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Abstract Consider a p-variate normal randomvector.We are interested in the limiting
distributions of likelihood ratio test (LRT) statistics for testing the independence of
its grouped components based on a random sample of size n. In classical multivariate
analysis, the dimension p is fixed or relatively small, and the limiting distribution of the
LRT is a chi-square distribution.When p goes to infinity, the chi-square approximation
to the classical LRT statistic may be invalid. In this paper, we prove that the LRT
statistic converges to a normal distribution under quite general conditions when p goes
to infinity.We propose an adjusted test statistic which has a chi-square limit in general.
Our comparison study indicates that the adjusted test statistic outperforms among the
three approximations in terms of sizes. We also report some numerical results to
compare the performance of our approaches and other methods in the literature.
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1 Introduction

In classical statistical inference, the likelihood ratio method has been widely used
for testing parametric hypotheses, assessing statistical model fittings and constructing
confidence intervals/regions for parameters of interest. An advantage of using the
likelihood ratio method is that one does not have to estimate the variances of the test
statistics. It is well known that the limiting distributions for the likelihood ratio test
(LRT) statistics are chi-square distributions under certain regularity conditions when
the dimension of the data or the number of the parameters of interest is fixed.

For many modern datasets, their dimensions can be proportionally large compared
with the sample size. For example, financial data, consumer data, modern manu-
facturing data, and multimedia data all have this feature. However, the chi-square
approximation does not fit the distribution of the LRT statistics very well for the high-
dimensional case, especially when the dimension of the data grows with the sample
size. To deal with this feature, Schott (2001), Ledoit and Wolf (2002), Schott (2005),
Schott (2007), Bai et al. (2009), Chen et al. (2010), Jiang et al. (2012), Srivastava and
Reid (2012), Jiang and Yang (2013), Jiang et al. (2013), Jiang and Qi (2015a), Bao
et al. (2017), and Li et al. (2017) have derived different methods to study the classical
LRT or alternatives to LRT when the dimension p is large.

In this paper, we consider the LRT statistics for testing the independence of sub-
vectors from a high-dimensional normal vector.We are devoted to deriving the limiting
distributions of the LRT statistics. Our motivation is from recent papers by Jiang and
Yang (2013) and Jiang andQi (2015a)where several LRTsonhigh-dimensional normal
random vectors have been considered when the dimension goes to infinity with the
sample size and corresponding LRT statistics are shown to be asymptotically normal.
From both Jiang and Yang (2013) and Jiang and Qi (2015a), one can conclude that the
standard LRT statistics cannot be fitted by chi-square distribution as the dimension of
the data diverges.

Our problem can be addressed as the statistical model below. For a multivariate
distribution Np(μ,�), we partition a set of p variates with a joint normal distribution
into k subsets and ask whether the k subsets are mutually independent, or equivalently,
wewant to test whether the covariancematrixΣ is block diagonal. It is worthmention-
ing that Srivastava and Reid (2012) and Jiang et al. (2013) consider the same testing
problem for multivariate normal distributions. Both of the two papers aim at deriving
new test statistics by allowing that the dimension p can be larger than the sample size
n but assuming that p/n has a limit and the numbers of components within subsets are
proportional asymptotically. Our current paper focuses on the limiting distributions
of the LRT statistics which exist only when 2 ≤ p < n. We will establish the central
limit theorem for the LRT statistic when the dimension of the normal random vector
goes to infinity. In this paper, we allow that k changes with n and the partition can be
unbalanced in the sense that numbers of components within subsets are not necessarily
proportional. Our results are extensions of some results in Jiang and Yang (2013) and
Jiang and Qi (2015a) where the number of the partition is fixed and the partition is
well balanced.

Our central limit theorem established in (3) in Sect. 2 provides normal approxima-
tion to the LRT statistic when p is large. The classical chi-square approximation in
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(9) is valid when p is fixed. To assess the normal approximation and compare it to
the classical chi-square approach, we present some finite-sample simulation results in
Sect. 3. The study indicates that the normal approximation outperforms the chi-square
approximation when p is large or relatively large, but the chi-square approximation
is better when p is small. Similar phenomena have been observed in both Jiang and
Yang (2013) and Jiang and Qi (2015a). However, the theoretical results and simula-
tion study do not suggest clear ranges of p when to use the normal approximation and
when to use the chi-square approximation. Such a cutoff on p should depend on the
sample size n and grouping parameters qi ’s and k. For the limiting distributions of
− 2 logΛn , whereΛn is theWilks likelihood ratio statistic defined in (2), the transition
from the chi-square to the normality seems a problem in practice. This motivates us
to investigate why the chi-square approach fails when p is large. As a result, we will
propose an adjusted LRT statistic which has a chi-square limit in the entire range of
p. Some more insights will be given in Sect. 2.

One related problem is to test the independence of the p variates of a p-dimensional
normal random vectors, which is also considered in Jiang and Yang (2013) and Jiang
and Qi (2015a) as a different test problem. This is indeed a special case of our setting
when the random vector is partitioned into p blocks and each block contains only one
component.

The rest of the paper is organized as follows. In Sect. 2, we state our main results
including the central limit theorem for the LRT statistic when dimension p goes to
infinity with the sample size n and the chi-square approximation for the adjusted LRT
statistic for any p in the range that the LRT can be applied. In Sect. 3, we carry out
some simulation studies to compare the performance of three methods including the
chi-square approximation to the LRT statistic, the normal approximation to the LRT
statistics, and the chi-square approximation to the adjusted LRT statistic. We also
compare our test statistics with some other approaches in the literature. All proofs are
given in Sect. 4.

2 Main results

Throughout, let χ2
f denote the chi-square random variable with f degrees of freedom

and N (0, 1) the standard normal variable. For each α ∈ (0, 1), χ2
f,α and zα are the α

level critical values of χ2
f and N (0, 1), respectively. Np(μ,�) denotes p-dimensional

multivariate normal distribution with mean μ and covariance matrix �.
For k ≥ 2, let q1, . . . , qk be k positive integers. Denote p = q1 + · · · + qk and let

� = (�i j )1≤i, j≤k

be a positive definite matrix, where �i j is a qi × q j sub-matrix for all 1 ≤ i, j ≤ k.
Assume ξi is a qi -dimensional normal random (column) vector for each 1 ≤ i ≤ k, and
the p-dimensional random vector (ξ ′

1, . . . , ξ
′
k)

′ has the distribution Np(μ,�). We are
interested in testing the independence of k random vectors ξ1, . . . , ξk , or equivalently
testing

H0 : �i j = 0 for all 1 ≤ i < j ≤ k vs Ha : H0 is not true. (1)
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Assume that x1, . . . , xn are independent and identically distributed (i.i.d.) random
vectors from distribution Np(μ,�). Define

A =
n∑

i=1

(xi − x̄)(xi − x̄)′ with x̄ = 1

n

n∑

i=1

xi ,

and partition it as follows:

A =

⎛

⎜⎜⎜⎝

A11 A12 · · · A1k
A21 A22 · · · A2k
... · · · · · · ...

Ak1 Ak2 · · · Akk

⎞

⎟⎟⎟⎠

where Ai j is a qi × q j matrix. The likelihood ratio statistic for testing (1) is given by

Λn = |A|n/2

∏k
i=1 |Ai i |n/2

:= (Wn)
n/2, (2)

see Wilks (1935) or Theorem 11.2.1 from Muirhead (1982).
In the sequel, we assume that both k and p can depend on the sample size n, that

is, k = kn and p = pn , and both can diverge to infinity. First, we extend the results
given in Jiang and Yang (2013) and Jiang and Qi (2015a).

