
Ann Inst Stat Math (2019) 71:811–835
https://doi.org/10.1007/s10463-018-0660-2

Weighted allocations, their concomitant-based
estimators, and asymptotics

Nadezhda Gribkova1 · Ričardas Zitikis2
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Abstract Various members of the class of weighted insurance premiums and risk
capital allocation rules have been researched from a number of perspectives. Corre-
sponding formulas in the case of parametric families of distributions have been derived,
and they have played a pivotal role when establishing parametric statistical inference
in the area. Nonparametric inference results have also been derived in special cases
such as the tail conditional expectation, distortion risk measure, and several members
of the class of weighted premiums. For weighted allocation rules, however, nonpara-
metric inference results have not yet been adequately developed. In the present paper,
therefore, we put forward empirical estimators for the weighted allocation rules and
establish their consistency and asymptotic normality under practically sound condi-
tions. Intricate statistical considerations rely on the theory of induced order statistics,
known as concomitants.
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812 N. Gribkova, R. Zitikis

1 Introduction

The tail conditional expectation, exponential tilting, and various members of the class
of weighted insurance premiums and the corresponding risk capital allocation rules
have been extensively researched (e.g., Pflug and Römisch 2007; Rüschendorf 2013;
McNeil et al. 2015; Föllmer and Schied 2016). Their formulas in the case of various
parametric families of distributions have been derived (e.g., Furman and Landsman
2005, 2010; Asimit et al. 2013; Su 2016; Asimit et al. 2016; Su and Furman 2017;
Ratovomirija et al. 2017; Vernic 2017; and references therein), thus facilitating para-
metric statistical inference in the area.

The literature also contains a number of nonparametric inference results (e.g.,
Brazauskas and Serfling 2003; Brazauskas 2009; Brazauskas and Kleefeld 2009;
and references therein), particularly in special cases such as the value-at-risk (e.g.,
Maesono and Penev 2013; and references therein), the tail conditional expectation
(e.g., Brazauskas et al. 2008; and references therein), and distortion risk measures
(e.g., Jones and Zitikis 2007; and references therein), with results available in light-
and heavy-tailed settings (e.g., Necir and Meraghni 2009; Necir et al. 2007, 2010;
Rassoul 2013; Brahimi et al. 2012; and references therein).

Nonparametric statistical inference for weighted allocation rules has not yet, how-
ever, been adequately developed, and we therefore devote the current paper to this
topic. In particular, in next Sect. 2 we construct empirical estimators for the weighted
allocations. Main asymptotic results are presented in Sect. 3, and their illustrations
are given in Sect. 4. Proofs are in Sect. 5. They are, essentially, delicate combinations
of the classical groundbreaking works of Shorack (1972), Bhattacharya (1974), van
Zwet (1980), andYang (1981). Section 6 concludes the paper with additional thoughts,
some inspired by questions and suggestions by the reviewers of this paper, on various
paths that can be taken to further statistical inference in the area, given the multitude
and diversity of applications.

2 Premiums, allocations, and their estimators

Let X be a real-valued random variable, which could, for example, be a financial or
insurance risk associated with a business line of a company. Denote the cumulative
distribution function (cdf) of X by FX . When X is viewed as a stand-alone risk, then
the capital needed to mitigate the risk can be calculated using (e.g., Furman and Zitikis
2008a)

πw = E[Xw ◦ FX (X)]
E[w ◦ FX (X)] (1)

with an appropriately chosen weight function w : [0, 1] → [−∞,∞], where w ◦ FX

denotes the composition of the functions w and FX . We of course assume that the two
expectations in the definition of πw are well defined and finite, and E[w ◦ FX (X)] is
not zero.

The function w may or may not take infinite values and may or may not be non-
decreasing, depending on the context. Throughout the paper, we always assume thatw
is finite on the open interval (0, 1) and, at each point of (0, 1), is either left continuous
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Weighted allocations 813

or right continuous. As far as we are aware of, all practically relevant weight functions
satisfy these properties, with a few illustrative examples given next.

When dealing with insurance losses, researchers work with nonnegative and non-
decreasing weight functions, which ensure that πw is nonnegatively loaded, that is,
the bound πw ≥ E[X ] holds for all risks X under consideration. In other contexts,
such as econometrics and, more specifically, measurement of income inequality, the
function w can be non-increasing.

For example, w(t) = 1{t > p} for any parameter p ∈ (0, 1) is non-decreasing and
leads to the insurance version of the tail conditional expectation. Another example is
w(t) = ν(1 − t)ν−1 with parameter ν > 0. If ν ∈ (0, 1], then πw is the proportional
hazards transform (Wang 1995, 1996). If ν ≥ 1, then πw reduces to the (absolute)
S-Gini index used for measuring income equality (e.g., Zitikis and Gastwirth 2002;
Greselin and Zitikis 2018; and references therein).

Note that if the cdf FX is continuous, then πw can be written as the integral

πw =
∫ 1

0
F−1
X (t)w∗(t)dt (2)

of the quantile function F−1
X of X , with the weight function

w∗(t) = w(t)∫ 1
0 w(u)du

,

which is a probability density function (pdf) whenever w(t) ≥ 0 for all t ∈ [0, 1] and∫ 1
0 w(u)du ∈ (0,∞). This representation of πw connects our present research with
the dual utility theory (Yaari 1987; Quiggin 1993; and references therein) that has
arisen as a prominent alternative to the classical utility theory of von Neumann and
Morgenstern (1944).

Setting appropriate insurancepremiumsandallocating capital to individual business
lines are usually done within the company’s risk profile. That is, if Y is the risk
associated with the entire company, then allocating capital to the business line whose
risk is X is done by taking into account the value of Y . This viewpoint leads us to the
weighted capital allocation rule (Furman and Zitikis 2008b)

Πw = E[Xw ◦ FY (Y )]
E[w ◦ FY (Y )] , (3)

where FY denotes the cdf of Y . Obviously, setting Y to X reduces Πw to πw, and for
this reason we concentrate on developing nonparametric statistical inference for Πw,
and then we specialize the results to πw. For the role of πw and Πw in the context of
the weighted insurance pricing model (WIPM), we refer to Furman and Zitikis (2017).

To construct an empirical estimator for the allocation Πw, let (Xk,Yk), k =
1, 2 . . . , n, be independent copies of the random pair (X,Y ), succinctly written as

(X1,Y1), . . . , (Xn,Yn)
i.i.d.∼ FX,Y . For each integer n ≥ 1, define the empirical cdf

F̂Y by
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814 N. Gribkova, R. Zitikis

F̂Y (y) = 1

n + 1

n∑
k=1

1{Yk ≤ y}, (4)

where 1{Yk ≤ y} is the indicator of Yk ≤ y: it is equal to 1 when the statement Yk ≤ y
is true, and 0 otherwise. This is an empirical estimator of the cdf FY (y) that slightly
differs from the classical empirical cdf because of the use of 1/(n+1) instead of 1/n.
This adjustment, also utilized by Gribkova and Zitikis (2017), is important because
F̂Y (y) defined in this way takes only values k/(n+1), k = 1, . . . , n, which are always
inside the open interval (0, 1) on which the weight function w is finite.

We are now in the position to define the empirical estimator of Πw by the formula

Π̃w =
∑n

k=1 Xkw ◦ F̂Y (Yk)∑n
k=1 w ◦ F̂Y (Yk)

, (5)

with a tilde used instead of the usual hat on top of Πw because we reserve the latter
notation for another estimator to be introduced in a moment. Note that when Y = X
and thus Yk = Xk for all k ≥ 1, the empirical allocation Π̃w reduces to the estimator

π̃w =
∑n

k=1 Xkw ◦ F̂X (Xk)∑n
k=1 w ◦ F̂X (Xk)

(6)

of πw, where F̂X is defined by Eq. (4) but now based on X1, . . . , Xn
i.i.d.∼ FX .

