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Abstract To obtain M-estimators of a response variable when the data are missing
at random, we can construct three bias-corrected nonparametric estimating equations
based on inverse probabilityweighting,mean imputation, and augmented inverse prob-
abilityweighting approaches. However, when the dimension of covariate is not low, the
estimation efficiency will be affected due to the curse of dimensionality. To address
this issue, we propose a two-stage estimation procedure by using the dimension-
reduced kernel estimators in conjunction with bias-corrected estimating equations.We
show that the resulting three kernel-assisted estimating equations yield asymptotically
equivalentM-estimators that achieve the desirable properties. Thefinite-sample perfor-
mance of the proposed estimators for responsemean, distribution function and quantile
is studied through simulation, and an application toHIV-CD4data set is also presented.

Keywords Consistency and asymptotic normality · Dimension reduction · Kernel-
assisted · M-estimators · Missing at random

1 Introduction

Let Y1, . . . , Yn be n independent observations on a real-valued random variable Y with
distribution function F , and θ = θ(F) be a parameter of interest from a set Θ . Let
θ0, the true value of the parameter θ , be a unique solution of the following estimating
equation

E{ϕ(Y, θ)} = 0,
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890 L. Wang

where ϕ(·) is a known function. Huber (1981) introduced a flexible class of estimators,
called “M-estimators,” which are defined to be the solution of an estimating equation
n−1 ∑n

i=1 ϕ(Yi , θ) = 0. The M-estimators are generalizations of the usual maximum
likelihood estimators, generalized method of moment estimators, location and scale
estimators, and have become a very useful tool in statistical inference. The asymptotic
properties of M-estimators with complete data are investigated extensively, and the
results can be found in Huber (1981), Serfling (1981), Zhang (1995) and others.

In survey sampling, social science, epidemiology studies and many other statistical
problems, Y often has missing values and there exists a d-dimensional auxiliary vector
X which is observed for the entire sample. Let δ be the response status indicator for Y ,
where δ = 1 if Y is observed and δ = 0 otherwise. The probability of missingness is
assumed only to depend on observed values X , i.e., Pr(δ = 1|X, Y ) = Pr(δ = 1|X) =
π(X). In this case, it can be shown that δ ⊥ Y |X holds and then Y is called missing
at random (MAR; Rubins 1976). Here, ⊥ stands for conditional independence.

Under the MAR assumption, dropping observations with missing response data
will result in a serious loss of efficiency and badly biased estimators. Hence, a variety
of methods such as likelihood-based approaches, weighting, regression and multiple
imputation are proposed to obtain unbiased estimators, see Cheng (1994), Ibrahim
et al. (2005), Kim and Shao (2013) and the references therein for comprehensive
literature reviews. In this paper, we focus on the following three types of nonparamet-
ric bias-corrected estimating equations. For example, to obtain unbiased estimators,
Wang (2007) and Wooldridge (2007) proposed the nonparametric inverse probability
weighting (IPW) M-estimators. However, the kernel-assisted IPW method may not
have enough estimation efficiency, as it does not fully extract the information con-
tained in the auxiliary variables. Alternatively, following Wang and Chen (2009) and
Chen et al. (2015), estimating equations can be imputed nonparametrically based on
all observed covariates X to improve estimation efficiency over the IPWM-estimators.
Also, a combination of the kernel-assisted IPW and imputation methods is considered,
which leads to the nonparametric augmented inverse probability weighting (AIPW)
approach (Xue 2009; Wang et al. 2010; Chen et al. 2015). These three nonparamet-
ric methods overcome the difficulty with the misspecification of propensity π(X) and
expected estimating equationmϕ(X, θ) = E{ϕ(Y, θ)|X} commonly encounteredwith
parametric methods.

When the dimension of covariates is not low, due to the well-known curse of dimen-
sionality, the performance of nonparametric estimation of π(X) and mϕ(X, θ) is poor,
which causes the kernel-assisted IPW, MI, AIPW M-estimators lose efficiency and
seriously limits their application scope. To address this issue, one possible way is to
reduce the dimension of the kernel regression estimators. In the presence of response
Y and high-dimensional covariates X , a major research effort in the last two decades is
to find an S = B X such that Y ⊥ X |B X , i.e., Y and X are conditionally independent
given B X , where B is a p×d deterministic matrix with p < d. The matrix B is a basis
of the central dimension reduction space of the regression of Y on X , and B X can be
viewed as a parsimonious summary of X in the sense that it has lower dimension than
X but carries all the information contained in X about Y. Then, the high-dimensional
X can be replaced by the low-dimensional S in kernel regression to obtain more effi-
cient estimators. For example, Hu et al. (2014) considered regression estimation of
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the response mean by dimension reduction to find Sδ , SY , SδY , respectively, where
Sδ contains all information in X for missingness δ, i.e., δ ⊥ X |Sδ; SY contains all
information in X for response Y , i.e., Y ⊥ X |SY ; SδY contains all information in X for
both δ and Y , i.e., Y ⊥ X |SδY and δ ⊥ X |SδY . Li et al. (2017) studied the estimation
of mean response based on regression using SY . Deng and Wang (2017) proposed the
dimension reduction estimation based on regression and IPWmethods for probability
density using the same Sδ , SY , SδY as in Hu et al. (2014).

In this paper, to make valid and efficient M-estimators, we first apply the suffi-
cient dimension reduction (SDR) technique (Li 1991; Cook andWeisberg 1991; Cook
1994; Ma and Zhu 2012, 2013) to obtain a lower dimensional S instead of X in the
kernel regression estimation of the propensity π(X) as well as the expected estimat-
ing equationmϕ(X, θ), and then construct three efficient bias-corrected nonparametric
estimating equations based on the IPW,MI, AIPWapproaches. There are several novel
contributions in the current article.

(i) Different from Hu et al. (2014) and Li et al. (2017), we consider a general
M-estimator, which includes population mean, moments, distribution function,
quantile andmany othermarginal parameters of the response. The estimators pro-
posed inHu et al. (2014) and Li et al. (2017) can be seen as the special cases of our
proposed dimension reduction M-estimators. The general dimension reduction
conditions for M-estimators are studied and investigated in Sect. 2.

(ii) We consider three different kernel-assisted estimating equations which can
overcome the difficulty with the misspecification of propensity and expected esti-
mating equation commonly encountered with parametric methods. To the best of
our knowledge, none of these papers studied the kernel-assisted IPW, MI, AIPW
M-estimators together. We investigate the impact of SDR in nonparametric esti-
mation of parameters when a

√
n-consistent estimator Ŝ of S is used. It can be

shown that the proposed estimators obtained by using Ŝ and S are asymptotically
equivalent. We further show that the resulting three estimating equations yield
asymptotically equivalent M-estimators which achieve the desirable properties
of consistency and asymptotic normality.

(iii) Simulation results for the responsemean, distribution function, quantile show that
the proposedmethods not only have substantially accurate coverage probabilities,
but also have efficient point estimators.

The rest of this article is organized as follows. After presenting three types of non-
parametric estimating equations, we introduce our main idea and establish a number
of asymptotic properties in Sect. 2. Three special kernel-assisted M-estimators for the
response mean, distribution function and quantile are investigated in Sect. 3. Simula-
tion studies are given in Sect. 4. Section 5 analyzes the AIDS Clinical Trials Group
Protocol 175 data for illustration. All technical details are provided in “Appendix.”

