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Abstract We consider the problem of adaptive estimation of the functional compo-
nent in a partial linear model where the argument of the function is defined on a
q-dimensional grid. Obtaining an adaptive estimator of this functional component is
an important practical problem in econometrics where exact distributions of random
errors and the parametric component are mostly unknown. An estimator of the func-
tional component that is adaptive over the wide range of multivariate Besov classes
and robust to a wide choice of distributions of the linear component and random errors
is constructed. It is also shown that the same estimator is locally adaptive over the
same range of Besov classes and robust over large collections of distributions of the
linear component and random errors as well. At any fixed point, this estimator attains
a local adaptive minimax rate.

Keywords Multivariate Besov space · Median · Adaptive estimation · Robust
estimation · Multivariate partial linear model

1 Introduction

In this manuscript, we consider a partial linear multivariate model defined as

Yi = a + X
′
iβ + f (Ui) + ξi, (1)

where X i ∈ R
p and Ui ∈ R

q , β is an unknown p × 1 vector of parameters, a an
unknown intercept term, f (·) is an unknown function, and ξi are independent and
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identically distributed random variables. No moment conditions are imposed on ξi,
but we do assume for convenience that themedian of ξi is equal to zero. X i is defined as
a p-dimensional continuous random variable. In this manuscript, we consider a special
case where each Ui is viewed as a q-dimensional vector with each coordinate defined
on an equispaced grid on [0, 1]. The sequence {X i} is assumed to be independent of
{ξi}. We use bold font for indices since the most convenient notation for this model
involves multivariate indices; the detailed description of these indices is postponed
until Sect. (2). In our manuscript, we only consider the case where q > 1 that has
been relatively little explored in the statistical literature. More specifically, the only
papers in the statistical literature that we are aware of discussing the multivariate case
are He and Shi (1996), Schick (1996), Müller et al. (2012), Levine (2015), and Brown
et al. (2016). Econometric literature discusses the multivariate case to some extent. In
particular, Härdle et al. (2012) contains a review of some possible applications, clearly
showing practical utility of considering the case of q > 1.

Partial linear models are, in many cases, preferable to purely nonparametric regres-
sion model because of the well-known “curse of dimensionality.” For the most part,
the parametric part can be estimated at the

√
n rate where n is the sample size. At the

same time, the estimation precision of the nonparametric component usually decays
as the dimensionality of its argument grows. Partial linear models have a long his-
tory of application in both econometrics and statistics. From the practical viewpoint,
they are often of considerable interest because relationships between the response and
predictors in the samemodel may be of a very different nature. Some of these relation-
ships can often presumed to be linear, while others are harder to parametrize. In the
most common case, a small subset of the variables are presumed to have an unknown
nonlinear relationship with the response, while the rest are assumed to have a linear
relationship with it. A good example can be found in Schmalensee and Stoker (1999)
that considered a partial linear model to analyze gasoline household consumption in
the USA. In this model, the demand for gasoline, measured in log number of gallons,
is assumed to depend linearly on the number of drivers in the family, the household
size, residence, region, and life cycle. At the same time, the response is assumed to
depend nonlinearly on the two remaining covariates, log of the household income and
log of the age of the head of household.

Most often, the estimation of the nonparametric component is conducted in order
to suggest a possible parametric form for this component where no prior rationale
for choosing such a form is available. This, in turn, allows a researcher to describe
the data more parsimoniously. For example, the above-mentioned Schmalensee and
Stoker (1999) fits the function g that describes the dependence of the log demand for
gasoline Y on the log of the household income Z1 and the log of the age of the head of
household Z2. When the function is fit, Schmalensee and Stoker (1999) plots it first
as a function of Z1 for several fixed values of Z2 and as a function of Z2 for several
fixed values of Z1. The plots suggest that a possible parsimonious representation of
the nonparametric component can be a piecewise linear function in both Z1 and Z2;
later diagnostic testing confirms this conclusion. An in-depth discussion of this issue
can be found in Horowitz (2009).

Our main goal in this manuscript is to construct an estimator of the nonparametric
component f that is adaptive over a range of functional classes for f and robust with
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Robust estimation in the partial linear model 745

respect to the wide choice of distributions of X and ξ . In other words, we want to
develop the estimator of the function f that achieves the optimal, or nearly optimal,
rate of convergence over a wide range of functional classes for f and that is reasonably
robust to choices of a distribution of X and that of random errors ξ . To the best of our
knowledge, this question has not been considered before in the statistical literature.
The farthest step in this direction seems to have been made in Brown et al. (2016)
who constructed an asymptotically efficient estimator of f in the model (1). Also, a
somewhat related result in the existing literature can be found in Wang et al. (2010).
They obtained some optimal convergence rates for a link function in the partial linear
single index problem.

There are a number of reasons why the estimator robust to the wide choice of pos-
sible distributions of X and ξ is of interest. First, typical theory for models of the
type (1) assumes that errors ξi are independent, identically distributed (i.i.d) normal
random variables. From the practical viewpoint, normality may not always be satis-
factory; see, for example, Stuck and Kleiner (1974) and Stuck (2000). Moreover, the
use of Gaussian formulation often implies that the specifically mean regression is of
interest; in other words, the value of f (Ui ) is viewed as a conditional expectation
E [Yi|X i] − a − X

′
iβ. In general, however, it is desirable to be able to handle more

general formulations, such as median regression and other quantile regressions, as
well. This has been noticed as early as He and Shi (1996) who suggested using an M-
type objective function in order to treat mean regression, median regression, and other
quantile regressions in one setting. Until the present time, if normality has not been
required, it has been the usual approach in most statistical and econometric research
to impose some moment assumptions that are necessary to obtain asymptotic results
for estimators of the parametric component β; see, e.g., Robinson (1988) and Härdle
et al. (2012). In this manuscript, we argue that this is also unnecessary and that the
estimator robust to the wide choice of possible distributions for ξ and achieving min-
imax or nearly minimax rate of convergence can be constructed without any moment
assumptions being imposed on the distribution of ξ .

Another issue lies in the fact that the distribution of X is often not known in
practice; in particular, it need not be a multivariate Gaussian. In econometric practice,
in particular, it is exceedingly common to have to deal with a vector X that includes
at least some discrete components. An earlier mentioned model Schmalensee and
Stoker (1999) has the vector X that consists of discrete components only. In general,
Horowitz (2009) p. 53 notes when introducing partial linear models in econometric
context that “…X may be discrete or continuous.” Thus, from the practical viewpoint
it seems inadvisable to limit the distribution of X to the multivariate normal only. In
our manuscript, we develop an estimation method that is adaptive over a wide range of
functional classes for f and robust over a large collection of error distributions for ξi
and design vector distributions for X i. This means, in particular, that an exact optimal
rate of convergence for both mean squared error risk and the squared error at a point
risk is achieved over a wide range of multivariate Besov classes for f without the prior
knowledge of the distribution for the design vector X or the random error distribution.

Themethod thatwe propose is based on the idea of treating the sumof the parametric
part X iβ and the random error ξi as the “new” random error ρi and viewing the model
(1) as a nonparametric regression with unknown random errors. The usefulness of
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this idea lies in the fact that the resulting nonparametric regression model is somewhat
similar to the nonparametric regression with an unknown error distribution considered
in Brown et al. (2008). The main difference between it and the model of Brown
et al. (2008) is that the argument of the function f now is multivariate, while it was
univariate in Brown et al. (2008). Thus, although the origin of our problem is rather
different from that of Brown et al. (2008), solutions of the two problems turn out
to be connected. To obtain an adaptive estimator of the function f , we divide the
q-dimensional cube [0, 1]q into a number of equal volume bins, take the median of
observations in each of these bins, and then apply a wavelet-based procedure to these
local medians together with a bias correction. Out of several possible procedures,
we choose a multivariate generalization of the Block JS procedure developed in Cai
(1999). To the best of our knowledge, the multivariate BlockJS procedure has not been
properly described before and therefore may be of independent interest. Note that, in
general, the multivariate extension of the adaptive estimation procedure described in
Brown et al. (2008) is highly non-trivial. This is due to the necessity of selecting a
correct blockwise shrinkage procedure that can be applied to the empirical wavelet
coefficients. Our contribution consists of, first, designing a multivariate version of the
by now classical BlockJS procedure of Cai (1999), and, second, of showing that it
is the right choice that produces an adaptive and robust estimator of the functional
component f .

Our manuscript is organized as follows. In Sect. 2, we define our proposed proce-
dure exactly and establish several auxiliary results. The asymptotic properties of our
procedure are established in Sect. 3. Section 4 contains some further discussion of our
work, while the formal proofs are relegated to “Appendix.”

