∑mn
i=1 B(1)

ni (τ ) and 0 = τ0 < τ1 <

· · · < τh = 1, h ∈ N. Then, applying the Lyapunov condition and using the fact that
limn l3n/k = 0 in (27), we get

(Tn(τ1) − Tn(τ0), . . . , Tn(τh) − Tn(τh−1))

⇒ N
(
0, α−2diag{τ1 − τ0, . . . , τh − τh−1}

)
,

since it follows from limn lnk/n = 0 in (27) that

lim
n→∞ mnCov

{
B(1)

n,1(τu) − B(1)
n,1(τu−1), B(1)

n,1(τv) − B(1)
n,1(τv−1)

}

=
{

α−2(τu − τu−1), u = v;
0, u �= v.

For the second term, using the Chebyshev inequality, we see that the right-hand side
of (28) is negligible, owing to limn sn/ ln = 0 in (27). This completes the proof. ��
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Lemma 2 Let K > 0. Then,

sup
|ζ |<K

sup
0≤τ≤1

|Mn(τ, ζ ) − Mn(τ, 0)| = oP(1), (29)

sup
|ζ |<K

sup
0≤τ≤1

|Ln(τ, ζ ) − Ln(τ, 0)| = oP(1). (30)

Proof We only verify (29) since (30) can be proven similarly. First, we show that for
τ ∈ [0, 1] and ζ ∈ R,

|Mn(τ, ζ ) − Mn(τ, 0)| = oP(1). (31)

Similarly to (21), we set

B(1)
ni (τ, ζ ) =

∑
j∈Ini

{Znj (τ, ζ ) − Znj (τ, 0)},

B(2)
ni (τ, ζ ) =

∑
j∈Jni

{Znj (τ, ζ ) − Znj (τ, 0)},

Bn(τ, ζ ) =
n∑

j=2mnln+1

{Znj (τ, ζ ) − Znj (τ, 0)},

where mn , Ini and Jni , i = 1, . . . , mn , are those in (21). Note that Bn(τ, ζ )
P−→ 0 as

n → ∞, and there exists K > 0 such that

Var{B(r)
ni (τ, ζ )} ≤ Kl2n{n√

k }−1 for r = 1, 2 and n ∈ N.

Thus, since mn	(ln) → 0 and l2n/k → 0 as n → ∞, (31) holds.
Following the lines to prove (4.10) in Kim and Lee (2009) together with (31), we

can see that for ζ ∈ R,

sup
0≤τ≤1

|Mn(τ, ζ ) − Mn(τ, 0)| = oP(1), (32)

and for any ε > 0 and K > 0, as ρ → 0,

lim sup
n→∞

P
(
sup

{
1√
k

n∑
i=1

|Ini (1, ζ1) − Ini (1, ζ2)| : |ζ1 − ζ2| < ρ, |ζ1| ∨ |ζ2| < K

}
> ε

)

→ 0, (33)

lim sup
n→∞

sup
{

1√
k

n∑
i=1

|EIni (1, ζ1) − EIni (1, ζ2)| : |ζ1 − ζ2| < ρ, |ζ1| ∨ |ζ2| < K

}
→ 0,

(34)
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where Ini (τ, ζ ) = I
(

Ui > e−ζ/
√

kbn, si ≤ τ
)
(see Lemma 4 in Kim and Lee 2009).

Therefore, using the arguments in the proof of Lemma 5 of Kim and Lee (2009), we
can obtain (29), due to (32), (33) and (34). This validates the lemma. ��
Lemma 3 Let τ0 ∈ (0, 1/2). For ζ ∈ R, it holds that α(τ2 − τ1)

√
k
{
logU(τ1,τ2)

− log bn} > ζ if and only if

Mn(τ2, 0) − Mn(τ1, 0) > ζ + oP(1),

where the oP(1) denotes the term uniformly negligible in 0 ≤ τ1 < τ2 ≤ 1 with either
τ1 = 0 or τ2 = 1, and τ2 − τ1 ≥ τ0.