2 Methodology and theory

Let (Xi , Yi , δi ), i = 1, ..., n, be independent and identically distributed realizations
from (X, Y, δ), where Xi is a d-dimensional fully observed covariate vector, Yi is a
univariate response having missing values, and δi is a binary response indicator that
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equals 1 if and only if Yi is observed. Throughout this paper, we make the MAR
assumption such that mϕ(X, θ) = E{ϕ(Y, θ)|X, δ = 1} = E{δϕ(Y, θ)|X}/E(δ|X).

Thus, the unspecified functions π(X) and mϕ(X, θ) can be estimated by the kernel
regression estimators as follows:

π̂(X) =
∑n

j=1 δ j Kh(X − X j )
∑n

j=1 Kh(X − X j )
and m̂ϕ(X, θ) =

∑n
j=1 δ jϕ(Y j , θ)Kh(X − X j )
∑n

j=1 δ j Kh(X − X j )
,

(1)
where Kh(·) = h−1K (·/h), K (·) is a symmetric kernel function and h is a band-
width.

We next describe three bias-corrected estimating equations using the nonparametric
kernel estimators π̂(X) and m̂ϕ(X, θ) in (1) for handling missing data.

(i) Nonparametric IPW method: The kernel-assisted IPW estimating equation
assigns each observed Yi with weight proportional to the inverse of the estimated
propensity π̂(Xi ), i.e.,

1

n

n∑

i=1

δiϕ(Yi , θ)

π̂(Xi )
= 0. (2)

(ii) Nonparametric MI method: For each Xi with δi = 0, we use an estimated
m̂ϕ(Xi , θ) to impute mϕ(Xi , θ), and the kernel-assisted MI estimating equation
for θ is given by

1

n

n∑

i=1

{δiϕ(Yi , θ) + (1 − δi )m̂ϕ(Xi , θ)} = 0. (3)

(iii) Nonparametric AIPW method: We consider a combination of the nonparametric
IPWandMImethods. This leads to the kernel-assistedAIPWestimating equation
for θ as follows:

1

n

n∑

i=1

[δiϕ(Yi , θ)

π̂(Xi )
+ {

1 − δi

π̂(Xi )

}
m̂ϕ(Xi , θ)

]
= 0. (4)

However, with a multivariate X , due to the well-known curse of dimensional-
ity, the nonparametric kernel estimators π̂(X) and m̂ϕ(X, θ) in (1) may not be
efficient, which causes the kernel-assisted M-estimators obtained by (2–4) loses effi-
ciency.

In this paper, we apply SDR to reduce the dimension of the kernel regression
estimation, such that we can obtain more efficient nonparametric estimators of π̂(X)

and m̂ϕ(X, θ), respectively. The main idea is that if we can find a p ×d matrix B with
p much smaller than d and E(δ|X) and E{δϕ(Y, θ)|X} are functions of S = B X , then
π(X) and mϕ(X, θ) satisfy
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π(X) = E(δ|S) = π(S), mϕ(X, θ) = E{δϕ(Y, θ)|S}
E(δ|S)

= mϕ(S, θ),

respectively, which are functions of S only. That is the information contained by
X about (δ, δϕ(Y, θ)) is summarized by S, i.e., (δ, δϕ(Y, θ)) ⊥ X |S. However, the
second condition, δϕ(Y, θ) ⊥ X |S, involves θ which is unknown so that we cannot
use δϕ(Y, θ) because it is unobservable. If we try a set of θ values in a plausible range
of the parameter space under the condition δϕ(Y, θ) ⊥ X |S, then the resulting S may
depend on θ , which is not desirable.

Consider a special case where ϕ(Y, θ) = Y − θ for estimating response mean.
Note that δ(Y − θ) = δ(Y − θ1) + δ(θ1 − θ) for any θ and a fixed θ1. Thus,
(δ, δϕ(Y, θ1)) ⊥ X |S implies (δ, δϕ(Y, θ)) ⊥ X |S for any θ , which indicates that
S is invariant to θ . Many marginal parameters, for example, the moments, distribution
function and quantile of the response, have similar properties. This motivates us to
impose a condition on ϕ(Y, θ) and then we can find S = B X invariant to θ . Suppose
that there exists θ1 such that

ϕ(Y, θ) = Ψθ

(
ϕ(Y, θ1)

)
for any θ, (5)

where Ψθ is a function depending on θ , and

δ ⊥ X |B X, δϕ(Y, θ1) ⊥ X |B X, (6)

for some B. Thenwe can find a B invariant to the value of θ and
(
δ, δϕ(Y, θ)

) ⊥ X |B X
holds for any θ . However, when ϕ(Y, θ) is complicate, the above conditions may not
easily be satisfied. In this case, as suggested by one referee, we can apply SDR to
find another B̃ such that (δ, Y ) ⊥ X |B̃ X . Here, B̃ does not depend on θ and it can be
shown that (δ, δϕ(Y, θ)) ⊥ X |B̃ X holds for any θ .

Denote g1(Yi , Si , δi , θ) := δiϕ(Yi , θ)/π̂(Si ), g2(Yi , Si , δi , θ) := δiϕ(Yi , θ) +
(1 − δi )m̂ϕ(Si , θ), g3(Yi , Si , δi , θ) := δiϕ(Yi , θ)/π̂(Si ) + {1 − δi/π̂(Si )}m̂ϕ(Si , θ),
i = 1, . . . , n. In applications, the low-dimensional Si has to be estimated from the
observed data and many SDR methods can be applied. Popular choices include sliced
inverse regression (SIR; Li 1991), sliced average variance estimates (SAVE; Cook
and Weisberg 1991), minimum average variance estimation (MAVE; Xia et al. 2002),
and fusion-refinement procedure (Ding and Wang 2011). Under conditions (5–6),
once we have an estimator B̂ of B, we can obtain the dimension reduction kernel-
assisted estimating equations gl(Yi , Ŝi , δi , θ), l = 1, 2, 3, with Si replaced by Ŝi =
B̂ Xi , respectively, i = 1, . . . , n. Theorem 1 shows that

∑n
i=1 gl(Yi , Ŝi , δi , θ)/n and∑n

i=1 gl(Yi , Si , δi , θ)/n, l = 1, 2, 3, are asymptotically equivalent. A sketched proof
is given in “Appendix.”

Theorem 1 Under the conditions listed in “Appendix” and conditions (5)-(6), as
n → ∞, we have

√
n{ 1n

∑n
i=1 gl(Yi , Ŝi , δi , θ) − 1

n

∑n
i=1 gl(Yi , Si , δi , θ)} = op(1)

and
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√
n
{1

n

n∑

i=1

gl(Yi , Ŝi , δi , θ) − Eϕ(Yi , θ)
}

L→ N (0, σ 2(θ)), l = 1, 2, 3,

with

σ 2(θ) = V ar
{δϕ(Y, θ)

π(S)

}
− E

[1 − π(S)

π(S)
E2{ϕ(Y, θ)|S}

]
.