2 General approach to estimation of the functional component

2.1 Methodology for adaptive estimation of the functional component

As mentioned in the introduction, we begin with defining a random variable ρi =
X

′
iβ + ξi and rewriting the model (1) as

Yi = a + f (Ui) + ρi. (2)

In this form, (2) is simply a multivariate nonparametric regression with an unknown
error distribution. Note that in this model the intercept a cannot be absorbed in the
design matrix X due to identifiability issues; in order to ensure that the model is
identifiable, we have to require that an identifiability condition

∫
[0,1]q f (u)du = 0 is

satisfied. Otherwise, one can add and subtract
∫
[0,1]q f (u)du to the right-hand side

of the model with the new constant becoming a
′ = a + ∫

[0,1]q f (u)du. Without loss
of generality, we will adopt the following simplifying assumptions. First, we assume
without loss of generality that a is known and equal to 0. Second, we assume that the
vector median of X i is also equal to zero. Indeed, if this is not the case, Brown et al.
(2016) has shown that there exists an estimator â such that â = Op(n−1/2) and that the
parameter β can be estimated at the same rate as well. Therefore, in a general model,
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Robust estimation in the partial linear model 747

we will have an additional term A := a+(med X i)
′
β that can be estimated at the same

fast parametric rate of convergence and its presence will not influence the optimal rate
of convergence of the adaptive estimator of f that we construct. Appropriate remarks
will be made in the proofs in mathematical Appendix as well. Therefore, from now
on we will work with the model

Yi = f (Ui) + ρi, (3)

where it is assumed that the median of ρi is equal to zero. Most of the classical
nonparametric regression has been developed under the assumption of independent and
identically distributed (i.i.d) errors. In particular, a variety of smoothing techniques,
such as wavelet thresholding techniques, were developed and shown to be highly
adaptive in the Gaussian case. When errors are heavy tailed, these techniques are
typically not applicable. Brown et al. (2008) worked with the model (3) when q = 1
and noticed that, for example, if ρi is Cauchy distributed, the maximum observation
(out of n) will be of the order n, instead of log n, which is the case when the errors
are normally distributed. This invalidates classical denoising approaches, such as the
wavelet thresholding, and suggests the need for a different take on this problem.

Similarly to Brown et al. (2008), to estimate the function f adaptively, we bin Yi
according to the values of coordinates of Ui. The sample median is then computed
within each bin. Now, bin centers can be treated as independent variables in a multi-
variate nonparametric regression, bin medians being dependent variables. The number
of bins has to be chosen in a suitable range; in our case, it turns out that the number
of bins V � n3/4, where n is the original sample size, is a suitable choice. The result-
ing model can be viewed as a Gaussian multivariate nonparametric regression, and a
multivariate version of the BlockJS method of Cai (1999) can be used to obtain an
adaptive estimator of the function f . To the best of our knowledge, such a generaliza-
tion of BlockJS method has not been implemented before. The implementation of the
proposed procedure is not difficult, since the number of bins can be chosen as a power
of 2. We will show that the resulting estimator enjoys excellent adaptivity properties
over a wide range of multivariate Besov balls and is robust over wide ranging sets of
distributions of X and ξ .

Before the detailed description of our procedure, it is necessary to specify the exact
notation that will be used. For simplicity, we start with values of Ui defined on an

equispaced grid. More specifically, we define a pointUi =
(
i1
m , . . . ,

iq
m

)′
∈ R

q where

each ik ∈ {0, 1, . . . ,m}, k = 1, . . . , q, for some positivem. Note that the total sample
size is n = (m+1)q . This assumption ensures thatm = o(n) as n → ∞. In the model
(1), the multivariate index is i = (i1, . . . , iq)

′
. Throughout this article, we will use

bold font for all multivariate indices and a regular font for scalar ones. We will say that
two multivariate indices i1 = (i11 , . . . , i

1
q ) ≤ i2 = (i21 , . . . , i

2
q ) if i

1
k ≤ i2k for any k =

1, . . . , q; the relationship between i1 and i2 is that of partial ordering. For convenience,
we denote a q-dimensional vector n = (m+1, . . . ,m+1)

′
and a q-dimensional vector

0 = (0, . . . , 0)
′
. The l2 normof a vectorwill be denoted ||·||2. To define the binswe use

for aggregating observations, we start with defining J =
⌊
1
q log2 n

3/4
⌋
and T = 2J .
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We split the j th edge of the q-dimensional cube [0, 1]q into T intervals of the type
(
l j−1
T ,

l j
T ], where l j = 1, 2, . . . , T for any j = 1, 2, . . . , q. All of the n observations

are split into bins in the following way: All of Yi such that the j th coordinate of the
corresponding Ui belongs in an interval (

l j−1
T ,

l j
T ], l j = 1, 2, . . . , T , are assigned to

the bin with the multivariate index l = (l1, . . . , lq)
′
. We will denote the lth bin Dl. For

convenience of notation, we denote a q-dimensional vector all of whose coordinates
are equal to 1

T 1/T = (1/T, . . . , 1/T )
′
, a q-dimensional vector consisting of 1’s

as 1 = (1, . . . , 1)
′
, and T = (T, . . . , T )

′
. We also denote l

T = (l1/T, . . . , lq/T )
′
.

Clearly, the total number of such bins is V = T q ; note that, due to selection of J
and T , the total number of bins V � n3/4. Also, we define an approximate number
of observations in each bin κ = n

V ; clearly, κ � n1/4. Let us denote ηl the median of
all ρi such that the corresponding observation Yi belongs in the lth bin Dl; also, we
denote the expectation of the sample median ηl bl := E ηl.

In order to approximate the median of observations in each multivariate bin with
a normal random variable, we will have to develop a multivariate median coupling
inequality. What follows is a very brief general discussion of median coupling; for
more details, see Brown et al. (2008). Note that our first step will have to be estimation
of the expectation of the median ηl for lth bin Dl. Let h(x) be the density function
of ρi, 0 ≤ i ≤ n. Let X1, . . . ,Xn be independent random variables with the density
h(x). We will need the following assumption on the density h; this assumption comes
from Brown et al. (2008) but is given here in full for convenience.

Assumption 1
∫ 0
−∞ h(x) = 1

2 , h(0) > 0, and h(x) is locally Lipschitz at x = 0. The
Lipschitz condition at zero for h(x)means that there exists a constant C > 0 such that
|h(x) − h(0)| ≤ C |x | in an open neighborhood of 0.

Note that the assumption that h(0) > 0 guarantees uniqueness of the median of the
distribution and the asymptotic normality of the sample median; see e.g., Casella and
Berger (2002) p. 483. In order to approximate a median of the lth bin, we will use a
coupling inequality of Brown et al. (2008). We only give its statement here without a
proof.

Theorem 1 LetX1, . . . ,Xn be i.i.d random variables with the density function h(x)
that satisfies the Assumption (1), while Z is a standard normal random variable.
We assume that n = 2k + 1 for some integer k ≥ 1. Then, there exists a mapping
X̃(Z) : R → R such that the distribution law of X̃med L (X̃med(Z)) = L (Xmed)

and

|√4nh(0)X̃med − Z | ≤ C√
n

+ C√
n
|√4nh(0)X̃med|2

when |X̃med| ≤ ε where C, ε > 0 depend on the density h but not on n.

The bound given in Theorem (1) can also be expressed in terms of Z as follows.
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Corollary 1 Under the assumptions of Theorem (1), the mapping X̃med(Z) in Theo-
rem (1) also satisfies

|√4nh(0)X̃med(Z) − Z | ≤ C√
n
(1 + |Z |2)

when |Z | ≤ ε
√
n where C, ε > 0 do not depend on n.

Note that the assumption that the number of observations n is odd has been made
for convenience. The Remark 1 on p. 2059 of Brown et al. (2008) shows that it can

be dispensed by redefining the median as Xmed = X(k)+X(k+1)
2 when n = 2k and

following a similar argument. In the future, we will always assume that the number of
observations whose median is considered is odd for simplicity. Also, we can say that
Theorem (1) lets us approximate each bin median with a normal random variable that

has the mean f
(

l
T

)
+ bl and the variance 1/4κh2(0).

Remark 1 A more general situation that we described briefly earlier would be if the
intercept a and/or the median of X i was not equal to zero. If that was the case, we
would be looking at approximating the median of all observations Yi from lth bin

with a normal random variable that has the mean f
(

l
T

)
+ bl + A and the variance

1/4κh2(0).

However, an interesting question remains open. What kind of distributions of X i
and ξi will result in the density h(x) of ρi that is going to satisfy Assumption (1)?
The following simple proposition identifies a reasonably wide range of distributions
of X i and ξi that will satisfy this assumption. This proposition takes the form of a
convenient sufficient condition. However, before stating it, we need to define a family
of elliptical distributions.

Definition 1 A random vector X = (X1, . . . , X p)
′
is said to have an elliptical dis-

tribution if its characteristic function φ(t) can be expressed as φ(t) = eit
′
μψ(t

′

t),

where μ is the p × 1 vector and p × p matrix 
 = AA
′
for some matrix A. The

function ψ is called characteristic generator of X .

