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Abstract Recently, it is becomingmore active to apply appropriate statisticalmethods
dealing with missing data in clinical trials. Under not missing at random missingness,
MLE based on direct-likelihood, or observed likelihood, possibly has a serious bias. A
solution to the bias problem is to add auxiliary variables such as surrogate endpoints
to the model for the purpose of reducing the bias. We theoretically studied the impact
of an auxiliary variable on MLE and evaluated the bias reduction or inflation in the
case of several typical correlation structures.

Keywords Auxiliary variables · Surrogate endpoints · Direct-likelihood · Not
missing at random missingness data

1 Introduction

In clinical trials, it often happens that the endpoints cannot bemeasured or aremissing,
due to the subjects’ discontinuation from the study (e.g., dropout). It has already
been realized that “Missing values represent a potential source of bias in a clinical
trial” (International Conference on Harmonisation Guideline E9 1999). Recently, it is
becoming more active to apply appropriate statistical methods dealing with missing
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data, following the recommendations by O’Neill and Temple (2012) and National
Research Council (NRC) report (2010).

Missing data are typically classified into three groups according to their causes,
which are called missing-data mechanisms. Missing data are referred to as missing
completely at random (MCAR) if missingness is independent of all the variables to
be collected in the study; missing at random (MAR) if missingness can depend on the
components of observed variables only and not on the value of missing variables; and
not missing at random (NMAR or MNAR) if missingness is neither MCAR nor MAR
(Rubin 1976; Little and Rubin 2002).

When a missing-data mechanism is MCAR, complete-case analysis, omitting all
units involving missing values from the data set, will provide consistent estimators for
parameters in the model, but the collected information is not fully utilized. In the case
of MAR, the direct-likelihood based on observed data, or observed likelihood, will
provide consistent estimators (Takai and Kano 2013). However, MCAR andMAR are
often not realistic and cannot be expected to hold routinely, because the missingness
due to subjects’ study discontinuation is possibly affected by the post-study treatment
such as lack of efficacy or adverse event.

When a missing-data mechanism is NMAR, we can obtain consistent estimators,
using the full-likelihood (Rubin 1976) which includes an appropriate missing-data
mechanism in the likelihood. The approach, however, has difficulty with modeling the
missing-data mechanism appropriately and computational difficulty in optimizing the
likelihood or even to create identification problems. As a result, the estimation based
on the direct-likelihood instead of the full-likelihood is often made. In such cases, it
has been suggested that auxiliary variables (Ibrahim et al. 2001; O’Neill and Temple
2012) be added to the model to make up for the lost outcomes to be assessed and
to supplement the missing information. The inclusion of auxiliary variables seems to
reduce the bias of the direct-likelihood estimator. No theory for the bias reduction has
been reported, however.

In clinical trial, post-treatment information such as surrogate endpoints can be aux-
iliary variables to be added to the model for the analysis of the clinical (true) endpoint.
Surrogate endpoints are often evaluated instead of the true endpoint so as to reduce
the cost and to shrink the study duration. Prentice (1989) proposed some criteria for
external variables to be surrogate endpoints: they should be correlated with the clini-
cal endpoint and fully capture the net effect of treatment on the clinical endpoint, that
is, conditional independence between an endpoint variable and a treatment given the
surrogate variable (Fleming and DeMets 1996). Several studies which utilize surro-
gate endpoints as auxiliary variables are found (Fleming et al. 1994; Finkelstein and
Shoenfeld 1994; Li et al. 2011).

There are some papers which study the impact of adding auxiliary variables on
the bias reduction, but those are based on simulation or application of their approach
to actual data. In this paper, we theoretically study the bias of a direct-likelihood
estimator when a missing-data mechanism is NMAR, and compare the bias between
the models with and without an auxiliary variable.We found that there are cases where
inclusion of an auxiliary variable can increase the bias in a simple setup, where the
clinical endpoint and auxiliary variable are normally distributed. We derive several
conditions for an auxiliary variable to reduce or increase the bias.
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Bias reduction using surrogate endpoints 839

In our study, we do not use the assumption that given auxiliary variables a treatment
group variable is independent of the clinical endpoint, required by Prentice (1989) as
a surrogate endpoint. Hence, the results in this paper can also apply to the mixed-
effects model repeated measures (MMRM) (Mallinckrodt et al. 2001) including two
post-baseline time points in longitudinal data, by considering intermediate time point
value as auxiliary variable.