From Theorem 1, the kernel-assisted M-estimators based on gl(Yi , Ŝi , δi , θ),
denoted as θ̂l , can be obtained by solving the following estimating equations

n−1
n∑

i=1

gl(Yi , Ŝi , δi , θ) = 0,

where l = 1, 2, 3 denotes for IPW, MI and AIPW methods, respectively. Our next
result is about the asymptotic behavior of θ̂l with a

√
n-consistent estimator B̂ of B,

l = 1, 2, 3. Its proof is given in “Appendix.”

Theorem 2 Under the conditions of Theorem 1, as n → ∞, we have

√
n(θ̂l − θ0)

L→ N (0, V (θ0)),

with V (θ0) = γ −2(θ0)σ
2(θ0) and γ (θ0) = E{∂ϕ(Y, θ)/∂θ

∣
∣
θ=θ0

}.

3 Response mean, distribution function and quantile

3.1 Response mean

For response mean, as discussed in Sect. 2, we have (δ, δϕ(Y, θ1)) = (δ, δY ) by
setting θ1 = 0, which means that we only need to find a p × d matrix B such that
(δ, δY ) ⊥ X |B X . On the other hand, under the MAR assumption, if we have a matrix
B such that δY ⊥ X |B X , then it also can be shown that δ ⊥ X |B X holds (Hu et al.
2014). Hence, we apply SDR to search a matrix B satisfying

δY ⊥ X |B X. (7)

Let B̂ be a root-n-consistent estimator of B defined in (7) obtained by SDR. Denote

π̂(S) =
∑n

j=1 δ j Kh(S − Ŝ j )
∑n

j=1 Kh(S − Ŝ j )
and m̂Y (S) =

∑n
j=1 δ j Y j Kh(S − Ŝ j )

∑n
j=1 δ j Kh(S − Ŝ j )

,
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with Ŝ j = B̂ X j for j = 1, . . . , n. The kernel-assisted IPW, MI, AIPW M-estimators
for μ = E(Y ) are given as follows:

μ̂i pw =
n∑

i=1

δi Yi

π̂(Ŝi )

/ n∑

i=1

δi

π̂(Ŝi )
,

μ̂mi = n−1
n∑

i=1

{
δi Yi + (1 − δi )m̂Y (Ŝi )

}
,

μ̂aipw = n−1
n∑

i=1

[ δi Yi

π̂(Ŝi )
+

{
1 − δi

π̂(Ŝi )

}
m̂Y (Ŝi )

]
. (8)

It can be seen that the estimators proposed in Hu et al. (2014) and Li et al.
(2017) are the special cases of our proposed dimension reduction kernel-assisted
M-estimators in (8). Corollary 1 describes the asymptotic properties of μ̂l , where
l = 1, 2, 3 denotes for the kernel-assisted IPW, MI and AIPW estimators, respec-
tively.

Corollary 1 Under the regularity conditions in “Appendix,” assume that μ0 is the
true value, as n → ∞, we have

√
n(μ̂l − μ0)

L→ N (0, V 2), l = 1, 2, 3,

with

V 2 = E{π−1(S)V ar(Y |S)} + V ar{E(Y |S)}.

3.2 Distribution function

In this case, for any given y, we want to estimate F(y) = Pr(Y ≤ y) and the corre-
sponding function ϕ(Y, θ) = I (Y ≤ y) − θ , where I (·) is the indicator function. We
consider (δ, δϕ(Y, θ1)) = (δ, δ I (Y ≤ y)) by setting θ1 = 0 and then only need to find
a p × d matrix B such that (δ, δ I (Y ≤ y)) ⊥ X |B X . However, this B depends on the
given value y. On the other hand, it can be shown that B defined in (7) also satisfies
(δ, δ I (Y ≤ y)) ⊥ X |B X for any given y (see Lemma 1 in “Appendix”), which is
easy to implement. Define

m̂ F (y|S) =
∑n

j=1 δ j I (Y j ≤ y)Kh(S − Ŝ j )
∑n

j=1 δ j Kh(S − Ŝ j )
.

Similarly, we have the kernel-assisted IPW, MI, AIPW M-estimators for F(y) as
follows:
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F̂ipw(y) =
n∑

i=1

δi I (Yi ≤ y)

π̂(Ŝi )

/ n∑

i=1

δi

π̂(Ŝi )
,

F̂mi (y) = n−1
n∑

i=1

[
δi I (Yi ≤ y) + (1 − δi )m̂ F (y|Ŝi )

]
,

F̂aipw(y) = n−1
n∑

i=1

{δi I (Yi ≤ y)

π̂(Ŝi )
+

[
1 − δi

π̂(Ŝi )

]
m̂ F (y|Ŝi )

}
. (9)

Corollary 2 describes the asymptotic properties of F̂l(y) for l = 1, 2, 3.

Corollary 2 Under the regularity conditions in “Appendix,” as n → ∞, we have

√
n(F̂l(y) − F(y))

L→ N (0, V 2(y)), l = 1, 2, 3,

with

V 2(y) = E[π−1(S)V ar{I (Y ≤ y)|S}] + E[E2{I (Y ≤ y)|S}] − F2(y).

3.3 Quantile

Let ζτ be the τ th quantile of the unknown distribution function F , where 0 < τ < 1,
and F

′
(y) be the first-order derivative of F , i.e., the probability density function of

F(y). The proposed M-estimators for ζτ are defied as

ζ̂lτ = inf{y : F̂l(y) ≥ τ }, (10)

where F̂l(y) is defined in (9) and l = 1, 2, 3 denotes for IPW, MI and AIPW, respec-
tively. Since the asymptotic normality of the estimators F̂l(y) is given by Corollary 2,
we can show the asymptotic normality of ζ̂lτ based on the well-know Bahadur,s
expression (Cheng 1994).

Corollary 3 Under the conditions in Corollary 2, assume that F
′
(y) is bounded away

from 0, as n → ∞, we have

n1/2(ζ̂lτ − ζτ )
L→ N (0, V 2(ζτ )/{F

′
(ζτ )}2).

4 Simulation studies

In this section, we conduct simulation studies to examine the finite-sample perfor-
mances of the kernel-assisted IPW,MI,AIPWM-estimators and someother estimators.
In particular, we obtain the simulated bias and standard deviation (SD) of estimators,
the standard error (SE) obtained by the bootstrap with replication size 200, and the
coverage probability (CP) of the confidence intervals at the nominal level 95% based
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on asymptotic normality and bootstrap SE. All results are based on 1000 simulation
replications and the sample sizes n = 200 and 500.

In the first simulation, we consider

Yi = X T
i β + εi , i = 1, ..., n,

where Xi ’s are from the 10-dimensional normal distribution with zero mean and iden-
tity covariance matrix, εi ’s are independently from N(0, 1), and εi ’s and Xi ’s are
independent, the true parameter vector βT = (1, 1, . . . , 1). In the second simulation,
we consider

Yi = exp(X T
i β1) + X T

i β2 + εi , i = 1, ..., n,

where Xi ’s are from a 10-dimensional normal distribution with mean 0 and covari-
ance matrix Γ with Γ j j = 1 and Γ j j ′ = 0.2| j ′− j |, 1 ≤ j < j ′ ≤ 10; εi ’s
are from N (0, σ 2(Xi )) with σ 2(Xi ) = 1 + 0.5X2

i1; the true parameter vectors
βT
1 = (0.5, 0.5, 0.5, 0.5, 0.5, 0, . . . , 0) and βT

2 = (0, 0, 0, 0, 0, 1, . . . , 1).
We generate δi from the Bernoulli distribution with probability π(Xi ) and consider

four choices of π(Xi ):

M1: π(Xi ) = 1/[1 + exp{−0.6 − 0.2(Xi1 + · · · + Xi5)}];
M2: π(Xi ) = 1/[1 + exp{−0.2 − 0.4 exp(Xi1 + · · · + Xi5)}];
M3: π(Xi ) = 1 − exp[− exp{0.1 + 0.2(Xi1 + · · · + Xi5)}];
M4: π(Xi ) = Φ{0.4 + 0.2(Xi1 + · · · + Xi5)};

whereΦ(·) is the standard normal distribution function. The coefficients in the propen-
sity models are chosen so that the unconditional rates of missing data are between 20
and 40%.

