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Abstract The recent empirical works have pointed out that the realized skewness,
which is the sample skewness of intraday high-frequency returns of a financial asset,
serves as forecasting future returns in the cross section. Theoretically, the realized
skewness is interpreted as the sample skewness of returns of a discretely observed
semimartingale in a fixed interval. The aim of this paper is to investigate the asymptotic
property of the realized skewness in such a framework. We also develop an estimation
theory for the limiting characteristic of the realized skewness in a situation where
measurement errors are present and sampling times are stochastic.
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1 Introduction

In the past decades, with widely available high-frequency financial data, statistical
inference for stochastic processes has significantly been developed. Among others,
inference for the quadratic variation of a semimartingale using high-frequency data
is particularly of interest in the literature, due to its important applications in finance,
namely measuring the fluctuation of security markets; see Jacod and Protter (1998),
Jacod (2008), Andersen et al. (2005), Bandi and Russell (2006) and references therein.

In practice, the quadratic variation of a semimartingale is important in finance
because it can be considered as a realized measure of the variance of short-period
returns. Besides, higher moments rather than the variance, in particular the third
moment and the fourth moment which appear in measuring the skewness and kur-
tosis of assets, have attracted vast attention in finance, see Bakshi et al. (2003), Friend
and Westerfield (1980), Martellini and Ziemann (2009), Harvey and Siddique (1999,
2000), Mitton and Vorkink (2007), Kozhan et al. (2013), among others. By using high-
frequency data, the efficiency of estimating the quadratic variation has substantially
improved. Thus, a natural question is whether we can achieve some improvements
by using high-frequency data in the inferences for higher-order realized moments. In
the empirical aspect, recently Amaya et al. (2015) have showed strong evidence that
the sample skewness of intraday high-frequency returns, which is called the realized
skewness in the paper1, serves as predicting future equity returns in the cross section.
More precisely, they have found that if a stock’s realized skewness averaged over a
week is relatively higher (resp. lower) than other stocks’ ones (e.g., more than the
90% quantile (resp. less than the 10% quantile) of all stocks’ ones), then the stock’s
return in the next week tends to be negative (resp. positive). They have also confirmed
that this empirical finding is robust across various implementations. The asymptotic
property of the realized skewness is briefly discussed in Amaya et al. (2015) as well.
The aim of this paper is to investigate this point more deeply. Specifically, suppose
that the dynamics of the log price process of an asset is modeled by an Itô semimartin-
gale X = (Xt )t≥0 and we have discrete observation data {Xi�n }�T/�n�

i=0 on the interval
[0, T ], where �n is a positive number tending to 0 as n → ∞. Then the realized
skewness is given by

RDSkew = �T/�n�∑�T/�n�
i=1 (�n

i X)3

{∑�T/�n�
i=1 (�n

i X)2
}3/2 .

Amaya et al. (2015) have pointed out that

�T/�n�∑

i=1

(�n
i X)2 →P [X, X ]T and

�T/�n�∑

i=1

(�n
i X)3 →P

∑

0≤s≤T

(�Xs)
3,

1 Neuberger (2012) uses the term realized skewness for a different concept.
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Asymptotic properties of the realized skewness 705

where �n
i X = Xi�n − X(i−1)�n , →P denotes convergence in probability, [X, X ]

denotes the quadratic variation process of X and �Xs = Xs − Xs−. Hence, the
appropriately scaled realized skewness, RDSkew/�T/�n�, is a consistent estimator
for the following quantity:

∑
0≤s≤T (�Xs)

3

([X, X ]T )3/2
. (1)

In this paper, we aim at deriving the asymptotic distribution of the estimation error

1

�T/�n�RDSkew −
∑

0≤s≤T (�Xs)
3

([X, X ]T )3/2
. (2)

We shall remark that the asymptotic property of the statistic of the form

�T/�n�∑

i=1

g(�n
i X), (3)

where g is a function on R satisfying some smoothness condition, is well studied in
the literature. To our knowledge, the most general condition to derive the asymptotic
distribution of the above statistic is given by Theorem 5.1.2 from Jacod and Protter
(2012), which requires that g is of class C2 and satisfies g(0) = 0, g′(0) = 0 and
g′′(x) = o(|x |) as x → 0. Unfortunately, this condition is not satisfied by the cubic
function g(x) = x3, so this theorem is not applicable to deriving the asymptotic
distribution of Eq. (2). Kinnebrock and Podolskij (2008) proved the result for g(x) =
x3 when X is continuous. One aim of this paper is to fill in this gap.

