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Abstract In this article,we performan asymptotic analysis ofBayesian parallel kernel
density estimators introduced by Neiswanger et al. (in: Proceedings of the thirtieth
conference on uncertainty in artificial intelligence, AUAI Press, pp 623–632, 2014).
We derive the asymptotic expansion of the mean integrated squared error for the
full data posterior estimator and investigate the properties of asymptotically optimal
bandwidth parameters. Our analysis demonstrates that partitioning data into subsets
requires a non-trivial choice of bandwidth parameters that optimizes the estimation
error.

Keywords Density estimation · Asymptotic properties · Parametric optimization ·
Parallel algorithms

1 Introduction

Recent developments in data science and analytics research have produced an abun-
dance of large data sets that are too large to be analyzed in their entirety. As the size
of data sets increases, the time required for processing rises significantly. An effective
solution to this problem is to perform statistical analysis of large data sets with the
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use of parallel computing. The prevalence of parallel processing of large data sets
motivated a surge in research on parallel statistical algorithms.

One approach is to divide data sets into smaller subsets and analyze the subsets
on separate machines using parallel Markov chain Monte Carlo (MCMC) meth-
ods (Langford et al. 2009; Newman et al. 2009; Smola and Narayanamurthy 2010).
These methods, however, require communication between machines for generation of
each sample. Communication costs in modern computer networks dwarf the speedup
achieved by parallel processing, and therefore, algorithms that require extensive com-
munications between machines are ineffective (see Scott 2017).

To address these issues, numerous alternative communication-free parallel MCMC
methods have been developed for Bayesian analysis of big data. These methods parti-
tion data into subsets, perform independent Bayesian MCMC analysis on each subset,
and combine the subset posterior samples to estimate the full data posterior (see Scott
et al. 2016; Neiswanger et al. 2014; Miroshnikov et al. 2015).

Formally, the task at hand is to estimate the full data posterior p(x|y), by estimating
posterior densities pm(x) = p(x|ym), which are subject to the following relation

p(x|y) ∝ p(x)
M∏

m=1

p(ym |x) =
M∏

m=1

pm(x), pm(x) = p(x|ym) = p(x)1/M p(ym |x).

Neiswanger et al. (2014) introduce a parallel kernel density estimator that first
approximates each subset posterior density; the full data posterior is then estimated
by multiplying the subset posterior estimators together.

p̂(x|y) ∝ p̂∗(x|y) := p̂1(x|y1) · p̂2(x|y2) · · · · p̂M (x|yM ). (1)

Here, x ∈ R
d is the model parameter, y = {y1, y2, . . . , yM } is the full data set

partitioned into M disjoint independent subsets, and

p̂m(x|ym) =
Nm∑

i=1

1

hm
K
(x − Xm

i

hm

)
(2)

is the subset posterior kernel density estimator, with hm ∈ R+ a kernel bandwidth
parameter.

Neiswanger et al. (2014) show that the estimator (1) is asymptotically exact and
develop a sampling algorithm that generates samples from the distribution approx-
imating the full data estimator. Similar sampling algorithms were presented and
investigated in Wang and Dunson (2013), Scott et al. (2016), and Scott (2017). It
has been noted that these algorithms do not perform well for posteriors that have
non-Gaussian shape and are sensitive to the choice of the kernel parameters (see
Miroshnikov et al. 2015; Scott et al. 2016; Wang and Dunson 2013).

The highlighted issues indicate that the proper choice of the bandwidth can greatly
benefit the accuracy of the estimation as well as sampling algorithms. Moreover,
properly chosenbandwidthparameterswill improve accuracyof the estimationwithout
incurring additional computational cost.
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Asymptotic properties of parallel Bayesian kernel density estimators 773

In the present article, we are concerned with an asymptotic analysis of the par-
allel Bayesian kernel density estimators of form (1). In particular, we are interested
in the asymptotic representation of the mean integrated squared error (MISE) for
the non-normalized estimator p̂∗ and the density estimator p̂ as well as the prop-
erties of the optimal kernel bandwidth vector parameter h = (hm)M

m=1 as N =
(N1, N2, . . . , NM ) → ∞; the issues left open in Neiswanger et al. (2014).

We also discuss a universal iterative algorithm based on the derived asymptotic
expansions that locates optimal parameters without adopting any assumptions on the
underlying probability densities.

The kernel density estimators for the case M = 1 have been studied extensively
in the past five decades. Asymptotic properties of the mean integrated squared error
for the estimator (1) with M = 1 and d = 1, which takes form (2), were studied by
Rosenblatt (1956), Parzen (1962), and Epanechnikov (1969). In particular, for suffi-
ciently smooth probability densities, Parzen (1962) derived the asymptotic expansion
for the mean integrated squared error,

MISE[p, p̂,N,h] = h4k22
4

∫

R

(p′′(x))2dx + 1

nh

∫

R

K 2(t) dt + o

(
1

nh
+ h4

)
,

with N = n and h = h, and obtained a formula for the asymptotically optimal
bandwidth parameter,

hopt
M=1 = n−1/5k−2/5

2

(∫

R

K 2(t) dt

)1/5 (∫

R

(p′′(x))2 dx

)−1/5

, (3)

which minimizes the leading terms in the expansion.
The case of non-differentiable or discontinuous probability density functions has

been shown to possess different asymptotic estimates for MISE. It has been shown
by van Eeden (1985) that the optimal bandwidth parameter hopt

M=1 ∈ R and the rate of
convergence of the mean integrated squared error depend directly on the regularity of
the probability density p.

In the case of multivariate distributions, d ≥ 1, the complexity of the asymptotic
analysis depends on the form of the bandwidth matrix H ∈ R

d×d . In the simplest
case, one can assume thatH = hI, where h is a scalar (see Silverman 1986; Simonoff
1996; Epanechnikov 1969). Another approach is to consider the bandwidth matrix of
the form H = diag(h1, h2, . . . , hd), with hi being a bandwidth parameter for each
dimension i ∈ {1, . . . , d}. The most general formulation assumes that H is a d×d
matrix, which allows one to encode correlations between components of x (see Duong
and Hazelton 2005; Wand and Jones 1994).

In the present work, motivated by the ideas of Parzen (1962), Duong and Hazelton
(2005), Wand and Jones (1994), and Rosenblatt (1956), we focus on the case M > 1
and d = 1 and do the asymptotic analysis of the mean integrated squared error for
both the parallel non-normalized estimator

MISE
[

p̂∗, p∗ ;N,h
] = E

∫

R

{
p∗(x |y) − p̂∗(x |y)

}2
dx

and the full data set posterior density estimator
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MISE
[

p̂, p ;N,h
] = E

∫

R

{
p(x |y) − p̂(x |y)

}2
dx,

as

N = (N1, N2, . . . , NM ) → ∞, h = (h1, h2, . . . , hM ) → 0, and (N · h)−1 → 0.

In Theorem 1, under appropriate condition on the regularity of the probability
density, we derive the expression for AMISE[p∗, p̂∗], the asymptotically leading part
of MISE for the estimator p̂∗. The leading part turns out to be in agreement with the
leading part for the case M = 1, but in the multi-subset case, M > 1, the leading
part contains novel terms that take into account the relationship between M subset
posterior densities pm .

We then perform a similar analysis for the mean square error of the full data set
posterior density estimator p̂. The presence of the normalizing constant

ĉ = λ̂−1 =
(∫

p̂1(x |y) · p̂2(x |y) . . . p̂M (x |y)dx

)−1

=
(∫

p̂∗(x |y) dx

)−1

introduces major difficulties in the analysis of MISE because ĉ may in general have
an infinite second moment in which case MISE[ p̂, p] is not defined. This may occur
when the estimators p̂∗

i (on some events) decay too quickly in x variable and the sets of
x with the most “mass” for each p̂∗

i have little common intersection, which potentially
leads to large values of ĉ. To make sure that Eĉ2 < ∞, one must impose appropriate
conditions on the density p and kernel K . In this article, however, we take another
approach. Instead, we replace the mean integrated squared error by an asymptotically
equivalent distance functional denoted by

MISE
[

p̂, p ;N,h
] = E

[(
λ̂

λ

)2 ∫

R

{
p(x |y) − p̂(x |y)

}2
dx

]
.

We show that the new functional is always well defined and that it is asymptotically
equivalent to MISE when restricted to eventsΩN ⊂ Ω whose probability tends to one
as the total number of samples ‖N‖ → ∞.

We then do the analysis of the functional MISE by carrying out the same program
as for the MISE of the estimator p̂∗. In Theorem 2, we derive the expression for
AMISE[p, p̂], the asymptotically leadingpart of theMISE for the full data set posterior
density estimator p̂. The asymptotically optimal bandwidth parameter for the full data
set posterior is then defined to be a minimizer

hopt = argminh∈RM+ AMISE[p, p̂;N,h].

We then compute minimizing bandwidth hopt in explicit form for two special cases.
In the examples presented here, we consider subset posterior densities of normal and
gamma distributions; see (28), (30), and (32). In the two examples, the optimizing
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Asymptotic properties of parallel Bayesian kernel density estimators 775

bandwidth vectors differ significantly and depend, as expected, directly on the full
data set density which is typically unknown. For that reason, we discuss an iterative
algorithm for locating optimal bandwidth parameters based on asymptotic expansion
we derived; see Sect. 4.4.