To implement our proposed methods, we obtain an estimated B defined in (7) using
the SIR method based on R package “dr” with 10-dimensional covariates X and the
observed response Y = δY . The structural dimension p of B is determined by the
BIC-type criterion (Zhu et al. 2010) as follows:

p̂ = argmax
v=1,...,d

[
n

2

∑v
j=1{log(η̂ j + 1) − η̂ j }

∑d
j=1{log(η̂ j + 1) − η̂ j }

− 2n1/2 v(v + 1)

2d

]

,

where the dimension of X is d, η̂1 ≥ η̂2 ≥ . . . ≥ η̂d ≥ 0 are the eigenvalues
from an estimate of Σx = Var{E(X |Y )}. Along the line of Shao and Wang (2016),
the nonparametric kernel regression estimator is computed using a Gaussian product
kernel with bandwidth h = 1.5ξ̂n−1/3, where ξ̂ is an estimated standard deviation of
observations.

We study the performance of (a) the response mean μ, (b) the distribution function
F(y) at y = 3 and (c) the median ζ0.5, based on the following six estimators:

(i) the proposed dimension reduction kernel-assisted IPW, MI, AIPWM-estimators
μ̂l , F̂l(y), ζ̂lτ for l = 1, 2, 3 defined by (8)–(10), respectively;
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Table 1 Results of response mean based on 1000 runs

Model n = 200 n = 500

Bias SD SE CP Bias SD SE CP

Example 1

M1 μ̂i pw 0.086 0.257 0.256 0.935 0.023 0.160 0.163 0.947

μ̂mi 0.035 0.245 0.242 0.944 0.006 0.158 0.152 0.954

μ̂aipw 0.022 0.246 0.242 0.940 − 0.004 0.158 0.152 0.954

μ̌ 0.003 0.238 0.233 0.945 − 0.006 0.153 0.148 0.941

μ̃ 0.341 0.294 0.287 0.774 0.342 0.184 0.183 0.532

μ̂∗
i pw

0.215 0.189 0.187 0.746 0.225 0.119 0.118 0.501

M2 μ̂i pw 0.070 0.256 0.255 0.933 0.002 0.151 0.168 0.965

μ̂mi 0.020 0.243 0.239 0.938 − 0.015 0.147 0.152 0.958

μ̂aipw − 0.001 0.244 0.240 0.939 − 0.030 0.147 0.153 0.950

μ̌ 0.005 0.238 0.232 0.932 − 0.001 0.140 0.148 0.965

μ̃ 0.473 0.280 0.275 0.597 0.477 0.161 0.175 0.219

μ̂∗
i pw

0.342 0.197 0.189 0.507 0.346 0.126 0.125 0.235

M3 μ̂i pw 0.033 0.153 0.163 0.959 0.041 0.156 0.171 0.946

μ̂mi 0.016 0.151 0.153 0.941 0.010 0.150 0.153 0.945

μ̂aipw 0.006 0.151 0.153 0.946 − 0.006 0.151 0.153 0.947

μ̌ 0.004 0.146 0.148 0.947 0.005 0.145 0.148 0.950

μ̃ 0.351 0.185 0.183 0.510 0.502 0.172 0.179 0.181

μ̂∗
i pw

0.345 0.186 0.187 0.547 0.331 0.121 0.118 0.187

M4 μ̂i pw 0.141 0.262 0.260 0.906 0.046 0.169 0.172 0.939

μ̂mi 0.049 0.239 0.242 0.940 0.005 0.160 0.153 0.941

μ̂aipw 0.030 0.241 0.243 0.939 − 0.011 0.161 0.153 0.941

μ̌ − 0.002 0.231 0.232 0.944 − 0.007 0.153 0.148 0.936

μ̃ 0.521 0.274 0.283 0.543 0.526 0.181 0.181 0.161

μ̂∗
i pw

0.338 0.183 0.182 0.504 0.348 0.117 0.116 0.196

Example 2

M1 μ̂i pw 0.055 0.431 0.439 0.943 0.062 0.284 0.276 0.954

μ̂mi − 0.040 0.407 0.396 0.919 − 0.007 0.274 0.261 0.946

μ̂aipw − 0.048 0.407 0.396 0.917 − 0.010 0.275 0.261 0.945

μ̌ − 0.004 0.399 0.386 0.938 0.018 0.273 0.258 0.951

μ̃ 0.519 0.569 0.534 0.893 0.532 0.373 0.355 0.724

μ̂∗
i pw

− 0.533 0.367 0.358 0.554 − 0.529 0.232 0.225 0.317

M2 μ̂i pw 0.129 0.448 0.437 0.960 0.097 0.283 0.269 0.946

μ̂mi 0.036 0.430 0.400 0.932 0.017 0.271 0.257 0.939

μ̂aipw 0.023 0.429 0.400 0.932 0.010 0.271 0.257 0.938

μ̌ 0.006 0.422 0.392 0.931 − 0.002 0.266 0.253 0.938

μ̃ 0.668 0.551 0.507 0.802 0.663 0.349 0.327 0.476

μ̂∗
i pw

− 0.169 0.407 0.398 0.824 − 0.168 0.257 0.245 0.613
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Table 1 continued

Model n = 200 n = 500

Bias SD SE CP Bias SD SE CP

M3 μ̂i pw 0.162 0.459 0.463 0.962 0.126 0.286 0.278 0.931

μ̂mi 0.017 0.432 0.412 0.934 0.002 0.271 0.260 0.930

μ̂aipw 0.006 0.432 0.412 0.931 − 0.004 0.271 0.260 0.930

μ̌ 0.014 0.422 0.399 0.921 − 0.001 0.265 0.253 0.932

μ̃ 0.748 0.605 0.556 0.806 0.721 0.367 0.353 0.468

μ̂∗
i pw

− 0.320 0.397 0.378 0.753 − 0.329 0.253 0.241 0.685

M4 μ̂i pw 0.151 0.465 0.459 0.963 0.117 0.288 0.276 0.928

μ̂mi − 0.012 0.439 0.407 0.926 − 0.019 0.273 0.257 0.932

μ̂aipw − 0.023 0.439 0.406 0.923 − 0.025 0.274 0.257 0.928

μ̌ − 0.003 0.420 0.394 0.932 − 0.020 0.268 0.250 0.922

μ̃ 0.752 0.603 0.556 0.788 0.725 0.375 0.355 0.479

μ̂∗
i pw

− 0.381 0.407 0.396 0.680 − 0.378 0.262 0.258 0.554

SD standard deviation, SE standard error, CP coverage probability

(ii) the nonparametric IPW M-estimators μ̂∗
i pw, F̂∗

i pw(y), ζ̂ ∗
i pwτ defined by (2) with

the 10-dimensional Xi ’s used to obtain the kernel regression estimators in (1);
(iii) the M-estimators μ̃, F̃(y), ζ̃τ based on the observed Yi ’s, which are defined as

the roots of the following equations
∑n

i=1 δiϕ(Yi , θ)/
∑n

i=1 δi = 0;
(iv) the M-estimators μ̌, F̌(y), ζ̌τ when there is no missing data, which are defined

as the roots of the following equations
∑n

i=1 ϕ(Yi , θ)/n = 0.

