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Abstract M-estimators offer simple robust alternatives to the maximum likelihood
estimator. The density power divergence (DPD) and the logarithmic density power
divergence (LDPD) measures provide two classes of robustM-estimators which con-
tain theMLE as a special case. In each of these families, the robustness of the estimator
is achieved through a density power down-weighting of outlying observations. Even
though the families have proved to be useful in robust inference, the relation and hier-
archy between these two families are yet to be fully established. In this paper, we
present a generalized family of divergences that provides a smooth bridge between
DPD and LDPDmeasures. This family helps to clarify and settle several longstanding
issues in the relation between the important families of DPD and LDPD, apart from
being an important tool in different areas of statistical inference in its own right.
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628 A. K. Kuchibhotla et al.

1 Introduction

Statistical procedures based on minimization of divergences are popular in the liter-
ature. In our context, a divergence is a distance like dissimilarity measure between
two distributions which does not necessarily demandmetric properties. Density-based
minimum divergence methods are very useful as they combine high efficiency with
strong robustness properties. Basu et al. (1998) proposed the class of density power
divergences (DPD). These divergences, when constructed between an arbitrary density
g and a parametric model density fθ are indexed by a nonnegative robustness tuning
parameter α and have the form

ρ
(α)
1 (g, fθ ) =

∫ {
f 1+α
θ −

(
1 + 1

α

)
g f α

θ + 1

α
g1+α

}
. (1)

The divergence at α = 0 is defined as the continuous limit of the expression in Eq. (1)
as α → 0. This generates the divergence

ρ
(0)
1 (g, fθ ) =

∫
g log

(
g

fθ

)
, (2)

where log represents natural logarithm. Observe that the only term on the right hand
side of Eq. (1) containing both g and fθ has g in degree one. A divergence with such
a property has been referred to as a decomposable divergence by some authors; see,
for example, Broniatowski et al. (2012).

Another class of divergences with some similar properties was introduced by Jones
et al. (2001) and was followed up by Fujisawa and Eguchi (2008), Broniatowski
et al. (2012) and Fujisawa (2013) among others. In spite of its formal similarity with
the DPD, this family, referred to herein as the logarithmic density power divergence
(LDPD) family, was originally developed following the robust model fitting idea of
Windham (1995). This class also has a nonnegative robustness tuning parameter α and
is defined as

ρ
(α)
0 (g, fθ ) = log

∫
f 1+α
θ −

(
1 + 1

α

)
log

∫
g f α

θ + 1

α
log

∫
g1+α. (3)

The divergence ρ
(0)
0 is once again defined as a limiting case and some simple algebra

shows that ρ
(0)
0 (g, fθ ) = ρ

(0)
1 (g, fθ ), the common divergence being a version of the

Kullback–Leibler divergence.
Jones et al. (2001) also provided a general form of divergence measures in terms

of two tuning parameters α and φ given by

ρ
(α)
φ (g, fθ ) = 1

φ

(∫
f 1+α
θ

)φ

− 1

φ

(
1 + 1

α

)(∫
g f α

θ

)φ

+ 1

αφ

(∫
g1+α

)φ

, (4)

for 0 ≤ φ ≤ 1 and α ≥ 0. The DPD and the LDPD measures are recovered from this
general form for φ = 1 and φ = 0, the second one being obtained as the limiting case
as φ → 0. Accordingly, the DPD and the LDPD families have also been referred to as
type 1 and type 0 divergences in the literature. A scaled version of the LDPD has also
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Statistical inference based on bridge divergences 629

been called the γ -divergence by Fujisawa and Eguchi (2008). Both the DPD and the
LDPDmeasures have proved to be useful additions to the literature of robust parameter
estimation based on divergences. Both families, aswell as the correspondingminimum
divergence estimators, have been heavily cited in the literature and applied to many
practical problems, and a thorough exploration of their relationship and hierarchy can
help us develop better compromises. In either case, a simple density power down-
weighting indicates the source of robustness of the resulting estimator. In both cases,
the parameter α controls the trade-off between robustness and efficiency; smaller
values of α lead to greater model efficiency and larger values of α lead to greater
outlier stability. The minimum divergence estimator corresponding to α = 0 is the
maximum likelihood estimator in either case.

In terms of comparison between the minimum DPD and the minimum LDPD esti-
mators, Jones et al. (2001) expressed a (weak) preference for the former. In particular,
they observed that the presence of observations very close to zero could lead to spuri-
ous global minimum in case of the LDPD under the exponential model. On the other
hand, Fujisawa and Eguchi (2008) and Fujisawa (2013) have claimed that the mini-
mum LDPD estimators exhibit a greater relative stability under heavy contamination
leading to smaller bias and smaller mean squared error. They argued that the small
bias that the minimum LDPD estimator has is due to an approximate Pythagorean
relation that the LDPD satisfies. In contrast, Broniatowski et al. (2012), based on their
own simulation study, do not report any particular relative advantage for the minimum
LDPD estimator.

These points raise certain unsettled issues involving these two useful classes of
divergences and corresponding estimators which we hope to at least partially recon-
cile in the present paper. The generalized family of divergences in Eq. (4), useful as it
is, does not generate minimum divergence estimators that are legitimate M-estimators
except when φ = 0 or 1. We will construct an alternative generalized class of diver-
gences providing a bridge between these classes where several of the intermediate
divergences lead to reasonable compromises between the positives of these two fam-
ilies. This new family will be called the family of bridge density power divergences
and the generated estimators are all M-estimators. This will provide the user with the
flexibility of choosing a suitable estimator from a larger class.

The new family of divergences will depend on two tuning parameters which are (1)
the robustness parameter α and (2) the bridge parameter λ. It would be of interest to
choose the tuning parameters adaptively with respect to the proportion of outliers so
that the estimation is optimal in an appropriate sense. The robustness tuning parameter
α should be close to zero for pure data and should assume a moderately large positive
value in case of contaminated data. In this respect, Hong and Kim (2001) proposed
the first method of choosing the tuning parameter by minimizing an estimate of the
asymptotic variance and Warwick and Jones (2005) refined this process by using
the mean squared error criterion together with a pilot estimate. We provide some
justification for using a modified Hong and Kim (2001) procedure; see Sect. 8.

Before concluding this section, we summarize the main achievements of this paper.

1. We introduce a new family of divergences, the Bridge Density Power Divergences
(BDPD) which produce a smooth link between the DPD and the LDPD; each
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630 A. K. Kuchibhotla et al.

intermediate divergence is decomposable and leads to an M-estimator. Apart from
helping to understand the relations between the DPD and the LDPD, this family is
important in its own right, and in specific cases the performance of the intermediate
divergences turn out to be superior than both the two marginal divergences (DPD
and LDPD).

2. We demonstrate that the spurious root problem observed in case of the LDPD as
noticed by Jones et al. (2001) is not an isolated problem for the exponential model,
and is a more general phenomenon.

3. It is shown that the results and assertions of Fujisawa and Eguchi (2008) and
Fujisawa (2013) are substantially correct, but only when a number of residual
concerns are answered. In particular, the observed superior performance of the
“minimum LDPD estimator”, is, most of the time, achieved at a local minimum of
the LDPD measure (rather than a global one), and has to be viewed as a weighted
method of moments estimator rather than a minimum divergence estimator.

4. We demonstrate that the weighted method of moment equations corresponding
to the LDPD (and indeed many other BDPD measures) can potentially throw up
multiple roots; this is a real problem with practical implications. As the desired
root is not necessarily the minimizer of the corresponding divergence, there is
no automatic root selection strategy. As a choice of the incorrect solution can be
disastrous, it is imperative that a clear answer to this question is provided in the
literature, where this issue is so far unexplored.

5. We clearly define the target parameter when using the LDPD for parametric esti-
mation. Our results in this paper show that it cannot, in general, be the global
minimizer of the LDPD, nor any arbitrary root of the weighted method of methods
equation. Our description of the target depends on an actual numerical algorithm
for its selection (see item 6 below). This interpretation of the target parameter
actually extends to the entire BDPD family, except the ordinary DPD.

6. Finally, we provide an algorithm for the selection of the suitable root of the
weighted method of moment equations for any member of the BDPD family,
including the LDPD. We also provide a method for the selection of “optimal”
tuning parameters for analyzing the real data.