2 Likelihood and estimators

Let X, Y and Ya be a treatment, clinical endpoint and auxiliary variables, respectively.
Suppose that

X ∼ fX (x |ψ),

Y |X ∼ fY |X (y|x; θ),

(Y, Ya)|X ∼ fY Ya |X (y, ya |x; θ, θa). (1)

Here, ψ , θ , and θa are distinct parameters from one another and θ is a parameter of
interest to be estimated. Only the variable Y can be missing. Assume that we have the
following sample of size n from a distribution with fXY Ya (x, y, ya):

⎡
⎣

X1
Y1

Ya,1

⎤
⎦ , . . . ,

⎡
⎣

Xm

Ym

Ya,m

⎤
⎦ ,

⎡
⎣

Xm+1
missing
Ya,m+1

⎤
⎦ , . . . ,

⎡
⎣

Xn

missing
Ya,n

⎤
⎦ , (2)

where Y1, . . . , Ym are actually observed, and Ym+1, . . . , Yn are missing.
First, let us estimate θ based on (X, Y ). The direct-likelihood (Rubin 1976) or the

observed likelihood, without any missing-data mechanism, is defined as

DL(θ, ψ |X, Y ) =
m∏

i=1

fXY (Xi , Yi |ψ, θ)

n∏
i=m+1

fX (Xi |ψ). (3)

Let θ̃ denote the MLE which maximizes the likelihood in (3). Next, let us estimate θ

based on (X, Y, Ya). The direct-likelihood then becomes

DL+(θ, θa, ψ |X, Y, Ya) =
m∏

i=1

fXY Ya (Xi , Yi , Ya,i |θ, θa, ψ)

×
n∏

i=m+1

fXYa (Xi , Ya,i |θa, ψ). (4)

Let θ̂ denote the MLE which maximizes the likelihood in (4).
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Assume further multivariate normality for (X, Y, Ya)′ as
⎡
⎣

X
Y
Ya

⎤
⎦ ∼ N3 (μ,Σ) with μ =

⎡
⎣

μx

μy

μya

⎤
⎦ , Σ =

⎡
⎣

σxx σxy σxya

σyx σyy σyya

σya x σya y σya ya

⎤
⎦ . (5)

In the case, the marginal distribution of X and that of (Y, Ya) given X are obtained as
follows:

X ∼ N (ψ1, ψ2),[
Y
Ya

]
|X ∼ N2

([
θ1 + θ2X

θa1 + θa2X

]
,

[
θ3 θa4
θa4 θa3

])
. (6)

The parameter vector (ψ1, ψ2, θ1, θ2, θ3, θa1, θa2, θa3, θa4)
′ in (6) can be expressed

by those of μ and Σ in (5), and the correspondence is one to one. Let ψ = (ψ1, ψ2)
′,

θ = (θ1, θ2, θ3)
′, θa = (θa1, θa2, θa3, θa4)

′, and θ+ = (θ ′, θ ′
a)′. We write the sample

means and (co)variances based on complete cases as:

X̄(m) = 1

m

m∑
i=1

Xi , Ȳ(m) = 1

m

m∑
i=1

Yi ,

Sxx(m)
= 1

m

m∑
i=1

(Xi − X̄(m))
2, Syy(m)

= 1

m

m∑
i=1

(Yi − Ȳ(m))
2,

Sxy(m)
= 1

m

m∑
i=1

(Xi − X̄(m))(Yi − Ȳ(m)).