Our analysis demonstrates that partitioning data into M > 1 sets affects the opti-
mality condition of parameter h. In addition, it indicates that the bandwidth vector

hopt0 =
(

hopt
1,M=1, hopt

2,M=1, . . . , hopt
M,M=1

)
,

which minimizes the “componentwise” mean integrated squared error

M∑

i=1

MISE[ p̂i , pi , Ni , hi ],

where hopt
m,M=1 is the optimal bandwidth parameter for the estimator p̂m(x |ym) given

by (3), is suboptimal for both estimators p̂∗ and p̂ whenever M > 1.
This observation highlights the fact that the choice of optimal parameters for parallel

kernel density estimators (suitable for parallelizing data analysis) must differ from the
theoretical choice suggested in case of processing on a single machine. We must also
note that the increased values ofMISE resulted from choosing a suboptimal bandwidth
parameter get compounded in case of parallel processing. This further necessitates the
importance of a proper choice of bandwidth, especially if it comes at no additional
computational costs.

In the present work, we perform the analysis of kernel density estimators under
the assumption that the samples Xm are i.i.d. However, it is well known that samples
produced with MCMC methods are, in general, not independent, which introduces
additional layer of complexity in the analysis. For a more detailed discussion of this
issue, we refer the reader to Remark 1 in Sect. 2.

The paper is arranged as follows. In Sect. 2, we set notation and hypotheses that
form the foundation of the analysis. In Sect. 3, we derive an asymptotic expansion for
MISE of the non-normalized estimator as well as derive formulas for leading parts
of bias[ p̂∗] and V[ p̂∗], which are central to the analysis performed in subsequent
sections. In Sect. 4, we perform the analysis of MISE for the full data set posterior
density. In Sect. 5, we compute explicit expressions for optimal bandwidth parameters
for several special cases and conduct numerical experiments. Finally, in “Appendix,”
we provide supplementary lemmas and theorems employed in Sects. 3 and 4.

2 Notation and hypotheses

For the convenience of the reader, we collect in this section all hypotheses and results
relevant to our analysis and present the notation that is utilized throughout the article.
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776 A. Miroshnikov, E. Savelev

(H1) Motivated by the form of the posterior density at Neiswanger et al. (2014),
we consider the probability density function of the form

p(x) ∝ p∗(x) where p∗(x) :=
M∏

m=1

pm(x).

Here, pm(x) is a probability density function for each m ∈ {1, . . . , M} .
(H2) We consider the estimator of p in the form

p̂(x) ∝ p̂∗(x) where p̂∗(x) :=
M∏

m=1

p̂m(x), (H2-a)

and for each m ∈ {1, . . . , M} p̂m(x) is the kernel density estimator of the
probability density pm(x) that has the form

p̂m(x) = 1

Nmhm

Nm∑

i=1

K

(
x − Xm

i

hm

)
.

Here, Xm
1 , Xm

2 , . . . , Xm
Nm

∼ pm(x) are independent identically distributed
random variables, K is a kernel density function, and hm > 0 is a bandwidth
parameter.

The mean integrated squared error of the estimator p̂∗ of the non-normalized prod-
uct p∗ as well as for the estimator p̂(x) of the full posterior density p(x) is defined
by

MISE[p∗, p̂∗,N,h] = MISE[p∗, p̂∗(x)] := E

∫

R

( p̂∗(x) − p∗(x))2 dx,

MISE[p, p̂,N,h] = MISE[p, p̂(x)] := E

∫

R

( p̂(x) − p(x))2 dx,

where we use the notation h = (hm)M
m=1 andN = (Nm)N

m=1.We also use the following
convention for the bias and variance of estimators p̂(x), p̂∗(x), p̂m(x)

bias[ p̂(x)] = E
[

p̂(x)
]− p(x),

bias[ p̂∗(x)] = E
[

p̂∗(x)
]− p∗(x),

bias[ p̂m(x)] = E
[

p̂m(x)
]− pm(x), m ∈ {1, . . . , M}.

We assume that the kernel density function K and probability densities functions
p1, . . . , pM satisfy the following hypotheses:

(H3) K is positive, bounded, normalized, and its first moment is zero, that is

0 ≤ K (t) ≤ C,

∫

R

K (t) dt = 1,
∫

R

t K (t) dt = 0,
∫

R

K 2(t) dt < ∞.

123



Asymptotic properties of parallel Bayesian kernel density estimators 777

(H4) For each s ∈ {0, 1, 2, 3}

ks =
∫

R

|t |s K (t) dt < ∞.

(H5) For each m ∈ {1, . . . , M}, s ∈ {0, 1, 2, 3}, and density pm ∈ C3(R), there
exists a constant C ≥ 0 such that

∣∣∣p(s)
m (x)

∣∣∣ < C for all x ∈ R.

(H6) For each m ∈ {1, . . . , M} and s ∈ {0, 1, 2, 3}, the density pm(x) and its
derivatives are integrable, that is, there is a constant C so that

∫

R

∣∣∣p(s)
m (x)

∣∣∣ dx = C < ∞.

(H7) Functions

N(n) = {N1(n), N2(n), N3(n), . . . , NM (n)} : N → N
M ,

h(n) = {h1(n), h2(n), . . . , hM (n)} : N → R
M++,

satisfy for all i ∈ {1, 2, . . . , M}

D1 ≤ Ni

n
≤ D2 for some 0 < D1 < D2,

A1Ni (n)−α0 ≤ hi (n) ≤ A2Ni (n)−α0 for some α0 ∈ (0, 1),

lim
n→∞ hi (n)Ni (n) = ∞.

We also define N (n) = mini Ni (n) and note that C1‖N‖ ≤ N (n) ≤
C2‖N(n)‖.

Remark 1 In our work, asymptotic error analysis of kernel density estimators is
performed under assumption that the samples drawn from each subset posterior dis-
tribution are i.i.d. However, it is well known that samples produced with MCMC
methods always have a degree of autocorrelation present in them. This dependence
does not break the convergence of KDE estimators to the posterior density, and such
estimators are shown to be asymptotically exact under certain conditions (De Valpine
2004; West 1993; Sköld and Roberts 2003). Despite the difficulty of choosing optimal
parameters for kernel density estimators, the method has been successfully applied
to obtain an approximation of posterior density in many projects (De Valpine 2004;
West 1993; Neiswanger et al. 2014), many of which are not concerned with the choice
of optimal parameters. One particular study, Sköld and Roberts (2003) stand out, as
it shows that the optimal bandwidth parameter, hM−H , for KDE based on MCMC
samples is a scalar multiple of the optimal bandwidth hi.i.d. for i.i.d samples from the
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same posterior density. The scaling is shown to depend on the data set and is linked
to the rejection rate of the Metropolis-Hastings sampler:

hM−H = A1/5hi.i.d., A = E(2/a(X)) − 1,

where X is the random variable whose samples are used to estimate the probability
density function and a(X) is the acceptance probability rate. Note that if a(X) ≡ 1,
then A = 1. This result highlights the fact that using MCMC samples in general
changes the optimal bandwidth and directly depends on the MCMC algorithm.

We must also note that there are several techniques available that can reduce the
dependence between samples obtained with MCMC methods. One can run inde-
pendent Markov chains for each sample, discard a number of intermediate samples
between the recorded samples, or employ so-called perfect sampling (Propp and Wil-
son 1996), which guarantees to produce i.i.d samples.

3 Asymptotic analysis of MISE for p̂∗

We start with the observation that MISE can be expressed via the combination of bias
and variance

MISE[p∗, p̂∗] = E

∫

R

(
p̂∗(x) − p∗(x)

)2 dx

=
∫

R

(
bias

[
p̂∗(x)

])2
dx +

∫

R

V[ p̂∗(x)] dx .

(4)

In what follows, we do the analysis of the bias, then that of variance and conclude
with the section where we derive the formula for the optimal bandwidth vector.

3.1 Bias expansion

Using the fact that p̂i (x), i = 1, . . . , M are independent, we obtain

bias[ p̂∗(x)] = E[ p̂∗(x)] − p∗(x)

=
M∏

m=1

E[ p̂m](x) −
M∏

m=1

pm(x)

=
M∏

m=1

(
bias[pm(x)] + pm(x)

)−
M∏

m=1

pm(x).

(5)

To simplify notation in (5), we shall employ the multiindex notation. Let α be the
multiindex with

α = (α1, α2, . . . , αM ) αm ∈ {0, 1},
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Then, the above formula can rewritten as follows:

bias[ p̂∗(x)] =
∑

1�|α|�M

M∏

m=1

biasαm [ p̂m(x)](pm(x)
)(1−αm )

=
M∑

m=1

⎡

⎢⎢⎣bias[ p̂m(x)]
M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦

+
∑

2�|α|�M

M∏

m=1

(
bias[ p̂m(x)])αm (pm(x))(1−αm ).

(6)

Using this decomposition, we prove the following lemma.