The rest of the paper is organized as follows. In Sect. 2, we introduce the basic
parametric setup and also provide the construction leading to the family of bridge diver-
gences. Various properties of the estimators including strong consistency, asymptotic
normality and robustness are discussed in Sect. 3. In Sect. 4, we provide a heuristic
explanation for the spurious minimum behavior of the LDPD measures in the case
of small outliers. Section 5 rigorously proves that the LDPD is bound to fail in some
specific examples. In Sect. 6, we address issues regarding multiple roots of the LDPD
estimating equation and well-definedness of the estimators as discussed in the existing
literature. We also introduce an algorithm for getting hold of a good root of the LDPD
and all the other BDPD estimating equations. In Sect. 7, we provide the results of a
simulation study conducted to support the claimsmade in previous sections. In Sect. 8,
we give some directions on how to choose the tuning parameters. Finally, we conclude
with a few remarks in Sect. 9.

123



Statistical inference based on bridge divergences 631

2 The bridge density power divergence (BDPD) family

The problem of parameter estimation considered in this paper uses the following setup
and notation. Let G denote the set of all probability distributions having densities
with respect to some σ -finite base measure μ. We assume that the data generating
distribution G and the model family FΘ = {Fθ : θ ∈ Θ ⊂ R

p} belong to G. Let
g and fθ be the corresponding densities (with respect to μ). Let X1, X2, . . . , Xn be
an independent and identically distributed (iid) random sample from G which is to
be modeled by the family FΘ . Our aim is to estimate the parameter θ by choosing
the model density which gives the “closest fit” to the data. In this paper, we quantify
the “closeness” using the density power divergences, the logarithmic density power
divergences or their generalizations as mentioned in the previous section. However,
we will see in the latter sections that this idea of closeness will require a refinement
for most of the minimum BDPD estimators. All the integrals considered in this paper
including those in the previous section are with respect to the measure μ.

In order to estimate θ based on an iid sample, one needs to construct an empirical
estimate of the divergence. In this regard, note that the first terms of Eqs. (1) and
(3), depending only on the model density fθ , need no estimation. The third terms
are independent of θ and so do not figure in any minimization process over θ . For
the second terms, note that the integral involved can be written as Eg f α

θ (X) and so
can be estimated by the average of f α

θ (Xi ), 1 ≤ i ≤ n. This is a consequence of
the decomposability property referred to in Sect. 1. In light of this discussion, the
parameter estimates based on the divergences ρ

(α)
1 and ρ

(α)
0 are given by

θ̂ α
n1 := argmin

θ∈Θ

[∫
f 1+α
θ −

(
1 + 1

α

)
1

n

n∑
i=1

f α
θ (Xi )

]
, (5)

and

θ̂ α
n0 := argmin

θ∈Θ

[
log

(∫
f 1+α
θ

)
−

(
1 + 1

α

)
log

(
1

n

n∑
i=1

f α
θ (Xi )

)]
. (6)

Under certain regularity conditions allowing the interchange of the derivative and the
integral, the estimating equations corresponding to the above divergences are given,
respectively, by ∫

f 1+α
θ uθ = 1

n

n∑
i=1

f α
θ (Xi )uθ (Xi ), (7)

and (
1

n

n∑
i=1

f α
θ (Xi )

)∫
f 1+α
θ uθ =

(
1

n

n∑
i=1

f α
θ (Xi )uθ (Xi )

) ∫
f 1+α
θ . (8)

Here, uθ (x) represents the likelihood score function given by uθ (x) = ∇ log fθ (x).
Throughout this manuscript, we use the symbols ∇,∇2 to denote the first and the
second derivatives with respect to θ . Equations (7) and (8) demonstrate that both
the minimum DPD and the minimum LDPD estimators are legitimate M-estimators.
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Later in this section and in Sect. 6, we will consider the weighted method of moments
representation of these estimating equations.

In this paper, we will show that the DPD and the LDPD families can be combined
in a larger super-family of divergences where each intermediate divergence class leads
to an M-estimator unlike the generalization given in Eq. (4). For notational simplicity
in the following derivation, define

t1(θ) :=
∫

f 1+α
θ , t2(θ) :=

∫
g f α

θ , t3(θ) :=
∫

g1+α.

We consider the density versions (in terms of the true density g) of Eqs. (7) and (8)
rather than the versions based on the empiricals. These equations are given by

∫
f 1+α
θ uθ =

∫
f α
θ guθ , (9)

and ∫
f α
θ g

∫
f α
θ uθ =

∫
f α
θ guθ

∫
f α
θ . (10)

Rewriting the estimating Eqs. (9) and (10) in terms of t1 and t2, we get

[∇t1(θ)

α + 1
− ∇t2(θ)

α

]
= 0,

[
t2(θ)∇t1(θ)

α + 1
− t1(θ)∇t2(θ)

α

]
= 0.

For λ ∈ [0, 1], consider an estimating equation which equates a convex combination
of the above two estimating functions to zero; it is given explicitly by

λ

[
t ′1(θ)

α + 1
− t ′2(θ)

α

]
+ (1 − λ)

[
t2(θ)t ′1(θ)

α + 1
− t1(θ)t ′2(θ)

α

]
= 0. (11)

Rearranging the terms on the left hand side leads to the differential equation,

t ′1(θ)

1 + α

[
λ + λ̄t2(θ)

] = t ′2(θ)

α

[
λ + λ̄t1(θ)

]
,

t ′1(θ)

λ + λ̄t1(θ)
=

(
1 + α

α

)
t ′2(θ)

λ + λ̄t2(θ)
, (12)

where λ̄ = 1− λ. It is now easy to derive the corresponding objective function which
turns out to be

1

λ̄
log(λ + λ̄t1(θ)) − 1

λ̄

(
1 + α

α

)
log(λ + λ̄t2(θ)) + C,
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for some constant C independent of θ . Imposing the condition that the divergence has
to be zero when g = fθ , the constant C is recovered to be 1

λ̄

1
α
log(λ + λ̄t3(θ)). Hence

the new divergence can be written as

ρ(α,λ)(g, fθ ) = 1

λ̄
log(λ+λ̄t1(θ))− 1

λ̄

(
1 + α

α

)
log(λ+λ̄t2(θ))+ 1

λ̄

1

α
log(λ+λ̄t3(θ)).

(13)
This is our class of bridge density power divergences, defined for α ≥ 0 and λ ∈ [0, 1].
For λ = 0, this reduces to the class of logarithmic density power divergences; as
λ → 1, we recover the class of density power divergences. It is also easy to verify
that as α → 0, the limiting divergence is the Kullback–Leibler divergence as given in
Eq. (2) irrespective of the value of λ. Due to the consideration of efficiency, we will,
in the rest of the paper, restrict the robustness parameter α to the range [0, 1].

The estimating Eq. (12) for the bridge divergence with parameters (α, λ) can be
written as: ∫

f 1+α
θ uθ

λ + λ̄
∫

f 1+α
θ

=
1
n

∑n
i=1 f α

θ (Xi )uθ (Xi )

λ + λ̄ 1
n

∑n
i=1 f α

θ (Xi )
.

This may be referred to as the BDPD moment equations. It is immediately obvious
that the above equation represents a very rich class of score moment equations. When
α = 0, the above represents the ordinary likelihood score equation irrespective of the
value of λ. More generally it represents a score moment equation where the scores
are variably weighted by powers of densities depending on the parameter α, and the
weights are variably normalized depending on the parameter λ. When λ = 0, the
weights are perfectly normalized (as in the case of the LDPD), while we get the non-
normalized equations for λ = 1, as in the case of the DPD. For intermediate values
of λ we get partially normalized estimating equations, with the degree of normaliza-
tion dropping off with increasing λ. We will observe the effect of this normalization
throughout the rest of the paper, most notably in Sect. 4, where we will give some
indication of its role in the occurrence of the spurious roots.

Remark 1 The BDPD family was constructed using an appropriate combination of
the DPD and the LDPD estimating equations with the same tuning parameter α; there
is no specific reason, apart from mathematical convenience, for considering the same
α in both the estimating equations. However, if estimating equations with different
values of α are combined it does not appear to lead to a genuine objective function for
such an estimating equation.

Remark 2 Equation (11) cannot be obtained by starting directly with a convex com-
bination of the DPD and the LDPD with the same value of α.

Remark 3 It is possible to combine theDPD and the LDPD families in ways other than
the BDPD and Eq. (4). See, for example, Kanamori and Fujisawa (2014) who provide
two other combined families containing these two divergences, those based on the
Bregman scores and the Hölder scores. Based on the form of the potential function,
these authors classify the Bregman scores into two types, the separable Bregman
scores and the nonseparable Bregman scores, the former containing the density power
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634 A. K. Kuchibhotla et al.

score and the latter containing the γ -score as special cases. The density power score
and the γ -score are also special cases of the Hölder scores. The density power score
corresponds to the DPD, and the γ -score corresponds to the LDPD.