Some examples of elliptical distributions are normal, t-distribution, Laplace dis-
tribution, Cauchy distribution, and many others when q = 1 and their multivariate
analogs when q > 1. In general, elliptical distributions may not have a density; how-
ever, when they do have one, it has the form

f (X) = cn√|
|gn((X − μ)
′

−1(X − μ)), (4)

where the function gn is called a density generator, cn is a normalizing constant, and
μ is the median vector (which is equal to the mean if the latter exists). It is a common
practice to refer to an elliptical distribution with a density function as En(μ,
, gn).
The following simple property of elliptical distributions with a density function is easy
to establish and so it is given here without a proof for brevity. For detailed discussion,
see e.g., Fang et al. (1990).
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Lemma 1 Let X ∼ En(μ,
, gn). Let B be an r × q matrix while b ∈ R
r . Then, any

affine transformation of X is an elliptical distribution as well:

b + BX ∼ Er (b + Bμ, B
B
′
, gr ).

With the above in mind, we can now state our proposition.

Proposition 1 Assume that the density of random errors ξi h1(x) is Lipschitz contin-
uous at zero, symmetric around zero, and strictly positive in an open neighborhood of
zero. We also assume that X i has an elliptic distribution with a density function that
is continuous in an open neighborhood of zero. Moreover, without loss of generality
(as discussed earlier) we assume that the median of X i is zero. Then, Assumption (1)
is satisfied.

Proof Due to Lemma (1), X
′
iβ has a univariate elliptical distribution with the median

equal to zero. Clearly, the distribution of X
′
iβ also has a density function. The form

of the density function of any elliptical distribution given in (4) clearly implies that,
if the median of X

′
iβ is zero, the distribution of X

′
iβ is symmetric around zero. Let us

denote h3(x) the distribution of X
′
iβ. Since X i and ξi are independent, the distribution

of X
′
iβ + ξi is a convolution of the two densities: h(x) = ∫∞

−∞ h1(x − u)h3(u) du.
It follows directly from the definition of Lipschitz continuity at zero that since h1(x)
is Lipschitz continuous at zero then so is h(x); moreover, it is not hard to check
that the symmetry of h1(u) and h3(u) around zero implies the symmetry of their
convolution h(x) around zero as well. Since h(x) is symmetric around zero, we have
immediately that

∫ 0
−∞ h(x) = 1

2 . Finally, since the density h3(x) is continuous in an
open neighborhood of zero and the corresponding median is unique, there exists an
open neighborhood of zero where h3(x) > 0. This, together with strict positivity of
h1(x) in some open neighborhood of zero, guarantees that h(0) = ∫∞

−∞ h1(x)h3(x) dx
> 0. ��
Remark 2 Note that Proposition (1) covers a wide variety of distributions of X i and ξi.
Concerning X i, distributions, such as multivariate normal, multivariate t-distribution,
multivariate Laplace, multivariate Cauchy, and, in general, any symmetric stable dis-
tribution, are elliptical distributions with a density. It is also of interest that, when the
index of stability is less than 1, which is the case for Cauchy and Levy distributions,
there is no finite mean, yet the resulting distribution of X i still satisfies requirements
of Proposition (1). The requirements for the distribution of ξi also do not contain any
moment requirements; note that, for example, a (univariate) Cauchy distribution for
ξi satisfies assumptions of Proposition (1).

2.2 Wavelet procedure for a binned semiparametric model

We will start with a brief introduction into the multivariate wavelet bases. First, let
{φ,ψ} be a pair of univariate father andmother wavelets.We need to assume that both
of them are compactly supported on [0, 1] and ∫ φ = 1. As is known, translation and
dilation of φ and ψ generates an orthonormal wavelet basis in L2[0, 1]; thus, in order
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to obtain a convenient periodized wavelet basis, we have φ
p
j,k(t) = ∑∞

l=−∞ φ j,k(t−l)

and ψ
p
j,k(t) = ∑∞

l=−∞ ψ j,k(t − l), where φ j,k(t) = 2 j/2φ(2 j t − k) and ψ j,k(t) =
∑∞

l=−∞ 2 j/2ψ(2 j t − k). The primary resolution level j0 should be selected large
enough to ensure that the support of the scaling functions (father wavelets) and mother
wavelets at level j0 does not cover the whole [0, 1]. We also assume r regularity of
our wavelet system for some positive r . This means that the first r� moments of the
wavelet function ψ are equal to zero. The periodized wavelets generate a curtailed
multiresolution ladder:

V p
0 ⊂ V p

1 ⊂ V p
2 ⊂ · · ·

where spaces V p
j are spanned by φ

p
j,k(t). As in any regular multiresolution analysis,

we have W p
j ⊕ V p

j = V p
j+1, where the space W p

j is spanned by ψ
p
j,k . In the future,

we will suppress the superscript p from the notation for convenience. An orthonormal
wavelet basis has an associated orthogonal discrete wavelet transform (DWT) whose
function is to transform sampled data into the wavelet coefficients. A square integrable
function f on [0, 1] can be expanded into a wavelet series

f (t) =
2 j0∑

k=1

θ j0,kφ j0,k(t) +
∞∑

j= j0

2 j
∑

k=1

θ j,kψ j,k(t),

where θ j0,k = 〈 f, φ j0,k〉 and θ j,k = 〈 f, ψ j,k〉 are the wavelet coefficients of f . We
will use a one-dimensional orthogonal wavelet basis to define a q-dimensional one.
There are a number of ways to construct such a basis based on the one-dimensional
one; we will use the one that is based on a tensor product construction and preserves
a multiresolution analysis (MRA) in a q-dimensional space. By using q univariate
orthogonal MRA’s

V0,(i) ⊂ V1,(i) ⊂ V2,(i) ⊂ · · · ⊂ L2[0, 1],

i = 1, 2, . . . , q, we can define a q-dimensional multiresolution analysis

V0 ⊂ V1 ⊂ V2 ⊂ · · · · · · L2[0, 1]q

in which V j = ⊗q
i=1Vj,(i) ⊂ L2[0, 1]q . The resulting q-dimensional multiresolution

analysis corresponds to, first, one q-variate scaling function φ(u) ≡ φ(u1, . . . , uq) =∏q
i=1 φ(i)(ui ), where φ(i) is an i th copy of the father wavelet, and, second, 2q − 1

q-variate wavelets

ψ i (u) ≡ ψ i (u1, . . . , uq) =
q∏

i=1

ξ(i)(ui ),

i = 1, 2, . . . , 2q −1, where ξ(i) is either φ orψ but not all of ξ(i) are equal to the father
wavelet φ. Now, let k = (k1, . . . , kq) ∈ Z

q be the k-dimensional lattice. To complete
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the description of our notation, we also introduce rescaled and translated versions
φ j0,k(u) = 2 j0q/2∏q

m=1 φ(m)(2 j0um − km) and ψ i
j,k(u) = 2 jq/2∏q

m=1 ξ(m)(2 j um −
km), where ξ = φ or ψ but not all ξ = φ. Finally, any function f ∈ L2[0, 1]q can be
represented as

f (u) =
∑

1≤k≤2 j0

θ j0,kφ j0,k(u) +
∑

j≥ j0

∑

1≤k≤2 j

2q−1∑

i=1

θ ij,kψ
i
j,k(u). (5)

For a more detailed discussion of multivariate wavelet bases, see, for example,
Daubechies (1992) and Vidakovic (2009).

At this point, we can give a detailed description of our estimator of the functional
component f . The first step is to bin observations Yi according to values of coordinates
ofUi as described in Chapter (2.1). Then, the sample median must be computed within

each bin. We will use the notation g
(

l
T

)
= f

(
l
T

)
+ bl, where bl is the median of

errors in the lth bin as described earlier. We will denote medians of observations in
lth bin Ql, 1 ≤ l ≤ T. Our next step consists of applying a discrete wavelet transform
to all of the medians Ql. In the multivariate case that we consider, a discrete wavelet
transform is a tensor. After the application of the discrete wavelet transform, we can
describe the transformed data as

U =
(
y j0,1, . . . , y j0,2 j0 , y

1
j0,1, . . . , y

1
j0,2 j0

, . . . , y2
q−1
J−1,1, . . . , y

2q−1
J−1,2J−1

)
.

Here, y j0,r , r = 1, . . . , 2 j0 are the gross structure terms at the lowest resolution level,
while yij,k , i = 1, . . . , 2q −1, j = j0, . . . , J −1, k = 1, . . . , 2 j are empirical wavelet
coefficients at level j corresponding to the wavelet i that represent fine structure at
scale 2 j . The empirical wavelet coefficients can be written as

yij,k = θ̆ ij,k + εij,k + 1

2h(0)
√
n
zij,k + ξ ij,k,

where θ̆ ij,k are the discrete wavelet coefficients of g
(

l
T

)
, εij,k are deterministic errors,

zij,k are i.i.d N (0, 1), and ξ ij,k are stochastic errors. Later, we will show that both

deterministic errors εij,k and stochastic errors ξ ij,k are negligible in a certain sense.
Ignoring them, we end up with

yij,k ≈ θ̆ ij,k + 1

2h(0)
√
n
zij,k (6)

which is essentially an idealized sequence model with the noise level σ = 1
2h(0)

√
n
.