Estimators (5) and (6) are ratio statistics, whose deep asymptotic properties have been
explored by Maesono (2005, 2010).

When the underlying population cdf FY is continuous, the random variable FY (Y )

is uniform on (0, 1) and, therefore, the denominator in the definition of Πw is equal
to
∫ 1
0 w(u) du. Since we do not need to estimate the latter integral, we can therefore

use the following simpler estimator

Π̂w = Δ̂w∫ 1
0 w(u)du

(7)

of Πw, where

Δ̂w = 1

n

n∑
k=1

Xkw ◦ F̂Y (Yk).

Note that, almost surely, we have the equation

Δ̂w = 1

n

n∑
k=1

X[k:n]wk,n,

where

wk,n = w

(
k

n + 1

)
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Weighted allocations 815

and X[1:n], . . . , X[n:n] are the induced order statistics, known as concomitants, corre-
sponding to the order statistics Y1:n, . . . ,Yn:n . When Y = X and thus Yk = Xk for
all k ≥ 1, then the concomitants reduce to the order statistics X1:n, . . . , Xn:n . In this
case, the estimator Π̂w reduces to the estimator π̂w of πw given by the equation

π̂w = 1

n

n∑
k=1

Xk:n
wk,n∫ 1

0 w(u)du
. (8)

While π̂w is a linear combination of order statistics (e.g., Stigler 1974; Helmers
1982; Shorack 2017; see also Gribkova 2017, for recent references), which is a less
technically demanding object, the estimators Π̃w, Π̂w, and Δ̂w are linear combinations
of concomitants, which require much more sophisticated methods of analysis. In the
next section, we establish conditions under which these estimators are consistent and
asymptotically normal.

3 Main results

Asymptotic behavior of the above introduced estimators is influenced by the weight
function w and the joint distribution of X and Y , which interact with each other in
delicate ways. Hence, determining their influence on asymptotic results, such as con-
sistency and asymptotic normality, at one stroke becomes undesirable from several
points of view, most notably from the practical point of view because resulting condi-
tions are quite unwieldy. Due to this reason, we next set out to derive asymptotic results
in several complementary forms, and with easily verifiable conditions as we shall see

in next Sect. 4. We start with strong consistency, using
a.s.→ to denote convergence

almost surely.

Theorem 1 If the first moment E[X ] is finite and the weight function w is continuous

on [0, 1], then Π̃w
a.s.→ Πw and thus π̃w

a.s.→ πw when n → ∞.

The theorem is attractive in the sense that it does not impose any condition on the
underlying random variables, except the very minimal condition that the first moment
of X is finite. We shall further elaborate on moment-type requirements at the end of
this section, as well as in concluding Sect. 6.

A shortcoming of Theorem 1 is that the condition on the weight function w is very
strong. For example, it is not satisfied by w(t) = ν(1 − t)ν−1 for any ν ∈ (0, 1).
Furthermore, the condition is not satisfied byw(t) = 1{t > p} for any p ∈ (0, 1), and
we thus cannot use the theorem to deduce strong consistency of the tail conditional
expectation.

In the next two theorems, we no longer assume continuity and thus boundedness
of the function w on the compact interval [0, 1]. Instead, we require finite higher
moments of X , as well as the continuity of the cdf FY when dealing with Π̂w, and the
continuity of the cdf FX when dealing with π̂w.

For any 1 ≤ p ≤ ∞, we use L p to denote the space of all Borel measurable

functions h : [0, 1] → R such that ‖h‖p := (
∫ 1
0 | f (t)|pdt)1/p < ∞ when 1 ≤ p <
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816 N. Gribkova, R. Zitikis

∞ and ‖h‖∞ := ess supt∈[0,1] |h(t)| < ∞ when p = ∞. We use “:=” when wanting
to emphasize that certain equations are by definition.

The following two theorems are consequences of the strong law of large numbers
for L-statistics, proved in various levels of generality by vanZwet (1980). For example,
Theorem 2.1 and Corollary 2.1 of van Zwet (1980) imply the following theorem.

Theorem 2 Let the cdf FX be continuous. If E[|X |p] < ∞ and w ∈ Lq for some

p, q ∈ [1,∞] such that p−1 + q−1 = 1, then π̃w
a.s.→ πw when n → ∞.

The next theorem,which follows fromTheorem3.1 of vanZwet (1980), allows us to
use different values of p andq ondifferent subintervals of (0, 1), thus enablingdifferent
growth rates of the quantile function F−1

X and theweight functionw near the end points
of the interval (0, 1). Following van Zwet (1980), let 0 =: a0 < a1 < · · · < a j := 1
be points dividing the interval (0, 1) into j ≥ 1 subintervals, which we denote by

Ai = (ai−1, ai ), i = 1, . . . , j,

whose ε-neighborhoods within the interval (0, 1) are

Bi,ε = (ai−1 − ε, ai + ε) ∩ (0, 1).

Theorem 3 Let the cdf FX be continuous, and let pi , qi ∈ [1,∞] be such that p−1
i +

q−1
i = 1. If there is ε > 0 such that F−1

X 1Bi,ε ∈ L pi and w1Ai ∈ Lqi for every

i = 1, . . . , j , then π̂w
a.s.→ πw when n → ∞.

From the practical point of view, it is (weak) consistency that really matters, which
also naturally leads to the exploration of asymptotic normality, and our following
research path is in this direction. It leads us to practically attractive and justifiable
conditions on the weight function w as well as on the joint cdf of X and Y . Our focus
now is also shifting from the simpler π̂w toward the more complex weighted alloca-
tion rule Π̂w. Not surprisingly, therefore, in what follows we employ the conditional
expectation function

gX |Y (y) = E[X | Y = y]

defined on the support of Y , as well as the conditional variance function

v2X |Y (y) = Var[X | Y = y].

We note that the function gX |Y ◦ F−1
Y (t) is known in the literature as the quantile

regression function of X on Y , and it has prominently manifested in the literature
(e.g., Rao and Zhao 1995; Tse 2009, 2015; and the references therein). The quantile
conditional-variance function v2X |Y ◦ F−1

Y (t) is also prominently featured in these
works. For a work devoted mainly to the analysis and modeling of these functions, we
refer to Kamnitui et al. (2015). All these functions play a pivotal role throughout the

rest of the present paper. We use
P→ to denote convergence in probability.
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Theorem 4 Assume that E[X2] is finite and the cdf FY is continuous. If v2X |Y ◦ F−1
Y ∈

L p and w2 ∈ Lq for some p, q ∈ [1,∞] such that p−1 + q−1 = 1, then Π̂w
P→ Πw

when n → ∞.

To appreciate the theorem from the practical perspective, we look at several special
cases. First, when p = 1, we have q = ∞, which is to say that the weight function
w is bounded. This covers the weight function w(t) = 1{t > p} for every p ∈ (0, 1),
and also the weight function w(t) = ν(1 − t)ν−1 for every ν ≥ 1. Note also that the
condition v2X |Y ◦ F−1

Y ∈ L1 is equivalent to E[X2] < ∞, which we assume.

Second, when p = ∞, which implies q = 1, the function v2X |Y (y)must be bounded

and the function w2 integrable on (0, 1), that is, w ∈ L2. The weight function w(t) =
1{t > p} is always such, whereas w(t) = ν(1 − t)ν−1 belongs to L2 only when
ν > 1/2.The latter restriction has appeared naturally in Jones andZitikis (2003, 2007),
Brahimi et al. (2011), and other insurance-related works dealing with the proportional
hazards premium.

The next theorem, which is in the spirit of Theorem 3 and uses the notations intro-
duced before it, concludes our explorations of consistency.