Proof Let ζ ∈ R and δ = τ2 − τ1. First, consider the case of τ1 = 0. Then,
by definition, we can see that αδ

√
k
{
logU(τ1,τ2) − log bn

}
> ζ if and only if∑n

i=1 I(Ui > eζ/αδ
√

kbn, τ1 < si ≤ τ2) > �k(τ2 − τ1)	, which can be rewritten
as

1√
k

n∑
i=1

{
I
(

Ui > eζ/αδ
√

kbn, τ1 < si ≤ τ2

)
− P

(
Ui > eζ/αδ

√
kbn, τ1 < si ≤ τ2

)}

>
√

k

{�k(τ2 − τ1)	
k

− n

k
P
(

Ui > eζ/αδ
√

kbn, τ1 < si ≤ τ2

)}

= √
k

{
δ −

(
1 − ζ

δ
√

k
+ o

(
1√
k

))
δ + O

(
1

k

)}
= ζ + o(1),

uniformly in 0 < τ2 ≤ 1 and δ ≥ τ0. Next, the case of τ2 = 1 can be handled via
following the same lines with �k(τ2 − τ1)	 replaced by 
k(τ2 − τ1)�. Hence, the proof
is completed by Lemma 2. ��
Lemma 4 Let τ0 ∈ (0, 1/2) and Wn(τ1, τ2) := α(τ2 − τ1)

√
k
{
logU(τ1,τ2) − log bn

}
for 0 ≤ τ1 < τ2 ≤ 1 with either τ1 = 0 or τ2 = 1. Then, {τ �→ Wn(0, τ )} and
{τ �→ Wn(τ, 1)}, τ0 ≤ τ ≤ 1 − τ0, are asymptotically uniformly equicontinuous.

Proof Since the proof is essentially the same as that to verify (4.8) of Kim and Lee
(2011), owing to Proposition 1 and Lemma 3, it is omitted for brevity. ��
Proposition 3 Let τ0 ∈ (0, 1/2). Then,

(
τ �→ √

k{αHn(0, τ ) − 1}, τ �→ √
k{αHn(τ, 1) − 1}

)
⇒ (τ �→ B(τ )/τ + ϒ, τ �→ {B(1) − B(τ )}/(1 − τ) + ϒ) in D[τ0, 1 − τ0]
× D[τ0, 1 − τ0],

where ϒ = γDM/(α − γ ).

Proof Since the proof is essentially the same as that of Theorem 1 of Kim and Lee
(2016b), owing to Proposition 2 and Lemmas 2–4, it is omitted for brevity. ��
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Proof of Theorem 1 By Proposition 3, we have

α
√

kτ(1 − τ){Hn(0, τ ) − Hn(τ, 1)} ⇒ B(τ ) − τB(1)√
τ(1 − τ)

in D[τ0, 1 − τ0].

Moreover, since x−1 = log(x)+O((x−1)2) as x → 1, and supτ0≤τ≤1−τ0
|αHn(τ, 1)−

1| = oP(1), we get

√
kτ(1 − τ) log

Hn(0, τ )

Hn(τ, 1)
⇒ B(τ ) − τB(1)√

τ(1 − τ)
in D[τ0, 1 − τ0].

Then, because the mapping: f �→ supτ0≤τ≤1−τ0
{ f (τ )}2, f ∈ D[τ0, 1−τ0], is contin-

uous at every continuous function f with respect to the Skorohod metric, the theorem
is established by a continuous mapping theorem. ��

5.2 Proofs of Theorems 2 and 3

Proof of Theorem 2 We first show that there exists x∗ > υ◦ satisfying the following
condition: for any fixed x0 > x∗, there exists nonnegative function g such that

∫ ∞

ω◦/(1−β◦
1 )

g(y)p(x, y)dy ≤ g(x) − 1 for x ∈ [ω◦/(1 − β◦
1 ),∞)\K, (35)

sup
x∈K

∫ ∞

ω◦/(1−β◦
1 )

g(y)p(x, y)dy < ∞, (36)

where K = [ω◦/(1 − β◦
1 ), x0] and p(x, y) is given in (10). Note that (35) and (36)

imply the ergodicity of {h◦
i } (cf. Tweedie 1975, Theorem 3.1).

Let f j be a density function of sgn(U0, j )|U0, j |2δ◦
for j = 1, 2. Take x∗ > υ◦,

g(x) = c log(x/ω◦) (c > 0) and η > 1, such that

(η − 1)
β◦
1 x∗
ω◦ > 1,

∫ ∞

−∞
c log

(
φ◦
1,1z+ + φ◦

1,2z− + β◦
1

)
f2(z)dz + c log η < −1.