As a next step, we propose a multivariate generalization of the BlockJS procedure of
Cai (1999) and apply it to the empirical coefficients yij,k as if they were generated

by (6). At each resolution level j , the empirical wavelet coefficients yij,k are grouped

into non-overlapping blocks of length L . We define each block as Bi
j,u consisting of
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observations yij,k such that, for any choice of i th wavelet and j th resolution level, only
(u−1)L+1 ≤ ks ≤ uL are included,where s = 1, 2, . . . , q and j = j0, . . . , J−1.We
also define S2j,u,i ≡ ∑

k∈Bi
j,u

(yij,k)
2 the sum of squared empirical wavelet coefficients

included in uth block. Let ĥ2(0) be an estimator of the squared value of the density
function h at the point zero. The following shrinkage rule is then applied to each block
Bi
j,u :

θ̂ ij,k =
(

1 − λ∗L
4ĥ2(0)nS2j,u,i

)

+
yij,k, (7)

where λ∗ is the solution of the equation λ∗ − log λ∗ = 3 and 4nĥ2(0) is present due to
the fact that the noise level is equal to σ = 1

2h(0)
√
n
. For the gross structure terms, we

define an estimator θ̂ j0,k = y j0,k. Now, we reconstruct the estimate of the function g at
the points l

T by applying the inverse discrete wavelet transform to the shrunk empirical
wavelet coefficients. In other words, the entire function g(u) can be estimated for any
u = l

T , 1 ≤ l ≤ T, as

ĝ(u) =
∑

1≤k≤2 j0

θ̂ j0,kφ j0,k(u) +
J−1∑

j= j0

∑

1≤k≤2 j

2q−1∑

i=1

θ̂ ij,kψ
i
j,k(u).

The last remaining step is to estimate the median bl in order to obtain an estimate of
the function f . The following procedure is employed for that purpose. Recall that the
j th edge of the q-dimensional cube [0, 1]q has been split into T intervals; each of
these intervals contained

⌊m+1
T

⌋
observations. We begin with splitting each of these T

intervals for a j th edge of a q-dimensional cube in two in such a way that the smaller
half contains

⌊m+1
2T

⌋
observations. Now, we define a set of q-dimensional bins in the

following way. Each bin in this set consists of smaller halves of all one-dimensional
intervals for each of the q dimensions. Note that the cardinality of that set of bins will
still be V = T q . Next, we define Q∗

l to be the median of the lth “‘half” bin’ with Ql
being the median of all observations from the corresponding lth “full” bin. Then, the
median expectation is defined to be

b̂l = 1

V

∑

1≤l≤T

[Q∗
l − Ql]. (8)

This lets us define

f̂n(u) = ĝ(u) − b̂l =
∑

1≤k≤2 j0

θ̂ j0,kφ j0,k(u) +
J−1∑

j= j0

∑

1≤k≤2 j

2q−1∑

i=1

θ̂ ij,kψ
i
j,k(u) − b̂l.

(9)
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3 Adaptivity of the procedure

We study the theoretical properties of our procedure over the Besov spaces in Rq and
over a suitable class of distributions of X i and ξi as defined in (1). Besov spaces in
R
q make up a very rich class of spaces that incorporates functions of very significant

spatial inhomogeneity and includes Hölder and Sobolev spaces as special cases. Our
discussion of Besov spaces is necessarily brief; for details, see for example Triebel
(2006). Since multivariate Besov spaces are not used in the statistical literature very
often,wewill briefly describe themfirst. Let ei = (δi1, . . . , δiq)

′
where δi j = I (i = j)

is the i th unit vector. We define the first difference of the function f in the i th direction
as �i,h f (U ) = f (U + hei ) − f (U ) and the second difference as �2

i,h f (U ) =
�i,h(�i,h f (U )) = f (U + 2hei ) − 2 f (U + hei ) + f (U ). Let α > 0 be a positive
integer and a = α�. We denote the increment in each direction i h where |h| < 1.
We also need to define gi,h = (0, 1)i−1 × (0, 0∨ (1− 2h))× (0, 1)q−i . The so-called
Besov norm in the direction i is then defined as

‖ f ‖bα
i,s,t

=
(∫ 1

0
|h|(α−a)t−1

∥
∥
∥
∥�

2
i,h

(
∂a

∂uai
f

)∥
∥
∥
∥

t

Ls (gi ,h)

dh

)1/t

for t < ∞ and

‖ f ‖bα
i,s,∞ = sup

0≤h≤1

{

|h|α−a

∥
∥
∥
∥�

2
i,h

(
∂a

∂uai
f

)∥∥
∥
∥
Ls (gi ,h)

}

otherwise. The Besov norm is now defined as the sum of the Ls norm of the function
f and Besov norms in all possible directions:

‖ f ‖Bα
s,t

= ‖ f ‖Ls [0,1]q +
q∑

i=1

‖ f ‖bα
i,s,t

. (10)

A Besov class, sometimes also called a Besov ball, can be defined as Bα
s,t (M)

.=
{ f |‖ f ‖Bα

s,t
≤ K } for some positive K .

Besov norm of a function can also be characterized in terms of its wavelet coeffi-
cients. For a fixed primary resolution level j0, the Besov sequence norm of the wavelet
coefficients of a function f can be defined in the followingway. First, let θ j0 be a vector
of the father wavelet coefficients at the primary resolution level j0, θ j be the vector of
wavelet coefficients at level j , and w = α + q

( 1
2 − 1

s

)
> 0. Then, we define first

||θ j0 ||s =
(
∑

k

|θ j0,k|s
)1/s
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and

||θ j ||s =
⎛

⎝
∑

k

2q−1∑

i=1

|θ ij,k|s
⎞

⎠

1/s

.

With the above in mind, a sequence norm for a function f ∈ Bα
s,t can be defined

as

|| f ||Bα
s,t

= ||θ j0 ||s +
⎛

⎝
∞∑

j= j0

(2w||θ j ||s)t
⎞

⎠

1/t

.

We know that the Besov sequence norm is equivalent to the Besov function norm
defined in (10) and, therefore, the Besov class can also be defined as Bα

s,t (M) =
{ f ; ‖ f ‖Bα

s,t
≤ M}; for details, see e.g., Meyer (1995). It is also known that, in case of

Gaussian noise, the minimax risk of estimating f over the Besov body Bα
s,t (M),

R∗(Bα
s,t (M)) = inf

f̂
sup
f ∈Bα

s,t

E ‖ f̂ − f ‖22, (11)

converges to zero at the rate of n−2α/2α+q as n → ∞; see e.g., Donoho et al. (1995).
The following theorem shows that our estimator achieves optimal global adaptation
for a wide range of multivariate Besov classes Bα

s,t (M). Moreover, this adaptation is
also uniform over a range of distributions of the design vector X i and the error term εi.
To state this theorem properly, we need to define appropriate classes of distributions
of X i and ξi. We begin with the following assumption on the density of ρi h(x). This
assumption guarantees the existence of some low order moment of ρi.

Assumption 2
∫ |x |A h(x) dx < ∞ for some A > 0.

For any 0 < ε1 < 1, ε2 > 0, we define the class of densitiesHε1,ε2 by

Hε1,ε2=
{

h :
∫ 0

−∞
h(x) dx=1

2
, ε1 ≤ h(x) ≤ 1

ε1
, |h(x)−h(0)|≤|x |

ε1
for all |x |≤ε2

}

.

We will also need another, more narrow class of densities that is defined as H ≡
Hε1,ε2,ε3,ε4 for some 0 < ε1 < 1, εi > 0, i = 2, 3, 4 where

H =
{

h : h ∈ Hε1,ε2 , |h(3)(x)| ≤ ε4 for |x | ≤ ε3 and
∫

|x |ε3h(x) dx < ε4

}

.

One simple way to ensure that h(x) ∈ H is to require, first, that densities h1(u) and
h2(u) satisfy assumptions of Proposition (1). In addition, we also have to require the
existence of a finite moment of some order λ > 0 for the density h1(u) and for the
distribution of X i plus the existence of the finite third derivative for h1(u) in a small
open neighborhood of zero. Then, the moment assumption is satisfied because, for
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any 0 < π ≤ 1 and random variables X1, . . . , Xn , we have E|X1 + · · · + Xn|π ≤
E |X1|π +· · ·+E |Xn|π .Moreover, differentiability of h1(u) ensures the sameproperty
for the convolution h(u).With the above inmind,we can define the classG1 = {h1(u) :
h1(u) symmetric around zero , h1(u) is Lipschitz at u = 0, h1(u) > ε1 for all |u| <

ε2, |h(3)
1 (u)| ≤ ε3 for all |u| ≤ ε4,

∫ |u|ε3h1(u) du < ε4}. As for X i, we define G2 as a
class of all p-dimensional elliptical distributions with finite moments of a small order
ε3 > 0. With these definitions in mind, we can now formulate the global adaptivity
result.