Lemma 1 Suppose Hypotheses (H3)–(H6) hold. Then,

(i) The bias can be expressed as

bias[ p̂∗(x)] = k2
2

M∑

m=1

⎡

⎢⎢⎣h2
m p′′

m(x)

M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦+ Eb(x ;h),

where the error term Eb(x;h) satisfies the bounds

|Eb(x ;h)| ≤ E∞||h||3, ∀x ∈ R
∫

R

|Eb(x ;h)| dx ≤ E1||h||3,
∫

R

|Eb(x ;h)|2 dx ≤ E2||h||6.
(7)

(ii) The square-integrated bias satisfies

∫

R

bias2[ p̂∗(x)] dx = k22
4

∫

R

⎡

⎢⎢⎣
M∑

m=1

h2
m p′′

m(x)

M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦

2

dx + Eb(h) < ∞

(8)
with the error term satisfying

|Eb(h)| ≤ C ||h||5, (9)

where the constant C is independent of N and h ∈ R
M+ .
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780 A. Miroshnikov, E. Savelev

Proof According to (6) and (34), we have

bias[ p̂∗(x)]

= k2
2

M∑

m=1

⎡

⎢⎢⎣h2
m p′′

m(x)

M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦+
M∑

m=1

⎡

⎢⎢⎣Eb,m

M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦

+
∑

2�|α|�M

M∏

m=1

(
h2

mk2
2

p′′
m(x) + Eb,m

)αm

(pm(x))(1−αm ).

Here, Eb,m is the error in bias approximation for each p̂m from (34).We are computing
bounds for

Eb(x ;h) =
M∑

m=1

⎡

⎢⎢⎣Eb,m

M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦

+
∑

2�|α|�M

M∏

m=1

(
h2

mk2
2

p′′
m(x) + Eb,m

)αm

(pm(x))(1−αm ).

(10)

To simplify the derivations, we separate the terms in (10) into two groups: terms with
at least one multiple of Eb,m and terms free of Eb,m . We define the sets

Am =
{
α = (α j )

M
j=1 : αm = 0 and 1 ≤ |α| ≤ (M − 1)

}
,

and functions

Pm(x) =
M∏

k=1
k �=m

pk(x) +
∑

α∈Am

⎡

⎢⎢⎣
M∏

j=1
j �=m

(
h2

j k2

2
p′′

j (x) + 1{ j>m}Eb, j

)α j

(p j (x))(1−α j )

⎤

⎥⎥⎦ .

Here, 1 is the characteristic function. Consequently, the error term can be written as
follows:

Eb(x ;h) =
M∑

m=1

[
Eb,m Pm(x)

]

+
∑

2�|α|�M

M∏

m=1

(
h2

mk2
2

p′′
m(x)

)αm

(pm(x))(1−αm ).

(11)
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Asymptotic properties of parallel Bayesian kernel density estimators 781

Assuming that ||h|| is bounded, (H5) and (34), we can conclude that there is a constant
CP so that

|Pm(x)| ≤ CP for any x ∈ R and 1 ≤ m ≤ M.

Using (H5) and (34), we conclude that the first term is bounded, and there is a constant
C so that

M∑

m=1

∣∣Eb,m Pm(x)
∣∣ ≤ C

M∑

m=1

(
k3h3

m

6

)
≤ C M

||h||3k3
6

. (12)

The next sum in (11) contains terms that are bounded due to (H5):

∣∣∣∣
h2

mk2
2

p′′
m(x)

∣∣∣∣ ≤
||h||2Ck2

2
and |pm(x)| ≤ C

for some appropriate constants C . Since each one of the products below has at least
two terms with p′′

m(x) for some m, a constant CQ must exist, so that

∣∣∣∣∣∣

∑

2�|α|�M

M∏

m=1

(
h2

mk2
2

p′′
m(x)

)αm

(pm(x))(1−αm )

∣∣∣∣∣∣
≤ CQ

||h||4k22
4

. (13)

The inequalities (12) and (13) imply the first inequality in (7):

|Eb(x ;h)| ≤ C M
||h||3k3

6
+ ||h||4k22

4
CQ .

L1 integrability follows from conditions (H5), (H6), the expansion (11) and the
second formula in (35)

∫

R

|Eb(x ;h)| dx ≤ C

(
k3||h||3

6
+ ||h||4k22

4

)
,

which proves the second estimate in (7).
Using the estimates obtained above, we conclude

∫

R

|Eb(x ;h)|2 dx ≤ sup
R

|Eb(x ;h)| ·
∫

R

|Eb(x ;h)| dx ≤ E∞ · E1||h||6.
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782 A. Miroshnikov, E. Savelev

Finally, (ii) follows from Cauchy–Schwarz inequality applied to

bias2[ p̂∗(x)] = k22
4

⎡

⎢⎢⎣
M∑

m=1

h2
m p′′

m(x)

M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦

2

+ Eb(x ;h)k2

⎡

⎢⎢⎣
M∑

m=1

h2
m p′′

m(x)

M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦+ E2
b(x ;h),

which leads directly to (8) and (9). ��

3.2 Variance expansion

We next obtain an asymptotic formula for the variance of p̂∗. For the proof of the
lemma, we perform the following preliminary calculation:

V[ p̂∗(x)] = E[( p̂∗(x))2] −
(
E[ p̂∗(x)]

)2 =
M∏

m=1

E

[
p̂2m
]

−
M∏

m=1

E
2[ p̂m]

=
M∏

m=1

(
V[ p̂m] + (pm + bias[ p̂m])2

)
−

M∏

m=1

(
pm + bias[ p̂m]

)2

=
∑

1�|α|�M

M∏

m=1

(
V[ p̂m])αm

(
pm + bias[ p̂m])2(1−αm)

.

(14)

Lemma 2 Let Hypotheses (H3)–(H7) hold. Then,

(i) The variation of p̂∗ is given by

V[ p̂∗(x)] =

⎛

⎜⎜⎝
M∑

m=1

⎡

⎢⎢⎣
pm

Nmhm

M∏

k=1
k �=m

p2k (x)

⎤

⎥⎥⎦

⎞

⎟⎟⎠

∫

R

K 2(t) dt + EV (x ;N,h), x ∈ R,

where the error term EV (x ; n,h) satisfies the bounds

|EV (N , h)| :=
∣∣∣∣
∫

R

EV (x) dx

∣∣∣∣ = o

(
1

‖N‖
)

. (15)
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Proof According to (14), we have

V( p̂∗(x)) =
∑

1�|α|�M

M∏

m=1

(
pm(x)

Nmhm

∫

R

K 2(t) dt + EV,m

)αm

(
pm + bias[ p̂m])2(1−αm )

=
∑

1�|α|�M

M∏

m=1

(
pm(x)

Nmhm

∫

R

K 2(t) dt + EV,m

)αm

(
p2m + 2pm bias[ p̂m] + bias2[ p̂m])(1−αm )

.

(16)

Here, EV,m is the approximation error of variance of each pm(x) from (41). In a
fashion similar to the previous proof, we separate the terms in (16). We single out
the leading-order terms, the terms with at least one multiple of EV,m , the terms with

multiples of bias[ p̂m], and the terms of the order o
(

1
‖N‖‖h‖

)
.

We define sets

A0
m =

{
α = (α j )

M
j=1 : αm = 0 and 0 ≤ |α| ≤ (M − 1)

}
,

B1
m =

{
α = (α j )

M
j=1 : αm = 0 and |α| = 1

}
,

and functions

P0
m(x) =

∑

α∈A0
m

⎡

⎢⎢⎣
M∏

j=1
j �=m

(
pm(x)

Nmhm

∫

R

K 2(t) dt + 1{ j>m}EV,m

)αm (
E
2[ p̂m])(1−αm )

⎤

⎥⎥⎦ ,

Q1
m(x) =

∑

α∈B1
m

⎡

⎢⎢⎣
M∏

j=1
j �=m

(
pm(x)

Nmhm

∫

R

K 2(t) dt

)αm (
E
2[ p̂m])(1−αm )

⎤

⎥⎥⎦ .

The variance expansion can be rewritten as

V( p̂∗(x)) =
∑

1�|α|�M

M∏

m=1

(
pm(x)

Nmhm

∫

R

K 2(t) dt

)αm

(
p2m + 2pm bias[ p̂m] + bias2[ p̂m])(1−αm )

+
M∑

m=1

EV,m P0
m(x)
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=
M∑

m=1

(
pm(x)

Nmhm

∫

R

K 2(t) dt

) M∏

j=1
j �=m

p2m(x)

+
M∑

m=1

bias[ p̂m](2pm(x) + bias[ p̂m])Q1
m(x)

+
∑

2�|α|�M

M∏

m=1

(
pm(x)

Nmhm

∫

R

K 2(t) dt

)αm (
E
2[ p̂m])(1−αm )

+
M∑

m=1

EV,m P0
m(x).

Based on definitions of functions P0
m(x) and Q1

m(x), Hypotheses (H5), (H6), and (H7),
we can conclude that there are constants CE, CP , CQ so that

E[ p̂m] ≤ CE,

|P0
m(x)| ≤ CP ,

|Q1
m(x)| ≤ CQ

1

‖N‖‖h‖ .

Therefore,

∫

R

|EV (x)|dx ≤
M∑

m=1

C

(
2 + ||h||2k2

2

)
CQ

‖N‖‖h‖
∫

R

|bias[ p̂m]|dx

+ 1

‖N‖2‖h‖2
∑

2�|α|�M

(
1

‖N‖2‖h‖2
)(|α|−2)

C (M−|α|)
E

+ M · CP

‖N‖ .

This leads directly to (15). ��

3.3 AMISE formula and optimal bandwidth vector

With the lemmas above, we can derive the decomposition of MISE[p∗, p̂∗] into
leading-order terms and higher order terms.