The MLE θ̃ for θ based on the likelihood in (3) is known to have the form:

θ̃1 = Ȳ(m) − Syx(m)
S−1

xx(m)
X̄(m),

θ̃2 = S−1
xx(m)

Sxy(m)
,

θ̃3 = Syy·x(m)
= Syy(m)

− S2
yx(m)

S−1
xx(m)

. (7)

Proposition 1 Let θ̃i ’s be defined in (7). The MLE θ̂i ’s based on (X, Y, Ya) defined in
(4) can be expressed as follows:

θ̂1 = θ̃1 + Syya ·x(m)

Sya ya ·x(m)

{(
Ȳa(n)

−
Sxya(n)

Sxx(n)

X̄(n)

)
−

(
Ȳa(m)

−
Sxya(m)

Sxx(m)

X̄(m)

)}
,

θ̂2 = θ̃2 + Sya y·x(m)

Sya ya ·x(m)

(
Sxya(n)

Sxx(n)

−
Sxya(m)

Sxx(m)

)
,

θ̂3 = θ̃3 +
(

Syya ·x(m)

Sya ya ·x(m)

)2 (
Sya ya ·x(n)

− Sya ya ·x(m)

)
,
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Bias reduction using surrogate endpoints 841

θ̂a1 = Ȳa(n)
− Sya x(n)

S−1
xx(n)

X̄(n),

θ̂a2 = S−1
xx(n)

Sxya(n)
,

θ̂a3 = Sya ya ·x(n)
,

θ̂a4 = Sya y·x(m)

Sya ya ·x(n)

Sya ya ·x(m)

,

where the sample means and (co)variances such as X̄(n), Ȳa(n)
, Sxya(n)

, Ȳa(m)
, Sxya (m)

,
Syya ·x(m)

, Sya ya ·x(m)
will be defined in “Appendix A.”

Derivations of the results in Proposition 1 will be given in “Appendix A.” It should
be noted that every θ̂i is an addition of certain terms to θ̃i .

3 Bias of direct-likelihood-based MLE

In this section, we shall derive the bias of θ̃ and θ̂ under NMAR missingness, and
then compare between those biases theoretically. For the purpose, we need to specify
a missing-data mechanism. Let RY be a response indicator taking 0 or 1 for Y being
observed or missing, respectively. We use a shared-parameter model (Follmann and
Wu 1995; Albert and Follmann 2009) as a distribution of RY . We introduce a latent
variable Z which connects between RY and Y, and suppose that:

Z |[X, Ya, Y ] ∼ fZ |XYaY (z|x, ya, y;ϕ), (8)

RY |Z ∼ P(RY = 1|z; τ), (9)

[X, Ya, Y ] ⊥⊥ RY |Z , (10)

where A ⊥⊥ B|C stands for conditional independence between A and B given C , in
which⊥⊥ is called Dawid’s symbol (Lauritzen 1996, p. 28; Dawid 1979). The missing-
data mechanism can then be expressed in the form

P(RY = 1|x, ya, y;ψ, θ+, ϕ, τ )

=
∫

P(RY = 1|x, ya, y, z;ψ, θ+, ϕ, τ ) fZ |XYaY (z|x, ya, y;ϕ)dz

=
∫

P(RY = 1|z; τ) fZ |XYaY (z|x, ya, y;ϕ)dz

in view of the assumption (10). Note that the mechanism is unrelated with ψ and θ+,
and we can then write the missing-data mechanism as

P(RY = 1|x, ya, y;ϕ, τ) =
∫

P(RY = 1|z; τ) fZ |XYaY (z|x, ya, y;ϕ)dz. (11)

It is seen that the conditional probability in (11) generally depends on y, and thus, the
missing-data mechanism is not MAR.
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Take the following conditional distribution of Ry given Z as an example:

P(RY = 1|z; τ) =
{
1, if z ≤ τ,

0, if z > τ
, (12)

and assume the following distribution:

Z |(X, Ya, Y ) ∼ N (ϕ0 + ϕ1X + ϕ2Ya + ϕ3Y, ϕ4). (13)