The simulation results are presented in Tables 1, 2 and 3. A few conclusions can be
drawn from the simulation results.

(i) Bias. The proposed estimators μ̂l , F̂l(y), ζ̂lτ , l = 1, 2, 3, have negligible biases
in all cases. Among these three estimators, the MI and AIPW M-estimators are
comparable, and theyperformbetter than the IPWM-estimatorwhenn = 200.On
theother hand, μ̃, F̃(y), ζ̃τ are biased, due to the fact thatmissing is not completely
at random. As expected, the IPW estimators without dimension reduction μ̂∗

i pw,

F̂∗
i pw(y), ζ̂ ∗

i pwτ have very poor performance.

(ii) Standard deviation. The SDs of the proposed estimators μ̂l , F̂l(y), ζ̂lτ , l = 1, 2, 3
are smaller than the SDs of μ̃, F̃(y), ζ̃τ , respectively, and become smaller when
the mean response rate or the sample size is larger. It also can be seen that the
SDs of theMI and AIPWM-estimators are comparable, and smaller than the SDs
of the IPW M-estimator.

(iii) Standard error. The bootstrap variance estimator works well under all cases
because the values of SE are rather close to those of SD.

(iv) Coverage probability. The coverage probabilities based on the proposed M-
estimators are all close to the nominal level 0.95, and are quite comparable with
the M-estimators μ̌, F̌(y), ζ̌τ assuming no missing data. The coverage probabil-
ities of μ̃, F̃(y), ζ̃τ do not perform well in most of cases, because of their biases.
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Table 2 Results of distribution function at y = 3 based on 1000 runs

Model n = 200 n = 500

Bias SD SE CP Bias SD SE CP

Example 1

M1 F̂ipw 0.002 0.030 0.031 0.952 0.002 0.019 0.019 0.938

F̂mi 0.005 0.030 0.030 0.938 0.004 0.019 0.019 0.933

F̂aipw 0.005 0.029 0.030 0.939 0.003 0.019 0.019 0.935

F̌ − 0.001 0.027 0.027 0.947 0.001 0.018 0.017 0.943

F̃ 0.030 0.036 0.036 0.900 − 0.030 0.023 0.023 0.782

F̂∗
i pw

− 0.311 0.035 0.036 0 − 0.310 0.023 0.022 0

M2 F̂ipw 0.001 0.029 0.030 0.949 0.005 0.018 0.019 0.946

F̂mi 0.005 0.028 0.028 0.933 0.006 0.018 0.018 0.932

F̂aipw 0.006 0.028 0.028 0.932 0.007 0.018 0.018 0.932

F̌ 0.001 0.027 0.027 0.950 0.002 0.017 0.017 0.944

F̃ − 0.040 0.035 0.035 0.810 − 0.041 0.022 0.022 0.557

F̂∗
i pw

− 0.259 0.035 0.036 0 − 0.260 0.022 0.022 0

M3 F̂ipw − 0.001 0.030 0.031 0.947 0.002 0.018 0.019 0.949

F̂mi 0.005 0.029 0.029 0.932 0.004 0.018 0.018 0.938

F̂aipw 0.005 0.029 0.029 0.933 0.004 0.018 0.018 0.937

F̌ 0.001 0.027 0.027 0.946 0.001 0.017 0.017 0.946

F̃ − 0.040 0.036 0.036 0.843 − 0.040 0.022 0.023 0.632

F̂∗
i pw

− 0.300 0.037 0.035 0 − 0.301 0.022 0.022 0

M4 F̂ipw − 0.001 0.029 0.032 0.964 0.001 0.019 0.020 0.958

F̂mi 0.005 0.029 0.030 0.945 0.003 0.019 0.019 0.942

F̂aipw 0.005 0.028 0.029 0.945 0.003 0.018 0.019 0.943

F̌ 0.001 0.027 0.027 0.947 0.001 0.017 0.017 0.951

F̃ − 0.040 0.034 0.037 0.840 − 0.040 0.024 0.023 0.595

F̂∗
i pw

− 0.317 0.035 0.035 0 − 0.318 0.022 0.022 0

Example 2

M1 F̂ipw 0.001 0.040 0.041 0.943 − 0.001 0.025 0.025 0.947

F̂mi 0.007 0.039 0.039 0.941 0.004 0.024 0.024 0.943

F̂aipw 0.008 0.039 0.039 0.939 0.004 0.024 0.024 0.946

F̌ 0.001 0.034 0.034 0.938 0.001 0.022 0.021 0.950

F̃ − 0.037 0.043 0.043 0.858 − 0.037 0.027 0.027 0.726

F̂∗
i pw

− 0.257 0.035 0.034 0 − 0.259 0.022 0.022 0
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Table 2 continued

Model n = 200 n = 500

Bias SD SE CP Bias SD SE CP

M2 F̂ipw − 0.006 0.038 0.039 0.955 − 0.002 0.023 0.024 0.949

F̂mi 0.002 0.038 0.037 0.947 0.002 0.023 0.023 0.952

F̂aipw 0.003 0.038 0.037 0.937 0.003 0.023 0.023 0.946

F̌ − 0.001 0.034 0.034 0.948 0.001 0.021 0.021 0.952

F̃ − 0.056 0.041 0.041 0.716 − 0.053 0.026 0.026 0.460

F̂∗
i pw

− 0.216 0.035 0.034 0 − 0.215 0.022 0.021 0

M3 F̂ipw − 0.003 0.040 0.040 0.954 − 0.004 0.024 0.025 0.950

F̂mi 0.009 0.039 0.038 0.936 0.004 0.024 0.024 0.947

F̂aipw 0.009 0.039 0.038 0.936 0.004 0.024 0.024 0.943

F̌ 0.002 0.034 0.034 0.936 0.001 0.022 0.021 0.938

F̃ − 0.052 0.043 0.043 0.782 − 0.053 0.027 0.027 0.505

F̂∗
i pw

− 0.254 0.034 0.035 0 − 0.254 0.022 0.021 0

M4 F̂ipw − 0.005 0.039 0.041 0.956 − 0.007 0.025 0.025 0.931

F̂mi 0.008 0.038 0.039 0.942 0.002 0.025 0.024 0.941

F̂aipw 0.009 0.038 0.039 0.942 0.002 0.025 0.024 0.937

F̌ − 0.001 0.033 0.034 0.947 − 0.001 0.022 0.021 0.929

F̃ − 0.056 0.043 0.043 0.748 − 0.058 0.028 0.027 0.464

F̂∗
i pw

− 0.270 0.033 0.034 0 − 0.271 0.022 0.021 0

SD standard deviation, SE standard error, CP coverage probability

It also can be seen that the confidence intervals based on μ̂∗
i pw, F̂∗

i pw(y), ζ̂ ∗
i pwτ

have poor coverage rates.