Theorem 1 Let p = pn satisfy 2 ≤ p < n and pn → ∞ as n → ∞ and k = kn ≥ 2
be a sequence of integers. Assume that q1, . . . , qk are k positive integers such that
p = ∑k

i=1 qi and max1≤i≤k qi ≤ δp, for a fixed δ ∈ (0, 1) and all large n. Λn is the
Wilks likelihood ratio statistic defined in (2). Then, under the null hypothesis in (1)

T0 := −2 logΛn − μ̄n

σ̄n

d−→ N (0, 1) (3)

as n → ∞, where

μ̄n = μn + n

3

(
b(n, p)−

k∑

i=1

b(n, qi )
)
, σ̄ 2

n = σ 2
n +2n2

(
b(n, p)−

k∑

i=1

b(n, qi )
)
(4)

with

μn = n
k∑

i=1

(
qi − n + 3

2

)
log

(
1 − qi

n

)
− n

(
p − n + 3

2

)
log

(
1 − p

n

)
, (5)

σ 2
n = 2n2

(
− log

(
1 − p

n

)
+

k∑

i=1

log
(
1 − qi

n

))
(6)
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and

b(n, q) =
q∑

j=1

1

(n − j)2
for 1 ≤ q < n. (7)

Remark 1 The central limit theorem in (3) is still valid if μ̄n and σ̄n are replaced by
μn and σn , respectively. In fact, we will show in the proof of Theorem 1 in Sect. 4 that

μ̄n − μn

σ̄n
→ 0 and

σn

σ̄n
→ 1 as n → ∞. (8)

In general, μ̄n and σ̄ 2
n are better approximations to themean and variance of−2 logΛn ,

butμn andσ 2
n have simpler expressions.Our simulation study indicates little difference

in the convergence rate to normality between two different selections if p is not too
close to n. The situation is quite different when p is close to n such as p = n − 1.
One can verify that in this case the convergence rates in (8) are of order (log n)−1/2.
Therefore, with n = 100 or even n = 1000, using μn and σn in (3) can result in a
serious bias in the normal approximation.

Remark 2 When the number of the partition k is fixed and p = pn goes to infinity
as n → ∞, Jiang and Yang (2013) and Jiang and Qi (2015a) prove the central limit
theorem for logWn under additional assumptions including: (A) 2 ≤ p < n − 1;
(B) for some δ ∈ (0, 1), δ ≤ qi/q j ≤ δ−1 for all 1 ≤ i, j ≤ n and all n. Note that
−2 logΛn = −n logWn from (2). After taking into account the constant scale−n, one
can find out that the estimates for the mean and variance of−2 logΛn in this paper are
slightly different from those in Jiang and Qi (2015a). Our estimates are more accurate
in the sense that our estimates catch the leading terms not only for large p but also for
small p. This will be very critical in establishing our Theorem 2.

Remark 3 Our restriction 2 ≤ p < n is a natural one since the matrix A is not of
full rank and the LRT fails when p ≥ n. See, for example, Jiang and Yang (2013).
Compared with Jiang and Yang (2013) and Jiang and Qi (2015a), our present paper
has removed several constraints in the following three aspects: a). the number of the
partition k can depend on n; b). the numbers of the components {q j } do not have to
be comparable; c). the dimension p can be any integer in the range 2 ≤ p < n. In
particular, it follows fromTheorem1 that the central limit theoremholds for−2 logΛn

when p = n − 1.

Remark 4 The classical likelihood method handles the case when both p and k are
fixed integers. When q1, q2, . . . , qk are fixed as n goes to infinity, the standard LRT
statistic of (1) has a chi-square limit:

− 2ρ logΛn
d−→ χ2

f , (9)

where

f = 1

2

(
p2 −

k∑

i=1

q2i

)
, (10)
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ρ = 1 −
2
(
p3 − ∑k

i=1 q
3
i

)
+ 9

(
p2 − ∑k

i=1 q
2
i

)

6n
(
p2 − ∑k

i=1 q
2
i

) , (11)

see, for example, Theorem 11.2.5 in Muirhead (1982). Note that ρ is introduced to
achieve the second-order accuracy and ρ converges to one as n goes to infinity.

As we have known, the chi-square approximation and the normal approximation
apply in different ranges of p. But for moderate values of p, it seems difficult to tell
which approximation method should be used, and therefore, some guidelines in this
direction are desirable in practice. To better understand the chi-square approximation,
one needs to look at the asymptotic mean and variance of the test statistic. It is well
known that the ratio between the mean and the variance of a chi-square distribution
is 1:2. One can verify that the ratio of the asymptotic mean μ̄n and the asymptotic
variance σ̄ 2

n of −2 logΛn is close to 1:2 when p is fixed but this ratio can be quite
different from 1:2 when p goes to infinity from Theorem 1. The same is true for
−2ρ logΛn . This explains why the chi-square approximation for −2 logΛn works
only for small p. On the other hand, a sequence of random variables with a normal
limit can be also approximated in distribution by linear functions of some chi-square
random variables, and this means that when p is large, the LRT statistic −2 logΛn ,
after proper normalization, can also be approximated by some chi-square distribution.
Since we aim at a unified chi-square approximation in the full range 2 ≤ p < n, we
should also take into account the case when p is small.

We propose an adjusted log-likelihood ratio test statistic (ALRT)

Zn = (−2 logΛn)

√
2 fn
σ̄ 2
n

+ fn − μ̄n

√
2 fn
σ̄ 2
n

(12)

with fn , μ̄n and σ̄ 2
n being defined in (10) and (4), respectively. Note that the ALRT

is essentially the LRT statistic since it is a linear combination of the log-likelihood
ratio test statistic,−2 logΛn . We have the following theorem regarding the chi-square
approximation of Zn statistic.

Theorem 2 Let p = pn be a sequence of integers with 2 ≤ p < n for any n ≥ 1.
Assume k = kn is also a sequence of positive integers, and q1, . . . , qk are k positive
integers such that p = ∑k

i=1 qi . Assume there exists a constant δ ∈ (0, 1) such that
max
1≤i≤k

qi ≤ δp for all large n. Then, we have under the null hypothesis in (1)

lim
n→∞ sup

−∞<x<∞
|P(Zn ≤ x) − P(χ2

fn ≤ x)| = 0. (13)

Remark 5 The test statistic Zn defined in (12) is a linear combination of −2 logΛn ,
and the coefficients are selected in such away that the asymptoticmean and variance of
Zn are close to fn and 2 fn , respectively, where fn and 2 fn are the mean and variance
of a chi-squared random variable with fn degrees of freedom.
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Remark 6 Let α ∈ (0, 1) be any given number. Based on the classical chi-square
approximation in (9), the LRT rejects the null hypothesis in (1) if−2ρ logΛn ≥ χ2

fn ,α
.

Based on the normal approximation in Theorem 1, the rejection region is−2 logΛn ≥
μ̄n + σ̄nzα . Based on the chi-square approximation in Theorem 2, the LRT rejects the
null hypothesis in (1) if Zn ≥ χ2

fn ,α
.

Remark 7 In Theorems 1 and 2, we impose assumption that max
1≤i≤k

qi ≤ δp for some

δ ∈ (0, 1). This condition is quite mild. We notice that it is trivial when p is fixed.
It rules out the extreme situation that max

1≤i≤k
qi/p → 1 along the entire sequence or

any subsequence. Violating this assumption may result in a non-normal or chi-square
limit.

As an application, we consider the test for complete independence investigated
in Jiang and Yang (2013) and Jiang and Qi (2015a). Assume that a p-dimensional
random vector x = (x1, . . . , xp)′ has a distribution Np(μ,�). Our interest is in
testing the independence of the p components x1, x2, . . . , xp or equivalently testing
that the covariance matrix � is diagonal based on a random sample x1, . . . , xn from
distribution Np(μ,�). Let R = (ri j )p×p be the correlation matrix generated from
Np(μ,�). Then, the test is equivalent to

H0 : R = Ip vs Ha : R �= Ip, (14)

where Ip denotes p × p identity matrix.
Obviously, test (14) is a special case of the test (1) with k = p and q1 = . . . =

qp = 1. In this case, Wn , defined in (2), is equal to the determinant of Pearson’s
correlation matrix. More specifically, let xi = (xi1, . . . , xip)′ for 1 ≤ i ≤ n and
x̄ j = 1

n

∑n
m=1 xmj for 1 ≤ j ≤ p. For 1 ≤ i, j ≤ p, define

r̂i j =
∑n

m=1(xmi − x̄i )(xmj − x̄ j )√∑n
m=1(xmi − x̄i )2 · ∑n

m=1(xmj − x̄ j )2
. (15)

Then, Pearson’s correlation matrix is given by R̂n = (
r̂i j

)
p×p.

From (2), logΛn = n
2 log |R̂n|. Under condition 2 ≤ p < n − 4 and p → ∞, a

central limit theorem is proved for log |R̂n| in Jiang and Yang (2013) and Jiang and Qi
(2015a), see, for example, Corollary 1 in Jiang and Qi (2015a). Since max1≤i≤p qi =
1 ≤ p/2 for any 2 ≤ p < n, both Theorems 1 and 2 are valid in this case. In our
central limit theorem in Theorem 1, we have extended the range for p and allow
p = n − 4, n − 3, n − 2, and n − 1 as well. From Theorems 1 and 2, we conclude the
following corollary.