Another important issue in high-frequency financial econometrics is to take account
of microstructure noise and randomness of observation times: At ultra high frequen-
cies, asset prices are usually modeled as discrete observations of a semimartingale
with observation noise, which is referred to as microstructure noise, because such
data typically exhibit several empirical properties which are inconsistent with the
semimartingale assumption. In addition, “raw” high-frequency financial data are usu-
ally recorded at certain event times such as transaction times or order arrival times,
which would be random and depend on observed values. See Chapters 7 and 9 of
Aït-Sahalia and Jacod (2014) and references therein for more details on this topic.
This paper also deals with this issue. Namely, we construct a consistent estimator
for quantity Eq. (1) and develop an associated asymptotic distribution theory when
microstructure noise is present and the sampling scheme is stochastic. To accomplish
this, we study the asymptotic property of the “pre-averaged” version of the statis-
tic Eq. (3) with the cubic function g(x) = x3. Here, “pre-averaging” is a denoising
scheme which enables us to systematically adapt functionals of semimartingale incre-
ments [such as Eq. (3)] to the case that microstructure noise is present. The method
was originally introduced in Podolskij and Vetter (2009) and subsequently general-
ized in Jacod et al. (2009), and many theoretical results on it are now available in the
literature. In particular, under mild regularity assumptions, Theorem 16.3.1 of Jacod
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706 Y. Koike, Z. Liu

and Protter (2012) provides the asymptotic distribution of the pre-averaged version
of the statistic Eq. (3) (in the equidistant case) when g is a linear combination of
positively homogeneous C2 functions with degree (strictly) bigger than 3. Here, a
function f : R → R is said to be positively homogeneous with degree w ≥ 0 if
f (αx) = αw f (x) for any α ≥ 0 and any x ∈ R. Hence, the condition on the function
g again rules out the cubic function. We thus need to perform an additional analysis to
cover the cubic function. We will also show that the randomness of observation times
has no essential impact on the asymptotic distribution of the pre-averaged version of
the statistic Eq. (3) with the cubic function g(x) = x3. This kind of phenomenon has
already been observed in Koike (2016, 2017) for the pre-averaged version of the real-
ized volatility. It contrasts the non-noisy case because the randomness of observation
times can cause non-trivial modification of the asymptotic distribution of the realized
volatility as illustrated in Fukasawa (2010), Li et al. (2014), Bibinger andVetter (2015)
and Vetter and Zwingmann (2017) for example.

The remainder of this paper is arranged as follows. Section 2 investigates the asymp-
totic property of statistic Eq. (3) and derives the asymptotic distribution of the realized
skewness. Section 3 develops an estimation theory in a situation with microstructure
noise and stochastic sampling times. Section 4 is devoted to the proofs.

2 The asymptotic distribution of the realized skewness

On a filtered probability space B = (�,F , (Ft )t≥0, P), we consider a stochastic
process (Xt )t≥0 of the form

Xt = X0 +
∫ t

0
bsds +

∫ t

0
σsdBs

+
∫ t

0

∫

|δ(s,z)|≤1
δ(s, z)(μ − ν)(ds, dz) +

∫ t

0

∫

|δ(s,z)|>1
δ(s, z)μ(ds, dz),

where the drift process b is (Ft )-progressively measurable, the spot volatility process
σ is (Ft )-adapted and càdlàg, B is a standard Brownianmotion,μ is a Poisson random
measure on R

+ × E with predictable compensator ν(dt, dz) = dtλ(dz) and λ being
a σ -finite measure on a Polish space (E, E), and δ is a predictable function on � ×
R

+ × E .
We impose the following standard structural assumption:

[H ] There are a sequence (τk) of stopping times increasing to infinity and a
sequence (γk) of deterministic nonnegative measurable functions on E such that∫

γk(z)2λ(dz) < ∞ and |δ(ω, t, z)| ∧ 1 ≤ γk(z) for all k and all (ω, t, z) with
t ≤ τk(ω).