We then have

P(RY = 1|x, ya, y;ϕ, τ) =
∫ τ

−∞
fZ |XYaY (z|x, ya, y;ϕ)dz

=
∫ τ

−∞
N (z|ϕ0 + ϕ1x + ϕ2ya + ϕ3y, ϕ4)dz

= Φ
(
(τ − ϕ0 − ϕ1x − ϕ2ya − ϕ3y)/

√
ϕ4

)
,

where N (z|μ, σ 2) means the probability density function of the normal distribution
with mean μ and variance σ 2, and Φ(z) means the cumulative distribution function
of the standard normal distribution. Note that the missing-data mechanism is a probit
regression model of (τ − ϕ0 − ϕ1x − ϕ2ya − ϕ3y)/

√
ϕ4. If we specify the functional

form in (12) appropriately, we can express a wide range of missing-data mechanisms.
By the weak law of large numbers we easily see that X̄(n)Sxx(n)

Sxya(n)
converge in

probability to μx , σxx and σxya , respectively. Under the above setup, we have that the
statistics, X̄(m)Sxx(m)

and Sxya(m)
using complete cases only, converge when n → ∞

as follows:

X̄(m)
P→ μx + σxz

σzz
E[Z − μz |RY = 1],

Sxx(m)

P→ σxx + σ 2
xz

σ 2
zz

(V ar [Z |RY = 1] − σzz) ,

Sxya(m)

P→ σxya + σxzσzya

σ 2
zz

(V ar [Z |RY = 1] − σzz) . (14)

The other statistics such as Ȳ(m), Ȳa(m)
, Syy(m)

, Sya ya(m)
, Sxy(m)

, Syya(m)
have similar

convergence properties. Proofs will be provided in “Appendix B.”
Using those results we obtain the asymptotic bias of θ̃ as follows.

Proposition 2 Under the model without auxiliary variable Ya, we have:

θ̃1 − θ1
P→ σzy·x

σzz + ρ2
zx A

(
E[Z − μz |RY = 1] − σxz Aμx

σxxσzz

)
, (15)

θ̃2 − θ2
P→ σxz(σxxσzz)

−1Aσzy·x
σzz + ρ2

xz A
, (16)
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θ̃3 − θ3
P→ σ−1

zz Aσ 2
zy·x

σzz + ρ2
zx A

, (17)

where A = V ar [Z |RY = 1] − σzz, σzy·x = σzy − σzxσ
−1
xx σxy .

Note that σzz +ρ2
xz A is always nonnegative and positive if σxx ·z > 0. Under the model

without Ya , we can easily see that the MLEs are consistent if Z ⊥⊥ Y |X , implying that
the missing is MAR, since each asymptotic bias has the factor σzy·x .

Similarly, we also obtain the asymptotic bias of θ̂ as follows.

Proposition 3 Under the model with auxiliary variable Ya, we have:

θ̂1 − θ1
P→ σzy·xya

σzz + ρ2
xz A + ρ2

zya ·x (1 − ρ2
xz)A(

E[Z − μz |RY = 1] − σxz Aμx

σxxσzz

)
, (18)

θ̂2 − θ2
P→ σxz(σxxσzz)

−1Aσzy·xya

σzz + ρ2
xz A + ρ2

zya ·x (1 − ρ2
xz)A

, (19)

θ̂3 − θ3
P→ σ−1

zz Aσzy·xya

σzz + ρ2
xz A + ρ2

zya ·x (1 − ρ2
xz)A(

2σzy·x − (σzz + ρ2
xz A)σzy·xya

σzz + ρ2
xz A + ρ2

zya ·x (1 − ρ2
xz)A

)
, (20)

where A = V ar [Z |RY = 1] − σzz, σzy·xya = σzy·ya − σzx ·ya σ
−1
xx ·ya

σxy·ya .
Note that σzz +ρ2

xz A+ρ2
zya ·x (1−ρ2

xz)A is always nonnegative and positive if σxx ·z > 0
and ρ2

ya z·x < 1.
We can also easily see that the MLEs are consistent if Z ⊥⊥ Y |(X, Ya), implying

MAR, since each asymptotic bias has the factor σzy·xya .
Here, we use ratio to evaluate the bias of MLE with Ya against that without Ya . We

have the following proposition.