In conclusion, the simulation results suggest that the proposed methods not only
have efficient point estimates, but also have substantially accurate coverage probabili-
ties. Among three proposed methods, the MI and AIPW are recommended in practice.

5 Real data

In this section, we illustrate the proposed method using data (Hammer et al. 1996) col-
lected on 2139 HIV positive patients enrolled in AIDS Clinical Trials Group Protocol
175 (ACTG 175). In this HIV clinical trial, the patients were randomized into four
arms to receive the respective antiretroviral regimen: (1) zidovudine or ZDV with 532
subjects; (2) didanosine or ddi with 522 subjects; (3) ZDV + ddi with 524 subjects;
and (4) ZDV + zalcitabine with 561 subjects. Let response Ys be the CD4 count at 96
± 5 weeks which receiving the sth antiretroviral regimen, s = 1, ..., 4. There are six
continuous baseline covariates: age, weight, CD4 cell counts at baseline and 20 ± 5
weeks, and CD8 cell counts at baseline and 20 ± 5 weeks. We think it is reasonable
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Table 3 Results of quantile at τ = 0.5 based on 1000 runs

Model n = 200 n = 500

Bias SD SE CP Bias SD SE CP

Example 1

M1 ζ̂i pw 0.061 0.321 0.335 0.927 − 0.002 0.201 0.211 0.945

ζ̂mi 0.016 0.310 0.327 0.935 − 0.016 0.200 0.205 0.935

ζ̂aipw − 0.001 0.311 0.327 0.935 − 0.026 0.200 0.205 0.937

ζ̌ 0.010 0.288 0.296 0.936 − 0.016 0.185 0.188 0.924

ζ̃ 0.347 0.363 0.367 0.824 0.332 0.234 0.233 0.695

ζ̂∗
i pw

0.480 0.285 0.286 0.102 0.489 0.187 0.184 0

M2 ζ̂i pw 0.013 0.329 0.333 0.923 − 0.019 0.196 0.213 0.956

ζ̂mi − 0.043 0.319 0.320 0.925 − 0.034 0.194 0.202 0.947

ζ̂aipw − 0.062 0.321 0.320 0.917 − 0.049 0.194 0.202 0.941

ζ̌ − 0.019 0.299 0.294 0.924 0.001 0.182 0.189 0.956

ζ̃ 0.487 0.350 0.355 0.684 0.512 0.214 0.221 0.366

ζ̂∗
i pw

0.479 0.287 0.287 0.094 0.501 0.184 0.186 0

M3 ζ̂i pw 0.071 0.327 0.333 0.926 0.019 0.203 0.215 0.943

ζ̂mi − 0.008 0.320 0.320 0.934 − 0.009 0.200 0.203 0.940

ζ̂aipw − 0.025 0.318 0.321 0.935 − 0.021 0.200 0.203 0.938

ζ̌ − 0.017 0.296 0.292 0.935 0.004 0.188 0.187 0.934

ζ̃ 0.466 0.366 0.356 0.720 0.505 0.221 0.228 0.402

ζ̂∗
i pw

0.486 0.296 0.297 0.068 0.501 0.186 0.183 0

M4 ζ̂i pw 0.126 0.331 0.343 0.916 0.027 0.202 0.218 0.944

ζ̂mi 0.037 0.326 0.331 0.925 − 0.008 0.195 0.204 0.935

ζ̂aipw 0.016 0.329 0.332 0.923 − 0.022 0.195 0.204 0.938

ζ̌ 0.017 0.305 0.298 0.929 − 0.002 0.181 0.187 0.946

ζ̃ 0.550 0.356 0.362 0.653 0.525 0.227 0.229 0.365

ζ̂∗
i pw

0.512 0.294 0.299 0.097 0.494 0.184 0.187 0

Example 2

M1 ζ̂i pw 0.034 0.340 0.373 0.960 0.039 0.230 0.227 0.921

ζ̂mi − 0.035 0.330 0.364 0.956 − 0.011 0.224 0.225 0.921

ζ̂aipw − 0.043 0.337 0.365 0.953 − 0.014 0.225 0.225 0.924

ζ̌ − 0.008 0.290 0.312 0.952 0.011 0.200 0.196 0.927

ζ̃ 0.316 0.384 0.409 0.878 0.324 0.253 0.258 0.763

ζ̂∗
i pw

1.003 0.304 0.300 0.099 0.999 0.195 0.196 0

M2 ζ̂i pw 0.069 0.346 0.364 0.941 0.041 0.225 0.221 0.925

ζ̂mi 0.006 0.339 0.352 0.949 − 0.009 0.220 0.218 0.933

ζ̂aipw − 0.009 0.340 0.353 0.950 − 0.016 0.220 0.218 0.934

ζ̌ 0.008 0.305 0.311 0.940 − 0.011 0.199 0.195 0.931
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Table 3 continued

Model n = 200 n = 500

Bias SD SE CP Bias SD SE CP

ζ̃ 0.488 0.386 0.388 0.751 0.473 0.245 0.245 0.526

ζ̂∗
i pw

0.996 0.298 0.299 0.097 0.989 0.201 0.200 0

M3 ζ̂i pw 0.067 0.373 0.378 0.923 0.082 0.227 0.233 0.934

ζ̂mi − 0.040 0.370 0.364 0.917 − 0.010 0.226 0.229 0.945

ζ̂aipw − 0.049 0.373 0.365 0.918 − 0.015 0.227 0.229 0.947

ζ̌ 0.002 0.319 0.313 0.928 0.002 0.192 0.200 0.953

ζ̃ 0.485 0.404 0.412 0.783 0.505 0.261 0.260 0.510

ζ̂∗
i pw

0.988 0.302 0.298 0.095 1.003 0.189 0.195 0

M4 ζ̂i pw 0.087 0.358 0.386 0.952 0.082 0.227 0.233 0.934

ζ̂mi − 0.031 0.349 0.375 0.952 − 0.010 0.226 0.229 0.945

ζ̂aipw − 0.041 0.353 0.376 0.945 − 0.015 0.227 0.229 0.947

ζ̌ 0.012 0.307 0.315 0.940 0.002 0.192 0.200 0.953

ζ̃ 0.512 0.418 0.416 0.770 0.505 0.261 0.260 0.510

ζ̂∗
i pw

0.976 0.307 0.303 0.101 0.986 0.199 0.197 0

SD standard deviation, SE standard error, CP coverage probability

Table 4 Estimates (with standard errors in parentheses) for response mean of CD4 data

Regimen μ̂i pw μ̂mi μ̂aipw μ̃

(1) 274.87 (12.45) 275.06 (12.07) 274.67 (12.10) 287.62 (13.13)

(2) 338.97 (11.97) 339.46 (11.99) 339.48 (11.98) 341.26 (13.34)

(3) 342.30 (13.01) 343.26 (12.96) 343.02 (12.96) 354.82 (14.18)

(4) 323.84 (11.84) 323.88 (11.98) 323.63 (11.95) 328.79 (13.01)

to assume that, given the six baseline covariates, the missing data propensity does not
depend on the CD4 count at 96 ± 5 weeks. Thus, the missing is MAR (Deng and
Wang 2017). Due to death and dropout, Ys has missing values, but X values are fully
observed. Specifically, the nonresponse rate of Ys is about 39.66, 36.21, 35.69 and
37.43%, respectively.