Let us assume that we observe the process X at equidistant discrete points
{i�n}�T/�n�

i=0 for some T > 0, where �n is a sequence of positive numbers tend-
ing to zero as n → ∞. We develop a central limit theorem for the non-normalized
increments of X
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Asymptotic properties of the realized skewness 707

Vn
T (X, g) :=

�T/�n�∑

i=1

g(�n
i X)

for a function g : R → R satisfying some smoothness condition. If g is continuous
and satisfies g(x) = o(x2) as x → 0, it is known that

Vn
T (X, g) →P

∑

0≤s≤T

g(�Xs)

as n → ∞; see e.g., Theorem 3.3.1 from Jacod and Protter (2012). If further g is of
class C2 and satisfies g(0) = g′(0) = 0 and g′′(x) = o(|x |) as x → 0, a central limit
theorem for Vn

T (X, g) is also known under Assumption [H] [see Theorem 5.1.2 of
Jacod and Protter (2012)]. This condition is, however, not sufficient to allow the cubic
function g(x) = x3, which is crucial for deriving the asymptotic distribution of the
realized skewness. Motivated by this reason, in the following we relax this condition
to incorporate such a function.

We will use the notion of stable convergence denoted by →S . Here we briefly
describe it before the main theorems. Let (X ,A, P) be a probability space and assume
that we have a random element Zn taking values in a Polish space S and defined on an
extension (Xn,An, Pn) of (X ,A, P) for each n ∈ N∪{∞}. In this setup, the sequence
Zn is said to converge stably in law to Z∞ if En[U f (Zn)] → E∞[U f (Z∞)] for any
A-measurable bounded random variableU and any bounded continuous function f on
S. The most important property of this notion is the following: For each n ∈ N, let Vn
be a real-valued variable on (Xn,An, Pn), and suppose that the sequence Vn converges
in probability to a variable V on (X ,A, P). Then we have (Zn, Vn) →ds (Z∞, V )

for the product topology on the space S × R, provided that Zn →S Z . We refer to
Section 2.2.1 of Jacod and Protter (2012) for more detailed discussions.

We need some ingredients to describe the limiting random variables appearing in
the central limit theorems below. Consider an auxiliary space (�′,F ′, P ′) supporting
a standard normal variable U 0, two sequences (Uq)q≥1, (U ′

q)q≥1 of standard normal
variables, and a sequence (κq)q≥1 of variables uniformly distributed on (0, 1), all
of these being mutually independent. Then we introduce the extension (�̃, F̃ , P̃)

of (�,F , P) by putting �̃ = � × �′, F̃ = F ⊗ F ′ and P̃ = P × P ′. Now
let (Tq)q≥1 be a sequence of stopping times exhausting the jumps of X . Namely,
{s ≥ 0 : �Xs(ω) 
= 0} = {Tq(ω) : q ≥ 1, Tq(ω) < ∞} for almost allω and Tq 
= Tq ′
if q 
= q ′ and Tq < ∞. It is well-known that such a sequence always exists as long
as X is càdlàg and adapted; see Proposition I-1.32 of Jacod and Shiryaev (2003). For
any C1 function g : R → R such that g′(x) = o(|x |) as x → 0, we define the random
variable VT (X, g) by

VT (X, g) =
∑

q:Tq≤T

g′(�XTq )Rq ,

where Rq = √
κqσTq−Uq + √

1 − κqσTqU
′
q . From Proposition 5.1.1 of Jacod and

Protter (2012) the variable VT (X, g) is well-defined and its F-conditional law does
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708 Y. Koike, Z. Liu

not depend on the choice of the exhausting sequence (Tq). For any integer r ≥ 2
we also define the random variable ZT (X, r) by ZT (X, r) = VT (X, gr ), where the
function gr is defined by gr (x) = xr .