Theorem 1 Let Hypotheses (H3)–(H7) hold. Then, MISE can be represented as

MISE[p∗, p̂∗,N,h] = AMISE[p∗, p̂∗,N,h] + E(N,h),
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where the leading term

AMISE[p∗, p̂∗;N,h] = k22
4

∫

R

⎛

⎜⎜⎝
M∑

m=1

⎡

⎢⎢⎣h2
m p′′

m(x)

M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦

⎞

⎟⎟⎠

2

dx+

+
∫

R

⎛

⎜⎜⎝
M∑

m=1

⎡

⎢⎢⎣
pm(x)

Nmhm

M∏

k=1
k �=m

(pk(x))2

⎤

⎥⎥⎦

⎞

⎟⎟⎠ dx
∫

R

K 2(t) dt,

and the error term E satisfies

E(N,h) = Eb(N,h) + EV (N,h) = o
(
||h||4 + 1

‖N‖‖h‖
)
,

as h → 0, N → ∞, and (‖N‖‖h‖)−1 → 0.

Proof The result follows from Lemma 1, Lemma 2, and formula (4). ��
Remark 2 We would like to note that the analysis we perform here is in spirit of the
asymptotic analysis performed for multivariate kernel density estimators by Epanech-
nikov (1969). However, the full data set density p under consideration is a univariate
density expressed as a product and cannot be viewed as a special case of the expansion
obtained in Epanechnikov (1969).

Remark 3 The asymptotically leading part derived here is the first step of our analysis.
It serves as a stepping stone for the analysis of fullMISE carried out in the next section.
We would like to note that one can find optimal bandwidth that minimizes AMISE
for the non-normalized estimator. One has to be aware, however, that these optimal
parameterswould not take into account a normalization constant and, as a consequence,
would be suboptimal for MISE of the normalized full data set density p̂.

4 Asymptotic analysis of MISE for p̂

4.1 Normalizing constant

In this section, we consider the error that arises when one takes into account the
normalizing constant. Recall that by assumption

p(x) ∝ p∗(x) where p∗(x) :=
M∏

m=1

pm(x),

where pm(x), m ∈ {1, . . . , M} is a probability density function. Then, we define

λ :=
∫

p∗(x) dx > 0 and c := λ−1
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and obtain p(x) = cp∗(x). For the estimator

p̂(x) ∝ p̂∗(x) with p̂∗(x) :=
M∏

m=1

p̂m(x),

we similarly define

λ̂ :=
∫

p̂∗(x) dx > 0 and ĉ := λ̂−1

and hence p̂(x) = ĉ p̂∗(x).
We are interested in the optimal bandwidth vector h = (h)M

m=1 that optimizes the
leading term of the mean integrated squared error

MISE( p̂, p) = MISE(̂c p̂∗, cp∗) = E

∫

R

(
cp∗(x) − ĉ p̂∗(x)

)2 dx .

Observe that ĉ and p̂∗ are not independent and the previously performed analysis
is not directly applicable. Moreover, we observe that the estimator of the normalizing
constant

ĉ =
(∫ M∏

i=1

p̂i (x) dx

)−1

< ∞ (17)

may in general have an infinite expectation. This may happen because the estimators
in the above product may decay too quickly in x variable and the sets of x with the
most “mass” for each pi may have no common intersection. This potentially may lead
to small values of λ̂ and hence large ĉ. To avoid this situation, one would need to
choose the kernel K in appropriate way and establish the finiteness of the expectation
of ĉ.

In this article, we do not investigate this. Instead, we will show that one can replace
MISE by an equivalent functional which is well defined and finite on the whole sam-
ple space Ω and that there exists a sequence of smaller sample subspaces Ωn with
P(Ωn) → 1 , on which the new functional is asymptotically equivalent toMISE[p, p̂]
restricted toΩn .We then analyze the new functional and investigate its optimal param-
eters.

4.2 Preliminary estimates

Lemma 3 (Covariance) Let p̂∗(x) be an estimator of form (H2-a) where the vector
of sample sizes N(n) and bandwidth vector h(n) satisfy (H7). Then,

Cov[ p̂∗(x), p̂∗(y)] = E[ p̂∗(x) p̂∗(y)] − E[ p̂∗(x)]E[ p̂∗(y)]
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satisfies the estimates

|Cov[ p̂∗(x), p̂∗(y)]| ≤ Cabs

‖N‖‖h‖ ,

∣∣∣∣
∫∫

Cov[ p̂∗(x), p̂∗(y)] dxdy

∣∣∣∣ ≤
Cint

‖N‖ ,

(18)

for some constants Cabs, Cint > 0 independent of n.

Proof We can expand the product as follows:

M∏

i=1

E[ p̂i (x) p̂i (y)] −
M∏

i=1

E[ p̂i (x)]E[ p̂i (y)]

=
M∑

j=1

(
E[ p̂ j (x) p̂ j (y)] − E[ p̂ j (x)]E[ p̂ j (y)])

⎛

⎝
j−1∏

i=1

E[ p̂i (x) p̂i (y)]
⎞

⎠

⎛

⎝
M∏

i= j+1

E[ p̂i (x)]E[ p̂i (y)]
⎞

⎠ ,

where the products with the top index smaller than the bottom index should be taken
as having the value one.

We next observe that, according to (34), for each i ∈ {1, . . . , M}

|E[ p̂i (x)]E[ p̂i (y)]| ≤ C

(
1 + k2h2

i

2
+ k3h3

i

6

)2

.

Also Lemma 9 implies that

∣∣∣E[ p̂i (x) p̂i (y)]
∣∣∣ ≤ C

(
1 + k2h2

i

2
+ k3h3

i

6

)2

+ C

Ni hi

+ C

Ni

⎛

⎝1 +
(
1 + k2h2

i

2
+ k3h3

i

6

)2
⎞

⎠ .

Then, we conclude that for some CE ≥ 0

|E[ p̂i (x) p̂i (y)]|, |E[ p̂i (x)]E[ p̂i (y)]| ≤ CE < ∞, for all x, y ∈ R.

Therefore, by Lemma 9, we obtain the estimate

|Cov[ p̂∗(x), p̂∗(y)]| ≤ M C

(
1

‖N‖‖h‖ + 1

‖N‖

(
1 +

(
1 + k2‖h‖2

2
+ k3‖h‖3

6

)2
))

for some appropriate constant C , which gives (18)1.
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The integral of Cov[ p̂∗(x), p̂∗(y)] is also finite. Using the result of Lemma 9 and
the Hypothesis (H6),

∫∫ ∣∣∣Cov
[

p̂∗(x), p̂∗(y)
]∣∣∣ dxdy

≤ C M−1
E

M∑

i=1

∫∫ ∣∣E[ p̂ j (x) p̂ j (y)] − E[ p̂ j (x)]E[ p̂ j (y)]∣∣ dxdy

≤ C M−1
E

M∑

i=1

∫∫ (
1

Ni
pi (x)

1

hi
K2

(
x − y

hi

)
+ |EΠ,i (x, y)|

)
dxdy

≤ C M−1
E

M

‖N‖
(
2 + C

(
k1 + k2‖h‖2

2
+ k3‖h‖3

6

))
,

where at the last stepwe used the facts that 1h K2
( x−y

h

)
is a probability density function

in y for any fixed x and pi (x) is also a probability density function. ��

Lemma 4 Let p̂∗(x) be an estimator of form (H2-a) where the vector of sample sizes
N(n) and bandwidth vectorh(n) satisfy (H7). Then, following identity and the estimate
holds

V[̂λ − λ] = V

[∫
p̂∗(x) dx −

∫
p∗(x) dx

]
≤ Cint

‖N‖ < ∞,

where Cint > 0 is defined in (18).

Proof Since λ is constant, we have

V[̂λ − λ] = E
[̂
λ − E[̂λ]]2

= E

[∫

R

p̂∗(x) − E[ p̂∗(x)] dx

]2

= E

[∫ (
p̂∗(x) − E[ p̂∗(x)]) dx ·

∫ (
p̂∗(y) − E[ p̂∗(y)]) dy

]

=
∫∫ (

E
[

p̂∗(x) p̂∗(y)
]− E[ p̂∗(x)]E[ p̂∗(y)]

)
dx dy ≤ Cint

‖N‖ ,

where the last inequality is from Lemma 3. ��

Lemma 5 Let p̂∗(x) be an estimator of form (H2-a) where the vector of sample sizes
N(n) and bandwidth vector h(n) satisfy (H7). Then, for any α ∈ (0, 1],

P

({
ω : |Êλ − λ̂(ω;N(n),h(n))| >

λ√
2‖N‖ 1−α

2

})
≤ 2Cint

λ2‖N‖α .
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Moreover, for any α satisfying

max(0, 1 − 4α0) < α < 1,

where α0 is defined in (H7), we have

P

{∣∣∣∣
λ̂

λ
− 1

∣∣∣∣ >
1

‖N‖ 1−α
2

}
≤ 2Cint

λ2‖N‖α
,

for all sufficiently large n.

Proof By Lemma 4 and Chebyshev inequality, we obtain

P

{∣∣̂λ − E[̂λ]∣∣2 >
λ2

2‖N‖1−α

}

≤ P

{∣∣̂λ − E[̂λ]∣∣2 > V(̂λ)
λ2‖N‖α

2Cint

}
≤ 2Cint

λ2‖N‖α .

Recall next that

|E(̂λ) − λ| =
∣∣∣∣
∫ (

E[ p̂∗(x)] − p∗(x)
)
dx

∣∣∣∣ ≤
∫

|bias[ p̂∗]| dx ≤ C‖h‖2,

where C is independent of h. According to (H7), we have ‖h(n)‖ ≤ A‖N‖−α0 for
some α0 ∈ (0, 1). Fix an arbitrary α that satisfies

max(0, 1 − 4α0) < α < 1 so that 4α0 > 1 − α.