3 Properties of minimum BDPD estimators

Based on the bridge density power divergence defined in the previous section and an
iid random sample X1, X2, . . . , Xn from a distribution G, an estimator of θ is given
by

θ̂ (α,λ)
n := argmin

θ∈Θ

1

λ̄
log(λ + λ̄t1(θ)) − 1

λ̄

(
1 + α

α

)
log

(
λ + λ̄

1

n

n∑
i=1

f α
θ (Xi )

)
.

By definition the BDPD leads to an M-estimator and so its asymptotic and robustness
properties can be derived from the well-established M-estimation theory. Therefore,
we present the results for consistency and asymptotic normality of the bridge diver-
gence estimator without proofs. For this, we use the following notation.

Pi,γ =
∫

gi f γ
θ , Qi,γ =

∫
gi f γ

θ uθu
	
θ , Ri,γ =

∫
gi f γ

θ uθ , Si,γ =
∫

gi f γ
θ ∇uθ .

We now present a consistency theorem with conditions in alignment with those
in Wald’s consistency theorem (Ferguson (1996, Chapter 17)) for the maximum
likelihood estimator and as the proof is essentially the same, it is moved to the Sup-
plementary Material.

Theorem 1 (Consistency) Suppose that the following assumptions hold.

(C1) Θ is a compact metric space;
(C2) There exists a function K (x) (independent of θ ) such that |ϕα(x)| ≤ K (x) and

K (X) has finite expectation (with respect to G). Here,ϕα(x) = f α
θ (x) forα > 0

and ϕ0(x) = log fθ (x);
(C3) For each x and any sequence θn → θ ,

lim
n→∞ fθn (x) = fθ (x),

for all x, except possibly on a set (which might depend on θ but not on the
sequence {θn}) of μ-measure zero. Also, θ

(α,λ)
g is the unique minimizer of the

bridge density power divergence ρ(α,λ)(g, fθ ).

Then the minimumBDPD estimator θ̂
(α,λ)
n is strongly consistent for θ

(α,λ)
g for any fixed

α ∈ [0, 1] and λ > 0.

Remark 4 Note that the conditions are independent of the value of λ and match those
ofWald’s consistency theoremwhen α = 0. The consistency theorem only requiresΘ

to be a metric space and not an Euclidean space. The proof can be extended to settings
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other than iid samples using various generalizations of the uniform strong law of large
numbers (USLLN).

Remark 5 The main ingredient in the proof of Theorem 1 is Theorem 5.7 of van der
Vaart (1998) that uses uniform convergence of the sample-based objective functions to
their population counterparts. For λ > 0, the function ξ �→ log(λ+λ̄ξ ) is Lipschitz on
any bounded closed interval I that does not contain 0. This fact allows one to conclude
the following implication (under (C2)):

sup
θ∈Θ

∣∣∣∣∣
1

n

n∑
i=1

f α
θ (Xi ) −

∫
g f α

θ

∣∣∣∣∣ = op(1), (follows from uniform SLLN)

⇒ sup
θ∈Θ

∣∣∣∣∣log
(

λ + λ̄
1

n

n∑
i=1

f α
θ (Xi )

)
− log

(
λ + λ̄

∫
g f α

θ

)∣∣∣∣∣ = op(1).

At λ = 0 the Lipschitz property fails and the above implication breaks down. This
is the reason for restricting the range of λ to λ > 0. Thus the above proof does not
automatically cover the DPD family. To extend the consistency claim to λ = 0, one
needs to make the additional assumption infθ∈Θ

∫
g f α

θ > 0.

The proof of asymptotic normality of the minimum BDPD estimator can be obtained
through a quadratic approximation of the objective function. Using Cramér-Rao type
regularity conditions, we also observe that there exists a sequence of roots of the
estimating equation which is consistent and asymptotically normal. We do not repeat
the conditions here but refer the reader to Theorem 2 of Basu et al. (1998). The
proof is similar to Lehmann’s proof (Lehmann and Casella (1998)) of consistency and
asymptotic normality of the MLE, and is hence omitted.

Theorem 2 (Asymptotic Normality)Under certain regularity conditions, there exists
a sequence of roots θn of the bridge divergence estimating equation which is consistent
and

√
n(θn − θ

(α,λ)
g ) has an asymptotically normal distribution with mean 0 and

variance given by J (θg)
−1K (θg)J (θg)

−1, where θg := θ
(α,λ)
g ,

K (θ) = (1 − λ)2P1,2αR0,α+1R
	
0,α+1 − λ̄

[
λ + λ̄P0,α+1

]
R0,α+1R

	
1,2α

− λ̄
[
λ + λ̄P0,α+1

]
R1,2αR

	
0,α+1 + [

λ + λ̄P0,α+1
]2

Q1,2α

− λ̄2P2
1,αR0,α+1R

	
0,α+1 + λ̄

[
λ + λ̄P0,α+1

]
P1,αR1,αR

	
0,α+1

+ λ̄
[
λ + λ̄P0,α+1

]
P1,αR0,α+1R

	
1,α − [

λ + λ̄P0,α+1
]2

R1,αR
	
1,α

J (θ) = (α + 1)Q0,α+1
[
λ + λ̄P1,α

] + S0,α+1
[
λ + λ̄P1,α

]
− αQ1,α

[
λ + λ̄P0,α+1

] − S1,α
[
λ + λ̄P0,α+1

]
+ λ̄αR1,αR

	
0,α+1 − λ̄(α + 1)R0,α+1R

	
1,α.
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3.1 Pythagorean relation

Fujisawa and Eguchi (2008) have claimed that under heavy contamination, the min-
imum LDPD estimator achieves a smaller bias (compared to the minimum DPD
estimator); it is also suggested that this phenomenon can be partially explained by an
approximate Pythagorean relation which the LDPD satisfies. We present a sequence
of results which shows that such a Pythagorean relation holds in general for all BDPD
(except the DPD), so that the LDPD result is a special case of the more general result.
For any 0 ≤ t ≤ 1, let t̄ = 1 − t . Define the cross-entropy between any two densities
g and f for λ, α ∈ [0, 1] by,

dλ,α(g, f ) = 1

λ̄

1

1 + α
log

(
λ + λ̄

∫
f 1+α

)
− 1

αλ̄
log

(
λ + λ̄

∫
g f α

)
.

The divergence induced by this cross-entropy is given by

Dλ,α(g, f ) = −dλ,α(g, g) + dλ,α(g, f ).

which is a scaled version of ρλ,α(g, f ), satisfying Dλ,α(·, ·) = ρλ,α(·, ·)/(1 + α).

Theorem 3 Let f and δ be given probability density functions and let 0 ≤ ε ≤ 1. If
g(·) = (1− ε) f (·) + εδ(·) and h is any positive function, then for any α ∈ [0, 1] and
λ ∈ [0, 1),

dλ,α(g, h) = dλ,α( f, h) − 1

αλ̄
log(1 − ε) + O(Tε,δ),

where

Tε,δ := ε

1 − ε

[
λ + λ̄

∫
δhα

] /
αλ̄

[
λ + λ̄

∫
f hα

]
.

For λ = 1, we have

d1,α(g, h) = d1,α( f, h) + ε

α

[∫
{ f − δ}hα

]
.

Proof See Section S.2 of the supplementary material for a proof. ��

Remark 6 This theorem can be used to prove a Pythagorean relation (for 0 ≤ λ < 1)
similar to Theorem 3.2 of Fujisawa and Eguchi (2008). The statement of the result is
given below for completeness; however, the proof is very similar to the one in Fujisawa
and Eguchi (2008) and is hence omitted. The Fujisawa and Eguchi (2008) result thus
becomes a particular case of the following theorem.
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Theorem 4 (Pythagorean Relation) Let f and δ be given probability density functions
and let 0 ≤ ε ≤ 1. If g(·) = (1 − ε) f (·) + εδ(·) and h is any positive function, then
for any 0 ≤ λ < 1,

Δ(g, f, h) := Dλ,α(g, h) − Dλ,α(g, f ) − Dλ,α( f, h) = O(εν),

where

ν = λ + λ̄max

{∫
δ f α,

∫
δhα

}
.

Remark 7 As was pointed out by one of the referees, Theorem 4 gives a practically
useful relation only for ν ≈ 0. This holds only when λ ≈ 0, which corresponds to
the LDPD or a divergence close to it in the λ scale. However, the equality as stated is
always true and might provide information about how large Δ(g, f, h) can be.