Corollary 1 Let p = pn be a sequence of positive integers with 2 ≤ p < n. Set

logΛn = n
2 log |R̂n|, σ̄ 2

n = 2n2
(
p log(1− 1

n )− log(1− p
n )+∑p

j=1
1

(n− j)2
− p

(n−1)2

)
,
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μ̄n = n

⎛

⎝p
(5
2

− n
)
log

(
1 − 1

n

)
−

(
p − n + 3

2

)
log

(
1 − p

n

)

+ 1

3

⎛

⎝
p∑

j=1

1

(n − j)2
− p

(n − 1)2

⎞

⎠

⎞

⎠ ,

and fn = 1
2 p(p − 1). Define Zn as in (12). Then, under the null hypothesis in (14),

we have

lim
n→∞ sup

−∞<x<∞
|P(Zn ≤ x) − P(χ2

fn ≤ x)| = 0.

In addition, if limn→∞ pn = ∞, we have

−2 logΛn − μ̄n

σ̄n

d→ N (0, 1).

3 Simulation study

In this section, we will have some simulation studies to compare the performance of
three different approaches to the likelihood ratio test statistics and to compare our
adjusted likelihood test statistics with some other approaches in the literature.

3.1 Comparisons of the likelihood ratio tests under different approaches

In this subsection, we will compare the accuracy of the three different approaches to
the likelihood ratio test statistic −2 logΛn under the null hypothesis of (1) and the
performance of−2 logΛn under different normalizations proposed by Jiang and Yang
(2013), Jiang and Qi (2015a) and approaches in the present paper in terms of sizes
and powers.

First, we carry out a finite-sample simulation study to compare the performance
of the three approximation methods including the classical chi-square approximation
(9), the normal approximation (3), and adjusted chi-square approximation (13). For
the three methods, we demonstrate how well the proposed limiting distributions fit the
histograms of the three test statistics based on 10,000 random samples of size n = 101.
From (21) in Lemma 1, the moment-generating function of logWn is distribution-free
under the null hypothesis in (1). Since the three test statistics are functions of Λn and
hence they are also functions of logWn from (2), they are distribution-free under the
null hypothesis in (1). Therefore, the underlying distribution in our study is assumed to
be a multivariate normal distribution with independent standard normal components.

The simulation study consists of two cases. In thefirst case,we test the independence
of k = 3 block vectors and the ratio of their dimensions is kept fixed as q1:q2:q3 =
2:2:1 with p = q1 + q2 + q3 = 5, 30, 60, and 100, respectively, and the sample
size n = 101 is fixed. Figure 1 contains the histograms for the three test statistics
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considered in Sect. 2 including classical chi-square approach “Chisq” given in (9),
normal approximation “CLT” given in (3), and adjusted likelihood ratio approach
“ALRT” in (12) and (13). The second case is the test of complete independence in (14)
with dimension parameter p = 5, 30, 60, and 100 and a fixed sample size n = 101,
and corresponding histograms for the three test statistics are included in Fig. 2.

From both Figs. 1 and 2, one can easily conclude the following common features:

(i) The classical chi-square approximation works very well for small p, and it
becomes worse with the increase of p and eventually departs completely from
the histograms of the test statistic.

(ii) The normal approximation shows some lack of fit to the histograms for small p
such as p = 5, and the approximation is getting better with the increase of p.
For p = 100, the normal distribution is slightly away from the histograms of
the test statistic. In the range of 2 ≤ p ≤ n − 1 = 100, p = 100 represents the
extremal case when one can apply the likelihood ratio method, and the sample
covariance matrices in this case are nearly singular. In this case, the convergence
rate in (3) is slow. The fit improves with the increase of n.

(iii). The adjusted likelihood ratio test (ALRT) statistic given by (12) works very
well in the entire range 2 ≤ p ≤ n − 1 = 100, that is, for smaller p, ALRT
behaves like the classical chi-square approximation, while for large p, the ALRT
performs equally well as the normal approximation.

In summary, the adjusted likelihood ratio test (ALRT) outperforms over the classical
chi-square approximation and the normal approximation. By using theALRT, one does
not have to differentiate whether a value of p is small or moderately large. For very
large p, the ALRT and the normal approximation work equally well.

Now we compare the performance of −2 logΛn under different normalizations
proposed by Jiang and Yang (2013), Jiang and Qi (2015a) and approaches in the
present paper in terms of sizes and powers. Jiang and Yang (2013) and Jiang and Qi
(2015a) use the same normalization constants. Under the null hypothesis in (1), they
show the following central limit theorem under different constraints on q1, . . . , qk
with fixed k ≥ 2:

T1 := −2 logΛn − mn

τn

d→ N (0, 1) as n → ∞, (16)

where

mn = n

(
r2n−1

(
p − n + 3

2

)
−

k∑

i=1

r2n−1,i

(
qi − n + 3

2

))
,

τ 2n = 2n2
(
r2n−1 −

k∑

i=1

r2n−1,i

)
,

rx = (− log(1 − p
x ))1/2 for x > p, and rx,i = (− log(1 − qi

x ))1/2 for x > qi
and 1 ≤ i ≤ k. In fact, Jiang and Yang (2013) prove (16) under assumption that
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Fig. 1 Test of independence in
(1) with k = 3: histograms for
three test statistics including
classical chi-square approach
“Chisq” given in (9), normal
approximation “CLT” given in
(3), and adjusted likelihood ratio
approach “ALRT” in (12) and
(13)
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Fig. 2 Test of complete
independence in (14):
histograms for three test
statistics including classical
chi-square approach “Chisq”
given in (9), normal
approximation “CLT” given in
(3), and adjusted likelihood ratio
approach “ALRT” in (12) and
(13)
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qi/n → yi ∈ (0, 1) for 1 ≤ i ≤ k and Jiang and Qi (2015a) assume only that qi ’s are
of the same order and min1≤i≤k qi → ∞ as n → ∞.

Byusing T1 in (16), one rejects the null hypothesis in (1) at levelα if T1 > mn+τnzα .
As some empirical evidence has shown, the classical chi-square approach to the

likelihood ratio test statistics is improper to our current settings. Our comparison of
the likelihood ratio test statistics under different normalizations will focus on the test
statistics T0, Zn , and T1, defined in Eqs. (3), (12), and (16), respectively.

In our simulation, we generate 10,000 random samples of size n from amultivariate
normal distribution Np(0,�δ), where�δ = (1−δ)Ip+δJp, where Ip denotes a p× p
identity matrix, Jp denotes a p × p matrix with all entries equal to 1, and δ ∈ [0, 1)
is a constant.

First, we set k = 3. With different choices of (q1, q2, q3) and n, we estimate the
sizes (when δ = 0) and powers (when δ = 0.1 and 0.2) for the three test statistics
based on the 10000 random samples. The comparison results are given in Table 1.

Then, we consider the case when k is large. In the study, we assume p is an even
integer and set k = p/2. We discuss two different cases as follows.
Case 1 (Balanced case) q1 = · · · = qk = 2;
Case 2 (Unbalanced case) q1 = k + 1, q2 = · · · = qk = 1.

Again the sizes and powers are estimated from 10,000 random samples of size n
from Np(0,�δ) with different choices of p and n under each of the two cases above.
The simulation results are given in Table 2.

From Tables 1 and 2, we can conclude that test statistic Zn gives the most accurate
sizes (type I errors), especially when dimension parameter p is not large. Both T0 and
T1 are also working very well in terms of sizes when p is reasonably large. T0 and T1
have larger powers than Zn especially when p is small, and this can be explained by
the difference among sizes of the three test statistics. Note that all three test statistics
are linear transformations of likelihood ratio test statistic −2 logΛn . Since T0 and T1
have larger and less accurate sizes, their rejection regions are larger than those of Zn

and naturally their powers are larger than those of Zn . When p increases, the size
of Zn is getting closer to that of T0 and T1 and the powers of all test statistics are
comparable. From Tables 1 and 2, we note that the performance of T0 and T1 is quite
similar in terms of both sizes (type I errors) and powers.

3.2 Comparisons of adjusted log-likelihood ratio test statistic and other methods

In this subsection, we plan to compare our adjusted log-likelihood ratio test statistic,
i.e., Zn in (12) with other three test statistics, including two trace criterion test statistics
by Jiang et al. (2013) and Li et al. (2017) and Schott type statistics by Bao et al. (2017).
Jiang et al. (2013) and Bao et al. (2017) propose test statistics for test (1) for any fixed
k ≥ 2 while Li et al. (2017) consider test (1) for k = 2 only.