Then,

‖h‖2‖N‖ 1−α
2 ≤ A‖N‖−2α0‖N‖ 1−α

2 = A‖N‖−4α0+(1−α)

2 → 0 as n → ∞.

Thus there exists n0 such that

C‖h(n)‖2 <
λ

4
‖N(n)‖− (1−α)

2 for all n > n0.

By the triangle inequality, we have

∣∣̂λ − Êλ
∣∣ >

∣∣̂λ − λ
∣∣− ∣∣λ − Êλ

∣∣ >
∣∣̂λ − λ

∣∣− λ

4
‖N‖− (1−α)

2 ,

and hence for every

ω0 ∈
{

ω : |̂λ(ω) − λ| >
λ

‖N‖ 1−α
2

}
(19)
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we have
∣∣̂λ(ω0) − Êλ

∣∣ >
∣∣̂λ(ω0) − λ

∣∣− λ

4
‖N‖− (1−α)

2 >
3λ

4
‖N‖− (1−α)

2 >
λ√
2
‖N‖− (1−α)

2 .

(20)
Then, (19) and (20), we obtain

{
ω : |̂λ(ω) − λ| >

λ

‖N‖ 1−α
2

}
⊂
{

ω : |̂λ(ω) − Êλ| >
λ√

2‖N‖ 1−α
2

}
,

and hence

P

{
ω : |̂λ(ω) − λ| >

λ

‖N‖ 1−α
2

}

≤ P

{
ω : |̂λ(ω) − Êλ| >

λ√
2‖N‖ 1−α

2

}
≤ 2Cint

λ2‖N‖α
.

��

4.3 Functional equivalent to MISE

As it was pointed, the functional MISE defined in (17) is not defined in the whole
space Ω because the reciprocal of the renormalization random variable (̂λ)−1 may in
general have en infinite expectation.

The event space Ωn ensures that the constant ĉ has a finite expectation and stays
close to the true normalization constant c. However, even on this smaller and safer
space, the functional MISE[ p̂, p] is rather difficult to analyze. To help resolve this
issue, we introduce a functional that is asymptotically equivalent toMISE on the space
Ωn

Definition 1

MISE = E

[(
λ̂

λ

)2 ∫

R

( p̂(x) − p(x))2dx

]
. (21)

The equivalence follows from the definition of the space Ωn

Proposition 1 The functional MISE is asymptotically equivalent to MISE on smaller
events Ωn uniformly in n, that is

lim‖N(n)‖→∞
MISE

[
p(x), p̂(x;ω)|ω ∈ Ωn

]

MISE
[

p(x), p̂(x;ω)|ω ∈ Ωn

] = 1, (22)

where

Ωn =
{
ω ∈ Ω : |̂λ − λ| ≤ λ

‖N‖ 1−α
2

}
with P(Ωn) ≥ 1 − C

‖N‖α
, (23)

and α is a fixed constant satisfying 1 > α > min(1 − 4α0, 0).
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Proof Observe that

MISE
[

p(x), p̂(x)|Ωn

]
= 1

P(Ωn)

∫

Ωn

(
λ̂

λ

)2 ∫

R

( p̂(x, ω) − p(x))2dx P(dω)

= 1

P(Ωn)

(∫

Ωn

[(
λ̂

λ
− 1

)2

+ 2

(
λ̂

λ
− 1

)
+ 1

]

∫

R

( p̂(x, ω) − p(x))2dx

)
P(dω).

Then, by (23), we obtain that

MISE
[

p(x), p̂(x)|Ωn

]
= (1 + ε(n))MISE

[
p(x), p̂(x)|Ωn

]
,

where

|ε(n)| ≤ C

‖N‖ 1−α
2

,

for some constant C > 0 independent of n. This implies (22). ��
One of the positive side effects we must mention is that the functional defined in (21)
is not only easier to analyze but also it is defined throughout the whole space Ω . We
take advantage of this fact and continue the discussion with expectations taken over
the whole unrestricted space.

With the slight modification of the functional, we can now extract the leading-order
part

Theorem 2 The distance functional MISE can be represented as

MISE[p, p̂,N,h] = AMISE[p, p̂,N,h] + E(N,h), (24)

where the leading term

AMISE[p, p̂,N,h] :=
(∫

B(x) dx

)2 ∫ (
cp∗(x)

)2 dx

+
∫

(B(x))2 dx +
∫

R

(V (x)) dx
∫

R

K 2(t) dt

− 2
∫∫

B(y) B(x) cp∗(x) dx dy

B(x) = ck2
2

M∑

m=1

⎡

⎢⎢⎣h2
m p′′

m(x)

M∏

k=1
k �=m

pk(x)

⎤

⎥⎥⎦

V (x) =
M∑

m=1

⎡

⎢⎢⎣
pm

Nmhm

M∏

k=1
k �=m

p2k (x)

⎤

⎥⎥⎦ , (25)
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and the error term E satisfies

E(N,h) = o
(
||h||4 + 1

‖N‖‖h‖
)
,

as h → 0, N → ∞, and (‖N‖‖h‖)−1 → 0.

Proof We can divide the functional MISE into three components

MISE[p, p̂] = J1 + J2 + J3

= c2E[(λ − λ̂)2]
∫

R

(p(x))2 dx

+ c2E
∫

R

( p̂∗ − p∗)2dx

− 2c2E
∫

R

(̂λ − λ)( p̂∗ − p∗)p(x) dx .

Our first step will be to express each term Ji , i=1,…,3 as a sum of a higher order
term and the term containing a bias, variance, or their combination. We then will use
the results of the previous section and “Appendix” to obtain a leading part of each
term.

First, observe that

E[(λ − λ̂)2] = E[(λ − E[̂λ])2] + E[(E[̂λ] − λ̂)2]

=
(

E

[∫
p(x) − p̂(x) dx

])2

+ E[(E[̂λ] − λ̂)2].

The second term turns out to be of higher order. This can be seen from the following
estimate:

E[(̂λ − E[̂λ])2] = E

[∫ (
p̂∗ − E p̂∗) dx

]2

= E

[∫ (
p̂∗ − E p̂∗) dx ·

∫ (
p̂∗ − E p̂∗) dx

]

= E

[∫ (
p̂∗(x) − E p̂∗(x)

)
dx ·

∫ (
p̂∗(y) − E p̂∗(y)

)
dy

]

=
∫∫ (

E
[

p̂∗(x) p̂∗(y)
]− E[ p̂∗(x)]E[ p̂∗(y)]) dx dy ≤ C1

‖N‖ ,

where the last inequality follows from Lemma 3.
Thus, we conclude

J1 = c2
(∫

bias[p∗, p̂∗] dx

)2 ∫ (
p(x)

)2 dx + E1 where |E1| ≤ C

‖N‖ .
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From (4), we have that

J2 = c2
∫ (

bias2[p∗, p̂∗] + V[ p̂∗]
)
dx .

The term J3 can be expressed as

J3 = c2En

∫∫ (
p̂∗(y) − p∗(y)

)((
p̂∗(x) − p∗(x)

)
p(x)

)
dydx

= c2
∫∫

bias[ p̂∗(y)]bias[ p̂∗(x)] p(x) dx dy

+ c2E
∫∫ (

E[ p̂∗(y)] − p̂∗(y)
)(

E[ p̂∗(x)] − p̂∗(x)
)

p(x) dydx .

Since p∗(x) is uniformly bounded, Lemma 3 implies that the last term in the above
identity satisfies

∣∣∣∣c
2
E

∫∫ (
E[ p̂∗(y)] − p̂∗(y)

)(
E[ p̂∗(x)] − p̂∗(x)

)
cp∗(x) dydx

∣∣∣∣ ≤
C

‖N‖ .

This gives

J3 = c2
∫∫

bias[ p̂∗(y)]bias[ p̂∗(x)] p(x) dx dy + E3, |E3| <
1

‖N‖ .

Combining the above estimates gives

MISE
[

p, p̂
] = c2

(∫
bias[p∗, p̂∗] dx

)2 ∫ (
p(x)

)2 dx

+ c2
∫

bias2[p∗, p̂∗] + V[ p̂∗] dx

− 2c2
∫∫

bias[ p̂∗(y)]bias[ p̂∗(x)] p(x) dx dy + EM ,

|EM | ≤ C

‖N‖ .

(26)

Applying the results of Lemma 1 and Lemma 2 to the identity (26) leads to (24)
and (25), and this finishes the proof. ��

4.4 Numerical optimization scheme for optimal bandwidth

In the absence of knowledge of probability density functions p(x) and pm(x), it
may seem that formula (25) has little practical use. However, this formula may be
tweaked to produce an approximation of AMISE, which may be used to compute the
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approximate optimal bandwidth. One can replace the densities p(x), pm(x)with their
approximations p̂(x) and p̂m(x) in (25). This defines a function

h → ̂AMISE(h), (27)

which then can be minimized over R
M+ .

There is a variety of iterative numerical optimization methods that can be employed
to minimize (27). In cases where the function (27) is convex, algorithms such as gradi-
ent descent or conjugate gradient descent will be guaranteed to converge to the global
minimizer (see Boyd and Vandenberghe 2004). Without the assumption of convex-
ity, one may use stochastic gradient descent (Ge et al. 2015), which is guaranteed to
converge to a local minimizer, or Nelder-Mead algorithm (Nelder and Mead 1965)
for which convergence is not guaranteed, but it does not require the knowledge of the
gradient.