Remark 8 Theorem 4 is one of the main theoretical reasons for the behavior of the
minimum BDPD estimators to be observed in the subsequent sections over various
choices of tuning parameters and various contaminating distributions. Note that the
function

ξ(λ) = 1

λ̄

λ + λ̄a

λ + λ̄b
,

for fixed positive values of a and b, is necessarily increasing in λ ∈ [0, 1) if and only
if a ≤ b. This implies that when

∫
δhα ≤

∫
f hα, (14)

the error term Tε,δ is an increasing function of λ ∈ [0, 1) and so the bias of the
minimum BDPD estimator is expected to be an increasing function of λ ∈ [0, 1);
however, as the Pythagorean relation does not exist for the DPD, calculations based
on ξ(λ) are not helpful in theoretically comparing the bias of the minimum DPD
estimator. The condition (14) with h = fθ and f = fθ0 for θ, θ0 ∈ Θ is implied
by the usual approximate singularity condition in the robustness literature; the latter
condition dictates that the contaminating distribution (in this case represented by δ)
in the gross error model is approximately singular with the parametric family so that∫

δhα ≈ 0 and
∫

f hα is relatively large. In the numerical simulations, we will see
that this reasoning generally fits in well with the observed behavior of the estimators
except for very small values of α; in the latter case the quantities [in Eq. (14)] can be
very close and the above observations may not hold.

But when the contaminating distribution δ is concentrated at (or around) the mode
of the model density h = fθ0 , the integral

∫
δhα is often at least as large as

∫
f hα

so that the changing behavior of ξ(λ) over λ with a = ∫
δhα and b = ∫

f hα , is
less predictable. We will observe in the rest of the paper that the performance of the
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minimum LDPD estimator (and several other minimumBDPD estimators) may suffer
badly in this case.

In the following sections, we will consider two kinds of contamination for the para-
metric model. The first case will correspond to the approximate singularity idea of the
gross error model where the contaminating (minor) component is well-separated from
the target (major) component. We will refer to this as outer contamination; in this
case the contaminating values will be surprising observations in the sense of Lind-
say (1994). In the second case of contamination, we will choose the contaminating
component near the mode of the major component so that these observations are no
longer surprising observations but will nevertheless distort the shape of the distribution
relative to the parametric model. We will refer to this case as inner contamination.

4 Spurious behavior under inner contamination

Jones et al. (2001) reported that in case of the exponential distribution, small outliers
(near the origin) made the minimum LDPD estimator nonrobust. These small outliers
are essentially what we have described as constituting inner contamination in Sect.
3. Let ηθ (x) denote the density of the exponential distribution with mean θ . The
nonrobustness of theminimumLDPDestimator under small outlierswas demonstrated
by Jones et al. (2001) in simulation studies and was confirmed by determining the
LDPD between the densities ηθ and the 0.85η1 + 0.15δx0 mixture with x0 = 0.0001
where δx0 represents the indicator function at x = x0. In Figs. 1 and 2, we have
exhibited the BDPD objective function between the above two densities over θ for
α = 0.5 and several values of λ in [0, 1]. It is clear that the global minimizer of the
objective function remains stuck at a value very close to zero at least up to λ = 0.7.
It is noteworthy that this spurious minimum may easily be missed by any gradient
descent root search algorithm since the minimum is obtained as a needle sharp notch
over a very limited region. It might very well be possible (and indeed it is the case in
Figs. 1 and 2) that a local minimizer of the LDPD may serve as a reasonable robust
solution even in this case. But the asymptotic results for a sequence of roots of the
estimating equation present in the literature do not prescribe the method to choose a
suitable sequence of roots in case of multiple roots. In any case, it is clear that the
global minimizer of the LDPD up to (at least) λ = 0.7 is a nonsensical value.

Themain reason for this phenomenon in the LDPD and the bridge divergences close
to it is the behavior of the log function at 0, where it diverges to −∞. If one writes the
LDPD between the ηθ and 0.85η1 + 0.15δ0.0001 densities, we can easily check that
there is a sharp drop in the objective function around a value very close to zero because
of the above logarithm effect (although at 0, the objective function is positive infinity).
This effect slowly smooths out as the λ parameter increases since the presence of the
additive λ term in each of the logarithms eventually forces the argument to be bounded
away from zero. The validity of this reasoning is confirmed by examining the behavior
of the LDPD and the BDPD close to it in case of the N (0, σ 2) model, where it can
be expected that the estimate of σ will be driven to zero if there are some outliers
near 0 in the sample. For that matter, this behavior can also be seen in case of the
N (μ, σ 2)model with some outliers near the true mean. Figure 3 exhibits the LDPD at
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Fig. 1 Plots of the BDPD objective function (λ = 0.0,0.25,0.5,0.7)
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Fig. 2 Plots of the BDPD objective function (λ = 0.8,0.9,0.95,0.975)
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Fig. 3 Plot of the LDPD objective function under the N (0, σ 2) model

α = 0.5 as a function of σ when computed between the densities of the N (0, σ 2) and
the mixture 0.85N (0, 1) + 0.15δ0.001. Clearly, there is a reasonable local minimum
around σ = 0.8; but it is beaten hands down by the useless global minimum in the
neighborhood of zero.

While the behavior observed in Figs. 1, 2 and 3 represent the patterns in the diver-
gences between the actual densities, such behavior can also be observed under pure
data (although it is relatively rare in scale models). An actual random sample of size
20 from N (0, 1) with seed 129 was obtained in R as

−1.120900, −0.989724, −1.374697, −1.355645, 1.996755, 0.695870,
0.771968, −0.002847, 1.008549, −0.990280, 1.131772, −0.244929,
1.186625, −1.671537, −0.081999, −1.831365, 0.358867, 0.891639,
0.489801, 0.000010.

The exact value of the last observation is 1.048653 × 10−5, which forces a spurious
behavior in the LDPD objective function plotted in Fig. 4 for α = 0.8. To be precise,
if fσ (x) denotes the probability density of N (0, σ 2) with respect to the Lebesgue
measure, then

∫
f α+1
σ (x)dx = 1√

α + 1(
√
2πσ)α

,

and the LDPD objective function satisfies

Mn(σ ) ≤ log

(
1√

α + 1(
√
2πσ)α

)
−

(
α + 1

α

)
log

(
1

n
f α
σ (X20)

)

= log
(
n1+1/ασ

)
+ 1

2
log

(
2π

α + 1

)
+

(
α + 1

2

)
X2
20

σ 2 .
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Fig. 4 Plots of the sample-based DPD and LDPD objective functions under the N (0, σ 2) model based on
a sample of size 20 from N (0, 1)

where X20 is the last observation which is close to zero and n = 20. This inequality
confirms our reasoning. As σ slides down toward zero, for a while the first term
involving the logarithm dominates, pulling the objective function down. However, as
σ gets really close to zero, the third term takes over and there is an extremely sharp rise
in the objective function, which generates a minimumwith a razor sharp notch. Figure
4 shows the spurious (global) minimumnear zero (at σ = 0.00001309906 to be exact),
although there is a reasonable local minimum at σ = 1.265882. For this sample, the
spurious global minimum phenomenon is observed for all α ≥ 0.500144205 and all
λ ∈ [0, 0.228827308]. In contrast, the global minimum of the DPD objective function
(also plotted in Fig. 4) for α = 0.8 is obtained at σ = 1.20833. If the last observation
1.048653×10−5 were removed from this data set, this spurious minimum behavior of
the LDPD objective function disappears. The minimum LDPD estimator now equals
σ = 1.321807 at α = 0.8, an entirely reasonable value. (The corresponding minimum
DPDestimator is 1.298228). Thus one single observation can bring about an absolutely
drastic change in the minimum LDPD estimator which is against the spirit of stability
that robust estimators should have; so far we (or indeed anybody else), have not
detected such spurious behavior in any scenario involving the DPD.

Thus the spurious root issue in case of the LDPD is not a isolated problem limited
to the case of the exponential distribution. It is, in fact, a more serious problem in the
case of the location-scale model (compared to just the scale model), as we will see in
the next section.

5 Unboundedness of the bridge divergences

In the previous section, we explained the reason for observing a spurious minimum
with LDPD in the case of inner contamination and argued that it might happen even
in case of real data generated from the pure model. Intuitively, this may be explained
by the fact that the probability of observing a value near the mode of the majority
distribution is not too small at moderate sample sizes.
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Here,wewill formally prove that the sample version of theBDPDobjective function
(given on the right hand side of Eq. (13)) is unbounded below in case the parametric
model family is a location-scale familyG f,Θ , where f is a probability density function,
Θ = R × R

+, and

G f,Θ =
{
fθ (·) : fθ (x) = 1

σ
f

(
x − μ

σ

)
for some θ := (μ, σ ) ∈ Θ

}
.

This result proved in Theorem 5 implies that one cannot fit a location-scale family
using the minimizer of a BDPD, except the DPD.