Theorem 5 Assume that E[X2] is finite and the cdf FY is continuous. If there is ε > 0
such that v2X |Y ◦ F−1

Y 1Bi,ε ∈ L pi and w1Ai ∈ L2qi for every i = 1, . . . , j , then

Π̂w
P→ Πw when n → ∞.

We now set out to establish asymptotic normality of the estimator Π̂w. We show,
in particular, that its asymptotic variance is

σ 2
w =

(
σ 2

w,1 + σ 2
w,2

)/(∫ 1

0
w(u)du

)2

where

σ 2
w,1 =

∫ 1

0
v2X |Y ◦ F−1

Y (t) w2(t) dt (9)

and

σ 2
w,2 =

∫ 1

0

∫ 1

0
w(s)w(t) (min{s, t} − st) dgX |Y ◦ F−1

Y (s) dgX |Y ◦ F−1
Y (t). (10)

We note at the outset that in the theorem that follows, we impose conditions that
assure the finiteness of σ 2

w,1 and σ 2
w,2. Note also that for the variance σ 2

w,2 to be well
defined, we need to, and thus do, assume—without explicitly saying this every time—
that the quantile regression function gX |Y ◦ F−1

Y is left continuous on (0, 1) and of
bounded variation on [ε, 1 − ε] for every 0 < ε < 1/2. Following Shorack’s (1972)
terminology, this means that gX |Y ◦ F−1

Y belongs to the class L. In what follows, we
also use the notation

μ2,X |Y (y) = E[X2 | Y = y],
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818 N. Gribkova, R. Zitikis

and
d→ denotes convergence in distribution.

Theorem 6 Let FY be continuous. Furthermore, let the weight function w satisfy the
following conditions:

(i) w is continuous on (0, 1) except possibly at a finite number of points t1 < · · · <

tm, and there is r > 1/2 such that for every ε > 0 there is a constant c < ∞
such that

|w(u) − w(v)| ≤ c|u − v|r (11)

for all u, v ∈ (ti−1, ti ) ∩ (ε, 1 − ε) and every i = 1, . . . ,m + 1, where t0 := 0
and tm+1 := 1;

(ii) there is (small) ε > 0 such that w is differentiable on the set Θε := (0, ε) ∪ (1−
ε, 1), and there are κ1, κ2 ∈ [0, 1) such that the two bounds

|w(t)| ≤ ct−κ1/2(1 − t)−κ2/2 (12)

and
t (1 − t)|w′(t)| ≤ ct−κ1/2(1 − t)−κ2/2 (13)

hold for all t ∈ Θε.

If the function gX |Y ◦F−1
Y is continuous at every point ti of condition (i), and, for some

δ > 0, the bound

μ2,X |Y ◦ F−1
Y (t) ≤ ct−1+κ1+δ(1 − t)−1+κ2+δ (14)

holds for all t ∈ Θε with the same κ1 and κ2 as in condition (ii), then

n1/2(Π̂w − Πw)
d→ N (0, σ 2

w) (15)

when n → ∞.

Note that condition (14) implies E[X2] < ∞. In the special case Y = X , we have
the following corollary to Theorem 6.

Corollary 1 Let FX be continuous. If the weight function w satisfies conditions (i)
and (ii) of Theorem 6, the quantile function F−1

X is continuous at every point ti of
condition (i), and (F−1

X (t))2 does not exceed the right-hand side of bound (14) near
the end points of the interval (0, 1), then

n1/2(π̂w − πw)
d→ N (0, σ 2

w) (16)

when n → ∞, where

σ 2
w = 1(∫ 1

0 w(u)du
)2
∫ 1

0

∫ 1

0
w(s)w(t) (min{s, t} − st) dF−1

X (s) dF−1
X (t).
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Weighted allocations 819

In a variety of forms, Corollary 1 has frequently appeared in literature. Indeed,
if FX is continuous, then π̂w is an L-statistic and πw is its asymptotic mean, called
L-functional. For details and references on the topic, we refer to the monographs by
Helmers (1982), Serfling (1980), and Shorack (2017).

It is clear from the above results that the tails of the weight function w and the
quantile conditional variance, or quantile conditional second moment, interact, and
thus there is always a delicate balancing act to maintain: stronger conditions on w

lead to weaker conditions on the quantile-based functions, and vice versa. There is,
however, a possibility to weaken both sets of conditions at the same time, but this
leads to drastically different results and hinges on other techniques of proof, as seen
from the works of Necir and Meraghni (2009), and Necir et al. (2007), who tackle the
proportional hazards transform; Necir et al. (2010), and Rassoul (2013), who tackle
the tail conditional expectation; and Brahimi et al. (2012), who tackle the general
distortion risk measure.

4 Examples

From the practical point of view, it is (weak) consistency and asymptotic normality
that are of most interest, and so our aim in this section is to illustrate Theorems 5
and 6. We use three classes of weight functions that are of particular importance in
econometrics, insurance, and financial engineering. The functions never take infinite
values on the open interval (0, 1) and are continuous from either left- or right-hand
sides at each point of (0, 1).

The basic assumptions on the joint distribution of X and Y are the finiteness of the
second moment E[X2] and the continuity of the cdf FY . Recall also our agreement to
always—when considering asymptotic normality—assume that the quantile regression
function gX |Y ◦F−1

Y is left continuous on (0, 1) and has bounded variation on [ε, 1−ε]
for every 0 < ε < 1/2, that is, belongs to the class L in the terminology of Shorack
(1972).

The following three examples are of increasing complexity.

4.1 Step functions

Let p ∈ (0, 1) be any fixed parameter, and let w be any of the following two step
functions:

w(t) = 1{t < p} (17)

or
w(t) = 1{t > p}. (18)

Both functions are boundedon the interval [0, 1] andhave discontinuities at the point p.
Function (17) gives rise to the financial version of the average-value-at-risk, whereas
function (18) gives rise to the insurance version of the average-value-at-risk (e.g.,
Pflug and Römisch 2007; Rüschendorf 2013; McNeil et al. 2015; Föllmer and Schied
2016). The duality is a consequence of the fact that insurers view losses as nonnegative
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820 N. Gribkova, R. Zitikis

random variables, whereas financial engineers view losses as negative realizations of
random variables.

4.1.1 Consistency

TheassumptionE[X2] < ∞ impliesv2X |Y ◦F−1
Y ∈ L1(0, 1), and sincew2 ∈ L∞(0, 1),

we can therefore use Theorem 5 with j = 1 and A1 = (0, 1) to conclude that the
estimator Π̂w is consistent.

4.1.2 Asymptotic normality

Condition (i) of Theorem 6 is satisfied with m = 1 and t1 = p. In particular, bound
(11) holds with r = 1 for all u, v ∈ (0, p), as well as for all u, v ∈ (p, 1). Condition
(ii) of the same theorem is also satisfied, with κ1 = 0 and κ2 = 0.

Hence, the estimator Π̂w is asymptotically normal, that is, statement (15) holds, if
(1) the function gX |Y ◦ F−1

Y is continuous at the point p, and (2) with κ1 = 0, κ2 = 0,
and some δ > 0, bound (14) holds near the end points of the interval (0, 1). The latter
condition, which is

μ2,X |Y ◦ F−1
Y (t) ≤ ct−1+δ(1 − t)−1+δ

for all t ∈ (0, ε) ∪ (1 − ε, 1), is just slightly stronger than the very basic requirement
E[X2] < ∞.

4.2 One-sided power function

Let ν > 0 be any fixed parameter, and consider the one-sided power function

w(t) = ν(1 − t)ν−1.