The asymptotically leading part AMISE(h) is continuous in h and blows up as
h → ∂R

M+ or h → ∞ and therefore must posses a minimizer. However, the con-
ditions under which one can guarantee that a minimizer of (27) has an asymptotic
behavior equivalent to the corresponding local minimizer of AMISE(h) as the num-
ber of samples increases is an open question, and it is the subject of an ongoing
investigation.

5 Examples

In a general setting, finding a bandwidth vector h that minimizes (25) would require
solving a system of nonlinear equations, whichwould probably not have a closed-form
solution and require application of numerical methods. In this section, we discuss
several special cases, for which closed-form solutions can be obtained with relative
ease.

5.1 AMISE optimization for a symmetric case

In this case, we assume that all posterior densities for each subset of samples are the
same and that all subsets contain the same number of samples. In other words, we
employ the following assumptions:

1. p1(x) = p2(x) = · · · = pM (x) = f (x),
2. N1 = N2 = · · · = NM , that is, N = (n, n, . . . , n), for some n ∈ N.

In view of the symmetry, all components of the optimal bandwidth vector should be the
same, that is h = (h, h, . . . , h). Under these assumptions, the expression for AMISE
simplifies into

AMISE[p(x), p̂(x)|N,h]

:= M2 c2k22h4

4

(∫
p′′
1(x)pM−1

1 (x) dx

)2 ∫ (
cpM

1 (x)
)2 dx
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+ M2 c2k22h4

4

∫ (
p′′
1(x)pM−1

1 (x)
)2

dx + M
∫

R

(
p2M−1
1

nh

)
dx
∫

R

K 2(t) dt

− M2 c3k22h4

2

∫∫ (
p′′
1(y)pM−1

1 (y)
) (

p′′
1(x)p2M−1

1 (x)
)
dx dy.

This expression achieves its minimum when h = hopt where

hopt = (4n)−1/5
(

B(M)

A(M)

)1/5

, (28)

and the constants A and B are given by

A(M) = M
c2k22
4

[(∫

R

p′′
1(x)pM−1

1 (x) dx

)2 ∫

R

(
cpM

1 (x)
)2 dx

+
∫

R

(
p′′
1(x)pM−1

1 (x)
)2

dx

−2c
∫∫

R2

(
p′′
1(y)pM−1

1 (y)
) (

p′′
1(x)p2M−1

1 (x)
)
dx dy

]

B(M) = c2
∫

R

(
p2M−1
1

)
dx
∫

R

K 2(t) dt.

(29)

Forming the bandwidth vector hopt = (hopt, hopt, . . . , hopt) should yield a smaller
value for AMISE than the one achieved with the conventional choice given in (3).

5.2 AMISE optimization for normal subset posterior densities

Let us assume that all subsets of samples of x satisfy

– pm = N (x, μ, σ ) is a normal distribution with the same mean and standard
deviation for each m = 1, . . . , M ,

– N1 = N2 = · · · = NM , that is, N = (n, n, . . . , n), for some n ∈ N.

Again, using symmetry argument, we look for the minimizer on the set of positive
vectors h = (h, h, . . . , h). In that case, the optimal h = hopt is computed by (28),
where constants A and B are computed by (29) with p1(x) replaced by N (x, μ, σ ).
This gives

A(M) = 3

32π1/2M1/2σ 5
,

and

B(M) = M

2π1/2
√
2M − 1

,
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and hence the minimizer of the leading part is given by

hopt = (1, 1, . . . , 1)hopt with hopt =
(
16

9

M3

(2M − 1)

)1/10

σn−1/5. (30)

Recall that n is the number of samples that each subset contains and hence the total
number of samples for all subsets is given by ‖N‖1 = n · M . Thus, letting M → ∞,
we obtain

hopt =
(
(8/9)1/10 + O(M−1)

)
(n M)−1/5σ as M → ∞.

Setting M = 1 in (30), we once again obtain the bandwidth vector

hopt0 = (1, 1, . . .)hopt
M=1 with hopt

M=1 =
(
4

3

)1/5

σn−1/5, (31)

where each component hopt
M=1 is the optimal bandwidth parameter for the individual

subset posterior density estimator. Thus, the “intuitive” choice of the bandwidth vector
as hopt0 leads to a suboptimal approximation of p̂(x).

5.3 AMISE optimization for gamma-distributed subset posterior densities

Let us assume that all subsets of samples of x satisfy

– pm = Γ (x, α, β) is a gamma distribution where α and β are the same for each
m = 1, . . . , M ,

– N1 = N2 = · · · = NM , that is, N = (n, n, . . . , n), for some n ∈ N.

By symmetry argument, we look for the minimizer on the set of positive vectors
h = (h, h, . . . , h). By substituting p1(x) byΓ (x, α, β) in (28) and (29), we can obtain
formulas similar to the ones derived in the previous section. Evaluating the integrals
is not very challenging; however, the integration results in very bulky expressions.

h(n, M, α) = 1

(4n2π)1/10

(
A

B + C + D

)1/5

,

A = 22(α−1)M (2M − 1)−2αM+α+2M−2Γ (α)

(
M

θ

)3(α−1)M−1

× θ3αM−2M+4Γ (2Mα − α − 2M + 2),

B = (α − 1)2(M − 1)2M2
( M

θ

)(α−1)M
θαMΓ (2(α − 1)M)Γ ((α − 1)M − 1)2

Γ ((α − 1)M + 1)2
,

C = 2

(
M
(
α
(
4(M − 1)M + 3

)− 4(M − 1)M − 15
)

+ 9

)(
M

θ

)(α−1)M

× θαMΓ (2(α − 1)M − 3),

123



Asymptotic properties of parallel Bayesian kernel density estimators 797

D = 2(α − 1)(M − 1)(2M − 1)M (α−1)M+1θ MΓ ((α − 1)M − 1)Γ (2(α − 1)M − 1)

Γ ((α − 1)M + 1)
.

(32)

It must be noted that this result is very different from the normal distribution one ,and
the suggested values of h are approximately thirty percent smaller than those in case
of normal distribution even if the standard deviation of the samples is the same. This
further necessitates the need for an easy-to-applymethod for numerical approximation
of the bandwidth vector h, as the KDE method even for very similar families of distri-
butions (such as normal and gamma ones) achieves best performance for very different
bandwidth values. We discussed one such possible numerical scheme in Sect. 4.4.

5.4 Numerical experiments with normal subset posterior densities

5.4.1 Description of the experiment

The numerical experiment is designed to investigate the location of the optimal
bandwidth parameter by approximating the true value of MISE[p, p̂] by repeated
simulation. One iteration of the experiment generates M subsets of a predetermined
number of samples with pm = N (x, 0, 1), m = 1, . . . , M . Then, the approximation
p̂(x) is computed several times with varied bandwidth parameters h, and integrated
square error ISE[p(x), p̂(x), h] is then computed via numerical integration. The iter-
ation is repeated a thousand times to obtain an approximation of MISE[p(x), p̂(x), h]
and its standard deviation. This process is repeated for varying sample sizes and num-
bers of subsets.

Once the data are collected, the minimum of MISE[p(x), p̂(x), h] is located and
the bandwidth parameter h for which the minimum is obtained is recorded. Since h
computed this way is a random variable, the whole experiment is repeated a hun-
dred times to compute the approximation of the expected value of h that minimizes
MISE[p(x), p̂(x), h] and its variance.

5.4.2 Numerical results

The experiments we ran allow us to compare the behavior of MISE[p(x), p̂(x),h]
when we select h = hopt0 from (31) and when we select h = hopt from (30). Figure
1a, b demonstrates that the latter choice is clearly a superior one. The rate of decay of
the error is very close to O(‖N‖−4/5), which is consistent with our calculations.

It must be noted that the graphs are plotted at the theoretically optimal values of h,
and the question of whether or not the error can be improved must be addressed. Our
experiment computes the values of MISE for a variety of values of h, and the band-
width that produces the smallest error is indeed slightly different from our theoretical
predictions. However, the discrepancy between them is negligible and it does become
smaller as sample sizes increase.
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Fig. 1 MISE[p, p̂,N(n), h] for hopt and hopt0 . a M = 4, b M = 8

Fig. 2 Ratio hopt/h
opt
MISE for different subset configurations. a M = 4, b M = 8

Let us define

hoptMISE = argminh∈RM+ MISE[p∗, p̂∗;N,h]
= argminh∈R+MISE[p∗, p̂∗;N, (h, h, . . . , h)],
= hopt

MISE · (1, 1, . . . , 1),

where the last two equalities hold in view of the symmetry assumption on p∗.
Figure 2 shows that the ratio of the numerically computed approximation of hoptMISE

to the theoretically predicted value hopt stays very close to one, which confirms the
validity of our approach.

5.5 Numerical experiments with gamma-distributed subset posterior densities

5.5.1 Description of the experiment

The numerical experiment mimics the one with normally distributed samples, with
the only difference that this experiment generates samples distributed with Γ (x, α =
3, β = 3).
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Fig. 3 MISE[p, p̂,N(n), h] for hopt and hopt0 . a M = 4, b M = 8

Fig. 4 Ratio of hopt/h
opt
MISE for different subset configurations. a M = 4, b M = 8

5.5.2 Numerical results

The results of the experiments replicate the same behavior for gamma-distributed
samples. We must note that the location of the optimal bandwidth parameter is signif-
icantly different from that in the case of normally distributed samples. Nevertheless,
the results clearly show the advantage of our choice of h, which is demonstrated in
Fig. 3a, b.