In order to derive the asymptotic distribution of the realized skewness, we also
need to consider the realized volatility of X , i.e., RVn

T (X) = ∑�T/�n�
i=1 (�n

i X)2. Under
Assumption [H], the following central limit theorem for RVn

T (X) is known (e.g., The-
orem 5.4.2 of Jacod and Protter (2012)):

1√
�n

(RVn
T (X) − [X, X ]T ) →S √2I QTU

0 + ZT (X, 2)

as n → ∞, where I QT := ∫ T
0 σ 4

s ds is the so-called integrated quarticity. Here
our aim is to develop a joint central limit theorem for the bivariate variables
(RVn

T (X),Vn
T (X, g)). In the following, the variables ZT (X, 2) and VT (X, g) are

defined with respect to the same auxiliary sequence Rq .

Theorem 1 Let g be a real-valued C2 function on R satisfying g(0) = g′(0) = 0 and
g′′(x) = O(|x |) as x → 0. Under Assumption [H], the random variables

1√
�n

⎛

⎝RVn
T (X) − [X, X ]T ,Vn

T (X, g) − Vn
T (Xc, g) −

∑

0≤s≤T

g(�Xs)

⎞

⎠

converge stably in law to

(√
2I QTU

0 + ZT (X, 2),VT (X, g)
)

as n → ∞, where Xc denotes the continuous martingale part of X, i.e., Xc
t =

∫ t
0 σsdBs.

We prove this result in Sect. 4.1.

Remark 1 (i) If in addition g′′(x) = o(|x |) as x → 0, it can easily be seen that
Vn
T (Xc, g) = oP (

√
�n) as n → ∞, hence the theorem is a special case of

Theorem 5.5.1 from Jacod and Protter (2012) oncewe note that [X, X ]�T/�n��n −
[X, X ]T = oP (

√
�n) under the assumptions of the theorem.

(ii) If the probability limit VT (Xc, g) := P- lim Vn
T (Xc, g)/

√
�n exists, by using

the properties of stable convergence we can deduce a central limit theorem for
1√
�n

(Vn
T (X, g) − ∑

0≤s≤T g(�Xs)) (in this case VT (Xc, g) appears as the F-
conditional mean of the limiting variable).

(iii) If g is positively homogeneous, i.e., there exists a constant w such that g(αx) =
αwg(x) for any α ≥ 0 and any x ∈ R, the probability limit of Vn

T (Xc, g)/
√

�n

can be derived from e.g., Theorem 3.4.1 of Jacod and Protter (2012). In the
following, we give two examples of such a case as corollaries.

(iv) In general, the variables Vn
T (Xc, g)/

√
�n may not converge in probability (even

in law, indeed); see the next proposition (we prove it in Sect. 4.2).
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Asymptotic properties of the realized skewness 709

Proposition 1 For every a ∈ R, define the function ga : R → R by ga(x) =
|x |3 sin(2a log |x |).
(a) For all a ∈ R, ga is a C2 function and satisfies ga(0) = g′

a(0) = 0 and g′′
a (x) =

O(|x |) as x → 0.
(b) Suppose that σs = 1 for all s ∈ [0, T ]. There is a real number a 
= 0 such that

the variables Vn
T (Xc, ga)/

√
�n do not converge in law with �n = exp(−nπ/a).

If we assume g(x) = |x |3, we obtain a generalization of case 2 from Section 1.4.2
of Jacod and Protter (2012) (p. 20 of that book) where X is assumed to be a scaled
Brownian motion with a linear drift plus a compound Poisson process to a situation
where X is a more general Itô semimartingale:

Corollary 1 Under Assumption [H],

1√
�n

⎛

⎝
�T/�n�∑

i=1

|�n
i X |3 −

∑

0≤s≤T

|�Xs |3
⎞

⎠ →S 2
√
2√

π

∫ T

0
|σs |3ds

+ 3
∑

q:Tq≤T

sign(�XTq )(�XTq )
2Rq

as n → ∞, where sign(x) = 1 if x ≥ 0; otherwise sign(x) = −1.