As noted in Sect. 2, this weight function arises in insurance, as well as whenmeasuring
economic inequality. When ν = 1, the function gives rise to the mean, which is
viewed as the net premium by insurers, and the mean income by those working in
the area of measuring economic inequality. When ν ∈ (0, 1), the (increasing) weight
function gives rise to the proportional hazards transform (Wang 1995, 1996), andwhen
ν > 1, the (decreasing) weight function gives rise to the absolute S-Gini index (e.g.,
Greselin and Zitikis 2018; and references therein). This duality is natural because
insurers are particularly concerned with large losses, therefore making them even
larger when setting premiums with positive risk-loadings, whereas those working in
the area of measurement inequality tend to emphasize the less fortunate members of
the population.
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4.2.1 Consistency

The one-sided power functionmay ormay not be bounded, depending on the parameter
ν value. Hence, assuming that there is p ≥ 1 such that

v2X |Y ◦ F−1
Y ∈ L p(1/2, 1), (19)

we need to specify those values of ν that satisfy w ∈ L2q(1/2, 1). This is equivalent
to the requirement ν > 1− 1/(2q), which, due to the relationship p−1 + q−1 = 1, is
equivalent to

ν >
1

2
+ 1

2p
. (20)

Under these assumptions, the estimator Π̂w is consistent.
To make the above discussion more intuitive, we can slightly strengthen conditions

by requiring E[|X |2p | Y > med(Y )] < ∞, where med(Y ) denotes the median of Y .
Then, if condition (20) holds, then the estimator Π̂w is consistent.

4.2.2 Asymptotic normality

Condition (i) of Theorem 6 is satisfied withm = 0. Condition (ii) of the same theorem
is satisfied with κ1 = 0 and κ2 = max{2(1 − ν), 0}. Hence, asymptotic normality of
Π̂w follows if

μ2,X |Y ◦ F−1
Y (t) ≤ c

{
t−1+δ(1 − t)1−2ν+δ when 0 < ν < 1,
t−1+δ(1 − t)−1+δ when ν ≥ 1,

(21)

near the end points of the interval (0, 1).
To appreciate this condition from the intuitive point of view, we assume that

μ2,X |Y ◦ F−1
Y (t) is of the order c(1 − t)−1/p for t’s in a neighborhood of 1, which

roughly speaking means that the moment E[|X |2p | Y > med(Y )] is finite. Then
the estimator Π̂w is asymptotically normal, that is, statement (15) holds, whenever ν

satisfies condition (20).

4.3 Two-sided power function

Consider the weight function

w(t) =
{
c1tν1 when 0 < t < t∗,
c2(1 − t)ν2 when t∗ ≤ t < 1,

(22)

with parameters c1, c2 ∈ (0,∞), ν1, ν2 > −1, and t∗ ∈ (0, 1). Depending on the
parameter values, function (22) may or may not be discontinuous at the point t∗, but
it is always continuous on the open intervals (0, t∗) and (t∗, 1).
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822 N. Gribkova, R. Zitikis

The continuous version

w(t) = ctν1

ctν1 + (1 − t)−ν2
(23)

of function (22) has been used as a probability weighting function in research areas
dealing with risk and uncertainty (e.g., Tversky and Kahneman 1992; Gonzalez and
Wu 1999; Wakker 2010; and references therein).

Our following considerations of consistency and asymptotic normality are equally
applicable to any of these two weight functions, with the only exception that in the
case of function (22) we need to require continuity of gX |Y ◦ F−1

Y at the point t∗, but
there is no such need when dealing with function (23) as it is continuous on the entire
open interval (0, 1).

4.3.1 Consistency

Analogously to Sect. 4.2.1, we conclude that Π̂w is consistent whenever

1. there are p1 ≥ 1 and p2 ≥ 1 such that, with med(Y ) denoting the median of Y ,
the moments E[|X |2p1 | Y < med(Y )] and E[|X |2p2 | Y > med(Y )] are finite;

2. the parameters ν1 > −1 and ν2 > −1 are such that

ν1 > −1

2
+ 1

2p1
and ν2 > −1

2
+ 1

2p2
. (24)

4.3.2 Asymptotic normality

Irrespective of the parameter values, if we set m = 1 and t1 = t∗, we see that the
function w satisfies condition (11) with r = 1 for all u, v ∈ (ε, t∗), as well as for all
u, v ∈ (t∗, 1− ε). This verifies condition (i) of Theorem 6. Condition (ii) of the same
theorem is satisfied with κ1 = max{−2ν1, 0} and κ2 = max{−2ν2, 0}.

If we deal with function (22), then we need to assume that gX |Y ◦F−1
Y is continuous

at the point t∗. In the case of function (23), there is no need for such an assumption on
gX |Y ◦ F−1

Y .
To understand condition (14), let the p1th power of μ2,X |Y ◦ F−1

Y (t) be integrable
over t ∈ (0, ε), and the p2th power of the same function be integrable over t ∈
(1 − ε, 1). Roughly speaking, these assumptions mean that the moments E[|X |2p1 |
Y < med(Y )] and E[|X |2p2 | Y > med(Y )] are finite.

Under these conditions, the estimator Π̂w is asymptotically normal, that is, state-
ment (15) holds, provided that bounds (24) hold.

5 Proofs

Proof of Theorem 1 We have Π̃w
a.s.→ Πw provided that, when n → ∞,
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1

n

n∑
k=1

Xkw ◦ F̂Y (Yk)
a.s.→ E[Xw ◦ FY (Y )] (25)

and 1

n

n∑
k=1

w ◦ F̂Y (Yk)
a.s.→ E[w ◦ FY (Y )]. (26)

Statement (26) follows from statement (25) if we set Xk to 1. Hence, we only need to
prove statement (25). We write

1

n

n∑
k=1

Xkw◦ F̂Y (Yk) = 1

n

n∑
k=1

Xkw◦FY (Yk)+ 1

n

n∑
k=1

Xk
(
w ◦ F̂Y (Yk) − w ◦ FY (Yk)

)
.

(27)
The classical strong law of large numbers implies that n−1∑n

k=1 Xkw ◦ FY (Yk) con-
verges to E[Xw ◦ FY (Y )] almost surely. Hence, we are left to prove that the second
average on the right-hand side of Eq. (27) converges to 0 almost surely. Thiswe achieve
by first estimating its absolute value by(

1

n

n∑
k=1

|Xk |
)
sup
y∈R

∣∣w ◦ F̂Y (y) − w ◦ FY (y)
∣∣ . (28)

By the strong law of large numbers, n−1∑n
k=1 |Xk | converges almost surely to the

(finite) mean of |X |, and the supremum in (28) converges to zero almost surely because
of the classical Glivenko–Cantelli theorem and the uniform continuity of w, which
holds because w is continuous on the compact interval [0, 1]. Hence, statement (25)

holds, and so does Π̃w
a.s.→ Πw. Statement π̃w

a.s.→ πw follows as a special case when
X =Y and Xk =Yk for all k = 1, . . . , n. This completes the proof of Theorem 1. ��
Proof of Theorem 4 The theorem follows from the statement

Δ̂w
P→ E[Xw ◦ FY (Y )]. (29)

To prove it, we write the decomposition Δ̂w = (Tn,1 + Tn,2)/n, where

Tn,1 =
n∑

k=1

gX |Y (Yk:n)wk,n

and

Tn,2 =
n∑

k=1

(
X[k:n] − gX |Y (Yk:n)

)
wk,n .