Theorem 5 Let X1, X2, . . . , Xn be independent and identically distributed observa-
tions from a density g, which is modeled by the densities in the location-scale family
of distributions G f,Θ with a fixed f satisfying f (0) > 0. Then, for any 0 ≤ λ < 1 and
α > 0,

inf
θ∈Θ

[
log

(
λ + λ̄

∫
f 1+α
θ (x)dx

)
−

(
1 + α

α

)
log

(
λ + λ̄

n

n∑
i=1

f α
θ (Xi )

)]
= −∞.

(15)

Proof Set the objective function on the left hand side of Eq. (15) as Mn(θ). Then for
θ = (μ, σ ),

Mn(θ)= log

(
λ + λ̄

σ α

∫
f 1+α(x)dx

)
−1 + α

α
log

(
λ + λ̄

nσα

n∑
i=1

f α

(
Xi − μ

σ

))
.

We will now show that for each 1 ≤ j ≤ n, Mn(X j , σ ) (that is, θ = (X j , σ ))
converges to −∞ as σ ↓ 0. Fix 1 ≤ j ≤ n. Since f (x) ≥ 0 for all x , we get, by
taking μ = X j ,

(
1 + α

α

)
log

(
λ + λ̄

nσα

n∑
i=1

f α

(
Xi − μ

σ

))
≥

(
1 + α

α

)
log

(
λ̄

nσα
f α(0)

)
.

Substituting this bound in Mn(θ) = Mn(X j , σ ), we obtain

Mn(X j , σ ) ≤ log

(
n

1+α
α

(
λσα+1 + λ̄σ

∫
f 1+α

))
− C f ,

where

C f = (1 + α) log
(
λ̄

1
α f (0)

)
.

Letting σ tend to zero implies Mn(X j , σ ) → −∞ proving Eq. (15). ��
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Fig. 5 LDPD objective function for the N (μ, σ 2) model with an artificial dataset of four observations

Remark 9 From the proof, it is seen that the global minimizer of the bridge divergence
in case of any sample is at the extreme point (σ = 0) and the global minimum overall
(μ, σ ) combinations, is attained for at least n points namely (X j , 0), 1 ≤ j ≤ n.
This is similar in spirit to the classical example of likelihood inference for Gaussian
mixture modeling as explained in Example 2.4.5 of Bickel and Doksum (2015). Note
that the theorem does not cover the case of DPD which is given below.

In order to illustrate the phenomenon discussed above, we plot the LDPD objective
with α = 0.5 in Fig. 5, based on an artificial sample of size 4, where the sam-
ple observations are −2,−1, 0.5, 2. The underlying model family is assumed to be
{N (μ, σ 2) : μ ∈ R, σ > 0}. We observe that the LDPD objective drops down sharply
to −∞ as σ approaches 0, when μ is either of the four sample points. See Section S.2
of supplementary materials for more details.

Theorem 6 Let X1, X2, . . . , Xn be independent and identically distributed observa-
tions from a density g, which is modeled by the densities of the location-scale family
G f,Θ with a fixed f . Suppose that lim|x |→∞ f (x) = 0. Then, for any α > 0, the
following holds for all n if μ does not belong to the set {X1, ..., Xn}, and for all
n >

(1+α) f α(0)
α

∫
f 1+α if μ is equal to some Xi in the above set:
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lim
σ→0

(∫
f 1+α
(μ,σ)(x)dx −

(
1 + α

α

)
1

n

n∑
i=1

f α
(μ,σ)(Xi )

)
= ∞. (16)

Proof First, note that the quantity on the left hand side of (16) whose limit needs to
be evaluated as σ → 0, can be written as

σ−α

(∫
f 1+α −

(
1 + α

αn

) n∑
i=1

f α

(
Xi − μ

σ

))
. (17)

Observe that, if μ does not belong to the set {X1, ..., Xn}, then

lim
σ→0

f α

(
Xi − μ

σ

)
= 0 for all 1 ≤ i ≤ n.

Consequently, (17) goes to ∞ as σ → 0. On the other hand, if μ equals X j for some
1 ≤ j ≤ n, then (17) can be written as:

σ−α

⎛
⎝

∫
f 1+α −

(
1 + α

αn

)
f α(0) −

(
1 + α

αn

) ∑
i �= j

f α

(
Xi − μ

σ

)⎞
⎠ (18)

It is now easy to see that for n >
(1+α) f α(0)
α

∫
f 1+α , (18) goes to∞ as σ → 0. This completes

the proof. ��
Remark 10 Theorem 6 shows that the DPD objective function for the location-scale
family (for α > 0) diverges to ∞ as σ → 0, for all n, if μ is different from all
the observations. On the other hand, if μ equals one of the observations, the situation
differs in the sense that there exists a f such that if n > a f , the DPD objective function
diverges to ∞ and if n < a f , it diverges to −∞. The case of n = a f (when a f is a
natural number) depends on the rate of convergence of f (x) to zero as |x | → ∞.

Remark 11 Theorem 5, in particular, covers the case of N (μ, σ 2) parametric family
and out of entire BDPD family the DPD alone stands out as a practically valid method
of inference. Fujisawa and Eguchi (2008) provided an iterative algorithm to obtain the
minimizer of the LDPD in case the parametric family is one of the exponential families,
applicable to N (μ, σ 2) family. However, while their iterative algorithm is monotone
decreasing, it does not in general guarantee convergence to the global minimizer. In
fact, the small bias property shown for the scale parameter in their numerical study
(Table 2, Fujisawa and Eguchi (2008)) suggests, in view of our discussion in Sect.
4, that their algorithm mostly converges to a local minimizer, at least in the normal
family. This is also very similar to the case of likelihood inference forGaussianmixture
modeling wherein one uses the EM algorithm to get hold of the useful local minimizer
of the log-likelihood. This fact is also consistent with the asymptotic normality result
presented in Section 5 of Fujisawa and Eguchi (2008). The asymptotic normality holds
for a sequence of roots of the estimating equation while the global minimizer does not
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exist (in the interior of the parameter space). Note that in this case the global minimizer
does not appear as a root of the estimating equation owing to the fact that any global
minimum is attained on the boundary of the parameter space.

Remark 12 Some fixes are available in the literature to avoid unboundedness of the
likelihood in the case ofGaussianmixtures. For example, introduction of the additional
constraint that the variances of the components of the Gaussian mixture model are all
equal, or placing a positive lower bound on the componentwise variance mitigates the
problem of unbounded likelihood. Chen and Tan (2009) proposed a penalized likeli-
hoodmethod for estimating themixing distribution, and proved consistency properties
of their estimator. They also explored a convenient EM algorithm for computing the
maximum penalized likelihood estimator. It may be possible to use some such fix to
avoid unboundedness of the LDPD (or any other intermediate BDPD).

Another possibility for avoiding the unboundedness of the objective function is to
consider the divergence between the smoothed data and the smoothed model as intro-
duced in Basu and Lindsay (1994) and further refined by Seo and Lindsay (2013).
Sections 4 and 5 of Seo and Lindsay (2013) prove uniform consistency of their
smoothed maximum likelihood approach. We expect a similar smoothing approach to
work in this case without restricting the parameters. For example, in case of a Gaus-
sian kernel with bandwidth h, the variance of the smoothed model density becomes
(σ 2 + h2), the inverse of which remains bounded even when σ → 0.

Remark 13 The result as stated in Theorem 5 does not apply to a scale family with
a fixed location (say, 0). But if one of the observations is exactly 0, then the proof
as presented above can be employed to get the same conclusion. More precisely, we
have, (taking σ = X(1)),

inf
σ>0

[
log

∫
f 1+α
σ −

(
1 + 1

α

)
log

(
1

n

n∑
i=1

f α
σ (Xi )

)]
≤ log(n1+1/αX(1)) + D f ,

where D f = log
∫

f 1+α − (1 + α) log f (1) under the assumption f (1) > 0. Here,
X(1) denotes the first order statistic in the sample X1, . . . , Xn and fσ (x) = f (x/σ)/σ

for a density f on R
+. This indicates that if we have inner contamination (that is,

contamination near the mode 0) so that n1+1/αX(1) is small enough, then there is a
possibility of a spurious global minimum near zero. Observe that the true distribution
is a mixture described as

X |Z = 0 ∼ fσ0 and X |Z = 1 ∼ δ0,

where Z ∼ Bernoulli(p) and δ0 represents a point mass at 0. This represents a simple
case inner contamination model with contamination level p. Then in a sample of size
n, we have for any fixed ε > 0,

P(X(1) > n−1−1/αε) =
(
1 − p − (1 − p)F

(
n−1−1/αε/σ0

))n ≤ (1 − p)n,
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implying convergence with probability one of n1+1/αX(1) to zero as n → ∞ for
any fixed p > 0. Here, F represents the cumulative distribution function of X . In a
given sample though, this spurious minimum may disappear (or may not be signifi-
cantly pronounced) depending on the proportion of contamination. In this case, the
BDPD do not behave so badly as in the location-scale family. As already observed,
the divergences close to the DPD will lead to reasonable estimators.