If we consider g(x) = x3, the following joint central limit theorem for the realized
volatility and the cubic power variation is obtained:

Corollary 2 Under Assumption [H], the variables

1√
�n

⎛

⎝RVn
T (X) − [X, X ]T ,

�T/�n�∑

i=1

(�n
i X)3 −

∑

0≤s≤T

(�Xs)
3

⎞

⎠

converge stably in law to

(√
2I QTU

0 + ZT (X, 2),ZT (X, 3)
)

as n → ∞.

We can use Corollary 2 to derive the asymptotic distribution of the realized skew-
ness: combining Corollary 2with the deltamethod for stable convergence [Proposition
2(ii) of Podolskij and Vetter (2010)], we obtain the following result:

Theorem 2 Under Assumption [H], the variables

1√
�n

(
1

�T/�n�RDSkew −
∑

0≤s≤T (�Xs)
3

([X, X ]T )3/2

)

converge stably in law to
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710 Y. Koike, Z. Liu

GT :=
[X, X ]3/2T ZT (X, 3) − 3

2
√[X, X ]T

∑
0≤s≤T (�Xs)

3
{√

2I QTU
0 + ZT (X, 2)

}

[X, X ]3T
as n → ∞.

3 Microstructure noise and stochastic sampling

It iswidely recognized thatmodeling rawhigh-frequencyfinancial data as direct obser-
vations of an Itô semimartingale X is unrealistic. One common approach to deal with
this issue is to assume that we observe the process X with some measurement errors
(referred to as microstructure noise) rather than X itself; see Chapter 7 of Aït-Sahalia
and Jacod (2014) and references therein. Also, raw high-frequency financial data are
typically recorded at stochastic sampling times, so the assumption that we observe
data at equidistant sampling times is not applicable. Motivated by these reasons, in
this section we consider an observed model which takes account of microstructure
noise and stochastic sampling times, and develop an asymptotic theory for estimating
Eq. (1) under such a situation.

Let us introduce the precise mathematical description of our model. We denote by
tn0 , tn1 , . . . the observation times which are assumed to be (Ft )-stopping times and
satisfy tni ↑ ∞ as i → ∞. We also assume that

rn(t) := sup
i≥0

(tni ∧ t − tni−1 ∧ t) →P 0

as n → ∞ for any t ∈ R+, with setting tn−1 = 0 for notational convenience.
The observed process Y is contaminated by some noise:

Yt = Xt + εt .

The noise process ε implicitly depends on n ∈ N and is defined on a very good filtered
extension Bn = (�n,Fn, (Fn

t )t≥0, Pn) of B (see p. 36 of Jacod and Protter (2012)
for the definition of very good filtered extensions). ε is an (Fn

t )-optional process
and, conditionally on F , the sequence (εtni

)∞i=0 is independent and the (conditional)
distribution of εtni

is given by Qtni (ω)(ω, du) for each i = 0, 1, . . . , where for each
t ≥ 0 Qt (ω, du) denotes a transition probability from (�,Ft ) to R. We assume that
the Qt (ω, du)’s satisfy the following condition:

∫
uQt (ω, du) = 0 for every t ≥ 0,

the process (Qt (·, A))t≥0 is (Ft )-progressively measurable for any Borel set A of R.

}

(4)

A concrete construction of such a noise process can be found in Section 2 of Koike
(2016).
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Asymptotic properties of the realized skewness 711

3.1 Construction of estimators

As was pointed out by Liu et al. (2014), the realized skewness RDSkew is no longer
a consistent estimator for Eq. (1) in the presence of microstructure noise even after
appropriate scaling. Hence we modify the realized skewness by the pre-averaging
procedure, which is a general scheme to remove the effects of microstructure noise
from observation data; see Podolskij and Vetter (2009) and Chapter 16 of Jacod and
Protter (2012) for example.

First, we choose a sequence kn of positive integers and a number θ ∈ (0,∞) such
that kn = θ�

−1/2
n + o(�−1/4

n ) as n → ∞. Here, unlike the previous section, �n is an
auxiliary sequence which is not observable: It typically corresponds to the expected
duration between successive observation times. We also choose a continuous function
g : [0, 1] → R which is piecewise C1 with a piecewise Lipschitz derivative g′ and
satisfies g(0) = g(1) = 0 and

∫ 1
0 g(x)3dx 
= 0. After that, for any process V we

define the variables

V i =
kn−1∑

p=1

g

(
p

kn

)(
Vtni+p

− Vtni+p−1

)
, i = 0, 1, . . . .