For the HIV study, the CD4 cell count is of prime interest which decreases as HIV
progresses. We compute the response mean of Ys based on μ̂i pw, μ̂mi , μ̂aipw and μ̃

for s = 1, ..., 4. The point estimates and their standard errors based on the bootstrap
are reported in Table 4. It can be seen that the proposed three estimates and their
standard errors are close, and smaller than μ̃ in all cases. In addition, we know that
the last three antiretroviral regimens perform better than the first one, since all these
estimates indicate that the last three regimens have significantly higher CD4 counts
at 96 ± 5 weeks than the first regimen. Also, we compute the distribution function
Pr(Ys ≤ y) for s = 1, ..., 4 at y = 100, 200, . . . , 700, based on F̂ipw, F̂mi , F̂aipw and
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Table 5 Estimates (with standard errors in parentheses) for distribution function of CD4 data

y F̂ipw F̂mi F̂aipw F̃

Regimen (1)

100 0.182 (0.031) 0.180 (0.031) 0.182 (0.031) 0.162 (0.029)

200 0.348 (0.038) 0.347 (0.038) 0.348 (0.037) 0.318 (0.038)

300 0.573 (0.037) 0.574 (0.036) 0.574 (0.036) 0.539 (0.039)

400 0.785 (0.030) 0.785 (0.030) 0.786 (0.030) 0.763 (0.033)

500 0.913 (0.020) 0.913 (0.020) 0.914 (0.020) 0.900 (0.023)

600 0.965 (0.013) 0.966 (0.013) 0.966 (0.013) 0.960 (0.016)

700 0.990 (0.007) 0.990 (0.007) 0.990 (0.007) 0.988 (0.009)

Regimen (2)

100 0.077 (0.019) 0.078 (0.020) 0.078 (0.020) 0.078 (0.020)

200 0.190 (0.030) 0.191 (0.030) 0.192 (0.030) 0.189 (0.032)

300 0.437 (0.036) 0.438 (0.036) 0.439 (0.036) 0.432 (0.038)

400 0.678 (0.034) 0.679 (0.034) 0.678 (0.033) 0.673 (0.036)

500 0.852 (0.026) 0.850 (0.026) 0.850 (0.026) 0.847 (0.028)

600 0.935 (0.018) 0.933 (0.018) 0.933 (0.018) 0.931 (0.020)

700 0.961 (0.014) 0.959 (0.014) 0.958 (0.014) 0.958 (0.016)

Regimen (3)

100 0.088 (0.022) 0.088 (0.022) 0.089 (0.022) 0.080 (0.021)

200 0.219 (0.032) 0.218 (0.032) 0.220 (0.032) 0.196 (0.030)

300 0.423 (0.036) 0.422 (0.035) 0.423 (0.035) 0.389 (0.036)

400 0.624 (0.035) 0.623 (0.034) 0.623 (0.034) 0.593 (0.037)

500 0.835 (0.027) 0.834 (0.027) 0.833 (0.027) 0.819 (0.030)

600 0.952 (0.015) 0.950 (0.016) 0.950 (0.016) 0.947 (0.018)

700 0.973 (0.012) 0.972 (0.012) 0.971 (0.012) 0.970 (0.013)

Regimen (4)

100 0.091 (0.021) 0.092 (0.021) 0.093 (0.021) 0.088 (0.022)

200 0.240 (0.030) 0.240 (0.030) 0.241 (0.029) 0.236 (0.032)

300 0.458 (0.035) 0.458 (0.035) 0.458 (0.035) 0.453 (0.037)

400 0.714 (0.032) 0.714 (0.032) 0.713 (0.032) 0.707 (0.034)

500 0.854 (0.025) 0.854 (0.025) 0.853 (0.025) 0.846 (0.027)

600 0.940 (0.017) 0.939 (0.017) 0.939 (0.017) 0.932 (0.019)

700 0.975 (0.010) 0.974 (0.011) 0.974 (0.011) 0.969 (0.013)

the estimator F̃ only using the observed Ys data. The results are reported in Table 5
and the conclusions are similar.

6 Summary

In this paper, three nonparametric M-estimators are developed to handle missing
response under the MAR assumption. When the dimension of covariate is high, we
show that the dimension of kernel estimators of propensity π̂ (X) and expected estimat-
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ing equation m̂ϕ(X, θ) can be reduced to alleviate the curse of dimensionality under
some conditions. Consistency and asymptotic normality of the proposed estimators
are established. Simulation studies and a real data analysis illustrate that the proposed
methods have good performance with finite-sample size. In conclusion, the proposed
dimension reduction kernel-assisted M-estimators are most appealing in studies with
high-dimensional covariates.

Empirical likelihood (EL; Owen 1988; Qin and Lawless 1994) is a competitive
and powerful method for constructing confidence intervals, which is also a broadly
applicable platform for nonparametric and semiparametric inferences. The proposed
dimension reduction estimating equations can be extended to the empirical likelihood
approach in the presence of auxiliary information to construct confidence intervals for
M-estimators. Throughout this paper, we assume the data are MAR, however, in many
applications the data are missing not at random or nonignorable missing. Extension
to this case will also be a topic of our future research.
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Appendix

(C1) The true value θ0 is the unique root of n−1 ∑n
i=1 gl(Yi , Si , δi , θ) = 0,

n−1 ∑n
i=1 gl(Yi , Si , δi , θ) is differentiable at θ = θ0 for l = 1, 2, 3 with∑n

i=1 ∂gl(Yi , Si , δi , θ0)/∂θ 
= 0.
(C2) The function ϕ(Y, θ) is monotone and continuous in θ , E |ϕ(Y, θ)| < ∞,

∂ϕ(Y, θ)/∂θ is continuous at θ = θ0; E |∂ϕ(Y, θ0)/∂θ | < ∞, E{ϕ2(Y, θ)|S} <

∞.
(C3) The kernel K (·) is bounded and has compact support, and is of order m ≥

2, i.e.,
∫

K (s1, ..., sd)ds1 · · · dsd = 1,
∫

st
j K (s1, ..., sd)ds1 · · · dsd = 0, and

∫
sm

j K (s1, ..., sd)ds1 · · · dsd 
= 0 for any j = 1, ..., d and t = 1, ..., m − 1.
(C4) The function π(S) and the S-density function f (S) have continuous and

boundedpartial derivativeswith respect to S up to orderm, andπ(S) are bounded
away from 0 and 1.

(C5) The function mϕ(S, θ) is twice continuously differentiable in the neighborhood
of S; has bounded partial derivatives up to order m.

(C6) As n → ∞, nh2d → ∞, nhd/ log n → ∞, nh2m → 0, and the estimator B̂
obtained by SDR is a root-n consistent estimator of B.

Proof of Theorem 1 For g2(Yi , Ŝi , δi , θ), note that

1

n

n∑

i=1

g2(Yi , Ŝi , δi , θ) =1

n

n∑

i=1

{δiϕ(Yi , θ) + (1 − δi )mϕ(Si , θ)}

+ 1

n

n∑

i=1

(1 − δi ){m̂ϕ(Ŝi , θ) − mϕ(Si , θ)},
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where Si = B Xi and Ŝi = B̂ Xi . Define G(S) = f (S)π(S) and

Ĝn(S) = 1

n

n∑

j=1

δ j Kh(S j − S).