Proposition 4 If σzy·x 	= 0, we obtain the bias of each MLE with auxiliary variable
(Ya) divided by that without Ya as follows:

θ̂1 − θ1

θ̃1 − θ1

P→ B, (21)

θ̂2 − θ2

θ̃2 − θ2

P→ B, (22)

θ̂3 − θ3

θ̃3 − θ3

P→ B(2 − B), (23)
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where

B =
(
1 − ρzya ·xρya y·x

ρzy·x

)
σzz + ρ2

xz A

σzz + ρ2
xz A + ρ2

zya ·x (1 − ρ2
xz)A

. (24)

An interesting point of the proposition is that it holds true irrespective of the form of
the missing-data mechanism in terms of Z given in (9).

4 Several investigations on bias reduction

We shall consider the bias ratio under several conditions to study effects on bias
reduction due to inclusion of an auxiliary variable. It follows from Proposition 4 that
the biases of MLEs for θ1 and θ2 and for θ3 will be reduced by adding the auxiliary
variable Ya if |B| < 1 for θ1 and θ2 and |B−1| <

√
2 for θ3, respectively. In particular,

the biases of the MLEs for all the parameters reduce if 0 ≤ B < 1.
Next, we explore some situations on the constant B to meet the conditions above.

First, consider the case where ρzy·xya = 0, and then the expression in (24) shows the
bias is zero. The case is, however, that the missing-data mechanism under the model
with Ya is MAR, and thus, the bias of the direct MLE is known to be zero (see, e.g.,
Little and Rubin 2002; Takai and Kano 2013).

In the case where ρzya ·xy = 0, meaning no direct effect of Ya on Z , it follows that
ρzya ·x = ρzy·xρyya ·x . Hence, we obtain:

B = (1 − ρ2
yya ·x )(σzz + ρ2

xz A)

σzz + ρ2
xz A + ρ2

zy·xρ2
yya ·x (1 − ρ2

xz)A
, (25)

from which we have that 0 ≤ B < 1. Thus, the biases will reduce due to the Ya .
In the case where ρyya ·xz = 0, meaning no direct effect of Ya on Y , we can consider

the case as an extreme case with small correlation between Y and Ya . Notice that Ya

is no longer said to be a surrogate endpoint. In the situation, it follows that ρyya ·x =
ρyz·xρzya ·x . Hence, we obtain

B = (1 − ρ2
zya ·x )(σzz + ρ2

xz A)

σzz + ρ2
zx A + ρ2

zya ·x (1 − ρ2
xz)A

(26)

from which we also have that 0 ≤ B < 1, and the biases will reduce due to the Ya .
Summarizing these results, we obtain the following result.

Proposition 5 Suppose that ρzya ·xy = 0 or ρyya ·xz = 0 holds true. Then, we have
0 ≤ B < 1, and the biases of the MLEs for all parameters are reduced by adding the
auxiliary variable Ya. The results hold true for any functional form of P(RY = 1|z; τ)

in (9).
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Bias reduction using surrogate endpoints 845

Next, consider general unstructured covariances, where the assumption in Proposi-
tion 5 does not necessarily hold. Let us write B = B1B2, where

B1 = 1 − ρzya ·xρya y·x
ρzy·x

,

B2 = σzz + ρ2
xz A

σzz + ρ2
xz A + ρ2

zya ·x (1 − ρ2
xz)A

.

In case of A ≥ 0, we can easily see that 0 < B2 ≤ 1, and that a sufficient condition
for reducing the biases by adding Ya is |B1| < 1, that is,

0 <
ρzya ·xρya y·x

ρzy·x
< 2. (27)

Since B2 is monotonically decreasing in A on A > −σzz , we have

ρ2
xz

ρ2
xz + ρ2

zya ·x (1 − ρ2
xz)

< B2 <
1

1 − ρ2
zya ·x

. (28)

Thus, a sufficient condition to reduce the biases of MLE by adding Ya is

|B1| 1

1 − ρ2
zya ·x

< 1, (29)

which is equivalent to

ρ2
zya ·x <

ρzya ·xρya y·x
ρzy·x

< 2 − ρ2
zya ·x . (30)

Now we obtain the following result.