Bao et al. (2017) compare numerically the performance of test statistics in Jiang
et al. (2013), Jiang and Yang (2013), and Bao et al. (2017) when k = 3. They conclude
that Schott type statistics are very robust, and when the sample size n and the total
dimension p are large, all three test statistics perform very satisfactorily in terms of the
empirical sizes, except the likelihood ratio test statistics when the total dimension p is
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too close to the sample size n. In terms of the empirical powers, Schott type statistics
are very competitive among the three test statistics in most cases.

Since Li et al. (2017)’s test statistics apply to the case k = 2 only, for convenience,
we will compare the aforementioned test statistics in case k = 2 and compare them
with the test statistics in the present paper.

Jiang et al. (2013)’s large-dimensional trace criterion test statistic (T2) is defined
as

Ln = tr(A21A
−1
11 A12A

−1
22 ).

where tr(A) denotes the trace of matrix A. If rn1 := q2/q1 → r1 ∈ (0,∞), rn2 :=
q2/(n − 1 − q2) → r2 ∈ (0,∞), q2 < n, then

T2 := Ln − an√
bn

d→ N (0, 1) as n → ∞ (17)

under the null hypothesis in (1), where

bn = 2h2nr
2
n1r

2
n2

(rn1 + rn2)2
, an = q2rn2

rn1 + rn2
, hn = √

rn1 + rn2 − rn1rn2.

It is easy to verify that an = q1q2/(n − 1) and bn = 2q1q2(n − 1 − q1)(n − 1 −
q2)/(n − 1)4.

In case k = 2, the Schott type statistics proposed by Bao et al. (2017) reduce to

tr
(
A−1/2
22 A21A

−1
11 A12A

−1/2
22

)
= tr

(
A21A

−1
11 A12A

−1
22

)
,

which is equal to Ln . Theorem 3.1 in Bao et al. (2017) leads to (17) in this case.
Define for i, j = 1, 2

γi j = 1

(n − 2)(n + 1)

(
tr(Ai j A ji ) − 1

n − 1
tr(Aii )tr(A j j )

)
.

The trace criterion test statistic by Li et al. (2017) is defined as γ12. Under the null
hypothesis in (1) for k = 2, it is proved in Li et al. (2017) that

T3 :=
√

(n − 2)(n + 1)

2

γ12√
γ11γ22

d→ N (0, 1) as n → ∞ (18)

if p = q1 + q2 → ∞ as n → ∞ and

0 < lim
n→∞

1

p
tr(�i) < ∞ for i = 1, 2, 4. (19)

Note that the test statistic T3 is not distribution-free under the null hypothesis of (1),
and the asymptotic normality (18) is proved under condition (19); however, condition
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p = q1 + q2 → ∞ is less restrictive than that required for other statistics mentioned
above.

Given a size α ∈ (0, 1), test T2 (or T3) rejects the null hypothesis if T2 > zα (or
T3 > zα).

Now we compare the performance of test statistics T2 and T3 and our adjusted log-
likelihood ratio test statistic Zn . In our simulation study, we assume q1 > q2 ≥ 1 and
p = q1 + q2 < n. Our samples are generated from the populations similar to those in
Jiang et al. (2013). Let z = (z1, . . . , z p)′ be a random vector whose components are
independent normal random variables with mean 0 and variance 1.
Model 1 x = (x1, . . . , xp)′, where xi = (1 + c)zi for i = 1, . . . , p1, xp1+ j =
z p1+ j + cz j for j = 1, . . . , p2, and c is a constant;
Model 2 x = (x1, . . . , xp)′, where xi = (1 + c)zi for i = 1, . . . , p1, xp1+ j =
z p1+ j + cz j for j = 1, . . . , p2 − 1, xp = p−1/4z p, and c is a constant.

With a selection of (q1, q2, n, c), we generate 10,000 random samples of size n
from each model above and then estimate the sizes of the tests (when c = 0) or the
powers of the tests (when c �= 0). The size α is set to be 0.05 in the simulation.

Tables 3 and 4 present results for the numerical comparisons on the three test
statistics. From the two tables, empirical sizes for three tests are close to the nominal
level 0.05 inmost cases under bothModel 1 andModel 2. In view of empirical powers,
Zn and T2 are comparable in most cases while T3 is better than both Zn and T2 under
Model 1. Under Model 2, Zn has a slightly larger power than T2 in most cases and
both are significantly better than T3.

4 Proofs

4.1 Some Lemmas

For two sequences of numbers {an} and {bn}, the notation an = O(bn) as n → ∞
means lim supn→∞ an

bn
< ∞, and an = o(bn) as n → ∞ means limn→∞ an

bn
= 0.

Throughout the paper, Γ (x) stands for the Gamma function, given by

Γ (x) =
∫ ∞

0
t x−1e−tdt x > 0.

Define the multivariate Gamma function by

Γp(x) := π p(p−1)/4
p∏

i=1

Γ
(
x − 1

2
(i − 1)

)
(20)

with x > (p − 1)/2. See p. 62 in Muirhead (1982).
We will need the following formula for the moments of Wn , where Wn is defined

in Eq. (2).

Lemma 1 (Theorem 11.2.3 from Muirhead (1982)) Let p = ∑k
i=1 qi and Wn be

Wilks’ likelihood ratio statistic defined as (2). Then, under (1),
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0.
05

48
0.
84

61
0.
77

55
0.
31

61
1.
00

00
1.
00

00
0.
99

40

(6
0,
40

)
15

0
0.
04

84
0.
04

82
0.
05

15
0.
40

87
0.
34

67
0.
22

17
0.
99

27
0.
95

11
0.
94

38

20
0

0.
04

77
0.
04

73
0.
04

94
0.
71

79
0.
60

08
0.
31

60
1.
00

00
0.
99

97
0.
99

58

30
0

0.
05

14
0.
05

10
0.
05

24
0.
98

00
0.
93

44
0.
53

31
1.
00

00
1.
00

00
1.
00

00
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E(Wt
n) = Γp

( n−1
2 + t

)

Γp
( n−1

2

)
k∏

i=1

Γqi

( n−1
2

)

Γqi

( n−1
2 + t

) (21)

for any t > (p − n)/2, where Γp(x) is defined as (4.1).

To prove our main result in Theorem 1, we will establish the central limit theorem
for logWn by showing that the moment-generating function for properly normal-
ized logWn converges to that of a normal distribution. Since E(et logWn ) = E(Wt

n),
Lemma 1 bridges the moment-generating functions for logWn and the multivariate
Gamma functions defined in (20). Before we proceed to prove Theorem 1, we will
present several lemmas, some of which involve deliberate expansions of the Gamma
functions.

Define
ξ(x) = −2(log(1 − x) + x), x ∈ [0, 1). (22)

ξ(x) is nonnegative in its domain.By thedefinitionof ξ(x), ξ(0) = 0, and ξ ′(x) = 2x
1−x .

We have

ξ(x) = ξ(x) − ξ(0)

=
∫ x

0
ξ ′(t)dt

= 2
∫ x

0

t

1 − t
dt.

Substitute t = ux ; then, dt = xdu. Therefore,

ξ(x) = 2
∫ 1

0

ux2

1 − ux
du = 2x2

∫ 1

0

u

1 − ux
du, x ∈ [0, 1). (23)

We also define

η(x) = ξ(x)

x2
= 2

∫ 1

0

u

1 − ux
du, x ∈ [0, 1).

Then,
η(x) ≥ 1 is increasing in [0,1), and limx↑1 η(x) = ∞. (24)

One can easily verify

n

q(n − q)
≤ 2, for 1 ≤ q < n (25)

which together with (24) yields

max
1≤i<n

1

8

√
ξ
(
i
n

)

n−i
4

= 1

2
max
1≤i<n

n
i(n−i)√
η

( i
n

) ≤ 1. (26)
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Lemma 2 Let rn be any sequence of positive integers and satisfies rn → ∞ and
rn/n → 0 as n → ∞. Then,

lim
n→∞ max

rn≤q<n

q
n(n−q)

ξ
( q
n

) = 0, (27)

and

lim
n→∞ max

rn≤q<n

1
(n−q)2

ξ
( q
n

) = 0. (28)

Moreover, we haven for any ε > 0

lim
n→∞ max

rn≤q<n

(
q

n(n−q)

)1+ε

ξ
( q
n

) = 0. (29)

Proof It is easy to see that

max
rn≤q≤n−rn

n

q(n − q)
= n

rn(n − rn)
→ 0 as n → ∞. (30)

Note that

q
n(n−q)

ξ
( q
n

) =
n

q(n−q)

η
( q
n

) .