Just as before, our experiment verifies that formula (32) yields near optimum values
of MISE, see Fig. 4.

5.6 Numerical experiments with eruption data of the “Old Faithful” geyser

5.6.1 Description of the experiment

In this experiment, we employ the data of the waiting times between eruptions of the
“Old Faithful” geyser in Yellowstone National Park. The data for the geyser eruption,
between September 2009 and August 2011, were obtained from Geyser Observation
and Study Association (2017).

We are interested in computing the posterior density estimator of the mode of
the waiting time distribution given the data. To generate the samples of the mode,
we assume that the waiting times are distributed according to a gamma distribution
with the shape parameter α and rate parameter β. To generate samples from subset
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Fig. 5 MISE[p, p̂,N(n), h] for ĥoptMISE and hopt0 . a M = 4, b M = 8

posterior distributions and full set posterior distribution of α and β, we use JAGS
sampling package. We compute the mode samples given by the formula

mode = α − 1

β
.

The true posterior distribution of the mode is unknown. For this reason, we approx-
imate the true full set posterior density of the mode, by computing a KDE estimate
based on 107 samples generated with JAGS and bootstrapping using these samples to
estimate the expectation of the estimator to reduce variance.

We construct subset posterior density estimators based on the number of samples
n ∈ {2 · 103, 4 · 103, . . . , 128 · 103} generated by JAGS. The data are scrambled
before dividing it into subsets, to ensure that the data distributions are the same for
each subset. We then construct the product posterior estimator (1), which is compared
to the full set posterior approximation. We estimate MISE by averaging squared L2

distance between the product posterior and the approximation of the true posterior
over experiments repeated 103 times.

Due to inability to compute the minimizer of AMISE analytically, we opted to
employ numerically computed estimation of the optimal bandwidth parameter

ĥoptMISE = argminh∈RM+ M̂ISE[p∗, p̂∗;N,h].

The results of the experiments are plotted in Fig. 5a, b, and they are consistent with
the behavior observed in the cases of synthetic samples.

6 Appendix

6.1 Kernel density estimators and asymptotic error analysis

In this section, wewill use the following notation. The function f denotes a probability
density, and its kernel density estimator is given by
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f̂ (x; X1, X2, . . . , X N , h) = 1

Nh

N∑

i=1

K

(
x − Xi

h

)
. (33)

where X1, X2, . . . Xn ∼ f are i.i.d. samples.

Lemma 6 (Bias expansion)Let K satisfy (H3) and (H4). Let f be a probability density
function satisfying (H5) and (H6). Let f̂n,h(x) be an estimation of f given by (33).
Then,

(i) bias( f̂n,h) is given by

[
bias( f̂n,h)

]
(x) = E

[
f̂n,h(x)

]− f (x) = h2k2 f ′′(x)

2
+ [Eb( f, K )](x ; h),

(34)
where

Eb(x; h) :=
∫

R

K (t)

(∫ x−ht

x

f ′′′(z)(x − ht − z)2

2
dz

)
dt.

(ii) For all n ≥ 1 and h > 0, the term Eb(· ; n, h) satisfies the bounds

|Eb(x ; h)| ≤ Ck3
6

h3, x ∈ R,

∫

R

|Eb(x ; h)| dx ≤ C
k3
6

h3,

∫

R

|Eb(x ; n, h)|2 dx ≤ C2k23
36

h6,

(35)

for some constant C.
(iii) The square-integrated bias( f̂n,k) satisfies

∫

R

bias2( f̂n,k) dx = h4k22
4

∫

R

( f ′′(x))2 dx + Eb(n, h) < ∞

with

|Eb(n, h)| ≤ Cb

(
k2 + k3

6
h

)
k3h5

6
, (36)

for some constant Cb, and all n ≥ 1, h > 0.
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Proof Using (33) and the fact that Xi , i = 1, . . . , n are i.i.d., we obtain

biasn,h(x) = E
[

f̂n,h(x)
]− f (x)

= 1

h
E

[
K

(
x − X1

h

)]
− f (x)

= 1

h

∫

R

K

(
x − y

h

)
f (y) dy − f (x)

=
∫

R

K (t)( f (x − ht) − f (x)) dt,

where we used the substitution t = (x − y)/h. Employing Taylor’s theorem with an
error term in integral form and using (H3), we get

biasn,h(x)

=
∫

R

K (t)

(
−ht f ′(x) + h2t2

2
f ′′(x) +

∫ x−ht

x

f ′′′(z)(x − ht − z)2

2
dz

)
dt

= h2 f ′′(x)

2

∫

R

t2K (t) dt +
∫

R

K (t)

(∫ x−ht

x

f ′′′(z)(x − ht − z)2

2
dz

)
dt,

which proves (i).
By (H4), we have

|Eb(x ; n, h)| � C

(∫

R

K (t)

∣∣∣∣
∫ x−ht

x

(x − ht − z)2

2
dz

∣∣∣∣ dt

)
= Ck3

6
h3, (37)

and by (H6), using the substitution α = x − ht − z and employing Tonelli’s theorem,
we obtain

∫

R

|Eb(x ; n, h)| dx

≤
∫

R

∫

R

K (t)
∫ x+ h

2 (|t |−t)

x− h
2 (|t |+t)

| f ′′′(z)|(x − ht − z)2

2
dz dt dx

=
∫

R

K (t)
∫ h

2 (|t |−t)

− h
2 (|t |+t)

((∫

R

| f ′′′(x − ht − α)| dx

)
α2

2

)
dα dt

≤ C
∫

R

K (t)

(∫ h
2 (|t |+t)

− h
2 (|t |−t)

α2

2
dα

)
dt = h3

6
Ck3.

(38)

Thus, combining the two bounds above, we conclude

∫

R

|Eb(x ; n, h)|2 dx ≤ Ck3
6

h3
∫

R

|Eb(x ; n, h)| dx ≤ C2k23
36

h6.

123



Asymptotic properties of parallel Bayesian kernel density estimators 803

Observe that

bias2( f̂n,h)(x) = h4k22
4

( f ′′(x))2 + h2k2 f ′′(x)Eb(x ; n, h) + E2
b(x; n, h). (39)

By (H5), (37), and (38)

∣∣Eb(n, h)
∣∣ :=

∣∣∣∣
∫

R

(
h2k2 f ′′(x)Eb(x ; n, h) + E2

b(x; n, h)
)
dx

∣∣∣∣

≤
(

h2k2C + Ck3
6

h3
)∫

R

|Eb(x ; n, h)|

≤
(

h2k2C + Ck3
6

h3
)

h3

6
Ck3.

(40)

By (H5) and (H6), we have
∫
R
( f ′′(x))2 dx < ∞. Hence, by setting Cb = C2, using

(39) and (40), we obtain (36). ��
Lemma 7 (Variation expansion) Let K satisfy (H3) and (H4), with r = 2. Let f
satisfy (H5) and (H6), and f̂n,h(x) be the estimator of f given by (33). Then,

(i) V( f̂n,h) is given by

[
V( f̂n,h)

]
(x) = f (x)

1

nh

∫

R

K 2(t) dt + EV (x ; n, h), x ∈ R (41)

with

EV (x; n, h) = −1

n

(∫

R

t K 2(t)
∫ 1

0
f ′(x − htu) du dt

+
(

f (x) + bias( f̂n,h)(x)
)2 )

.

(42)

(ii) The term EV (x ; n, h) satisfies

EV (n, h) =
∣∣∣∣
∫

R

EV (x) dx

∣∣∣∣

≤ CV

n

(
2 + h2k2 + (k2 + k3

3
h
)h5

6
k3

)
.

(43)

Proof Using (34) and the fact that Xi , i = 1, . . . , n are i.i.d., we obtain

V( f̂n,h(x)) = V

(
1

h
K

(
x − X1

h

))

= 1

n

∫

R

1

h2 K 2
(

x − y

h

)
f (y) dy − 1

n

(∫

R

1

h
K

(
x − y

h

)
f (y) dy

)2

= 1

nh

∫

R

K 2(t) f (x − ht) dt − 1

n

(
f (x) + bias( f̂n,h)(x)

)2
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= 1

nh

∫

R

K 2(t) f (x) dt + 1

nh

∫

R

K 2(t)

(∫ x−ht

x
f ′(z) dz

)
dt

−1

n

(
f (x) + bias( f̂n,h)(x)

)2

= 1

nh

∫

R

K 2(t) f (x) dt − 1

n

∫

R

t K 2(t)
∫ 1

0
f ′(x − htu) du dt

−1

n

(
f (x) + bias( f̂n,h)(x)

)2
,

which proves (41) and (42).
We next estimate the terms

E1(x) :=
∫

R

t K 2(t)

(∫ 1

0
f ′(x − htu) du

)
dt,

E2(x) :=
(

f (x) + bias( f̂n,h)(x)
)2

.

Observe that (H5)–(H6) imply

∫

R

| f ′(x)| dx =
∫

R

| f ′(x + α)| dx := I1 < ∞

for any α ∈ R. Then, using Tonelli’s Theorem and (H4), we obtain

∫

R

|E1(x)| dx ≤
∫

R

|t |K 2(t)

(∫

R

∫ 1

0
| f ′(x − htu)| du dx

)
dt

≤
∫

R

|t |K 2(t)

(∫ 1

0

(∫

R

| f ′(x − htu)| dx

)
du

)
dt ≤ I1k1.