Proposition 6 Under the inequality assumption in (30), the bias of MLE by adding
Ya is reduced. If A ≥ 0, the assumption in (30) can be relaxed as that in (27).

In general, the condition A ≥ 0 does not hold, as shown below. Suppose Z is
normally distributed and the conditional distribution of RY given Z is expressed in
(12), and then Z follows a truncated normal distribution. It is well known that the
variance of a truncated normal distribution is smaller than that of the untruncated
normal distribution. In the case, we have that A < 0.

5 Numerical evaluations of bias ratio

Here, we shall numerically calculate and plot the bias ratios under several conditions.
We put in (24) σxx = σzz = 1, and take A = −0.95, 0, 1. Note that A = V [Z |RY =
1] − 1 > −1.
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Fig. 1 Graph of B against ρya y·x in the case where ρzya ·xy = 0

Fig. 2 Graph of B against ρzya ·x in the case where ρya y·xz = 0

In the case where ρzya ·xy = 0, the graph of B against ρya y·x is shown as in Fig. 1.
It can be seen that the bias is always reduced when adding Ya with ρya y·x 	= 0, and
that the larger |ρya y·x | is, the more reduced the bias of estimator with Ya is. It can
be interpreted that the bias reduction is due to the supplement of missing information
of endpoint values by adding the auxiliary variable Ya . The smaller A is, the more
gradual the reduction of the bias ratio is.

Under ρyya ·xz = 0, we obtained the graph of B against ρzya ·x shown as Fig. 2.
It can be seen that the bias is always reduced when adding Ya with ρzya ·x 	= 0, as
before. The larger |ρzya ·x | is, the more reduced the bias of estimator with Ya is. It can
be interpreted that the bias is reduced as the variation of Z is reduced by adding Ya , so
that the connection between Y and RY is weaken. The smaller A is, the more gradual
the reduction of the bias ratio is.
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Fig. 3 Graph of B against ρya y·x in the case of unstructured correlations

In the case of unstructured correlations unlike the above situations, we presented the
graphof B againstρya y·x asFig. 3 byputting in B ρzy·x = 0.2, ρzya ·x = 0.4, ρxz = 0.5.
The graph shows that the bias ratio is 0 when ρyya ·x = 0.5, in which ρzy·xya = 0,
implying MAR under the model with Ya . When ρya y·x < 0, the bias increases by
adding Ya regardless of A. When A ≥ 0, the bias is reduced by adding Ya as long as
ρya y·x > 0.

6 Application to age-related macular degeneration study data

In this section, we take an actual data set of a clinical study of age-related macular
degeneration (ARMD) to see how our theoretical results in Sect. 2 agree to an analysis
of real data. For details about the study and results, see “Pharmacological Therapy
for Macular Degeneration Study Group (1997).” ARMD causes impairment of visual
acuity and vision loss at worst. The study is double-blinded, placebo-control, parallel-
group study to evaluate the efficacy and safety in patients with ARMD. Four hundred
and eighty-one patients are randomized to assign one of four dose groups (α-2a 1.5
MIU, 3 MIU, 6 MIU, and placebo). For efficacy, the visual acuity test was performed
using Early Treatment of Diabetic Retinopathy Study chart. The actual data set of
visual acuity scores assessed at baseline, Week 4, 12, 24, and 52 from the study, is
available as an example data of the nlmeU package on R language.

We consider change from the baseline at Week 52 as clinical endpoint (Y ) and
change from the baseline at Week 24 as a surrogate, auxiliary variable (Ya), and
compare the two estimates with and without Ya for the treatment difference in change
at Week 52 between 6MIU and Placebo (6MIU − Placebo).

The treatment differenceMLEwithout auxiliary variableYa is calculated as−4.122,
whereas that with Ya is − 4.619. These estimates are consistent with those from
MMRM (Mallinckrodt et al. 2001). The observation is reasonable because the struc-
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848 Y. Takagi, Y. Kano

ture of the direct-likelihood is similar to that of MMRM. Note that the estimate from
MMRM using all time point variables available is −4.862.