Then, it follows from (30) and (24) that

max
rn≤q≤n−rn

q
n(n−q)

ξ
( q
n

) = max
rn≤q≤n−rn

n
q(n−q)

η
( q
n

) ≤ n

rn(n − rn)
→ 0,

and from (25) that

max
n−rn<q<n

q
n(n−q)

ξ(
q
n )

≤ max
n−rn<q<n

2

η(
q
n )

≤ 2

η
(
1 − rn

n

) → 0

since η(x) → ∞ as x ↑ 1. Therefore, we obtain (27). Similarly, we can show (28).
Finally, (29) follows from (27) and (25). This completes the proof of the lemma. ��

Lemma 3 Let p = pn satisfy p < n and p → ∞ as n → ∞. Assume k = kn is
a sequence of positive integers and q1, . . . , qk are positive integers such that p =∑k

i=1 qi . σ
2
n is defined as in (6). Then,

σ 2
n = n2

(
ξ
( p

n

)
−

k∑

i=1

ξ
(qi
n

))
, (31)
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and

n2
(
1 −

k∑

i=1

(qi
p

)2
)

ξ
( p

n

)
≤ σ 2

n ≤ n2ξ
( p

n

)
. (32)

Furthermore, if for some δ ∈ (0, 1), max1≤i≤k qi ≤ δp for all large n, we have

n2(1 − δ)ξ
( p

n

)
≤ σ 2

n ≤ n2ξ
( p

n

)
. (33)

Proof (31) is trivial by using the Definition (22) and the fact that p = ∑k
i=1 qi . We

will prove (32) and (33).
Since ξ(x) is nonnegative in its domain, it follows that σ 2

n ≤ n2ξ(
p
n ), that is, the

first half of (32) is true. It follows from (23) that

ξ
( p

n

)
−

k∑

i=1

ξ
(qi
n

)
= 2

( p

n

)2 ∫ 1

0

u

1 − pu
n

du −
k∑

i=1

2
(qi
n

)2 ∫ 1

0

u

1 − qi u
n

du

≥ (( p
n

)2 −
k∑

i=1

(qi
n

)2) × 2
∫ 1

0

u

1 − pu
n

du

= 2
∫ 1

0

u
(
p
n

)2

1 − pu
n

(
1 −

k∑

i=1

(qi
p

)2)du

= (
1 −

k∑

i=1

(qi
p

)2) × 2
∫ 1

0

u(
p
n )2

1 − pu
n

du

= (
1 −

k∑

i=1

(qi
p

)2)
ξ
( p
n

)
,

which, together with (31), yields (32).
Since max1≤i≤k qi ≤ δp and

∑
1≤i≤k qi = p,

k∑

i=1

(
qi
p

)2

≤ max1≤i≤k qi
p

k∑

i=1

qi
p

= max1≤i≤k qi
p

≤ δ,

we can easily conclude (33) from (32). This completes the proof of the lemma. ��
Lemma 4 Let δ ∈ (0, 1) be any given number. Then,

log
Γ (x + b)

Γ (x)
= (x + b) log(x + b) − x log x − b

−
(

1

2x
+ 1

12x2

)
b + b2

4x2
+ O

( |b|3 + 1

x3

)
(34)
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holds uniformly on b ∈ [−δx, δx] as x → ∞. Furthermore,

log

(
Γ (x + b)

Γ (x)
· Γ (z)

Γ (z + b)

)

= b

(
log x − log z −

(
1

2x
− 1

2z

)
−

(
1

12x2
− 1

12z2

))
(35)

+ b2
(

1

2x
− 1

2z
+ 1

4x2
− 1

4z2

)
+ O

( |b|3(x − z)

xz2
+ |b|3 + 1

z3

)

uniformly over b ∈ [−δz, δz] and x ≥ z as z → ∞.

Proof A similar expansion to (34) has been proved in Lemma A.1 in Jiang and Qi
(2015b). We need to use the ;well-known Stirling formula (see, e.g., Ahlfors (1979)):

logΓ (x) =
(
x − 1

2

)
log(x) − x + 1

2
log(2π) + 1

12x
+ O

(
1

x3

)
(36)

as x → ∞. For any fixed δ ∈ (0, 1), we have that

logΓ (x + b) − logΓ (x)

= (x + b) log(x + b) − x log x − b − 1

2
log

(
1 + b

x

)

+ 1

12

(
1

x + b
− 1

x

)
+ O

(
1

x3

)

uniformly on b ∈ [−δx, δx] as x → ∞. Then, (34) follows from the facts that

log

(
1 + b

x

)
= b

x
− b2

2x2
+ O

( |b|3
x3

)

and

1

x + b
− 1

x
= − b

x2
+ O

(
b2

x3

)
= − b

x2
+ O

( |b|3 + 1

x3

)

uniformly on b ∈ [−δx, δx] as x → ∞.

To prove (35), we have

c(x, b) := (x + b) log(x + b) − x log x − b −
(

1

2x
+ 1

12x2

)
b + b2

4x2

=
∫ b

0

d

dt

(
(x + t) log(x + t)

)
dt − b −

(
1

2x
+ 1

12x2

)
b + b2

4x2
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=
∫ b

0
log(x + t)dt −

(
1

2x
+ 1

12x2

)
b + b2

4x2

= b
∫ 1

0
log(x + bv)dv −

(
1

2x
+ 1

12x2

)
b + b2

4x2

= b log x + b2

2x
−

(
1

2x
+ 1

12x2

)
b + b2

4x2

+ b
∫ 1

0

(
log

(
1 + bv

x

) − bv

x

)
dv

= b log x −
(

1

2x
+ 1

12x2

)
b +

(
1

2x
+ 1

4x2

)
b2

− b
∫ 1

0

∫ bv/x

0

s

1 + s
dsdv

= b log x −
(

1

2x
+ 1

12x2

)
b +

(
1

2x
+ 1

4x2

)
b2

−b
∫ 1

0
v2

∫ b/x

0

u

1 + uv
dudv.

Then, we obtain from (34) that uniformly over b ∈ [−δz, δz] and x ≥ z

log
(Γ (x + b)

Γ (x)
· Γ (z)

Γ (z + b)

)

= c(x, b) − c(z, b) + O

( |b|3 + 1

z3

)

= b(log x − log z) −
(

1

2x
+ 1

12x2

)
b +

(
1

2x
+ 1

4x2

)
b2 +

(
1

2z
+ 1

12z2

)
b

−
(

1

2z
+ 1

4z2

)
b2 − b

∫ 1

0
v2

∫ b/x

b/z

u

1 + uv
dudv + O

( |b|2 + 1

z3

)
,

and (35) follows since

∣∣∣∣b
∫ 1

0
v2

∫ b/x

b/z

u

1 + uv
dudv

∣∣∣∣ ≤ b2

(1 − δ)z

∫ 1

0
v2

∣∣∣∣
∫ b/x

b/z
du

∣∣∣∣ dv = |b|3(x − z)

3(1 − δ)xz2
.

This completes the proof of the lemma. ��
Lemma 5 As n → ∞,

q∑

i=1

(
1

n − i
− 1

n − 1

)
= − log

(
1 − q

n

)
− q

n
+ O

(
q

n(n − q)

)
(37)
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and

q∑

i=1

(
log(n − 1) − log(n − i)

) =
(
n − q − 1

2

)
log

(
1 − q

n

)
+ (n − 1)q

n

+ O

(
q

n(n − q)

)
(38)

hold uniformly on 1 ≤ q < n.

Proof By the partial sum of harmonic series,

k∑

i=1

1

i
= log k + γ + 1

2k
− ψ(k),

where γ is the Euler–Mascheroni constant and 0 < ψ(k) < 2
k(k+1) . See, for example,

Young (1991). Rewrite the above equation as

k−1∑

i=1

1

i
= log k + γ − 1

2k
− ψ(k). (39)

By applying (39), we have

q∑

i=1

(
1

n − i
− 1

n − 1

)

=
n−1∑

i=1

1

i
−

n−q−1∑

i=1

1

i
− q

n − 1

= − log
(
1 − q

n

)
− q

n
+ q

2n(n − q)
− q

n(n − 1)
+ ψ(n − q) − ψ(n).

By noting that |ψ(n−q)−ψ(n)| ≤ 2
(n−q)(n−q+1) , to show (37), it suffices to show

1
(n−q)(n−q+1) = O(

q
n(n−q)

). In fact, we have from (25) that

1

(n − q)(n − q + 1)
= n

q(n − q)

q

n(n − q + 1)
<

2q

n(n − q)
.