6 Toward the desired estimator

As we have seen, the analysis using the LDPD can be beset with different kinds of
problems, both theoretical and computational. In this section, we add to the discussion
of the possible flaws in the current state of the analysis based on the LDPD, eventually
giving a recipe for consolidating the existing knowledge and overcoming the present
difficulties so that one can arrive at a best compromise. We do not exactly refute the
findings of Fujisawa and Eguchi (2008) and Fujisawa (2013) as we find a substantial
part of this research to be valuable and useful. However, there are too many loose ends
that remain unaccounted which limit the practical applications of the method without
further consolidation.

Fujisawa and Eguchi (2008) and Fujisawa (2013) define the latent bias of an esti-
mator as the difference between the target parameter and the limit of the estimator. To
describe the basic flaw with the minimized LDPD estimator or in general the normal-
ized estimating equations, we rework the arguments of Fujisawa (2013) which gives
the hint of a very small latent bias under heavy contamination for the minimum LDPD
estimator. Let f (x) = fθ∗(x) be the target density within our parametric family and
δ(x) be the contamination density so that the data generating density g is given by

g(x) = (1 − ε) f (x) + εδ(x).

Let �(x; θ) = log fθ (x) and uθ (x) = ∇�(x; θ) be the usual log-likelihood and the
score, respectively. A general normalized estimating equation is given by

Eg[ξ(�(X; θ))uθ (X)]
Eg[ξ(�(X; θ))] = E fθ [ξ(�(X; θ))uθ (X)]

E fθ [ξ(�(X; θ))] , (19)

where ξ(·) is a nonnegative weight function satisfying ξ(a) → 0 as a → −∞ and
Eh[·] represents the expectation with respect to the density h. Assume that

Eδ[ξ(�(X; θ))] ≈ 0, and Eδ[ξ(�(X; θ))uθ (X)] ≈ 0, (20)

in a neighborhood of θ = θ∗, which is usually satisfied under the classical outlier
model formulation (or, as we call it, outer contamination). Substituting the form of
the density g, we get

(1 − ε)E fθ∗ [ξ(�(X; θ))uθ (X)] + εEδ[ξ(�(X; θ))uθ (X)]
(1 − ε)E fθ∗ [ξ(�(X; θ))] + εEδ[ξ(�(X; θ))] = E fθ [ξ(�(X; θ))uθ (X)]

E fθ [ξ(�(X; θ))] .
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Whenever the approximations in (20) hold, we get the following approximate equality

E fθ∗ [ξ(�(X; θ))uθ (X)]
E fθ∗ [ξ(�(X; θ))] ≈ E fθ [ξ(�(X; θ))uθ (X)]

E fθ [ξ(�(X; θ))] .

Thus, θ∗ is an approximate solution of the normalized estimating Eq. (19). For con-
creteness, consider the case where f (x) = f0(x) (i.e., θ∗ = 0), where fμ denotes the
density of the normal distribution with mean μ and variance 1 and δ(x) = f10(x).
Take θ = 10 in the normalized estimating Eq. (19). It is easy to see that

E f0 [ξ(�(X; θ))] ≈ 0, and E f0 [ξ(�(X; θ))uθ (X)] ≈ 0,

in a neighborhood of θ = 10. Therefore, as above, the equality

E f10 [ξ(�(X; θ))uθ (X)]
E f10 [ξ(�(X; θ))] = E fθ [ξ(�(X; θ))uθ (X)]

E fθ [ξ(�(X; θ))] ,

holds approximately. Thus, not only θ∗ = 0 but θ = 10 is also an approximate
root of this estimating equation. The latent bias argument for normalizing estimating
equations would be one sided if one were to use it only for θ∗, and not for the root
corresponding to the contaminating component. One probably can have an estimator
with small latent bias in this case, but one would have to appropriately choose between
the multiple roots to ensure this small bias.

To validate our argument, we generated 20 observations randomly from themixture
distribution 0.9N (10, 1) + 0.1N (0, 1). We present the entire sample for the future
reproducibility of our results.

10.73402487, 10.07316778, 12.06112801, 8.52976810, 9.66834408,
10.69923160, 10.65200828, 9.87964160, 8.76851845, 10.91329572,
8.12296270, 8.57642728, 8.52115355, 12.42173904, 10.45406538,
9.86883487, −0.89282090, −0.06273843, 1.34072270, −0.65001187.

The parametric family is taken to be F = {N (μ, 1) : μ ∈ R}. The LDPD objective
function in (6) with α = 0.5 is plotted against θ in Fig. 6. It is seen to have a (local)
minimum near 0 and a (possibly global) minimum around 10, which in this case is the
mean of the larger component of the mixture. Note that while there are at least two
obvious roots of the corresponding estimating equation, a clear root selection strategy
is unavailable. While it so happens that in this case the divergence is well behaved, in
many standard cases it is not (as we have seen in Sects. 4 and 5).

We are now in a position to give an analysis of the minimum LDPD estimator
in particular (and the minimum BDPD estimator in general) by consolidating the
different bits of results that we have presented so far in this paper. In Sect. 3 we
have proved the consistency of the minimum BDPD estimator. What it means in
layman’s terms is that the global minimizer of the empirical LDPD objective function
converges to the global minimizer of the theoretical objective function obtained by
replacing the empirical distribution function by the true one. However, the usefulness
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Fig. 6 LDPD objective function for the N (μ, 1) model under normal mixture data

of these consistency results are immediately challenged by our findings in Sects. 4
and 5 as well as the previous part of this section. First of all, it is quite possible, even
in case of pure data, that the global minimizer of the empirical objective function is
a value which is entirely useless to the statistician for all practical purposes. Yet, the
procedure might actually have a very reasonable local minimizer close to our target.
This is what we have observed in Fig. 4, for example. Fujisawa and Eguchi (2008)
or Fujisawa (2013)—or, indeed, anybody else for that matter—do not give any root
selection criteria in such cases; and in the absence of any such criteria, one would
be hard put to justify the choice of a local minimizer, when a perfectly legitimate
(although statistically useless) global minimizer exists. Our results in Sect. 5 show
that the global minimizers for the LDPD would always be at the boundary of the
parameter space and will be of very little practical value to us under location-scale
models. However, in almost every such case there exists—as we have seen in our
simulations—reasonable roots of the estimating equations, representing appropriate
local minima of the objective function. The bias and mean square error reported in
Figures 2–5 of Fujisawa (2013) correspond to the root generated by this reasonable
local (but not global) minimum.

Secondly, an equally serious problem is the extreme shift in the target parameter
itself under inner contamination when LDPD is the divergence of choice. As shown in
Fig. 3, a small proportion of inner contamination is enough to shift the target parameter
(the global minimizer of the divergence between the theoretical densities) to such an
extreme degree that the new target does not characterize the original major component
in any way at all. Yet, once again, the divergence has a local minimizer which reason-
ably characterizes the major component. Once again, however, there is no conceivable
reason for considering a local minimizer as the target in the presence of a global
minimizer (which, unfortunately, does not characterize the component of interest).

It is clear, therefore, that usual inference based on the LDPD alone can lead the
inference astray, if one proceeds with the global minimizer. Other reasonable roots
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do exist, but root selection strategies do not. Existing literature claims the existence
of “a root” which has the desired properties, without any recipe for arriving at that
root. Such inadequacy exists in case of many other members of the BDPD class. The
only member within this class which are entirely free—as far as it is observed in our
explorations—from the anomalies of spurious roots and ill-defined targets is the DPD.
In every model and every case that we have looked at, the DPD has a well-defined
minimizer that would reasonably represent, in theory, a properly described target, and
would generate a suitable estimator for the same target under randomly generated data.
Acknowledging that the LDPD does have certain roots which are superior in dealing
with the bias under heavy contamination, we propose to utilize the global minimizer
of the DPD to arrive at the desired root of the LDPD. The next subsection describes
the chain algorithm which we propose for this purpose.

6.1 The chain algorithm

Under repeated simulations, we have observed, under many standard parametric mod-
els, that as far as the global minimizers of the BDPDs are concerned over all λ ∈ [0, 1]
given a specific valueα, theminimumDPDestimator is almost always the best in terms
of latent bias (and not the minimum LDPD estimator). At the same time we acknowl-
edge that the minimum LDPD estimating equations (or, more generally, the minimum
BDPD estimating equations) may have roots which represent some local minimum
of the divergences which might improve upon the performance of the minimum DPD
estimator in terms of latent bias. As indicated by the heuristics, and as we have seen
in our simulations, the LDPD (more generally the BDPD) has a local minimizer that
is close to the true θ∗. This we believe is at least partially due to the Pythagorean
relation that we presented in Sect. 3. Since the members of the BDPD family form a
literal bridge between the DPD and LDPD, we have an opportunity for getting at a
root of the LDPD estimating equations that is consistent and asymptotically normal. A
completely rigorous proof is unavailable at this time, but we provide a strong heuristic
argument and extensive simulations to support this claim.