The primary purpose of the propositions given in Sect. 5 and the numerical evalu-
ations here is to give theoretical evidence to reduction or inflation of the biases of the
direct-likelihood MLE, and to give cautions practical users who blindly add auxiliary
variables.

For practical use, obviously more easy-to-check sufficient conditions need to be
developed. That is our future issue.

Appendix A: MLE based on direct-likelihood with Ya

We shall obtainMLE based on direct-likelihoodwith Ya according toAnderson (1957)
in which MLE is more easily derived by using characteristics of normal distribution
and reparametrization.

Assuming that (X, Y, Ya) have a normal distribution in (5), the conditional distri-
bution of Y given (X, Ya) follows a normal distribution with mean β0 +βx X +βya Ya

and variance σ 2
e , where:

β0 = μy − βxμx − βya μya , βx = σ−1
xx ·ya

σxy·ya , βya = σ−1
ya ya ·xσya y·x ,

σ 2
e = σyy·xya = σyy·x − σ 2

yya ·xσ−1
ya ya ·x . (31)

Hence, the direct-likelihood DL+ can be rewritten by the reparametrization as follows:

DL+ =
m∏

i=1

fY |XYa (Yi |Xi , Ya,i ;β0, βx , βya , σ
2
e )

×
n∏

i=1

fXYa (Xi , Ya,i |μx , μya , σxx , σya ya , σxya ). (32)

MLEs ofμx , μya , σxx , σxya , σya ya are easily obtained from the second factor of the
DL+ as follows:

μ̂x = X̄(n) = 1

n

n∑
i=1

Xi , μ̂ya = Ȳa(n)
= 1

n

n∑
i=1

Ya,i ,

σ̂xx = Sxx(n)
= 1

n

n∑
i=1

(
Xi − X̄(n)

)2
, σ̂ya ya = Sya ya(n)

= 1

n

n∑
i=1

(
Ya,i − Ȳa(n)

)2
,

σ̂xya = Sxya(n)
= 1

n

n∑
i=1

(Xi − X̄(n))(Ya,i − Ȳa(n)
).

The MLE of θa1, θa2, and θa3 will easily be found from the results.
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MLEs of the remaining parameters of β0, βx , βya , σ
2
e are obtained from the first

factor of DL+ from the standard results on the linear regression as follows:

β̂x = S−1
xx ·ya(m)

Sxy·ya(m)
, β̂ya = S−1

ya ya ·x(m)
Sya y·x(m)

,

β̂0 = Ȳ(m) − β̂x X̄(m) − β̂ya Ȳa(m)
,

σ̂ 2
e = σ̂yy·xya = Syy·xya(m)

= Syy·x(m)
− S2

yya ·x(m)
S−1

ya ya ·x(m)
,

where

X̄(m) = 1

m

m∑
i=1

Xi , Ȳa(m)
= 1

m

m∑
i=1

Ya,i , Ȳ(m) = 1

m

m∑
i=1

Yi ,

Sxx(m)
= 1

m

m∑
k=1

(Xi − X̄(m))
2, Sya ya(m)

= 1

m

m∑
k=1

(
Ya,i − Ȳa(m)

)2
,

Sxya(m)
= 1

m

m∑
i=1

(Xi − X̄(m))(Ya,i − Ȳa(m)
),

Suv·w(m)
= Suv(m)

− Suw(m)
S−1
ww(m)

Swv(m)
.

It follows from (31) and the relationship in parameters between (5) and (6) that

θ1 = μy − σyxσ
−1
xx μx = (β0 + βxμx + βya μya ) − θ2μx ,

θ2 = σ−1
xx σxy = σ−1

xx (σxxβx + σya xβya ) = βx + σ−1
xx σxya βya ,

θ3 = σyy·x = σ 2
e + β2

ya
σya ya ·x ,

θa4 = σya y·x = σya ya ·xβya .