This finishes the proof of (37).
To show (38), we apply the Stirling formula (36). By setting x = n and x = n − q,

respectively, and then taking the difference, we have as n → ∞,

logΓ (n) − logΓ (n − q)

=
(
n − 1

2

)
log n −

(
n − q − 1

2

)
log(n − q) − q
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+ 1

12

(
1

n
− 1

n − q

)
+ O

(
1

(n − q)2

)

=
(
n − 1

2

)
log n −

(
n − q − 1

2

)
log(n − q) − q − q

12n(n − q)

+ O

(
1

(n − q)2

)

=
(
n − 1

2

)
log n −

(
n − q − 1

2

)
log(n − q) − q + O

(
q

n(n − q)

)
.

In the last step, we have used inequality (25) to get

1

(n − q)2
= n

q(n − q)

q

n(n − q)
≤ 2q

n(n − q)
.

Since Γ (m) = (m − 1)! for any integer m ≥ 1, we have

q∑

i=1

(log(n − 1) − log(n − i))

= q log(n − 1) − (logΓ (n) − logΓ (n − q))

= q log(n − 1) −
(
n − 1

2

)
log n +

(
n − q − 1

2

)
log(n − q) + q

+ O

(
q

n(n − q)

)

=
(
n − q − 1

2

)
log

(
1 − q

n

)
+ q + q log

(
1 − 1

n

)
+ O

(
q

n(n − q)

)

=
(
n − q − 1

2

)
log

(
1 − q

n

)
+ q

(
1 − 1

n

)
+ O

(
q

n(n − q)

)
,

proving (38). ��
Lemma 6 Assume ξ(x) is defined as in (22). Then, there exists a sequence of integers
{sn} satisfying sn ↑ ∞ and sn = O(log n) such that as n → ∞

log

((
Γ ( n−1

2 )

Γ ( n−1
2 + t)

)q
Γq

( n−1
2 + t

)

Γq
( n−1

2

)
)

(40)

= t

((
q − n + 3

2

)
log

(
1 − q

n

)
− n − 2

n
q + 1

3

q

(n − 1)2
− 1

3
b(n, q)

)

+ t2

2

(
ξ

(q
n

)
+ 2b(n, q) − 2q

(n − 1)2

)
+ O

(
q2|t |3

n2(n − q)
+ q(t2 + 1)

n(n − q)

)
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holds uniformly over |t | ≤ n−q
4 and 1 ≤ q ≤ n − sn, and

log

((
Γ ( n−1

2 )

Γ
( n−1

2 + t
)
)q

Γq
( n−1

2 + t
)

Γq
( n−1

2

)
)

(41)

= t

((
q − n + 3

2

)
log(1 − q

n
) − n − 2

n
q + 1

3

q

(n − 1)2
− 1

3
b(n, q)

)

+ t2

2

(
ξ
(q
n

) + 2b(n, q) − 2q

(n − 1)2

)
+ O

(
|t |3 + 1

sn
+ (|t | + t2)(ξ(1 − sn

n ))1/2

s2n

)

holds uniformly over |t | ≤ n−q
4 and n − sn < q < n.

Proof Let Γ ′(x) denote the first derivative of Γ (x). Define

cn,i = 1√
ξ(1 − i

n )

(
sup

1/4≤x≤i+1

|Γ ′(x)|
Γ (x)

+ i + 4

)
(42)

for 1 ≤ i < n. Observe that for each fixed k, limn→∞ cn,k = 0. For each k ≥ 1, there
exists a positive integer jk ≥ 2 such that c j,k < 1

k3
for all j ≥ jk . We can choose

jk ≥ 2 jk−1 for each k ≥ 2. From this, we can conclude that jk ≥ 2k for all k ≥ 1.
Define sn = k if jk ≤ n < jk+1. Then, sn → ∞ as n → ∞, and sn = O(log n) since
2sn ≤ n. Moreover,

cn,sn ≤ 1

s3n
, sn ≤

(
ξ

(
1 − sn

n

))1/2

s3n
and

(
ξ

(
1 − sn

n

))1/2

s2n
≥ 1 (43)

for all large n.
We first apply (35) in Lemma 4 to get

log

(
Γ

( n−1
2 + t

)

Γ
( n−1

2

) · Γ
( n−i

2

)

Γ
( n−i

2 + t
)
)

= t

((
log

n − 1

2
− log

n − i

2

)
−

(
1

n − 1
− 1

n − i

)
−

(
1

3(n − 1)2
− 1

3(n − i)2

))

+ t2
((

1

n − 1
− 1

n − i

)
+

(
1

(n − 1)2
− 1

(n − i)2

))
+ O

( |t |3(i − 1)

n(n − i)2
+ |t |3 + 1

(n − i)3

)

= t

(
(log(n − 1) − log(n − i)) −

(
1

n − 1
− 1

n − i

)
− 1

3

(
1

(n − 1)2
− 1

(n − i)2

))

+ t2
((

1

n − 1
− 1

n − i

)
+

(
1

(n − 1)2
− 1

(n − i)2

))
+ O

( |t |3(i − 1)

n(n − i)2
+ |t |3 + 1

(n − i)3

)

uniformly over |t | ≤ n−i
4 and 1 ≤ i ≤ n − sn as n → ∞. Rewrite the above equation

as
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log

⎛

⎝
Γ

(
n−1
2 + t

)

Γ
(
n−1
2

) ·
Γ

(
n−i
2

)

Γ
(
n−i
2 + t

)

⎞

⎠

= t
(
(log(n − 1) − log(n − i)) −

( 1

n − 1
− 1

n − i

)
− 1

3

( 1

(n − 1)2
− 1

(n − i)2

))

+ t2
(( 1

n − 1
− 1

n − i

)
+

( 1

(n − 1)2
− 1

(n − i)2

))
+ dn,i (t) (44)

for |t | ≤ n−i
4 and 1 ≤ i ≤ n − sn , where

|dn,i (t)| ≤ K

( |t |3(i − 1)

n(n − i)2
+ |t |3 + 1

(n − i)3

)
for |t | ≤ n − i

4
(45)

for all 1 ≤ i ≤ n − sn for some constant K > 0.
From the definition of Γp(x) in (20), we have

log

((
Γ ( n−1

2 )

Γ ( n−1
2 + t)

)q
Γq

( n−1
2 + t

)

Γq
( n−1

2

)
)

= −
q∑

i=1

log

(
Γ

( n−1
2 + t

)

Γ
( n−1

2

)
Γ

( n−i
2

)

Γ
( n−i

2 + t
)
)

.

(46)
Note that the range of t in (44) and (45) depends on i for 1 ≤ i ≤ n − sn . For each

1 ≤ q ≤ n − sn , we limit t in a common range |t | ≤ n−q
4 for the first q terms with

i = 1, . . . , q. First, note that

q∑

i=1

1

(n − i)2
≤

q∑

i=1

1

(n − i)(n − i − 1)

≤
q∑

i=1

( 1

(n − i − 1)
− 1

n − i

)

= 1

n − q − 1
− 1

n − 1

= q

(n − 1)(n − q − 1)

≤ 2q

n(n − q)

for all large n. From (45), we have

q∑

i=1

|dn,i (t)| ≤ K
q∑

i=1

( |t |3(i − 1)

n(n − i)2
+ |t |3 + 1

(n − i)3
)

≤ K
q∑

i=1

( |t |3(i − 1)

n(n − i)2
+ |t |2 + 1

(n − i)2
)
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≤ K
(q
n

|t |3 + t2 + 1
) q∑

i=1

1

(n − i)2

≤ 2K
(q
n

|t |3 + t2 + 1
) 2q

n(n − q)
(47)

for all large n, which coupled with Eq. (44), Definition (7), and Lemma 5 yields that

q∑

i=1

log

⎛

⎝
Γ

(
n−1
2 + t

)

Γ
(
n−1
2

) ·
Γ

(
n−i
2

)

Γ
(
n−i
2 + t

)

⎞

⎠

= t
q∑

i=1

(
(log(n − 1) − log(n − i)) −

( 1

n − 1
− 1

n − i

)
− 1

3

( 1

(n − 1)2

− 1

(n − i)2

))
+ t2

q∑

i=1

(( 1

n − 1
− 1

n − i

)
+

( 1

(n − 1)2
− 1

(n − i)2

))

+ O

(
q2|t |3

n2(n − q)
+ q(t2 + 1)

n(n − q)

)

= t
((

n − q − 3

2

)
log

(
1 − q

n

)
+ (n − 2)q

n
− 1

3

q

(n − 1)2
+ 1

3
b(n, q)

)

− t2

2

(
ξ
(q
n

)
+ 2b(n, q) − 2q

(n − 1)2

)
+ O

( q2|t |3
n2(n − q)

+ q(t2 + |t | + 1)

n(n − q)

)

= t
((

n − q − 3

2

)
log

(
1 − q

n

)
+ (n − 2)q

n
− 1

3

q

(n − 1)2
+ 1

3
b(n, q)

)

− t2

2

(
ξ
(q
n

)
+ 2b(n, q) − 2q

(n − 1)2

)
+ O

(
q2|t |3

n2(n − q)
+ q(t2 + 1)

n(n − q)

)

holds uniformly over |t | ≤ n−q
4 and 1 ≤ q ≤ n − sn . In the last step, we drop the |t |

term inside the big “O” since |t | ≤ t2+1
2 . This proves (40) by using (46).