The rest of the proof consists of two steps:

1

n
Tn,1

P→ E[Xw ◦ FY (Y )], (30)
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824 N. Gribkova, R. Zitikis

1

n
Tn,2

P→ 0. (31)

In fact, statement (30) holds with convergence in probability replaced by conver-
gence almost surely. Indeed, the strong law of large numbers for L-statistics (van Zwet
1980; Corollary 2.1) implies

1

n
Tn,1

a.s.→
∫ 1

0
gX |Y ◦ F−1

Y (t)w(t)dt (32)

when n → ∞. It remains to note that the integral on the right-hand side of statement
(32) is equal to E[Xw ◦ FY (Y )]. Hence, we are left to prove statement (31), which
means that, for every δ > 0, we need to show

P
(|Tn,2| > nδ

)→ 0 (33)

when n → ∞. Recall that, conditionally on Y1:n, . . . ,Yn:n , the concomitants
X[1:n], . . . , X[n:n] are independent (Bhattacharya 1974; Lemma 1). Hence, with the
help of Markov’s inequality, we obtain

P
(|Tn,2| > nδ

) = E

[
P

(∣∣∣∣∣
n∑

k=1

(
X[k:n] − gX |Y (Yk:n)

)
wk,n

∣∣∣∣∣ > nδ | Y1, . . . ,Yn
)]

≤ 1

n2δ2

n∑
k=1

E
[
E
[(
X[k:n] − gX |Y (Yk:n)

)2 | Y1, . . . ,Yn
]]

w2
k,n

= 1

n2δ2

n∑
k=1

E
[
v2X |Y (Yk:n)

]
w2
k,n, (34)

where the right-most equation follows from the fact that (Bhattacharya 1974; Lemma
1) conditionally on Y1:n, . . . ,Yn:n , the concomitants X[1:n], . . . , X[n:n] follow the cdf’s
F(x | Y1:n), . . . , F(x | Yn:n), respectively, where F(x | y) = P[X ≤ x | Y = y].
Next we apply Hölder’s inequality on the right-hand side of bound (34) and obtain

P
(|Tn,2| > nδ

) ≤ 1

nδ2

(
1

n

n∑
k=1

(
E
[
v2X |Y (Yk:n)

])p)1/p (
1

n

n∑
k=1

|wk,n|2q
)1/q

≤ 1

nδ2

(
1

n

n∑
k=1

E
[
v
2p
X |Y (Yk:n)

])1/p (
1

n

n∑
k=1

|wk,n|2q
)1/q

= 1

nδ2

(
1

n

n∑
k=1

E
[
v
2p
X |Y ◦ F−1

Y (Uk)
])1/p (

1

n

n∑
k=1

|wk,n|2q
)1/q

,

(35)
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where U1, . . . ,Un
i.i.d.∼ Uni(0, 1) are i.i.d. random variables from the uniform dis-

tribution on the interval [0, 1]. The first average on the right-hand side of Eq. (35) is
equal to the integral

∫ 1
0 v

2p
X |Y ◦ F−1

Y (t) dt , whereas the second average converges to∫ 1
0 |w(t)|2qdt . Both integrals are finite by assumption. This completes the proof of
Theorem 4. ��
Proof of Theorem 5 We need to prove statement (29) under the conditions of Theo-
rem 5. We start again with the decomposition Δ̂w = (Tn,2 + Tn,1)/n. Statement (32)
follows by the strong law of large numbers for L-statistics (van Zwet 1980; Theo-
rem 3.1). It remains to prove statement (31). We fix any δ > 0 and write

P
(|Tn,2| > nδ

) = P

(∣∣∣∣∣
n∑

k=1

(
X[k:n] − gX |Y ◦ F−1(Uk:n)

)
wk,n

∣∣∣∣∣ > nδ

)

≤ Δ + P
(Dc) (36)

for any subset D of the sample space, where

Δ := P

({∣∣∣∣∣
n∑

k=1

(
X[k:n] − gX |Y ◦ F−1(Uk:n)

)
wk,n

∣∣∣∣∣ > nδ

}
∩ D

)

and U1:n, . . . ,Un:n are the order statistics of U1, . . . ,Un
i.i.d.∼ Uni(0, 1). We next

make a special choice of D.
First, we recall the definitions of Ai and Bi,ε, given before Theorem 3. Then we

define ri = min{k : k/(n + 1) ∈ Ai } and si = max{k : k/(n + 1) ∈ Ai }, and with
the notation Di = {Uri :n ∈ Bi,ε

} ∩ {Usi :n ∈ Bi,ε
}
, we define

D =
j⋂

i=1

Di .

Since ri/(n + 1), si/(n + 1) ∈ Ai ⊂ Bi,ε, Bernstein’s inequality implies P
(Dc

i

) ≤
exp{−cin} for some ci > 0, where

Dc
i = {Uri :n /∈ Bi,ε

} ∪ {Usi :n /∈ Bi,ε
}
.

Consequently,

P
(Dc) = P

⎛
⎝

j⋃
i=1

Dc
i

⎞
⎠ ≤

j∑
i=1

e−ci n . (37)

In view of estimate (37), from now on we restrict our attention to only the quantity Δ.
Since conditionally on Y1:n, . . . ,Yn:n , the concomitants X[1:n], . . . , X[n:n] follow

the cdf’s F(x | Y1:n), . . . , F(x | Yn:n), respectively, we use Markov’s inequality and
obtain the bound
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Δ = E

[
1DP

(∣∣∣∣∣
n∑

k=1

(
X[k:n] − gX |Y ◦ F−1(Uk:n)

)
wk,n

∣∣∣∣∣ > nδ | U1, . . . ,Un

)]

≤ 1

(nδ)2
E

[
1D

n∑
k=1

v2X |Y ◦ F−1
Y (Uk:n)w2

k,n

]
. (38)

We split the sum
∑n

k=1 into two sums: one is the sum over those k such that
k/(n + 1) ∈ {a1, . . . , a j }, and another sum is over all the remaining k’s. That is, we
write

n∑
k=1

=
j∑

i=1

∑
k:k/(n+1)=ai

+
j∑

i=1

∑
k: k/(n+1)∈Ai

.

If a sum is empty, we set it to 0. For example, the sum
∑

k:k/(n+1)=ai is always empty
when i = j because a j = 1 and k ∈ {1, . . . , n}. Hence, in order to show that Δ

converges to 0 when n → ∞, we need to prove that

Δ1,i := 1

n2
∑

k: k/(n+1)=ai

E
[
1Dv2X |Y ◦ F−1

Y (Uk:n)
]
w2
k,n → 0 (39)

for every i = 1, . . . , j − 1, and

Δ2,i := 1

n2
∑

k: k/(n+1)∈Ai

E
[
1Dv2X |Y ◦ F−1

Y (Uk:n)
]
w2
k,n → 0 (40)

for every i = 1, . . . , j .
We begin with Δ1,i , whose sum

∑
k:k/(n+1)=ai is either empty or contains only one

summand. If it is not empty, then let k be the (only) integer that satisfies k = (n+1)ai .
As we have already noted above, the case i = j can be dropped. Hence, we only
consider i ≤ j − 1. Under this condition, w2

k,n can only be one of the values w2(ai ),
i = 1, . . . , j − 1. Since the function w is bounded on every compact subinterval of
(0, 1), we therefore conclude that maxi=1,..., j−1 w2(ai ) is finite. This implies the first
bound below, with the rest of calculations being obvious:

1

n
E
[
1Dv2X |Y ◦ F−1

Y (Uk:n)w2
k,n

]
≤ c

n
E
[
v2X |Y ◦ F−1

Y (Uk:n)
]

≤ c

n

n∑
k=1

E
[
v2X |Y ◦ F−1

Y (Uk:n)
]

= c
∫ 1

0
v2X |Y ◦ F−1

Y (t)dt < ∞. (41)

Statement (39) follows, and we are left to prove statement (40).
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With the help of Hölder’s inequality, we have

Δ2,i ≤ 1

n

⎛
⎝1

n

∑
k: k/(n+1)∈Ai

(
E
[
1Dv2X |Y ◦ F−1

Y (Uk:n)
])pi

⎞
⎠

1/pi

×
⎛
⎝1

n

∑
k: k/(n+1)∈Ai

|wk,n|2qi
⎞
⎠

1/qi

. (42)

Furthermore, when n → ∞,

1

n

∑
k: k/(n+1)∈Ai

|wk,n|2qi →
∫
Ai

|w(t)|2qi dt < ∞.