Theorem 2 Suppose the wavelet ψ is r-regular. Define d = min
(
α − q

s , 1
)
. Then,

the estimator f̂n defined in (9) satisfies, for s ≥ 2, α ≤ r , and 3d
2q > 2α

2α+q ,

sup
h1∈G1,h2∈G2

sup
f ∈Bα

s,t (M)

E ‖ f̂n − f ‖22 ≤ Cn−2α/2α+q ,

and for 1 ≤ s < 2, α ≤ r and 3d
2q > 2α

2α+q ,

sup
h1∈G1,h2∈G2

sup
f ∈Bα

s,t (M)

E ‖ f̂n − f ‖22 ≤ Cn−2α/2α+q(log n)2−s/[s(2α+q)+2(1−q)].

Effectively, we show that the estimator attains the optimal rate of convergence
over a wide range of Besov classes for f and a large collection of the unknown error
distributions for εi , as well as for a large collection of distributions of the design vector
X i. Note also that when q = 1, these rates are reduced to those in the one-dimensional
case, n−2α/2α+1 and n−2α/2α+1(log n)2−s/[s(2α+1), respectively; see, e.g., Brown et al.
(2008).

Since functions belonging to Besov classes Bα
s,t (M) are highly spatially inhomo-

geneous, local adaptivity at an arbitrary point u0 ∈ [0, 1]q should also be investigated.
To measure such a spatial adaptivity, the local mean squared risk

R( f̂n(u0), f (u0)) ≡ E( f̂n(u0) − f (u0))2 (12)

is used. The precise way of measuring the local smoothness of the function f (u) at
a given point u = u0 is by the use of its local Hölder smoothness index, that is, a
characteristic of the point u0. From the technical viewpoint, it is more straightforward
to assume that the function f on the entire cube [0, 1]q belongs to a Lipschitz class
�α(M) with the same smoothness index α for every point. To define such a class, we
define first for a multivariate index i |i| = i1 + · · · + iq . Next, let us select a constant
M > 0, and, for a q-dimensional index i = (i1, . . . , iq), define i(l) = {i : |i| =
i1 + · · · + iq = l}. Then, for any function f : Rq → R, the mixed partial derivative

of order l, Di(l) f

∂u
i1
1 ...∂u

iq
q

, is defined for all i such that |i| = l. With partial derivative thus

defined, the Lipschitz class �α(M) consists of all functions f (u) : [0, 1]q → R

such that |Di(l) f (u)| ≤ M for l = 0, 1, . . . , α� and |Di(α�) f (v) − Di(α�) f (w)| ≤
M ||v − w||α′

with α
′ = α − α�. The Hölder smoothness index α will be used to
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measure local smoothness of the function f . Then, the following theorem shows that
our estimator achieves optimal local adaptation uniformly over the same families of
distributions of Xi and εi as before.

Theorem 3 Assume that f ∈ �α(M) on [0, 1]q . Suppose the wavelet ψ is r-regular,
r ≥ α >

q
6 , and u0 ∈ (0, 1)q is a fixed point. Then, the estimator f̂n defined in (9)

satisfies

sup
h1∈G1,h2∈G2

sup
f ∈�α(M)

E ‖ f̂n(u0) − f (u0)‖22 ≤ C

(
log n

n

)2α/2α+q

.

Remark 3 Note that the smoothness index of the Besov space scale that we used must
remain above the ratio q

6 . This can be explained by the additional difficulty of uniform
estimation over a wide ranging scale of Besov spaces in higher dimensions. In other
words, the higher the dimension is, the smoother must the functional scale remain to
enable a uniform in mean squared error risk estimation over it.

4 Discussion and a future research

We constructed an estimator of the functional component f in the multivariate partial
linear model (1) under relatively simple conditions to stress the basic ideas. For exam-
ple, the assumption of equispaced grid on each edge of the q-dimensional cube [0, 1]q
(standard fixed design) reflects the situation where the data points Ui are obtained
experimentally. A more realistic assumption would be to allow for non-equispaced
grid; our approach, however, can be modified to account for such a possibility.

A simple option would be to ignore the fact that the grid is non-equispaced, and
keep using the same binning approach as we defined earlier. In this case, bins will
have different numbers of observations and the resulting medians will have different
variances. This implies that a multivariate wavelet smoothing procedure that accounts
for heteroskedasticity will have to be used. To the best of our knowledge, such a pro-
cedure has been proposed so far only in the univariate case in Kovac and Silverman
(2000). However, a generalization of their procedure to the multivariate case is fairly
straightforward. The other possible approach to this problem would be to bin observa-
tions in such a way that each bin contains the same number of observations; this would
imply that, for each edge of the cube [0, 1]q , it will be necessary to adjust length of
intervals according to the density of the design. This will result in irregularly spaced
but homoskedastic data. There are a number of approaches that have been proposed
for handling of irregularly spaced data in the wavelet shrinkage context; some of the
better known ones are Hall and Turlach (1997), Antoniadis and Pham (1998), Cai and
Brown (1998), Sardy et al. (1999), Pensky and Vidakovic (2001), Brown et al. (2002),
Zhang et al. (2002), and Amato et al. (2006). Almost all of them treat the univari-
ate case only; however, a multivariate wavelet thresholding procedure that can adapt
to local changes in the smoothness of the regression function and to the distribution
of the design has been proposed in Kohler (2008). That procedure was proposed for
a multivariate random design. However, since the true density of the design is not
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usually known, in either case one can simply construct an orthonormal wavelet basis
of the space L2[0, 1]q(μn), where μn is the measure corresponding to the empirical
distribution function of Ui.

Another issue of importance is the fact that themultivariate curve estimation itself is
sometimes regarded as problematic since, even for relatively small number of dimen-
sions q, the “curse of dimensionality” begins to manifest itself and minimax rates of
convergence become unacceptably slow. In practice, however, the true complexity of
the multivariate curve may be considerably lower simply due to the fact that the real
multivariate data are not often truly isotropic. As an example, Scott (2015) remarks in
Chapter 2 that “Multivariate data in R

d are almost never d-dimensional. That is, the
underlying structure of data in Rd is almost always of dimensions lower than d.” This
would imply that it makes sense to model the function f in our model (1) as a mem-
ber of some anisotropic functional class, e.g., the anisotropic Besov classes Bα

s,t (M),
where parameters α and s are now both q-dimensional vectors. Such classes were
rigorously defined in Besov et al. (1979), and the multivariate wavelet thresholding
procedure for a multivariate anisotropic Gaussian white noise model was proposed
in Neumann (2000); for a more recent approach to this topic see also Autin et al.
(2014). The next sensible step is to allow for a function f to belong to an anisotropic
functional class and to obtain an estimator of f that is, again, adaptive to a range of
such functional classes and robust with respect to a range of distributions of the design
vector X i and of the distributions of random errors ξi. The results of this ongoing work
will be reported elsewhere.

5 Appendix

In order to prove our adaptation results, we need to start with the following proposition
that provides us with an expansion of the median of binned observations. That expan-
sion shows that, up to small stochastic and deterministic errors, that median has an
approximately normal distribution. An important fact that we need to use in order to
prove this proposition is that any Besov ball Bα

s,t (M) can be embedded into a Hölder
ball with the smoothness index d = min

(
α − q

s , 1
)
; for details see e.g., Meyer (1995).

We also remark here that, in this section, we use the notation C for a generic positive
constant that can be different from one line to another.

Proposition 2 Let the function f ∈ Bα
s,t (M) and d

.= min
(
α − q

s , 1
)
. The median

Ql of observations that belong to the lth bin can be written as

√
κQl = √

κ f

(
l
T

)

+ √
κbl + 1

2
Z l + εl + ζl,

where

1. Z l ∼ N (0, 1/h2(0));
2. εl are constants such that |εl| ≤ C

√
κqd/2T−d;

3. ζl are independent random variables such that for any r > 0

E |ζl|r ≤ Crκ
−r/2 + Crκ

r/2qdr/2T−dr ,
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where Cr is a positive constant that depends on r only; moreover, for any a > 0

P(|ζl| > a) ≤ Cr (a
2κ)−r/2 + Cr (a

2T 2d/κqd)−r/2. (13)

Proof In this proof, we denote the cdf of the standard normal distributionΦ(·). Define
Z l = 1

h(0)Φ
−1(G(ηl)) where G is the distribution of the median ηl. Due to Theorem

(1), we know that the rescaled median of errors
√
4κηl can be well approximated by

a mean zero normal random variable with the variance equal to 1
h2(0)

. Next, we define

εl = √
κE Ql − √

κ f

(
l
T

)

− √
κbl

= E

{√
κQl − √

κ f

(
l
T

)

− √
κηl

}

.

What we have in the above is the deterministic component of the approximation error
due to binning. Clearly, for the lth bin Dl, we have

min
ui∈Dl

[

f (ui) − f

(
l
T

)]

≤ Ql − ηl − f

(
l
T

)

≤ max
ui∈Dl

[

f (ui) − f

(
l
T

)]

. (14)

Since the function f is in aHölder ball with the smoothness index d = min
(
α − q

s , 1
)
,

we have

|εl| ≤ √
κE

∣
∣
∣
∣Ql − f

(
l
T

)

− ηl

∣
∣
∣
∣

≤ √
κ max
ui∈Dl

∣
∣
∣
∣ f (ui) − f

(
l
T

)∣∣
∣
∣ ≤ C

√
κqd/2T−d .