From the form of the bridge divergence, for a fixed α and θ , we obtain the limit

ρ(α,λk )(g, fθ ) → ρ(α,λ0)(g, fθ ) as λk → λ0. (21)

Heuristically this indicates that ρ(α,λ)(g, fθ ) has at least a local minimizer close to
θ̂ α
n1 [defined in Eq. (5)] if λ is close to one. For example, one can take λ = 1 − n−1/2

which is sufficiently close to 1 for this root to be reasonably good. We shall now
present a chain algorithm for getting hold of a good root of the LDPD estimating
equation (indeed, all bridge estimating equations). The chain algorithm proceeds in
the following steps: Fix α ∈ [0, 1].
1. First choose a sequence {λi } satisfying

1 = λK > λK−1 > · · · > λ2 > λ1 > λ0 = 0 and max
1≤i≤K

|λi − λi−1| ≤ rn,

with rn → 0 at some rate. Define a function λ �→ θ̂ α(λ).
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2. Solve the DPD problem completely, that is, find the global minimizer θ̂ α
n1 of the

sample estimate of the DPD. Set θ̂ (λK ) = θ̂ α
n1. Note that λ = 1 in the bridge

divergence expression in Eq. (13) corresponds to the DPD (in the limit).
3. For i = K − 1, K − 2, . . . , 0, find the local minimizer of the sample estimate of

the bridge divergence with parameters (α, λi ) that is closest to θ̂ (λi+1). Set this
closest local minimizer as θ̂ (λi ).

4. Return {θ̂ (λi ) : 0 ≤ i ≤ K }.
Step 3 above can be solved by using any off-the-shelf algorithm for minimization with
θ̂ (λi+1) as a starting point. To draw analogue with existing algorithms of this type, we
note that the LASSO that has taken over the literature in the past few years is solved by
using a chain/path algorithm as above; there the issue is about getting fast algorithm
not distinguishing local and global minimizers (it is a convex problem).

Conjecture 1 In any model under the assumptions that guarantee the asymptotic
normality of θ̂ α

n1, θ̂
α(λ0) is the consistent root of the LDPD estimating equation that

is closest to θ∗. And this is the solution claimed by Fujisawa and Eguchi (2008) to
have a small latent bias.

The simulations using this chain algorithm are very encouraging and we think that a
proof of the above conjecture can be obtained by an application of the Taylor series and
using (21)with an appropriate choice of rate of convergence of λk−λ0 to zero. Inmany
nicely behaved parametric densities, simply choosing the root of LDPD estimating
equation closest to the minimum DPD might be good enough. However, in general
cases, the difference between LDPD and DPD estimating equations can be drastic for
this simple trick to work (at least for a theoretical guarantee).

Remark 14 The chain algorithmdescribedhere is very similar to the homotopymethod
available for global optimization. See Dunlavy (2005) and Dunlavy and O’Leary
(2005) for more details about the homotopy method. In our case, the bridge parameter
λ, the DPD and the LDPD are, respectively, the analogues of the homotopy parameter
λ, the initial function f 0 and the objective function f 1 in Section 2.1 of Dunlavy and
O’Leary (2005). Often the goal of the homotopy method is to obtain the global optima
of the objective function. Here, the goal of our chain algorithm is to define our target
of interest.

In the following section, we will frequently use the term “minimum bridge diver-
gence estimator”. It is to be understood that this will refer to the local minimizer
obtained by using the chain algorithm which uses the global minimizer of the DPD
as the starting value. In addition, we will also frequently use the term“root of the esti-
mating equation”. In this case, it will be understood that the correspondence is with a
local minimizer, and not an intervening local maximizer (or saddle point), which may
also produce a legitimate root of the estimating equation.

7 Simulation study

In this section, we apply the chain algorithm discussed in Sect. 6 on simulated data.We
consider the exponential and the normal scale families, the former to illustrate the case
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of outer contamination, and the latter to illustrate the case of inner contamination. The
estimators are computed from 1000 replications. The bias andmean squared error over
these 1000 replications are calculated against the target component of the underlying
majority distribution.

The chain algorithm is applied for each pair (α, ε), where the robustness parameter
α runs from 0 to 1 in steps of 0.2 and the contamination level ε are 0, 0.05 or 0.2. For
each (α, ε) combination, the bridge parameter λ runs from 1 to 0 in steps of 0.1 as the
chain algorithm proceeds. Since the parameter α is somewhat better understood in the
literature and our introduced parameter λ needs to be analyzed more deeply, the latter
is varied through finer steps than the former.

7.1 Exponential scale model

Here, the model is the class of exponential distributions with mean σ over σ ∈ (0,∞).
Data are simulated from the mixture (1 − ε)Exp(1) + εUnif(6 − 10−4, 6 + 10−4),
where the first component is exponential with rate 1, and the second is uniform over
the indicated range. The contamination level ε is taken to be 0, 0.05 and 0.2. For step
2 of the chain algorithm which involves solving the DPD problem completely, 25
starting points are drawn uniformly from the interval [0, 0.1] and the remaining 75
uniformly from the interval (0.1, 10].

7.2 Normal scale model

Here, the model is the class of normal distributions with mean 5 and variance σ 2

over σ ∈ (0,∞). Data are simulated from the mixture (1 − ε)N (5, 1) + εUnif(5 −
10−5, 5+ 10−5), where the first and the second components are normal and uniform,
respectively, with parameters as indicated. The contamination level ε is taken to be
0, 0.05 and 0.2. For step 2 of the chain algorithm which involves solving the DPD
problem completely, 25 starting points are drawn uniformly from the interval [0, 0.1]
and the remaining 75 uniformly from the interval (0.1, 10].

7.3 Description of the results

For the sake of brevity, we will only include the graphs of the mean squared errors
(scaled by sample size n = 100) of the minimum bridge divergence estimators in the
exponential scale model case, for contamination levels 0.05 and 0.2, respectively (in
Fig. 7), in the main article. Tables presenting exact values of the bias and MSE of
the minimum bridge divergence estimators for both the exponential and normal scale
families, for all the three contamination levels 0, 0.05 and 0.2, are given in the online
supplement.

It is observed that for the 5% contamination level, the MSE of the minimum bridge
divergence estimators decreases as the chain algorithm proceeds (λ goes from 1 to
0) for α up to 0.6, and, roughly speaking, increases as the chain algorithm proceeds
for α = 0.8 and 1. On the other hand, for the 20% contamination level, the MSE of
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Fig. 7 Scaled MSE of the minimum bridge divergence estimators for the Exp(σ ) model at 5 and 20%
Contaminations

the minimum bridge divergence estimators decreases as the chain algorithm proceeds
from λ = 1 to λ = 0 for all values of α. As a function of α (with λ held fixed), for
5% contamination, the MSE decreases as α increases roughly up to α = 0.6 and then
increases with α, whereas for 20% contamination, a completely decreasing trend of
the MSE is observed as α increases.

Note that the values reported here are not, except for the DPD (λ = 1 case) case,
based on the global minimizers of the divergences; rather they are the chain algorithm
solutions. What this shows is that for heavy contamination (at the level of 20%) the
LDPD solution (not necessarily the global minimizer) as obtained from the chain
algorithm does seem to dominate the other BDPD solutions, and the mean square
errors decrease uniformly in the direction 1 → 0 over λ for each α. This provides
partial confirmation of the results of Fujisawa and Eguchi (2008) and Fujisawa (2013).
However, the results are now stronger and more useful in that we identify the root for
which it works; it does not work for just any root, and certainly not for the global
minimizer.

The situation observed in the normal distribution case is somewhat different. Here,
the contamination is an inner contamination,which leads to spurious globalminimizers
more often for the BDPDs. The chain algorithm does guide the process to a sensible
root (that is also a local minimizer) in each case. But in this scenario, the minimum
DPD estimator remains the best in terms of both the bias and mean squared error
for practically all values of α under both mild (ε = 0.05) and heavy (ε = 0.2)
contaminations.