Next, we will prove (41). First, we show that

log

⎛

⎝
Γ

(
n−1
2 + t

)

Γ
(
n−1
2

) ·
Γ

(
n−i
2

)

Γ
(
n−i
2 + t

)

⎞

⎠ (48)

= t
(
(log(n − 1) − log(n − i))−

( 1

n − 1
− 1

n − i

)
− 1

3

( 1

(n − 1)2
− 1

(n − i)2

))

+ t2
(( 1

n − 1
− 1

n − i

)
+

( 1

(n − 1)2
− 1

(n − i)2

))

+ O

( |t | (ξ (
1 − sn

n

))1/2

s3n
+ t2 + 1

n

)
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uniformly over |t | ≤ n−i
4 and n − sn < i < n as n → ∞.

Using (42) and (43), we conclude that

∣∣∣∣logΓ

(
n − i

2
+ t

)
− logΓ

(
n − i

2

)∣∣∣∣ =
∣∣∣∣∣

∫ n−i
2 +t

n−i
2

Γ ′(x)
Γ (x)

dx

∣∣∣∣∣

≤ |t | sup
1/4≤x≤sn

|Γ ′(x)|
Γ (x)

≤ |t |
(
ξ

(
1 − sn

n

))1/2
cn,sn

≤ |t | (ξ (
1 − sn

n

))1/2

s3n

for |t | ≤ n−i
4 and n − sn ≤ i < n.

We can use (34) and estimate c(x, b) defined in the proof of Lemma 4 to derive
that

log
Γ

(
n−1
2 + t

)

Γ
(
n−1
2

) = t
(
log

n − 1

2
− 1

n − 1
− 1

3(n − 1)2

)
+ t2

( 1

n − 1
+ 1

(n − 1)2

)

+ O

( |t |3
n2

+ 1

n3

)

uniformly over |t | ≤ n−1
4 as n → ∞. Since for any n − sn ≤ i < n, any |t | ≤ n−i

4 is
also bounded by n−1

4 , the above approximation holds true uniformly for |t | ≤ n−i
4 and

n−sn ≤ i < n as n → ∞. Also note that uniformly over |t | ≤ n−i
4 and n−sn ≤ i < n

∣∣∣t
(
log n−i

2 − 1
n−i − 1

3(n−i)2

)
+ t2

(
1

n−i + 1
(n−i)2

)∣∣∣

= O(sn|t | + t2) = O

(
|t |(ξ(1− sn

n ))
1/2

s3n
+ t2

)

for all large n. We have used the second inequality in (43). Immediately, (48) follows
from the above three estimates.

Now rewrite (48) as

log

⎛

⎝
Γ

(
n−1
2 + t

)

Γ
(
n−1
2

) ·
Γ

(
n−i
2

)

Γ
(
n−i
2 + t

)

⎞

⎠ (49)

= t
(
(log(n − 1) − log(n − i))−

( 1

n − 1
− 1

n − i

)
− 1

3

( 1

(n − 1)2
− 1

(n − i)2

))

+ t2
(( 1

n − 1
− 1

n − i

)
+

( 1

(n − 1)2
− 1

(n − i)2

))
+ dn,i (t)
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for |t | ≤ n−i
4 and n − sn < i < n, where

|dn,i (t)| = O

( |t | (ξ (
1 − sn

n

))1/2

s3n
+ t2 + 1

n

)
(50)

holds uniformly over |t | ≤ n−i
4 and n − sn < i < n as n → ∞.

For any n − sn < q < n, limit t in the common range of |t | ≤ n−q
4 so that we can

apply both (45) and (50) for different i with 1 ≤ i ≤ q and estimate
∑q

i=1 |dn,i (t)|.
For the sum of the first n − sn terms, we apply (45) and get

n−sn∑

i=1

|dn,i (t)| ≤ 2K

(
n − sn

n
|t |3 + t2 + 1

)
2(n − sn)

nsn
≤ 8K (|t |3 + 1)

sn

which is essentially the estimation in (47) with the choice q = n − sn , which together
with (50) and (43) yields

q∑

i=1

|dn,i (t)| =
n−sn∑

i=1

|dn,i (t)| +
q∑

i=n−sn+1

|dn,i (t)|

≤ 8K (|t |3 + 1)

sn
+ O

( |t |(ξ(1 − sn
n ))1/2

s2n
+ snt

2 + sn
n

)

= O

(
|t |3 + 1

sn
+ (|t | + t2)

(
ξ
(
1 − sn

n

))1/2

s2n

)

uniformly over |t | ≤ n−q
4 and n − sn < q < n.

Therefore, it follows from the above estimate and Lemma 5 that

q∑

i=1

log

⎛

⎝
Γ

(
n−1
2 + t

)

Γ
(
n−1
2

) ·
Γ

(
n−i
2

)

Γ
(
n−i
2 + t

)

⎞

⎠

= t
q∑

i=1

(
(log(n − 1) − log(n − i)) −

( 1

n − 1
− 1

n − i

)

− 1

3

( 1

(n − 1)2
− 1

(n − i)2

))

+ t2
q∑

i=1

(( 1

n − 1
− 1

n − i

)
+

( 1

(n − 1)2
− 1

(n − i)2

))
+

q∑

i=1

dn,i (t)

= t
((

n − q − 3

2

)
log

(
1 − q

n

)
+ (n − 2)q

n
− 1

3

q

(n − 1)2
+ 1

3
b(n, q)

)

− t2

2

(
ξ
(q
n

)
+2b(n, q)− 2q

(n − 1)2

)
+O

(
|t |3 + 1

sn
+ (|t | + t2)

(
ξ
(
1 − sn

n

))1/2

s2n

)
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uniformly over |t | ≤ n−q
4 and n − sn < q < n. This together with (46) proves (41).

The proof of the lemma is completed. ��

4.2 Proof of Theorem 1

We will first show (8), that is,

μ̄n − μn

σ̄n
→ 0 and

σn

σ̄n
→ 1 as n → ∞.

In fact, it suffices to show that

n
(
b(n, p) − ∑k

i=1 b(n, qi )
)

σn
→ 0 as n → ∞. (51)

Since 0 ≤ b(n, p) − ∑k
i=1 b(n, qi ) ≤ ∑∞

j=n−p
1
j2

= O( 1
n−p ), we have

b(n, p) − ∑k
i=1 b(n, qi )√

ξ
( p
n

) = O

⎛

⎝
1

n−p√
ξ

( p
n

)

⎞

⎠ = O

⎛

⎜⎝

√√√√
1

(n−p)2

ξ
( p
n

)

⎞

⎟⎠ → 0

from (28) in Lemma 2. Moreover, since we have

1√
ξ

( p
n

) ≤ n

σn
≤ 1√

1 − δ

1√
ξ

( p
n

) (52)

from (32) in Lemma 3, (51) is obtained.
Set Vn = −2 logΛn . Then, it follows from (2) that Vn = −n logWn , and −(Vn −

μ̄n)/σ̄n = n
σ̄n

logWn + μ̄n
σ̄n
. To show (3), it suffices to show the moment-generating

function of−(Vn−μ̄n)/σ̄n converges to that of the standard normal in a neighborhood
of zero, that is, for some δ1 > 0

E exp(−Vn − μ̄n

σ̄n
s) = E(Wns/σ̄n

n )eμ̄ns/σ̄n → e
s2
2 , |s| ≤ δ1

or equivalently

logE(Wns/σ̄n
n ) + μ̄ns

σ̄n
→ s2

2
, |s| ≤ δ1. (53)

In the proof below, we will choose δ1 =
√
1−δ
8 and assume that |s| ≤ δ1.