Now, it becomes necessary to characterize the random error of our approximation.

First, we define ζl = √
κQl − √

κ f
(

l
T

)
− √

κbl − εl − 1
2 Z l. Note that E ζl = 0 and

this random error can be represented as the sum of two components, ζ1l = √
κQl −√

κ f
(

l
T

)
− √

κηl − εl and ζ2l = √
κηl − √

κbl − 1
2 Z l. The first component ζ1l

represents the random error resulting from the binning of observations, while ζ2l is
the error resulting from approximation of the median of random errors with a normal
random variable. First, the error ζ1l is bounded due to (14) as |ζ1l| ≤ C

√
κqd/2T−d .

Next, using Corollary (1), we can bound the absolute value of the second random error
term as |ζ2l| ≤ C

κ1/2
(1+ |Z l|2) when |Z l| ≤ ε

√
κ for some ε > 0. Thus, for any fixed

r ≥ 0,

E |ζ2l|r = E |ζ2l|r I (|Z l| ≤ ε
√

κ) + E |ζ2l|r I (|Z l| > ε
√

κ)

≤ Cκ−r/2 + E |ζ2l|r I (|Z l| > ε
√

κ)

≤ Cκ−r/2 +
{
E |ζ2l|2r

}r/2
exp

(

−ε2

κ

)
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since, due to the Mill’s ratio inequality, we can quickly verify that P(|Z l| > ε
√

κ) ≤
exp

(
− ε2

κ

)
.

To continue, we will need to use Assumption (A2). Using the same argument as
in Brown et al. (2008), we can show that the density of the centered median ηl − bl
g(x) is such that the sample centered median has any finite moments and, therefore,
E |√κ(ηl − bl)|2r ≤ κrE |ηl|2r ≤ Drκ

r for some positive constant Dr that does not
depend on n. This allows us to conclude that E |ζ2l|r ≤ Crκ

−r/2 since the normal
random variable Z j has finite moments of any order. Finally,

E |ζl|r ≤ 2r−1 (
E |ζ1l|r + E |ζ2l|r

) ≤ Crκ
−r/2 + Crκ

r/2qdr/2T−dr .

The inequality (13) can now be obtained immediately using the Markov’s inequality.
��

Remark 4 In the proof of our adaptation results, we will assume everywhere that h(0)
is known and equal to 1. This can be done because h−2(0) can always be estimated in
such a way that the difference between h−2(0) and ĥ−2(0) is bounded in probability
as Op(n−δ) for some δ > 0 and, moreover, P(|ĥ−2(0) − h−2(0)| ≥ n−δ) = cln−l

for any l ≥ 1. Such an estimator can be constructed as a properly normalized sum
of ordered squared difference of medians of observations Ql, 1 ≤ l ≤ V ; to order
medians, one can use, for example, a lexicographical order of their indices l. To
make the notation easier, we denote two successive medians Q2k−1 and Q2k , using
a scalar index to avoid confusion here. Then, the needed estimator of h−2(0) will be
proportional to

∑
k(Q2k−1 − Q2k)

2. When such an estimator is constructed, one can
immediately check that everywhere in proofs asymptotic properties do not change if
λ∗(1+O(n−δ)) is used instead of λ∗. The details are similar to the argument of Brown
et al. (2008) and are omitted for conciseness.

The next proposition is needed to obtain a uniform bound of the mean squared error
risk of estimating the expected error median. Its proof is very similar to that of Lemma
5 in Brown et al. (2008) and is omitted for brevity.

Proposition 3 Let the expectation of the error median for lth bin and its estimate be
bl and b̂l, as defined earlier in (8). Then,

sup
h∈H

∣
∣
∣
∣
∣
bl + h

′
(0)

8h3(0)κ

∣
∣
∣
∣
∣
≤ Cκ−2,

and

sup
h∈H

sup
f ∈Bα

s,t (M)

E (b̂l − bl)
2 ≤ C max

{
qdT−2d , κ−4

}

for any index l.
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Proof Without loss of generality, assume that κ = 2ν + 1. Then, the expectation of
the lth median is

E ηl =
∫

x
2ν + 1

(ν!)2 H ν(x)[1 − H(x)]ν dH(x),

where H(x) is the distribution function corresponding to h(x). For any δ > 0, define
a set Aδ = {x : ∣∣H(x) − 1

2

∣
∣ ≤ δ}. It follows from the definition of the class H that

there exists a constant δ > 0 such that for some ε > 0 we have h(3)(x) ≤ 1
ε
and

ε ≤ h(x) ≤ 1
ε
for any x ∈ Aδ uniformly for all h ∈ H . This property implies that

H−1(x) is well defined and is differentiable up to the fourth order for any x ∈ Aδ .
Now, we can expand the expectation of the median into two parts:

E ηl =
(∫

Aδ

+
∫

Ac
δ

)

x
2ν + 1

(ν!)2 H ν(x)[1 − H(x)]ν dH(x).

Since we earlier established that all of the moments of the median are finite, Q2 goes
to zero exponentially as μ → ∞. Next, we find that

Q1 =
∫ 1/2+δ

1/2−δ

(

H−1(x) − H−1
(
1

2

))
(2ν + 1)!

(ν!)2 xν(1 − x)ν dx

=
∫ 1/2+δ

1/2−δ

[
1

2
(H−1)

′′
(
1

2

)(

x − 1

2

)2

+ (H−1)(4)(τ )

24

(

x − 1

2

)4
]

× 2ν + 1

(ν!)2 xν(1 − x)ν dx

since xν(1− x)ν is symmetric around 1
2 . The expression

2ν+1
(ν!)2 x

ν(1− x)ν is the density

function of the Beta(ν + 1, ν + 1) with the mean equal to 1
2 ; this, and the fact that

(H−1)(4)(τ ) is bounded uniformly for all h ∈ H , implies that, in the same way as in

Brown et al. (2008), Q1 = − h
′
(0)

8h3(0)κ
+ O

(
1
κ2

)
. Recall that we earlier established that

(see Proposition (2))

Ql = f

(
l
T

)

+ bl + 1

2
√

κ
Z l + 1√

κ
εl + 1√

κ
ζl.

In a similar way, we can write for the median of the “half” l th bin that

Q∗
l = f

(
l − 1/2

T

)

+ b∗
l + 1

2
√

ν
Z∗
l + 1√

ν
ε∗
l + 1√

ν
ζ ∗
l ,

where 1
2 is a q-dimensional vector

( 1
2 , . . . ,

1
2

)′
, b∗

l is the expected median of the errors
of all observations in the “half” lth bin, and where Z∗

l , ε
∗
l , and ζ ∗

l satisfy Proposition
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762 M. Levine

(2). Then, the error from the median estimation b̂l − bl = 1
V

∑
l(Q

∗
l − Ql) − bl can

be written as follows:

b̂l − bl = 1

V

∑

l

(

f

(
l − 1/2

T

)

− f

(
l
T

))

+ (b∗
l − 2bl)

+
[

1√
ν

1

V

∑

l

ε∗
l − 1√

κ

1

V

∑

l

εl

]

+
[

1

2
√

ν

1

V

∑

l

Z∗
l − 1

2
√

κ

1

V

∑

l

Z l

]

+
[

1√
ν

1

V

∑

l

ζ ∗
l − 1√

κ

1

V

∑

l

ζl

]

≡ R1 + R2 + R3 + R4 + R5.

Due to the embedding of the Besov ball Bα
s,t (M) into the Hölder ball with the smooth-

ness indexd = min
(
α − q

s , 1
)
, the first term is uniformly bounded: sup f ∈Bα

s,t (M) R
2
1 ≤

CT−2d . The second term is bounded as suph∈H R2
2 ≤ Cκ−4. By Proposition (2), the

third term is also bounded as suph∈H , f ∈Bα
s,t (M) R

2
3 ≤ CT−d . Since Z∗

l −Z l are always

independent, we have E R2
4 ≤ 1

h2(0)

( 1
κ

+ 1
ν

) 1
T ≤ Cn−1. Finally, by Proposition (2),

we have E R2
5 = o(n−1). Thus, the overall bound is

sup
h∈H , f ∈Bα

s,t (M)

E (b̂l − bl)
2 ≤ max

{
T−2d , κ−4

}
.