SinceD =⋂ j
i=1Di , we have the first bound below, with the rest of calculations being

obvious:

1

n

∑
k: k/(n+1)∈Ai

(
E
[
1Dv2X |Y ◦ F−1

Y (Uk:n)
])pi

≤ 1

n

∑
k: k/(n+1)∈Ai

E
[
1Di v

2pi
X |Y ◦ F−1

Y (Uk:n)
]

= 1

n

si∑
k=ri

E
[
1Di v

2pi
X |Y ◦ F−1

Y (Uk:n)
]

≤ 1

n

n∑
k=1

E
[
1Bi,ε v

2pi
X |Y ◦ F−1

Y (Uk:n)
]

=
∫
Bi,ε

v
2pi
X |Y ◦ F−1

Y (t) dt < ∞. (43)

This implies statement (40) and completes the proof that the quantity Δ on the right-
hand side of bound (36) converges to 0 when n → ∞. The proof of Theorem 5 is
finished. ��
Proof of Theorem 6 Asymptotic normality of Π̂w follows if we show that, when n →
∞,

n1/2(Π̂w − Πw,n)
d→ N (0, σ 2

w), (44)

n1/2(Πw,n − Πw) → 0, (45)

where

Πw,n :=
n∑

k=1

wk,n∫ 1
0 w(u)du

∫ k/n

(k−1)/n
gX |Y ◦ F−1

Y (t) dt.
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We next establish statements (44) and (45), and in this way complete the proof of
Theorem 6.

We note at the outset that statements (44) and (45) require different subsets of
conditions formulated in Theorem 6. In the proofs that follow, we shall specify which
of them, and where, are required.

Proof of statement (44) We have Πw,n = Δw,n/
∫ 1
0 w(u)du, where

Δw,n =
n∑

k=1

wk,n

∫ k/n

(k−1)/n
gX |Y ◦ F−1

Y (t) dt.

Hence, statement (44) is equivalent to

n1/2(Δ̂w − Δw,n)
d→ N (0, σ 2

w,1 + σ 2
w,2)

when n → ∞. We write n1/2(Δ̂w − Δw,n) = Wn + Tn , where

Wn = n−1/2
n∑

k=1

(
X[k:n] − gX |Y (Yk:n)

)
wk,n (46)

and

Tn = n1/2
(
1

n

n∑
k=1

gX |Y (Yk:n)wk,n − Δw,n

)
. (47)

Hence, to prove the theorem, we need to show that

Wn + Tn
d→ N

(
0, σ 2

w,1 + σ 2
w,2

)
, (48)

when n → ∞. We follow the approach of Yang (1981) for proving the central limit
theorem for linear combinations of concomitants. Namely, we rely on the following
fundamental theorem of Yang (1981), which in a somewhat different context has
recently, and effectively, been utilized by Gribkova and Zitikis (2017). ��
Theorem 7 (Yang 1981) Let (X1,Y1), (X2,Y2), . . . be random pairs. Denote Zn =
((X1,Y1), . . . , (Xn, Yn)) and Yn = (Y1, . . . ,Yn), and let Wn := Wn(Zn) and Tn :=
Tn(Yn) be measurable vector-valued functions of Zn and Yn, respectively. Suppose
that Tn converges in distribution to FT , and the conditional distribution of Wn given
Yn converges weakly to a distribution FW which does not depend on the Yk’s. Then

(Wn, Tn)
d→ FW FT .

First,weworkwith the quantityWn definedbyEq. (46) and prove that its conditional
distribution givenYn converges to the normal distributionwith themean 0 and variance
σ 2

w,1 for almost all sequences (Ym)m≥1, with the limiting distribution not depending
on the sequence (Ym)m≥1. Next, we prove that the quantity Tn defined by Eq. (47) is
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asymptotically normal with the mean 0 and variance σ 2
w,2. Given these two results,

Theorem 7 implies that the joint distribution of (Wn, Tn) converges to the product
of the two aforementioned normal distributions. In turn, this implies that Wn + Tn is
asymptotically normal with the mean 0 and variance σ 2

w,1 + σ 2
w,2. Hence, the rest of

the proof consists of two parts, which deal with the asymptotic normality of Wn and
Tn , respectively.

Part 1UsingBhattacharya’s (1974) result already utilized in the proof of Theorem5,
we have E[Wn | Yn] = 0 with the conditional variance V 2

n := Var[Wn | Yn]
expressed by

V 2
n = 1

n

n∑
k=1

v2X |Y (Yk:n)w2
k,n .

Applying Lindeberg’s normal-convergence criterion, we conclude that the sequence
of the (conditional) distributions of Wn/Vn is asymptotically standard normal if, for
every ε > 0 and when n → ∞,

1

nV 2
n

n∑
k=1

w2
k,nhθk,n (Yk:n) → 0 (49)

for almost all realizations of the sequence Y1,Y2, . . ., where

hθk,n (y) =
∫

(x − gX |Y (y))21{|x − gX |Y (y)| ≥ θk,n}dF(x | y) (50)

with the notation

θk,n = εn1/2Vn∣∣wk,n
∣∣ .

(If wk,n = 0, the corresponding summand in statement (49) vanishes, and hence θk,n
can be defined arbitrarily in this case.) The strong law of large numbers for L-statistics
(van Zwet 1980; Theorem 3.1) implies

V 2
n
a.s.→

∫ 1

0
v2X |Y ◦ F−1

Y (t)w2(t) dt, (51)

with the integral on the right-hand side being equal to σ 2
w,1. To verify θk,n

a.s.→ ∞, we
write the bounds

θk,n ≥ εn1/2Vn/ max
k=1,...,n

|wk,n|

≥ εn1/2Vn/ max
k=1,...,n

(
k(n − k)

n2

)−max(κ1,κ2)/2

= εn1/2Vn/n
max(κ1,κ2)/2. (52)
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Sincemax(κ1, κ2) < 1, we have θk,n
a.s.→ ∞. Applying the strong law of large numbers

for L-statistics (van Zwet 1980; Theorem 3.1), we have that, for every K > 0,

1

n

n∑
k=1

w2
k,nhK (Yk:n)

a.s.→
∫ 1

0
w2(t) hK ◦ F−1

Y (t) dt (53)

when n → ∞. (The function hK (y) is defined by Eq. (50) with K instead of θk,n .)
Since θk,n → ∞, statements (53) and (51) imply the Lindeberg’s criterion for almost
all realizations of the sequence (Ym)m≥1. Hence, the conditional distribution ofWn/Vn
given Yn converges to the standard normal distribution almost surely.

Part 2 In order to prove statement (44), it remains to show that the distribution of
Tn given by (47) converges to the normal law with the mean 0 and variance σ 2

w,2.
The latter fact is a direct consequence of a result of Shorack’s (1972) Theorem 1 on
asymptotic normality of linear combination of functions of order statistics.

Indeed, let U1, . . . ,Un
i.i.d.∼ Uni(0, 1), and let U1:n, . . . ,Un:n denote the corre-

sponding order statistics. Then, with the equality holding in distribution, we have

Tn = n1/2
(
1

n

n∑
k=1

gX |Y ◦ F−1
Y (Uk:n)wk,n − Δw,n

)
.