Set K = [ω◦/(1 − β◦
1 ), x0] for x0 > x∗. Then, for x ∈ [ω◦/(1 − β◦

1 ),∞)\K,

∫ ∞

ω◦+β◦
1 x

g(y)p(x, y)dy

=
∑
j=1,2

∫ ∞

ω◦+β◦
1 x

c log(y/ω◦) 1

φ◦
1, j x

f2

(
(−1) j+1 y − ω◦ − β◦

1 x

φ◦
1, j x

)
dy

=
∫ ∞

0
c log

{(
φ◦
1,1z + β◦

1

) x

ω◦ + 1
}
f2 (z) dz

+
∫ 0

−∞
c log

{(−φ◦
1,2z + β◦

1

) x

ω◦ + 1
}
f2 (z) dz
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=
∫ ∞

−∞
c log

{(
φ◦
1,1z+ + φ◦

1,2z− + β◦
1

) x

ω◦ + 1
}
f2(z)dz

≤
∫ ∞

−∞
c log

{
η
(
φ◦
1,1z+ + φ◦

1,2z− + β◦
1

) x

ω◦
}
f2 (z) dz

=
∫ ∞

−∞
c log

(
φ◦
1,1z+ + φ◦

1,2z− + β◦
1

)
f2(z)dz + c log η + c log(x/ω◦)

≤ g(x) − 1.

This asserts (35). To prove (36), note that due to max j=1,2 E|U0, j |ν < ∞ for some
ν > 0,

max
j=1,2

∫ ∞

−∞
c log

{(
φ◦
1,1z+ + φ◦

1,2z− + β◦
1

) x0
ω◦ + 1

}
f j (z)dz < ∞.

This establishes the theorem. ��

Finally, we prove Theorem 3 using Lemma 5 and Proposition 4 stated below: the
conditions in Theorem 3 are implicitly assumed therein.

Proof of Theorem 2 It suffices to show that for any K > 0,

sup
|ζ |≤K

sup
τ0≤τ≤1−τ0

1√
k∣∣∣∣∣

n∑
i=1

{
I
(

Ûn,i > e−ζ/
√

kbn , ŝn,i ≤ τ
)

− I
(

Ui > e−ζ/
√

kbn , si ≤ τ
)}∣∣∣∣∣ , (37)

sup
|ζ |≤K

sup
τ0≤τ≤1−τ0

1√
k

∣∣∣∣∣
n∑

i=1

{
Âni (τ, ζ ) − Ani (τ, ζ )

}∣∣∣∣∣ (38)

are oP(1) as n → ∞, where Âni (τ, ζ ) := (log Ûn,i − log bn + ζ/
√

k )+ I{ŝn,i ≤ τ }:
see (17), (18), and (19). Here, we can prove (37) using Lemma 5 and Proposition 4
below. Since (38) can be handled similarly, the proof is omitted and the theorem is
asserted. ��

Lemma 5 Let �n := {1/(2δ̂) ∨ 1}max1≤i≤n | log ĥn,i − log h◦
i | + |1/(2δ̂) −

1/(2δ◦)|max1≤i≤n log h◦
i . Then,

√
k �n,= oP(1) as n → ∞.

Proof of Theorem 3 We only sketch the proof because the details are found in Kim
and Lee (2016b). Let {hi (θ)} be the solution of

hi (θ) = ω +
p∑

j=1

{
φ j,1(Xi− j )

2δ+ + φ j,2(Xi− j )
2δ−
}

+
q∑

j=1

β jhi− j (θ) for i ∈ Z
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(cf. (16)). Let Nn(η) = {θ : |θ − θ◦| ≤ η/
√

n} for η > 0. Owing to Lemma 10 of
Kim and Lee (2016b), we obtain that for some r ∈ (0, 1),

sup
θ∈Nn(η)

max
1≤i≤n

| log ĥn,i (θ) − log hi (θ)| ≤ rmn Vn for all large n,

where Vn ≥ 0 satisfies supn EV ν
n < ∞ for some ν > 0. Also, it follows from Lemma

12 of Kim and Lee (2016b) that for any ν > 0, with a probability tending to 1 as
n → ∞,

max
1≤i≤n

| log hi (θ) − log h◦
i | ≤ nν |θ − θ◦| as far as θ stays in Nn(η).

Then, the lemma is validated by (B2), (B5) and (15). ��
Proposition 4 Let K = K0 be the one in (37). Then, (37) is oP(1) as n → ∞.