For the data of size 20 presented in Sect. 4 from N (0, 1), the minimum bridge
divergence estimators of σ under the N (0, σ 2) model with α = 0.8 and varying λ

from 0 to 1 are presented in Table 1. For each value of λ, the true global minimizers
of the bridge divergence objective functions are presented in the parentheses. It is
remarkable that even with λ as high as 0.9, the spurious root phenomenon is observed.
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Table 1 Bridge divergence estimators of σ with α = 0.8

λ θ̂α,λ λ θ̂α,λ λ θ̂α,λ

0.9 1.245808 (1.4411e−5) 0.6 1.248243 (1.4124e−5) 0.3 1.252942 (1.4085e−5)

0.8 1.246477 (1.4218e−5) 0.5 1.249401 (1.4106e−5) 0.2 1.255756 (1.4078e−5)

0.7 1.247269 (1.4155e−5) 0.4 1.250926 (1.4094e−5) 0.1 1.259926 (1.4073e−5)

The global minimizers are presented in the parentheses

7.4 Summary of simulation results

So far in this section, we have described the findings of the selected simulation results
for the exponential scale and the normal scale problem, some of which have been
expanded upon in the online supplement. In this subsection, we give a brief summary
of the comparative performance of the different estimators including those cases for
which detailed simulation results have not been presented.

1. The spurious behavior of the global minimizer of the LDPD is present in all
kinds of situations including outer contamination, inner contamination and no
contamination in both the normal and the exponential scale models. This behavior
is also present in many of the other bridge divergences.

2. If the global minimizer of the divergence is the estimator of choice, then the DPD
is the only divergence without spurious behavior within the bridge divergence
family, at least for the models considered here.

3. For heavy outer contamination (ε ≥ 0.2), the reasonable roots of the bridge diver-
gences (obtained using the chain algorithm) appear to providemean squared errors
which are increasing in λ. Thus the chain algorithm root for the LDPD is the most
desirable estimator in this system of estimators. This has been our consistent obser-
vation in both the normal and the exponential scale models.

4. For heavy inner contamination, however, the situation is different. Here, there
is little to choose between the performance of the bridge divergence estimators
(obtained using the chain algorithm) for α roughly up to 0.5. But for larger values
of α, the mean squared error has a clearly declining pattern with increasing λ and
theminimumDPD estimator appears to dominate the others. Once again this holds
for both the normal and the exponential scale models.

5. The performance of theLDPDestimatorwould have been substantially inferior had
we chosen the global minimizer of the divergence instead of the chain algorithm
root. For example, Fujisawa (2013) considered a case of outer contamination in
the N (μ, σ 2)-model using a sample of size 40 replicated 500 times, and reported
(Fig. 5d) a mean squared error of about 0.24 for the estimate of σ . However, the
global minimizer of the LDPD has an MSE of 1 in this case.

Based on our experience in the theoretical calculations, numerical work and sim-
ulations, we recommend that the estimators based on the LDPD and the other bridge
divergenceswhenever they are used should be obtained using the chain algorithm start-
ing with the minimum DPD estimator rather than direct minimization of the objective
function.
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8 Choice of tuning parameters

Most of the robust estimators derive their robustness from down-weighting the obser-
vations suspected as outliers. As can be seen from the BDPD objective functions,
the observations are proportionally weighted by powers of the model density which
demonstrates that the observations are down-weighted for being outliers with respect
to the density fθ . It is this outlier stability property which makes the corresponding
estimators desirable from the point of view of robustness. If there are no outliers in
the data, then the tuning parameter α must ideally be set to zero in order to get optimal
inference. But if the data do contain outliers, then the tuning parameters α and λ should
be chosen so as to partially or fully eliminate the effect of the outlying observations.
However, the choice of the tuning parameter must be an automatic procedure where a
data-driven choice of the parameters α and λ is generated by the method. One of the
first methods of choosing tuning parameters in case of the DPDwas proposed in Hong
and Kim (2001), where the tuning parameter is chosen by minimizing the trace of an
estimate of the asymptotic covariance matrix. Warwick and Jones (2005) refined this
method to find an “optimal” tuning parameter by minimizing the trace of an estimate
of the MSE of the estimator. Here, the MSE is computed by separately estimating the
bias and the variance components. From the asymptotic variance formula, one can
easily estimate the variance. But bias estimation involves the use of a pilot estimate,
and the estimated mean square error has a strong dependence on it. Warwick and
Jones (2005) used the minimum L2 distance estimator as the pilot; however, under the
current state of the art, there is no universally acceptable choice of the pilot, on which
the process critically depends.

We acknowledge that the method of Warwick and Jones (2005) would be perfect
if we could eliminate its dependence on the pilot estimator, or find an independent
estimate of the bias as a function of the tuning parameter. However, here we present
a modified version of the approach of Hong and Kim (2001) and give an (almost
theoretical) justification of the same. Firstly, one should not use the trace of an estimate
of the asymptotic covariance matrix (although some of the present authors have done
so in the past in the absence of a better strategy) for the construction of the objective
function to beminimized. This leads to adding quantities with different units. Consider
the N (μ, σ 2) example in which case the asymptotic variance of (μ̂, σ̂ 2) or any of the
variance estimates have the units of Xi and X2

i that should not be added. One could,
of course, think of estimating (μ, σ ) where adding the variance estimates would be
more sensible. But this remedy does not work in general parameter spaces.

Why is the asymptotic variance adequate? An intuitive explanation is as follows.
It is well-known that the delete-d jack-knife estimator is a consistent estimator of the
asymptotic variance. The delete-d jack-knife estimator is obtained by calculating the
difference between the estimator calculated based on n observations and the estimator
calculated based on n − d observations. By the definition of a good robust estimator,
this difference should be small for a robust estimator but for a nonrobust estimator
like the maximum likelihood estimator this difference would be large if the d obser-
vations deleted contain some outliers. This implies that robust estimators should have
“smaller” asymptotic variance than nonrobust estimators. Of course, if there is no
contamination then it is known that the maximum likelihood estimator would have
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“smaller” variance for large enough sample size. Using a bootstrap asymptotic vari-
ance estimator also gives a similar conclusion. We do ignore the bias, but the question
clearly goes in favor of a robust estimator. By definition, they are closer to the true
parameter based on the majority of the data.

A more concrete explanation is offered by using the closeness measure introduced
in Zhang and He (2016). Let VΛ define a set of variance matrices Vα indexed by a
(possibly vector) parameter α ∈ Λ.

Definition 1 A nonnegative real-valued matrix functionm(·) defined on the set VΛ is
called a closeness measure if and only if the following conditions hold.

1. Consistency. For any V1, V2 ∈ VΛ, if V1 � V2, then m(V1) ≥ m(V2), where the
equality holds only if V1 = V2.

2. Continuity. For any matrix sequence {Vn} ⊆ VΛ with Vn � B. As n → ∞,
‖Vn − B‖∞ → 0 if and only if m(Vn) → m(B).

Here, by A � B, we mean A − B is nonnegative definite. Definition 1 implies that if
there is an efficient variance matrix in the set VΛ, then minimizingm(Vα) over α ∈ Λ

leads to such a matrix. Zhang and He (2016) additionally prove that the trace and the
Frobenious norm are valid closeness measures. We use the determinant of the matrix
as the measure of closeness (see Section S.5 of the supplementary material). Note that
determinant is a valid quantity to consider from the point of view of units and it also
has a practical interpretation as the volume of a confidence set. These arguments give
a justification for minimizing a closeness measure of an estimate of the asymptotic
variance.

Summing up all these arguments, we claim that minimizing the determinant of
an estimate of the asymptotic variance provides an asymptotically optimal estimator
whenever such an estimator exists in the family of estimators under consideration.
A detailed analysis of this procedure would be taken up in a future paper. Just as a
remark, for the normal data of size 20 presented in Sect. 4, the optimal λ parameter
with α = 0.8 using this procedure turned out to be λ = 1. A plot of the asymptotic
variance over all λ is given in the supplementary material.

9 Concluding remarks

In this paper, the competing families of divergences, DPD and LDPD, are critically
examined for their strengths and deficiencies. The bridge divergence family introduced
in this paper is an attempt at combining the good of both and nullify the disadvantages
of either. Unlike theDPD, the LDPDestimating equation admits rootswith small latent
bias. However, these roots may not be the global minimizers of the LDPD objective.
The phenomenon of spurious global minimizers of the LDPD is rigorously proved in
specific parametric families where the DPD provably works. The bridge divergences
partly suppress this problem for certain tuning parameter (λ) values along the bridge.

However, the bridge divergence is not a perfect solution in that it also faces the
same problem as LDPD in some cases. The point made here is that one cannot expect
the global minimizer of the LDPD to generate a good estimator and the DPD estimator
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is a safe bet in all the cases, but whenever possible some members of the minimum
bridge divergence estimators can help reduce the latent bias of the DPD estimator.
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