��
Due to Proposition (2), we can write

1√
V
Ql = g(l/T )√

V
+ εl√

n
+ Z l

2
√
n

+ ζl√
n
. (15)

Let Q be the vector of all bin medians Ql; such a vector will have the length V .
Applying the discrete wavelet transform to both sides of (15), we can expand the
empirical wavelet coefficients yij,k as

yij,k = θ̆ ij,k + εij,k + 1

2h(0)
√
n
zij,k + ξ ij,k, (16)

where θ̆ ij,k are the discrete wavelet coefficients of g
(

l
T

)

1≤l≤T
that are approximately

equal to the true wavelet coefficients of g θ ij,k, ε
i
j,k are “small” deterministic approxi-

mation errors, zij,k are i.i.d N (0, 1), and ξ ij,k are “small” stochastic errors. If it can be
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Robust estimation in the partial linear model 763

assumed that εij,k and ξ ij,k are both negligible in some sense, we may be able to treat
the model in the wavelet domain as an idealized sequence model

yij,k ≈ θ̆ ij,k + 1

2h(0)
√
n
zij,k,

where 1
2h(0)

√
n
plays the role of the noise level. At this point, we can define a simple

estimation procedure for the function f . Some auxiliary results are necessary before
stating the main result. The first of these results is needed in order to bound the

difference between the true wavelet coefficients θ ij,k of the function f
(

l
T

)

1≤l≤T
and

discrete wavelet coefficients θ̆ ij,k . Its proof is straightforward and is, therefore, omitted.

Lemma 2 Let T = 2J and define f J (u) = 1√
V

∑
l≤T

∑2q−1
i=1 f

(
l
T

)
ψ i

J,l(u). Then,

sup
f ∈Bα

s,t (M)

|| f J − f ||22 ≤ C · qdT−2d ,

where d = min
(
α − q

s , 1
)
. Moreover, |θ̆ ij0,k − θ ij,k| ≤ CT−d2− j/2 and so

∑J−1
j= j0

∑
1≤k≤2 j (θ̆

i
j,k − θ ij,k)

2 ≤ CT−2d .

Another result that we need is the following proposition that studies the risk of our
proposed procedure.

Proposition 4 Let the empiricalwavelet coefficients yij,k = θ̆ ij,k+εij,k+ 1
2h(0)

√
n
zij,k+

ξ ij,k be as given in (16) and let estimated block thresholding coefficients θ̂ ij,k be as
defined in (7). Then, for some constant C > 0,

E

∑

k∈Bi
j,u

(θ̂ ij,k − θ̆ ij,k)
2 ≤ min

⎧
⎪⎨

⎪⎩
4

∑

k∈Bi
j,u

[θ̆ ij,k]2, 8λLn−1

⎫
⎪⎬

⎪⎭
+6

∑

k∈Bi
j,u

[εij,k]2+CLn−2;

(17)

also, for any 0 < τ < 1, there exists a constant Cτ > 0 that depends on τ only such
that for all k ∈ Bi

j,u

E (θ̂ ij,k − θ̆ ij,k)
2 ≤ Cτ min

{

max
k∈Bi

j,u

{(θ̆ ij,k + εij,k)
2}, Ln−1

}

+ n−2+τ .

Proof This proof is similar to the proof of Proposition 2 in Brown et al. (2008);
therefore, we only give a brief proof for the inequality (17). First, we recall that
|εl| ≤ C

√
κqd/2T−d . The discrete wavelet transform of εl√

n
in our case is equal

to εij,k = ∑
l∈Zq

εl√
n

∫
φ j,lψ

i
j,k. Proposition (2) suggests that

∑
j
∑

k
∑

i [εij,k]2 =
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764 M. Levine

1
n

∑
l∈Zq ε2l ≤ CqdT−2d for some positive constant C due to orthogonality of the

discrete wavelet transform. Thus, we have for any r > 0

E |ξ ij,k|r ≤ Cr (κn)−r/2 + Cr (κn)−r/2qdr/2T−dr ,

and for any a > 0

P(|ξ ij,k| > a) ≤ C
′
r (a

2κn)−r/2 + C
′
r (a

2nT 2d/κqd)−r/2, (18)

where Cr and C
′
r are constants that do not depend on n. At this point, we need to use

Lemma 2 of Brown et al. (2008) with the number of observations being the size of
each block L . For an i th wavelet function, i = 1, . . . , 2q − 1, we have the expectation
of the risk over each block bounded as

E

∑

k∈Bi
j,u

(θ̂ ij,k − θ̆ ij,k)
2 ≤ min

⎧
⎪⎨

⎪⎩
4

∑

k∈Bi
j,u

(θ̆ ij,k)
2, 8λLn−1

⎫
⎪⎬

⎪⎭
+ 6

∑

k∈Bi
j,u

(εij,k)
2

+ 2n−1
E

∑

k∈Bi
j,u

(zij,k + 2
√
nξ ij,k)

2 I

⎛

⎜
⎝

∑

k∈Bi
j,u

(zij,k + 2
√
nξ ij,k)

2 > λL

⎞

⎟
⎠ .

Denote by A the event that all |ξ ij,k| are bounded by 1
2
√
nL

, that is,

A = {|2√nξ ij,k| ≤ L−1 for all k ∈ Bi
j,u}.

Then, it follows from (18) that for any r ≥ 1, the probability of a complement of A is

P(A
′
) ≤

∑

k∈Bi
j,u

P
(
|2√nξ ij,k| > L−1

)

≤ C
′
r (L

−2κ)−r/2 + C
′
r (L

−2T d/κqd)−r/2.

Thus, we have

D = E

∑

k∈Bi
j,u

(zij,k + 2
√
nξ ij,k)

2 I

⎛

⎜
⎝

∑

k∈Bi
j,u

(zij,k + 2
√
nξ ij,k)

2 > λL

⎞

⎟
⎠

= E

∑

k∈Bi
j,u

(zij,k + 2
√
nξ ij,k)

2 I

⎛

⎜
⎝A ∩

∑

k∈Bi
j,u

(zij,k + 2
√
nξ ij,k)

2 > λL

⎞

⎟
⎠

+E

∑

k∈Bi
j,u

(zij,k+2
√
nξ ij,k)

2 I

⎛

⎜
⎝Ac ∩

∑

k∈Bi
j,u

(zij,k+2
√
nξ ij,k)

2>λL

⎞

⎟
⎠ ≡ D1+D2.
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Robust estimation in the partial linear model 765

Recall that (x + y)2 ≤ 2x2 + 2y2 for any x and y. At the next step, we have to use the
inequality from Lemma 3 of Brown et al. (2008) (with the value λ̃ = λL−λ−1

L ), and
Hölder’s inequality to obtain

D1 = E

∑

k∈Bi
j,u

(zij,k + 2
√
nξ ij,k)

2 I

⎛

⎜
⎝A ∩

∑

k∈Bi
j,u

(zij,k + 2
√
nξ ij,k)

2 > λL

⎞

⎟
⎠

≤ 2E
∑

k∈Bi
j,u

[zij,k]2 I
⎛

⎜
⎝

∑

k∈Bi
j,u

[zij,k]2 > λL − λ − 1

⎞

⎟
⎠

+ 8nE
∑

k∈Bi
j,u

[ξ ij,k]2 I
⎛

⎜
⎝

∑

k∈Bi
j,u

[zij,k]2 > λL − λ − 1

⎞

⎟
⎠

≤ 2(λL − λ − 1)e−L/2(λ−(λ+1)L−1−log(λ−(λ+1)L−1)−1)

+ 8n
∑

k∈Bi
j,u

(E [ξ ij,k]2v)1/v
⎛

⎜
⎝P

⎛

⎜
⎝

∑

k∈Bi
j,u

[zij,k]2 > λL − λ − 1

⎞

⎟
⎠

⎞

⎟
⎠

1/ω

,

where v, ω > 1 and 1
v
+ 1

ω
= 1. Recall that κ = n1/4 and choose 1

ω
= 1− 1

4 = 3
4 . This

lets us conclude that D1 ≤ CLn−1. Arguing similarly, we conclude that D2 ≤ n−1

and so the final inequality is obtained. ��
Remark 5 Note that the tail probability P(|ξ ij,k| > a) must decay faster than any

polynomial in n to ensure that the contribution of ξ ij,k to the squared risk of the

proposed procedure is negligible compared to that of zij,k. Recall that κ = n1/4. Then,

T 2d

κ
= n

6d−q
4q and we have to require that 6d − q > 0, or d = min

(
α − q

s , 1
)

>
q
6 .

Since d characterizes smoothness of the Hölder ball the Besov ball is embedded into,
it may be a good idea to describe this requirement in terms of the original smoothness
indicator α. Note that (see Remark (6)), due to approximation error over multivariate
Besov spaces, we must have 3d

2q > 2α
2α+q . To guarantee that d >

q
6 , we may require

that 4αq
3(2α+q)

>
q
6 which is equivalent to α >

q
6 . This is the origin of the lower bound

on α in the statement of Theorems (2) and (3).

Proof First, note that

E ‖ f̂n − f ‖22 ≤ 2E ‖ĝn − g‖22 + 2E (b̂2l − bl)
2.