Since under the conditions of Theorem 6, the conditions of Theorem 1 by Shorack
(1972) are satisfied, the aforementioned asymptotic normality of Tn holds. Statement
(44) follows. ��
Proof of statement (45) We start with the equations

Δw,n =
n∑

k=1

wk,n

∫ k/n

(k−1)/n
gX |Y ◦ F−1

Y (t) dt

=
∫ 1

0
gX |Y ◦ F−1

Y (t)wn(t) dt, (54)

where the function wn : (0, 1] → R is defined by wn(t) = wk,n when (k − 1)/n <

t ≤ k/n, for all k = 1, . . . , n. Next we write

n1/2(Δ̂w − Δw,n) = In,1 + In,2 + In,3,

where

In,l = n1/2
∫
Dl

(wn(t) − w(t)) gX |Y ◦ F−1
Y (t) dt

with the sets D1 = (0, ε), D2 = (ε, 1−ε), and D3 = (1−ε, 1), and with a sufficiently
small ε > 0 so that we could use condition (ii) of Theorem 6. We shall prove that In,1
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and In,2 converge to zero when n → ∞; the treatment of In,3 is similar as in the case
of In,1 and is therefore omitted.

Without loss of generality, we can, and thus do, assume 1/n < ε, and thus |In,1|
does not exceed the sum I ∗

n,1 + I ∗∗
n,1, where

I ∗
n,1 = n1/2

∫ 1/n

0
|wn(t) − w(t)|

∣∣∣gX |Y ◦ F−1
Y (t)

∣∣∣ dt,
I ∗∗
n,1 = n1/2

∫ ε

1/n
|wn(t) − w(t)|

∣∣∣gX |Y ◦ F−1
Y (t)

∣∣∣ dt.

Using bounds (12) and (14), we obtain

I ∗
n,1 ≤ n1/2 |w(1/n)|

∫ 1/n

0

∣∣∣gX |Y ◦ F−1
Y (t)

∣∣∣ dt

+ n1/2
∫ 1/n

0
|w(t)|

∣∣∣gX |Y ◦ F−1
Y (t)

∣∣∣ dt
≤ c n−δ/2. (55)

Furthermore, upon recalling that wn(t) is equal to wk,n and therefore to w(k/(n+ 1))
for all t ∈ ((k − 1)/n, k/n

)
, we use bounds (13) and (14) to obtain

I ∗∗
n,1 ≤ cn−1/2

[nε]+1∑
k=2

∫ k/n

(k−1)/n
τ

−κ1/2−1
k t−1/2+κ1/2+δ/2 dt

with some τk ∈ ((k − 1)/n, k/n
)
, where [·] denotes the integer part. Without loss of

generality, we let δ > 0 be smaller than 1 − κ1. We have

I ∗∗
n,1 ≤ cn−1/2

(
n1/2−δ/2 + 1

n

[nε]∑
k=2

(
k

n

)−3/2+δ/2
)

.

Since

1

n

n∑
k=2

(
k

n

)−3/2+δ/2

≤ c

(
1

n

)−1/2+δ/2

,

we conclude that
I ∗∗
n,1 ≤ c n−δ/2. (56)

Bounds (55) and (56) complete the proof that In,1 → 0 when n → ∞.
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It remains to show that In,2 converges to 0 when n → ∞. For this, we first rewrite
In,2 as follows

In,2 = n1/2
m+1∑
i=1

∫ ti

ti−1

1Di

(
wn(t) − w(t)

)
gX |Y ◦ F−1

Y (t) dt.

By condition (i) of Theorem 6 and the integrability of gX |Y ◦ F−1
Y (which holds

because the first moment of X is finite), the absolute value of In,2 does not exceed
cn1/2−r , which converges to 0 because of r > 1/2. This completes the proof
statement (45). ��

Having thus established statements (44) and (45), we have also concluded the proof
of Theorem 6. ��

6 Concluding remarks

Insurance losses are usually nonnegative random variables, and the arising weight
functionsw are therefore definedon the nonnegative real half-line and take nonnegative
values. In financial engineering, both losses and profits are of interest at the same time
and are thus modeled with real-valued random variables.

Since our developed statistical inference results are not sensitive to the positivity and
negativity of random variables and weight functions, we have therefore accommodate
these scenarios by considering real-valued random variables as well as real-valued
weight functions. We have covered a large set of scenarios of interest, but of course
not all of them:

– Random variables whose cdf’s contain discrete components are not covered by our
results. This is a limitation as insurance losses may have a mass at, for example,
zero, due to the fact that some losses are not covered. Incorporating the discrete
component into asymptotic results is not trivial and requires considerable effort,
as seen from the pioneering article by Chernoff et al. (1967); we also refer to the
monographs by Serfling (1980) and Shorack (2017).

– Insurance literature contains numerous examples when losses with infinite vari-
ances arise. We refer to a recent work by Brazauskas and Kleefeld (2016), who
analyze one of such examples. They also provide a wealth of earlier references on
the topic.

– In operational risk literature (Nešlehová et al. 2006), we find examples when
random variable do not even have finite first moments.

These are challenging problems which, we think, should be tackled separately, as they
likely require specialized techniques. In the case of infinite variances, and especially
when the first moments are infinite, our proposed empirical estimatorsmay not even be
suitable, unless w(t) converges to 0 fast enough when t approaches the end points of
the interval (0, 1), as can be seen from, for example, the pioneering work of Necir and
Meraghni (2009), as well as their subsequent prolific research, who tackle actuarial
risk measures within the framework of extreme-value theory (e.g., Embrechts et al.
1997; Beirlant et al. 2004; Castillo et al. 2005; de Haan and Ferreira 2006).

123



Weighted allocations 833

Acknowledgements We are indebted to two anonymous reviewers for suggestions, insightful comments,
and constructive criticism that guided our work on the revision.

References

Asimit, A. V., Vernic, R., Zitikis, R. (2013). Evaluating risk measures and capital allocations based on
multi-losses driven by a heavy-tailed background risk: The multivariate Pareto-II model. Risks, 1,
14–33.

Asimit, A. V., Furman, E., Vernic, R. (2016). Statistical inference for a new class of multivariate Pareto
distributions. Communications in Statistics: Simulation and Computation, 45, 456–471.

Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J. L. (2004). Statistics of extremes: Theory and applications.
Chichester: Wiley.

Bhattacharya, P. K. (1974). Convergence of sample paths of normalized sum of induced order statistics.
Annals of Statistics, 2, 1034–1039.

Brahimi, B., Meddi, F., Necir, A. (2012). Bias-corrected estimation in distortion risk premiums for heavy-
tailed losses. Afrika Statistika, 7, 474–490.

Brahimi, B., Meraghni, D., Necir, A., Zitikis, R. (2011). Estimating the distortion parameter of the
proportional-hazard premium for heavy-tailed losses. Insurance: Mathematics and Economics, 49,
325–334.

Brazauskas, V. (2009). Robust and efficient fitting of loss models: diagnostic tools and insights. North
American Actuarial Journal, 13, 356–369.

Brazauskas, V., Kleefeld, A. (2009). Robust and efficient fitting of the generalized Pareto distribution with
actuarial applications in view. Insurance: Mathematics and Economics, 45, 424–435.

Brazauskas, V., Kleefeld, A. (2016). Modeling severity and measuring tail risk of Norwegian fire claims.
North American Actuarial Journal, 20, 1–16.

Brazauskas, V., Jones, B. L., Puri, M. L., Zitikis, R. (2008). Estimating conditional tail expectation with
actuarial applications in view. Journal of Statistical Planning and Inference, 138(11), 3590–3604
(special issue in Honor of Junjiro Ogawa: Design of experiments, multivariate analysis and
statistical inference).

Brazauskas, V., Serfling, R. (2003). Favourable estimators for fitting Paretomodels: A study using goodness-
of-fit measures with actual data. ASTIN Bulletin, 33, 365–381.

Castillo, E., Hadi, A. S., Balakrishnan, N., Sarabia, J. M. (2005). Extreme value and related models with
applications in engineering and science. Hoboken: Wiley.