Let Δn(Ŝi , Si ) = Ĝn(Ŝ) − G(Si ). Then,

1

n

n∑

i=1

(1 − δi ){m̂ϕ(Ŝi , θ) − mϕ(Si , θ)} = An1 + An2 − An3,

where

An1 = 1

n2

n∑

i=1

n∑

j=1
(1 − δi )Kh(Ŝ j − Ŝi )

δ j {ϕ(Y j , θ) − mϕ(S j , θ)}
G(Si )

,

An2 = 1

n2

n∑

i=1

n∑

j=1
(1 − δi )Kh(Ŝ j − Ŝi )

δ j {mϕ(S j , θ) − mϕ(Si , θ)}
G(Si )

,

An3 = 1

n

n∑

i=1
(1 − δi ){m̂ϕ(Ŝi , θ) − mϕ(Si , θ)}Δn(Ŝi , Si )

G(Si )
.

Using the fact δϕ(Y, θ) ⊥ X |B X , we can show that

E[δ j {ϕ(Y j , θ) − mϕ(S j , θ)}|X j ] = 0.

As in Wang and Chen (2009), we can prove that

An1 = 1

n

n∑

i=1

δi {π−1(Si ) − 1}{ϕ(Yi , θ) − mϕ(Si , θ)} + op(n
−1/2),

and An2 = op(n−1/2). Using the arguments in Andrews (1995) and ‖B̂ − B‖ =
Op(n−1/2), it leads to

sup
i

∣
∣m̂ϕ(Ŝi , θ) − mϕ(Si , θ)

∣
∣ = op(n

−1/4),

such that An3 = op(n−1/2). Thus, we have

1

n

n∑

i=1

g2(Yi , Ŝi , δi , θ) =1

n

n∑

i=1

{δiϕ(Yi , θ) + (1 − δi )mϕ(Si , θ)}

+ 1

n

n∑

i=1

δi {π−1(Si ) − 1}{ϕ(Yi , θ) − mϕ(Si , θ)}

+ op(n
−1/2).
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It leads to

1

n

n∑

i=1

g2(Yi , Ŝi , δi , θ) → Eϕ(Y, θ).

Furthermore, we have

1√
n

n∑

i=1

{g2(Yi , Ŝi , δi , θ) − Eϕ(Y, θ)} → N (0, V (θ)2).

For g1(Yi , Ŝi , δi , θ), we have

1

n

n∑

i=1

g1(Yi , Ŝi , δi , θ) = 1

n

n∑

i=1

[δiϕ(Yi , θ)

π(Si )
+ δiϕ(Yi , θ){π(Si ) − π̂(Ŝi )}

π2(Si )

]

+ 1

n

n∑

i=1

δiϕ(Yi , θ){π(Si ) − π̂(Ŝi )}2
π2(Si )π̂(Ŝi )

.

Using the similar arguments in Wang (2007), we can prove that

1

n

n∑

i=1

g1(Yi , Ŝi , δi , θ) = 1

n

n∑

i=1

[δiϕ(Yi , θ)

π(Si )
+ {

1 − δi

π(Si )

}
mϕ(Si , θ)

]
,

which leads to

1

n

n∑

i=1

g1(Yi , Ŝi , δi , θ) → Eϕ(Y, θ),

and

1√
n

n∑

i=1

{g1(Yi , Ŝi , δi , θ) − Eϕ(Y, θ)} → N (0, V (θ)2).

For g3(Yi , Ŝi , δi , θ), it can be seen that

1

n

n∑

i=1

g3(Yi , Ŝi , δi , θ) = 1

n

n∑

i=1

[δiϕ(Yi , θ)

π(Si )
+ {

1 − δi

π(Si )

}
mϕ(Si , θ)

]

+ 1

n

n∑

i=1

[{ δi

π̂(Ŝi )
− δi

π(Si )

}{
ϕ(Yi , θ) − mϕ(Si , θ)

}]

+ 1

n

n∑

i=1

[{
1 − δi

π̂(Ŝi )

}{
m̂ϕ(Ŝi , θ) − mϕ(Si , θ)

}]
.
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Using the similar arguments for g1(Yi , Ŝi , δi , θ) and g2(Yi , Ŝi , δi , θ), it can be proved
that the last two terms on the right side of the above equation are op(1). The proof is
completed. �
Proof of Theorem 2 By Taylor expansion, there exists θ∗

l between θ̂l and θ̂0, l =
1, 2, 3, such that

1

n

n∑

i=1

gl(Yi , Ŝi , δi , θ̂l) = 1

n

n∑

i=1

gl(Yi , Ŝi , δi , θ0) + 1

n

n∑

i=1

∂gl(Yi , Ŝi , δi , θ
∗
l )

∂θ
(θ̂l − θ̂0).

Since
∑n

i=1 gl(Yi , Ŝi , δi , θ̂l) = 0, we have

√
n(θ̂l − θ0) = −√

n
{1

n

n∑

i=1

∂gl(Yi , Ŝi , δi , θ
∗
l )

∂θ

}−1 1

n

n∑

i=1

gl(Yi , Ŝi , δi , θ0).

Similar to Theorem 1, as n → ∞, it can be proved that

1

n

n∑

i=1

∂gl(Yi , Ŝi , δi , θ
∗
l )

∂θ
→ E

{ϕ(Y, θ0)

∂θ

}
.

The proof is completed. �
Lemma 1 Assume that P(δ = 1|X) > 0 and P(Y = 0|X) = 0. For any given y, it
can be verified that

Sδ I (Y≤y)|X ⊆ SδY |X ,

where S denotes for the central subspace (Cook 1994).

Proof of Lemma 1 Suppose that B is a basis of SδY |X , such that δY ⊥ X |B X. Then,
we have Pr(δY = 0|X) = Pr(δY = 0|B X) and Pr(δY ≤ y|X) = Pr(δY ≤ y|B X).
Note Pr(δY ≤ y|X) = Pr(δ = 1, Y ≤ y|X) + I (y ≥ 0)Pr(δ = 0|X) and Pr(δY =
0|X) = Pr(δ = 1, Y = 0|X) + Pr(δ = 0|X) = Pr(δ = 0|X). We have

Pr(δ I (Y ≤ y) = 1|X) = Pr(δ = 1, Y ≤ y|X)

= Pr(δY ≤ y|X) − I (y ≥ 0)Pr(δ = 0|X)

= Pr(δY ≤ y|X) − I (y ≥ 0)Pr(δY = 0|X)

= Pr(δY ≤ y|B X) − I (y ≥ 0)Pr(δY = 0|B X)

= Pr(δ I (Y ≤ y) = 1|B X).

Pr(δ I (Y ≤ y) = 0|X) = Pr(δ = 0|X) + Pr(δ = 1, Y ≥ y|X)

= Pr(δY = 0|X) + Pr(δY ≥ y|X) − I (y ≤ 0)Pr(δ = 0|X)

= Pr(δY ≥ y|X) + I (y ≥ 0)Pr(δY = 0|X)

= Pr(δY ≥ y|B X) + I (y ≥ 0)Pr(δY = 0|B X)

= Pr(δ I (Y ≤ y) = 0|B X).

�
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