Hence, we obtain MLE of these parameters as follows, which means the results in
Proposition 2:

θ̂1 = (β̂0 + β̂x μ̂x + β̂ya μ̂ya ) − θ̂2μ̂x ,

θ̂2 = β̂x + σ̂−1
xx σ̂xya β̂ya ,

θ̂3 = σ̂ 2
e + β̂2

ya
σ̂ya ya ·x ,

θ̂a4 = σ̂ya ya ·x β̂ya .

Appendix B: Limit of statistics using complete cases only

Here, we shall show the following convergences for limits of X̄(m) and Sxx(m)
as n

tends to infinity. The limits of the other statistics also have the same properties.
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X̄(m)
P→ μx + σxz

σzz
E[Z − μz |RY = 1], (33)

Sxx(m)

P→ σxx + σ 2
xz

σ 2
zz

(V ar [Z |RY = 1] − σzz). (34)

Assuming that (X, Y, Ya, Z) have a normal distribution in addition to (5), where
the mean and variance of Z are μz and σzz , respectively, and covariance between Z
and (X, Y, Ya) is (σzx , σzy, σzya ).

Using the response indicator RY , X̄(m) is expressed in the form:

X̄(m) = 1∑n
i=1 RYi

n∑
i=1

RYi Xi .

By the weak law of large numbers, we obtain

X̄(m)
P→ E[RY X ]

E[RY ] = E[X |RY = 1]P(RY = 1)

P(RY = 1)
= E[X |RY = 1].

By using the condition X ⊥⊥ RY |Z , we obtain (33) shown as follows:

E[X |RY = 1] = E[E[X |Z ]|RY = 1] = μx + σxz

σzz
E[Z − μz |RY = 1]. (35)

For Sxx(m)
, we can rewrite using response indicator RY as follows:

Sxx(m)
= 1∑n

i=1 RYi

n∑
i=1

RYi

(
Xi − X̄(m)

)2
.

By applying the weak law of large numbers,

Sxx(m)
= 1∑n

i=1 RYi

n∑
i=1

RYi X2
i − (

X̄(m)

)2

P→ E
[
RY X2

]

E[RY ] − (E [X |RY = 1])2

=E
[

X2|RY = 1
]

− (E [X |RY = 1])2

=E
[
{X − E[X |RY = 1]}2 |RY = 1

]
= V ar [X |RY = 1]

=E
[
{(X − E[X |Z ]) + (E[X |Z ] − E[X |RY = 1])}2 |RY = 1

]

=E
[
{X − E[X |Z ]}2 |RY = 1

]

+ E
[
{E[X |Z ] − E[X |RY = 1]}2 |RY = 1

]

+ 2E [{X − E[X |Z ]} {E[X |Z ] − E[X |RY = 1]} |RY = 1] . (36)
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By noting that X ⊥⊥ RY |Z , we can evaluate the third term as follows:

2E [{X − E[X |Z ]} {E[X |Z ] − E[X |RY = 1]} |RY = 1]

= 2E [E [{X − E[X |Z ]} {E[X |Z ] − E[X |RY = 1]} |Z , RY = 1] |RY = 1]

= 2E [E [X − E[X |Z ]|Z , RY = 1] {E[X |Z ] − E[X |RY = 1]} |RY = 1]

= 2E [E [X − E[X |Z ]|Z ] {E[X |Z ] − E[X |RY = 1]} |RY = 1]

= 0.

The first term is written as follows:

E
[
{X − E[X |Z ]}2 |RY = 1

]
= E

[
E

[
{X − E[X |Z ]}2 |Z

]
|RY = 1

]

= σxx ·z . (37)

The second term is written by using (35) as follows:

E
[
{E[X |Z ] − E[X |RY = 1]}2 |RY = 1

]

= E

[
σ 2

xz

σ 2
zz

(Z − E[Z |RY = 1])2|RY = 1

]

= σ 2
xz

σ 2
zz

V ar [Z |RY = 1]. (38)

Hence, we finally obtain:

Sxx(m)

P→ σxx ·z + σ 2
xz

σ 2
zz

V ar [Z |RY = 1] = σxx + σ 2
xz

σ 2
zz

(V ar [Z |RY = 1] − σzz).

Similar derivations have been used in Kano (2015).
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