Chernoff, H., Gastwirth, J. L., Johns, M. V. (1967). Asymptotic distribution of linear combinations of
functions of order statistics with applications to estimation. Annals of Mathematical Statistics, 38,
52–72.

de Haan, L., Ferreira, A. (2006). Extreme value theory: An introduction. New York: Springer.
Embrechts, P., Klüppelberg, C., Mikosch, T. (1997).Modelling extremal events: For insurance and finance.

New York: Springer.
Föllmer, H., Schied, A. (2016). Stochastic finance: An introduction in discrete time (4th ed.). Berlin: Walter

de Gruyter.
Furman, E., Landsman, Z. (2005). Risk capital decomposition for amultivariate dependent gamma portfolio.

Insurance: Mathematics and Economics, 37, 635–649.
Furman, E., Landsman, Z. (2010). Multivariate Tweedie distributions and some related capital-at-risk anal-

yses. Insurance: Mathematics and Economics, 46, 351–361.
Furman, E., Zitikis, R. (2008a). Weighted premium calculation principles. Insurance: Mathematics and

Economics, 42, 459–465.
Furman, E., Zitikis, R. (2008b). Weighted risk capital allocations. Insurance: Mathematics and Economics,

43, 263–269.
Furman, E., Zitikis, R. (2017). Beyond the Pearson correlation: Heavy-tailed risks, weighted Gini correla-

tions, and a Gini-type weighted insurance pricing model. ASTIN Bulletin, 47, 919–942.
Gonzalez, R., Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology,

38, 129–166.
Greselin, F., Zitikis, R. (2018). From the classical Gini index of income inequality to a new Zenga-type rela-

tive measure of risk: A modeller’s perspective. Econometrics, 6, 1–20 (special issue on econometrics
and income inequality, with Guest Editors Martin Biewen and Emmanuel Flachaire).

123



834 N. Gribkova, R. Zitikis

Gribkova,N.V. (2017). Cramér type large deviations for trimmed L-statistics.Probability andMathematical
Statistics, 37, 101–118.

Gribkova, N. V., Zitikis, R. (2017). Statistical foundations for assessing the difference between the classical
and weighted-Gini betas. Mathematical Methods of Statistics, 26, 267–281.

Helmers, R. (1982). Edgeworth expansions for linear combinations of order statistics. Amsterdam: Math-
ematisch Centrum.

Jones, B. L., Zitikis, R. (2003). Empirical estimation of riskmeasures and related quantities.North American
Actuarial Journal, 7, 44–54.

Jones, B. L., Zitikis, R. (2007). Risk measures, distortion parameters, and their empirical estimation. Insur-
ance: Mathematics and Economics, 41, 279–297.

Kamnitui, N., Santiwipanont, T., Sumetkijakan, S. (2015). Dependence measuring from conditional vari-
ances. Dependence Modeling, 3, 98–112.

Maesono, Y. (2005). Asymptotic representation of ratio statistics and their mean squared errors. Journal of
the Japan Statistical Society, 35, 73–97.

Maesono, Y. (2010). Edgeworth expansion and normalizing transformation of ratio statistics and their
application. Communications in Statistics: Theory and Methods, 39, 1344–1358.

Maesono, Y., Penev, S. (2013). Improved confidence intervals for quantiles. Annals of the Institute of
Statistical Mathematics, 65, 167–189.

McNeil, A. J., Frey, R., Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and
tools (Revised ed.). Princeton, NJ: Princeton University Press.

Necir, A., Meraghni, D. (2009). Empirical estimation of the proportional hazard premium for heavy-tailed
claim amounts. Insurance: Mathematics and Economics, 45, 49–58.

Necir, A., Meraghni, D., Meddi, F. (2007). Statistical estimate of the proportional hazard premium of loss.
Scandinavian Actuarial Journal, 2007, 147–161.

Necir, A., Rassoul, A., Zitikis, R. (2010). Estimating the conditional tail expectation in the case of heady-
tailed losses. Journal of Probability and Statistics, 2010, 1–17.

Nešlehová, J., Embrechts, P., Chavez-Demoulin, V. (2006). Infinite-mean models and the LDA for opera-
tional risk. Journal of Operational Risk, 1, 3–25.

Pflug, G. C., Römisch, W. (2007).Modeling, measuring and managing risk. Singapore: World Scientific.
Quiggin, J. (1993). Generalized expected utility theory. Dordrecht: Kluwer.
Rao, C. R., Zhao, L. C. (1995). Convergence theorems for empirical cumulative quantile regression function.

Mathematical Methods of Statistics, 4, 81–91.
Rassoul, A. (2013). Kernel-type estimator of the conditional tail expectation for a heavy-tailed distribution.

Insurance: Mathematics and Economics, 53, 698–703.
Ratovomirija, G., Tamraz, M., Vernic, R. (2017). On somemultivariate Sarmanovmixed Erlang reinsurance

risks: Aggregation and capital allocation. Insurance: Mathematics and Economics, 74, 197–209.
Rüschendorf, L. (2013). Mathematical risk analysis: Dependence, risk bounds, optimal allocations and

portfolios. New York: Springer.
Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: Wiley.
Shorack, G. R. (1972). Functions of order statistics. Annals of Mathematical Statistics, 43, 412–427.
Shorack, G. R. (2017). Probability for statisticians (2nd ed.). New York: Springer.
Stigler, S. M. (1974). Linear functions of order statistics with smooth weight functions. Annals of Statistics,

2, 676–693.
Su, J. (2016).Multiple risk factors dependence structures with applications to actuarial risk management.

Ph.D. thesis, York University, Ontario, Canada.
Su, J., Furman, E. (2017). A form of multivariate Pareto distribution with applications to financial risk

measurement. ASTIN Bulletin, 47, 331–357.
Tse, S. M. (2009). On the cumulative quantile regression process. Mathematical Methods of Statistics, 18,

270–279.
Tse, S. M. (2015). The cumulative quantile regression function with censored and truncated response.

Mathematical Methods of Statistics, 24, 147–155.
Tversky, A., Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty.

Journal of Risk and Uncertainty, 5, 297–323.
van Zwet, W. R. (1980). A strong law for linear functions of order statistics. Annals of Probability, 8,

986–990.
Vernic, R. (2017). Capital allocation for Sarmanov’s class of distributions.Methodology and Computing in

Applied Probability, 19, 311–330.

123



Weighted allocations 835

vonNeumann, J.,Morgenstern,O. (1944).Theory of gamesand economic behavior. Princeton,NJ: Princeton
University Press.

Wakker, P. P. (2010). Prospect theory: For risk and ambiguity. Cambridge: Cambridge University Press.
Wang, S. (1995). Insurance pricing and increased limits ratemaking by proportional hazards transforms.

Insurance: Mathematics and Economics, 17, 43–54.
Wang, S. S. (1996). Premium calculation by transforming the layer premium density. ASTIN Bulletin, 26,

71–92.
Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55, 95–115.
Yang, S. S. (1981). Linear combinations of concomitants of order statistics with application to testing and

estimation. Annals of the Institute of Statistical Mathematics, 33, 463–470.
Zitikis, R., Gastwirth, J. L. (2002). Asymptotic distribution of the S-Gini index.Australian andNewZealand

Journal of Statistics, 44, 439–446.

123


	Weighted allocations, their concomitant-based estimators, and asymptotics
	Abstract
	1 Introduction
	2 Premiums, allocations, and their estimators
	3 Main results
	4 Examples
	4.1 Step functions
	4.1.1 Consistency
	4.1.2 Asymptotic normality

	4.2 One-sided power function
	4.2.1 Consistency
	4.2.2 Asymptotic normality

	4.3 Two-sided power function
	4.3.1 Consistency
	4.3.2 Asymptotic normality


	5 Proofs
	6 Concluding remarks
	Acknowledgements
	References