Set t = ns
σ̄n
. Since

1√
ξ(

p
n )

≤ 2(n − p)
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from (26), we have |t | = n|s|
σ̄n

≤ n|s|
σn

≤ n−p
4 . Thus, we can apply (21) in Lemma 1. It

is trivial that |t | ≤ n−qi
4 for all 0 ≤ i ≤ k, and we can apply Lemma 6 with q = p,

and q = qi uniformly over 1 ≤ i ≤ k. Define

R(q) = log

((
Γ

( n−1
2

)

Γ
( n−1

2 + t
)
)q

Γq
( n−1

2 + t
)

Γq
( n−1

2

)
)

− t

((
q − n + 3

2

)
log

(
1 − q

n

)
− n − 2

n
q + 1

3

q

(n − 1)2
− 1

3
b(n, q)

)

− t2

2

(
ξ

(q
n

)
+ 2b(n, q) − 2q

(n − 1)2

)
.

Then, it follows from (21), (5), and (31) that

logE(Wt
n) = log

Γp
( n−1

2 + t
)

Γp
( n−1

2

) −
k∑

i=1

log
Γqi

( n−1
2 + t

)

Γqi

( n−1
2

)

= log

((
Γ

( n−1
2

)

Γ
( n−1

2 + t
)
)p

Γp
( n−1

2 + t
)

Γp
( n−1

2

)
)

−
k∑

i=1

log

((
Γ

( n−1
2

)

Γ
( n−1

2 + t
)
)qi

Γqi

( n−1
2 + t

)

Γqi

( n−1
2

)
)

= − tμ̄n

n
+ t2σ̄ 2

n

2n2
+ R(p) −

k∑

i=1

R(qi )

= − μ̄ns

σ̄n
+ s2

2
+ R(p) −

k∑

i=1

R(qi ).

Therefore, in order to prove (53), it suffices to show that

lim
n→∞

k∑

i=1

R(qi ) = 0 and lim
n→∞ R(p) = 0. (54)

Let sn be a sequence of positive integers defined in Lemma 6, satisfying sn ↑ ∞
and sn = O(log n) as n → ∞. Since max1≤i≤k qi ≤ δn ≤ n − sn for all large n, we
have from (40) that

∑

1≤i≤k

|R(qi )| = O

(
k∑

i=1

q2i |t |3
n2(n − qi )

+
k∑

i=1

qi (t2 + 1)

n(n − qi )

)

= O

(
p|t |3

n2 max(n − p, sn)

k∑

i=1

qi + t2 + 1

nmax(n − p, sn)

k∑

i=1

qi

)
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= O

(
p2|t |3

n2 max(n − p, sn)
+ p(t2 + 1)

nmax(n − p, sn)

)

= O

(
p2|t |3

n2 max(n − p, sn)
+ pt2

nmax(n − p, sn)
+ p

nmax(n − p, sn)

)
.

In the above estimation, we have used the following facts:

max
1≤i≤k

qi ≤ min(p, n − sn),
k∑

i=1

qi = p, min
1≤i≤k

(n − qi ) ≥ max(n − p, sn).

Set rn = min(pn, sn). Then, rn → ∞ and rn/n → 0 as n → ∞. From (52) and
(24),

|t | = n

σ̄n
|s| ≤ n

σn
|s| ≤ 1√

1 − δ

1√
ξ

( p
n

)

√
1 − δ

8
= 1

8

1√
η

( p
n

)
n

p
≤ n

8p
,

and thus we have

p2|t |3
n2 max(n − p, sn)

≤ p2

n2
n3

83 p3
1

max(n − p, sn)

= 1

83
n

pmax(n − p, sn)
(I(p≤n−sn) + I(p>n−sn))

= 1

83
( n

p(n − p)
I(p≤n−sn) + n

psn
I(p>n−sn)

)

≤ 1

83
( n

p(n − p)
I(p≤n−sn) + n

(n − sn)sn
I(p>n−sn)

)

≤ 2

83
max

rn≤q≤n−rn

n

q(n − q)

→ 0

as n → ∞ from (30). Similarly, we have

pt2

nmax(n − p, sn)
≤ 2

82
max

rn≤q≤n−rn

n

q(n − q)
→ 0

and

p

nmax(n − p, sn)
≤ 1

sn
→ 0.

Hence, we have shown that limn→∞
∑

1≤i≤k |R(qi )| = 0. Similarly, we can show
that limn→∞ R(p)I (p ≤ n − sn) = 0.
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To finish the proof of (54), we need to show that limn→∞ R(p)I (n− sn < p < n).
In fact, if n − sn < p < n − 1 for large n, we have

|t | = n

σ̄n
|s| ≤ n

σn
|s| ≤ |s|

(1 − δ)1/2

1√
ξ

( p
n

) ≤ |s|
(1 − δ)1/2

1√
ξ

(
1 − sn

n

) → 0

and thus

R(p) = O

(
|t |3 + 1

sn
+ (|t | + t2)(ξ(1 − sn

n ))1/2

s2n

)
= O

(
1

sn

)
→ 0

as n → ∞. Consequently,we have proved (54). The proof of the theorem is completed.
��

4.3 Proof of Theorem 2

To prove (13), it suffices to show that for any subsequence {n′} of {n}, there is a
further subsequence {n′′} such that (13) holds along {n′′}. The subsequence {n′′} can
be selected in a way that both the limits of kn′′ and pn′′ exist, and both the limits can
be infinity. For the sake of simplicity, we can assume both the limits of kn and pn exist
along the entire sequence and prove (13) holds. Note that if the limit of a sequence
of integers is finite, the sequence takes a constant value ultimately. We will show (13)
under each of the following two assumptions:
Case 1 pn = p and kn = k for all large n, where both p and k are fixed integers;
Case 2 limn→∞ pn = ∞.
Proof for Case 1. We can assume q1, . . . , qk are fixed integers. Otherwise, we can use
subsequential limit argument since q1, . . . , qk are bounded by p and their subsequen-
tial limits always exist. Thus, under case 1, (9) holds. Since ρ defined in (11) converges
to one, we have −2 logΛn converges in distribution to a chi-square distribution with
f degrees of freedom. Review Zn in (12). To prove (13), it suffices to verify that

lim
n→∞

2 fn
σ̄ 2
n

= 1 and lim
n→∞

(
fn − μ̄n

√
2 fn
σ̄ 2
n

)
= 0. (55)

Note that b(n, p) − ∑k
i=1 b(n, qi ) = o( 1

n2
). Then, by using Taylor’s expansion, we

have from (6) that

σ̄ 2
n = σ 2

n + o(1)

= 2n2
( p

n
+ 1

2

( p

n

)2 −
k∑

i=1

(qi
n

+ 1

2

(qi
n

)2) + O
( 1

n3

))
+ o(1)

= p2 −
k∑

i=1

q2i + o(1)

= 2 fn + o(1),
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which implies the first limit in Eq. (55). Similarly, we have from (5) that

μ̄n = μn + o

(
1

n

)

= n
( k∑

i=1

(
qi − n + 3

2

)(
− qi

n
− 1

2

(qi
n

)2 + O
( 1

n3

))
−

(
p − n + 3

2

)

( p

n
+ 1

2

( p

n

)2 + O
( 1

n3

)))
+ o

(
1

n

)

= 1

2

(
p2 −

k∑

i=1

q2i

)
+ O

(
1

n

)

= fn + O

(
1

n

)
,

which yields that fn − μ̄n

√
2 fn
σ̄ 2
n

= fn − fn(1 + o(1)) = o(1) since fn is bounded.

This proves the second limit in (55).
Proof for Case 2. Note that (13) is equivalent to

lim
n→∞ sup

−∞<x<∞

∣∣∣∣∣P
(
Zn − fn√

2 fn
≤ x

)
− P

(
χ2
fn

− fn√
2 fn

≤ x

)∣∣∣∣∣ = 0. (56)

Since χ2
fn
can be written as a sum of fn independent chi-squared random variables

each having one degree of freedom, it follows from the central limit theorem that

lim
n→∞ sup

−∞<x<∞

∣∣∣∣∣P
(

χ2
fn

− fn√
2 fn

≤ x

)
− �(x)

∣∣∣∣∣ = 0.

Therefore, in order to show (56), we only need to show that

Zn − fn√
2 fn

converges in distribution to N (0, 1),

which follows from Theorem 1 since

Zn − fn√
2 fn

= −2 logΛn − μ̄n

σ̄n
.

This completes the proof of Theorem 2. ��
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