Proof of Theorem 3 By the definition of �n , (B1) and(B3) we have

ŝn,i ≥ Ĝn
(
log h◦

i − �n
) ≥ 1

n

n∑
j=1

I
{
log h◦

j ≤ log h◦
i − 2�n

}

= 1

n

n∑
j=1

I
{
s j ≤ G

(
log h◦

i − 2�n
)}

= G
(
log h◦

i − 2�n
)+ 
n,i , max

1≤i≤n
|
n,i | = OP(n

−1/2), (39)

where the last equality is due to Theorem 1 in Deo (1973). Similarly,

ŝn,i ≤ G(log h◦
i + 2�n) + 
′

n,i , max
1≤i≤n

|
′
n,i | = OP(n

−1/2).

Thus,
∑n

i=1{I(Ûn,i > e−ζ/
√

kbn, ŝn,i ≤ τ) − I(Ui > e−ζ/
√

kbn, si ≤ τ)} is bounded
by

n∑
i=1

{
I
(

Ui > exp{−(ζ + √
k�n)/

√
k} bn , G(log h◦

i − 2�n) + 
n,i ≤ τ
)

−I
(

Ui > e−ζ/
√

kbn , si ≤ τ
)}

and is bounded below by

n∑
i=1

{
I
(

Ui > exp{−(ζ − √
k�n)/

√
k} bn , G

(
log h◦

i + 2�n
)+ 
′

n,1 ≤ τ
)

−I
(

Ui > e−ζ/
√

kbn , si ≤ τ
)}

.
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Note that the upper bound can be rewritten as

n∑
i=1

{
I
(

Ui > exp{−(ζ + √
k�n)/

√
k} bn

)
− I

(
Ui > e−ζ/

√
kbn

)}

I
(
G
(
log h◦

i − 2�n
)+ 
n,i ≤ τ

)

+
n∑

i=1

I
(

Ui > e−ζ/
√

kbn

) {
I
(
G
(
log h◦

i − 2�n
)+ 
n,i ≤ τ

)− I (si ≤ τ)
}
,

where the supremum of the first sum over |ζ | < K0 and τ ∈ [0, 1] is easily verified to
be oP(

√
k) owing to Lemma 4 of Kim and Lee (2009) and Lemma 5, and the second

sum can be expressed as follows:

I1 + I2 :=
n∑

i=1

I
(

Ui > e−ζ/
√

kbn

) {
I
(
G
(
log h◦

i − 2�n
)+ 
n,i ≤ τ

)− I (si ≤ τ)
}

I{τ0/2 ≤ si ≤ 1 − τ0/2}

+
n∑

i=1

I
(

Ui > e−ζ/
√

kbn

) {
I
(
G
(
log h◦

i − 2�n
)+ 
n,i ≤ τ

)− I (si ≤ τ)
}

(1 − I{τ0/2 ≤ si ≤ 1 − τ0/2}).

Note that the supremum of I2 over ζ ∈ R and τ ∈ [τ0, 1 − τ0] is bounded by

n∑
i=1

sup
τ0≤τ≤1−τ0

{
I
(
G(log h◦

i − 2�n) + 
n,i ≤ τ
)− I (si ≤ τ)

}

(1 − I{τ0/2 ≤ si ≤ 1 − τ0/2}),

which is oP(1) because max{max1≤i≤n |
n,i |, �n} = oP(1) and min{G−1(τ0) −
G−1(τ0/2),G−1(1 − τ0/2) − G−1(1 − τ0)} > 0, (G−1(τ ) := inf{x : G(x) ≥ τ }
for τ ∈ (0, 1]). On the other hand, due to (B3) and (B4), there exists KG > 0 such
that |G(x) − G(y)| ≤ KG|x − y| for every x, y ∈ [τ0/4, 1 − τ0/4], so that I1/

√
k is

no more than

1√
k

n∑
i=1

I
(

Ui > e−K0/
√

kbn

) {
I
(
si ≤ τ + 2KG�n − 
n,i

)− I (si ≤ τ)
}

= Mn(τ + 2KG�n − 
n,i , K0) − Mn(τ, K0) + n√
k
P
(

Ui > e−K0/
√

kbn

)

(2KG�n − 
n,i ),

with a probability tending to 1. Since a similar result can be obtained on the lower
bound as well, the proposition is asserted by Proposition 1, (39) and Lemmas 2 and
5. ��
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