Since E1 is integrable, we can use Fubini’s theorem, and this yields

∫

R

E1(x) dx =
∫

R

t K 2(t)

(∫

R

∫ 1

0
f ′(x − htu) du dx

)
dt

=
∫

R

t K 2(t)

(∫ 1

0

(∫

R

f ′(x − htu) dx

)
du

)
dt = 0,

where we used the fact that limx→±∞ f (x) = 0. Next, by (H5) and (35), we get

∫

R

|E2(x)| dx ≤ 2
∫

R

(
f 2(x) + bias2( f̂n,h)(x)

)
dx

≤ 2C + Ch2k2 +
(

k2C + Ck3
6

h

)
h5

3
Ck3.

Combining the above estimates, we obtain (43). ��

123



Asymptotic properties of parallel Bayesian kernel density estimators 805

Lemma 8 (Kernel autocorrelation) Let K satisfy (H3) and (H4), then the function

K2(z) =
∫

R

K (s)K (s − z) ds ≥ 0, z ∈ R

satisfies

∫

R

K2(z) dz = 1,
∫

R

z K2(z) dz = 0.

Moreover, for any sufficiently smooth f (x)

∫
1

h
K2

(
z − x

h

)
f (z) dz = f (x) + EC, f with |EC, f | ≤ ‖ f ′′‖∞k2h2.

Proof Since K ≥ 0, we have K2 ≥ 0. Moreover, we have

∫

R

K2(z) dz =
∫∫

R×R

K (s)K (s − z) dzds = 1

and this proves the first property. Similarly, recalling that
∫

zK (z) dz = 0, we obtain

∫

R

z K2(z) dz =
∫

R

K (s)
∫

R

(z − s + s)K (s − z) dz ds = 0.

Next, we take any smooth function f and compute

∫
1

h
K2

(
z − x

h

)
f (z) dz =

∫
K2 (u) f (x − hu) du

= f (x) +
∫

K2(u)

∫ x−hu

x
f ′′(t)(t − x + hu) dt du.

Finally, we estimate the last term in the above formula as follows:

∣∣∣∣
∫

K2(u)

∫ x−hu

x
f ′′(t)(t − x + hu) dt du

∣∣∣∣

≤ ‖ f ′′‖∞
∫

K2(u)
h2u2

2
du

= ‖ f ′′‖∞h2

2

(∫
K (s)

∫
(s − u)2K (s − u) duds

+
∫

s2K (s)
∫

K (s − u) duds

)

≤ ‖ f ′′‖∞k2h2.

��
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Lemma 9 (Product expectation) Let K satisfy (H3) and (H4), with r = 2. Let f be a
probability density function that satisfies (H5) and (H6), and let f̂n,h(x) be an estimate
of f given by (33). Then,

E[ f̂n,h(x) f̂n,h(y)] − E[ f̂n,h(x)]E[ f̂n,h(y)] = 1

Nh
f (x)K2

(
x − y

h

)
− EΠ, (44)

where the error term

EΠ = 1

N

∫ (
sK (s)K

(
s − x − y

h

)(∫ 1

0
f ′(x − shu) du

))
ds

+ 1

N
E[ f̂ (x)]E[ f̂ (y)]

satisfies

|EΠ(x, y)| ≤ CΠ

N
,

∣∣∣∣
∫ ∫

EΠ(x, y) dxdy

∣∣∣∣ ≤
1

N

(
1 + Ck3h3

6

)2

∫ ∫
|EΠ(x, y)|dxdy ≤ 1

N

(
1 + k1 C

Ck2h2

2
+ Ck3h3

6

)2

,

for some constant CΠ and constants C given in (H6) and K2 defined in Lemma 8.

Proof By the definition of the estimator f̂ , we have

E

(
f̂ (x) f̂ (y)

)
= E

⎛

⎝ 1

N 2h2

N∑

i, j=1

K

(
x − Xi

h

)
K

(
y − X j

h

)⎞

⎠ .

Since all {Xi }N
i=1 are i.i.d., we can split the calculation into two parts, one for the part,

where the indexes coincide and the part, where indexes are different. We then can use
the independence of the samples to simplify the calculation

E

(
f̂ (x) f̂ (y)

)
= 1

N 2h2 E

⎛

⎝
∑

i= j

K

(
x − Xi

h

)
K

(
y − Xi

h

)⎞

⎠

+ 1

N 2h2 E

⎛

⎝
∑

i �= j

K

(
x − Xi

h

)
K

(
y − X j

h

)⎞

⎠

= 1

Nh2

[
E

(
K

(
x − X

h

)
K

(
y − X

h

))]

+
(
1 − 1

N

)
E[ f̂ (x)]E[ f̂ (y)],

(45)
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where X = X1. The first expectation term in (45) can be expanded as

1

Nh2 E

[
K

(
x − X

h

)
K

(
y − X

h

)]

= 1

Nh2

∫
K

(
x − t

h

)
K

(
y − t

h

)
f (t) dt

= 1

Nh

∫
K (s)K

(
s − x − y

h

) (
f (x) +

∫ x−sh

x
f ′(z) dz

)
ds

= f (x)
1

Nh
K2

(
x − y

h

)

− 1

N

∫
sK (s)K

(
s − x − y

h

) (∫ 1

0
f ′ (x − shu) du

)
ds.

Let us denote

EΠ,1 = 1

N

∫ (
sK (s)K

(
s − x − y

h

)(∫ 1

0
f ′(x − shu) du

))
ds,

EΠ,2 = 1

N
E[ f̂ (x)]E[ f̂ (y)].

Then, we obtain

E

(
f̂n,h(x) f̂n,h(y)

)
− E[ f̂n,h(x)]E[ f̂n,h(y)]

= f (x)
1

Nh
K2

(
x − y

h

)
ds − (EΠ,1 + EΠ,2),

and this establishes (44).
Observe that (H3), (H4), and (H5) imply

|EΠ,1| ≤ C k1
N

.

Next, according to (34) and (35)

|E[ f̂ (x)]| ≤ C + Ck2h2

2
+ Ck3h3

6
for all x ∈ R,

where C is a maximum of constants from (H5) and hence

|EΠ,2| ≤ 1

N

(
C + Ck2h2

2
+ Ck3h3

6

)2
.
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Combining the above estimate, we conclude that

|EΠ | = |EΠ,1 + EΠ,2| ≤ 1

N

(
Ck1 +

(
C + Ck2h2

2
+ Ck3h3

6

)2
)

.

To obtain bounds on the integral of the error term, let us consider each component of
the error separately. The term EΠ,1 is integrable

∫∫
|EΠ,1(x, y)| dxdy

≤ 1

N

∫∫∫

R3
|s| K (s)K

(
s − x − y

h

) (∫ 1

0
| f ′ (x − shu) | du

)
ds dx dy

≤ 1

N

∫

R

|s| K (s)

(∫ 1

0

∫

R

| f ′ (x − shu) | dx du

)
ds ≤ k1 C

N
.

(46)

Next using Fubini’s theorem, we obtain

∣∣∣∣
∫∫

EΠ,1(x, y) dxdy

∣∣∣∣

≤ 1

N

∣∣∣∣
∫∫∫

R3
s K (s)K

(
s − x − y

h

) (∫ 1

0
f ′ (x − shu) du

)
ds dx dy

∣∣∣∣

= 1

N

∣∣∣∣
∫

R

s K (s)

(∫ 1

0

∫

R

f ′ (x − shu) dx du

)
ds

∣∣∣∣ = 0.

Therefore, using Lemma 6, (34), (35), and the Hypothesis (H6), we obtain

∣∣∣∣
∫∫

R2
EΠ(x, y) dxdy

∣∣∣∣ =
1

N

∣∣∣∣
∫

R

E[ f̂ (x)] dx

∣∣∣∣
2

≤ 1

N

(
1 + Ck3h3

6

)2

.

Finally, directly from (46), (34), and (35), we obtain

∫∫

R2
|EΠ(x, y)| dxdy ≤

∫∫

R2

∣∣EΠ,1(x, y)
∣∣ dxdy +

∫∫

R2

∣∣EΠ,2(x, y)
∣∣ dxdy

≤ k1 C

N
+ 1

N

(
1 + Ck2h2

2
+ Ck3h3

6

)2

.

��
Theorem 3 (MISE expansion) Let K satisfy (H3) and (H4), with r = 2. Let f be a
probability density function that satisfies (H5) and (H6), and let f̂n,h(x) be an estimate
of f given by (33). Then,

MISE( f̂n,h) = h4k22
4

∫

R

( f ′′(x))2dx + 1

nh
f (x)

∫

R

K 2(t) dt + Eb(n, h) + EV (n, h)
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with Eb and EV defined in (40) and (43), respectively. Moreover, for every H > 0,
there exists C f,K ,H such that

|Eb(h, n) + EV (h, n)| � C f,K ,H

(
h5 + 1

n

)

for all n ≥ 1 and H ≥ h > 0.

Proof It is easy to show (see Silverman 1986) that

MISE( f̂n,h) =
∫

R

E[ f̂n,h(x) − f (x)]2 dx

=
∫

R

(
bias( f̂n,h)(x)

)2 dx +
∫

R

V( f̂n,h(x)) dx,

and hence the result follows from Lemma 6 and Lemma 7. ��
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