By selecting κ � n1/4, we ensure that E (b̂2l − bl)2 = o(n−2α/2α+q) and so we need
only to focus on bounding E ‖ĝn − g‖22. Note that, if the intercept a and/or the median
of the vector X i in the model (1) is nonzero, an appropriate term in the model can
be estimated at the rate of n−1 = o(n−2α/2α+q). Using the notation of Sect. (1), let
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766 M. Levine

A = a + (medX i)
′
β and An an asymptotically normal

√
n convergent estimator of

A. Such an estimator can be easily obtained as in Brown et al. (2016). In that case,
we will have E ‖ f̂n − f ‖22 ≤ 2E ‖ĝn − g‖22 + 2E (b̂2l − bl)2 + 2E ( Ân − A)2 where
E ( Ân − A)2 = o(n−2α/2α+q). Since functions f and g only differ by a constant bl,
their wavelet coefficients coincide, that is, θ ij,k = ∫

[0,1]q f ψ i
j,k = ∫

[0,1]q ] gψ
i
j,k. To

make our analysis straightforward, we expand E ‖ĝn − g‖22 as follows:

E ‖ĝ2n − g‖22 =
∑

1≤k≤2j0

2q−1∑

i=1

E [θ̂ j0,k − θ j0,k]2 +
J−1∑

j= j0

∑

1≤k≤2j

2q−1∑

i=1

E (θ̂ ij,k − θ ij,k)
2

+
∞∑

j=J

∑

1≤k≤2j

2q−1∑

i=1

(θ ij,k)
2 ≡ S1 + S2 + S3.

First, we note that the term S1 is asymptotically small. Indeed, by definition, θ̂ j0,k =
y j0,k. Since θ̂ j0,k − θ j0,k = (y j0,k − θ̆ j0,k) + (θ̆ j0,k − θ j0,k), we have

S1 ≤ C · 2 j0qn−1ε2 + CT−2d = o(n−2α/2α+q).

The term S3 is also small asymptotically. To show that this is true, we note first

that 2
j
(
α+q

(
1
2− 1

s

)) (∑
1≤k≤2j

∑2q−1
i=1 |θ ij,k |s

)1/s ≤ M for any function f ∈ Bα
s,t (M).

Then, using the inequality ||x ||p2 ≤ ||x ||p1 ≤ q1/p1−1/p2 ||x ||p2 for any 0 < p1 ≤
p2 ≤ ∞ and x ∈ R

q , we obtain that

S3 ≤ 2
−2J min

(
α,α+q

(
1
2− 1

s

))

= o(n−2α/2α+q)

due to assumptions on J and α. In the next step, we will use Proposition (4) to analyze
the term S2. Next, we find out that

S2 ≤ 2
J−1∑

j= j0

∑

1≤k≤2j

2q−1∑

i=1

E (θ̂ ij,k − θ̆ ij,k)
2 + 2

J−1∑

j= j0

2q−1∑

i=1

(θ̆ ij,k − θ ij,k)
2

≤
J−1∑

j=1

2q j /L∑

u=1

2q−1∑

i=1

min

⎧
⎪⎨

⎪⎩
8

∑

k∈Bi
j,u

[θ̆ ij,k]2, 8λ∗Ln−1

⎫
⎪⎬

⎪⎭
+ 6

J−1∑

j= j0

∑

1≤k≤2j

2q−1∑

i=1

[εij,k]2

+ Cn−1 + 2
J−1∑

j= j0

∑

1≤k≤2j

2q−1∑

i=1

[θ̆ ij,k − θ ij,k]2

≤
J−1∑

j=1

2q j /L∑

u=1

2q−1∑

i=1

min

⎧
⎪⎨

⎪⎩
8

∑

k∈Bi
j,u

[θ̆ ij,k]2, 8λ∗Ln−1

⎫
⎪⎬

⎪⎭
+ Cn−1 + CT−2d .
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At this point, we consider two different cases. First, start with p ≥ 2. Select J1 =⌊
q

2α+q log2 n
⌋
which implies that 2J1 ≈ nq/2α+q . Thus, using the result of Lemma

(2), we obtain

S2 ≤ 8λ∗
J1−1∑

j= j0

2q j /L∑

u=1

2q−1∑

i=1

Ln−1

+ 8
J−1∑

j=J1

∑

1≤k≤2j

2q−1∑

i=1

[θ̆ ij,k]2 + Cn−1 + CT−2d ≤ Cn−2α/2α+q .

Next, consider the case of p < 2. First, note that

2 jq/L∑

u=1

2q−1∑

i=1

⎛

⎜
⎝

∑

k∈Bi
j,u

[θ ij,k]2
⎞

⎟
⎠

s/2

≤
∑

1≤k≤2j

([θ ij,k]2)s/2 ≤ M2− jws .

Select J2 such that 2J2 � n1/2α+q(log n)2−s/s(2α+q)+2(1−q). Using Lemma 6 from
Brown et al. (2008), one obtains

J−1∑

j=J2

2 j /L∑

u=1

min

⎧
⎪⎨

⎪⎩
8

∑

k∈Bi
j,u

[θ̆ ij,k]2, 8λ∗Ln−1

⎫
⎪⎬

⎪⎭
≤ Cn−2α/2α+q(log n)2−s/s(2α+q)+2(1−q).

On the other hand, we also have

J2−1∑

j= j0

2q j /L∑

u=1

min

⎧
⎪⎨

⎪⎩
8

∑

k∈Bi
j,u

[θ̆ ij,k]2, 8λ∗Ln−1

⎫
⎪⎬

⎪⎭

J2−1∑

j= j0

2q j /L∑

u=1

8λ∗Ln−1 ≤ Cn−2α/2α+q(log n)2−s/[s(2α+q)+2(1−q)].

Thus, we can now confirm that the L2 risk in the case p < 2 is bounded from above
uniformly as

E ‖ f̂n − f ‖22 ≤ Cn−2α/2α+q(log n)2−s/[s(2α+q)+2(1−q)]

��.
Remark 6 In order to ensure that the risk of b̂l is negligible, we need to have
κ−4 = o(n−2α/2α+q); note that κ = n1/4 satisfies this assumption. Also, to make the
approximation error ‖ f J − f ‖22 negligible, we need to have T−2d = O(n−2α/2α+q). It

123



768 M. Levine

is easy to see that this is guaranteed by the inequality 3d
2q > 2α

2α+q . Note that the latter,
rather ponderous, assumption, is needed due to approximation over the q-dimensional
Besov spaces.

Proof As in the proof of Theorem (2), and without loss of generality, we can assume
that the med(Xi ) is identically equal to zero; if this is not the case, an additional

term can be estimated at the rate of n−1 = o
(
log n
n

)α/2α+q
. Next, note that for all

f ∈ �α(M), the absolute values of its wavelet coefficients are |θ ij,k| = |〈 f, ψ i
j,k〉| ≤

C2− j (q/2+α) for some constant C > 0 that does not depend on f . Also, note that for

any random variables Xi , i = 1, . . . , n, E
(∑n

i=1 Xi
)2 ≤ (∑n

i=1(E X2
i )

1/2
)2
. Then,

we have

E ( f̂n(u0) − f (u0))2 = E

[ ∑

1≤k≤2 j0

(θ̂ j0,k − θ j0,k)φ
i
j0,k(u0)

+
∞∑

j= j0

∑

1≤k≤2 j

2q−1∑

i=1

(θ̂ ij,k − θ ij,k)ψ
(i)
j,k(u0) − (b̂l − bl)

]2

≤
[
(E (b̂l − bl)

2)1/2 +
∑

1k≤2 j0

(E (θ̂ j0,k − θ j0,k)
2φ2

j0,k(u0))
1/2

+
J−1∑

j= j0

∑

1≤k≤2 j

2q−1∑

i=1

(E (θ̂ ij,k − θ ij,k)
2[ψ i

j,k]2(u0))1/2

+
∞∑

j=J

∑

1≤k≤2 j

2q−1∑

i=1

|θ ij,kψ i
j,k(u0)|

]2

≡ (Q1 + Q2 + Q3 + Q4)
2.

First of all, we note that, due to Proposition (3), we have Q1 = (E (b̂l − bl)2)1/2 =
o(n−α/2α+q). Next, clearly we have Q2 = ∑

1≤k≤2 j0 E (θ̂ j0,k − θ j0,k)
2|φ j0,k(u0)| =

O(n−1). Recall that for any sequence of translated and rescaled i th waveletψ i
j,k there

are at most N that are nonvanishing at the point u0; here, N is the length of support of
ψ i . Mathematically, we have K (t0, j) = {k : ψ

(i)
j,k(u0) �= 0} such that |Kt0, j | ≤ N .

Thus, we have

Q4=
∞∑

j=J

∑

1≤k≤2 j

2q−1∑

i=1

|θ ij,k||ψ i
j,k(u0)| ≤

∞∑

j=J

N2q‖ψ‖∞2 jq/2C2− j (q/2+α) ≤ CT−α.

(19)

Finally, if we select a sufficiently small τ and use the second inequality from Propo-
sition (3), we have
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Robust estimation in the partial linear model 769

Q3 ≤
J−1∑

j= j0

∑

K (t0, j)

2q−1∑

i=1

2 jq/2‖ψ‖∞(E (θ̂ ij,k − θ ij,k)
2)1/2

≤ C
J−1∑

j= j0

2 jq/2
[
min(2− j (q+2α) + T−2α∧12− jq , Ln−1) + n−2+τ

]1/2

≤ C

(
log n

n

)α/2α+q

.

The final statement of this theorem is then obtained combining all inequalities for Q1,
Q2, Q3, and Q4. ��
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