In the following, we develop a central limit theorem for the Pre-averaged Realized
Volatility

PRVn
T = 1

ψ2kn

Nn
T −kn+1∑

i=0

(
Y i
)2 − ψ1

2ψ2kn

Nn
T∑

i=1

(Ytni − Ytni−1
)2, s

and the Pre-averaged realized Cubic power Variation

PCVn
T = 1

ψ3kn

Nn
T −kn+1∑

i=0

(
Y i
)3

,

where Nn
T = max{i : tni ≤ T } and

ψ1 =
∫ 1

0
g′(x)2dx, ψ2 =

∫ 1

0
g(x)2dx, ψ3 =

∫ 1

0
g(x)3dx .

For the equidistant sampling case tni = i�n , it is known that

PRVn
T →P [X, X ]T , PCVn

T →P
∑

0≤s≤T

(�Xs)
3

123



712 Y. Koike, Z. Liu

as n → ∞ from Theorems 16.2.1 and 16.6.1 of Jacod and Protter (2012). Therefore,
we may expect that

PCVn
T

(
PRVn

T

)3/2

is a consistent estimator for Eq. (1). Our aim is to derive the asymptotic distribution
of the above statistic.

3.2 Asymptotic results

3.2.1 Notation

We write Xn ucp−−→ X for processes Xn and X to express shortly that sup0≤t≤T |Xn
t −

Xt | →p 0. � denotes some (fixed) positive constant. We denote by (Gt ) the smallest
filtration containing (Ft ) such that G0 contains the σ -field generated by μ, i.e., the
σ -field generated by all the variables μ(A), where A ranges all measurable subsets of
R+ × E .

For any real-valued bounded measurable functions u, v on [0, 1], we define the
function φu,v on [0, 1] by

φu,v(y) =
∫ 1

y
u(x − y)v(x)dx .

Then we put

�22=
∫ 1

0
φg,g(y)

2dy, �12=
∫ 1

0
φg,g(y)φg′,g′(y)dy, �11 =

∫ 1

0
φg′,g′(y)2dy

and

�3+ =
∫ 1

0
φg,g2(y)

2dy, �3− =
∫ 1

0
φg2,g(y)dy,

�′
3+ =

∫ 1

0
φg′,g2(y)

2dy, �′
3− =

∫ 1

0
φg2,g′(y)2dy,

�23+ =
∫ 1

0
φg,g(y)φg,g2(y)dy, �23− =

∫ 1

0
φg,g(y)φg2,g(y)dy,

�′
23+ =

∫ 1

0
φg′,g(y)φg′,g2(y)dy, �′

23− =
∫ 1

0
φg,g′(y)φg2,g′(y)dy.

We define the process α by α(ω)t = ∫
u2Qt (ω, du).

123



Asymptotic properties of the realized skewness 713

3.2.2 Assumptions

We enumerate the assumptions which are imposed to derive our limit theorem.

[A1 ] It holds that

rn(t) = op(�
ξ
n) (5)

asn → ∞ (note that tn−1 = 0byconvention) for every t > 0 andevery ξ ∈ (0, 1).
Moreover, for each n we have a (Gt )-progressively measurable positive-valued
process Gn

t and a random subsetN n of Z+ satisfying the following conditions:
(i) {(ω, p) ∈ � × Z+ : p ∈ N n(ω)} is a measurable set of � × Z+. Moreover,

there is a constant κ ∈ (0, 1
2 ) such that #(N n ∩ {p : tnp ≤ t}) = Op(�

−κ
n ) as

n → ∞ for every t > 0.
(ii) E[�−1

n (tnp+1 − tnp)
∣
∣Gtnp ] = Gn

tnp
for every n and every p ∈ Z+ \ N n .

(iii) There is a càdlàg (Ft )-adapted positive-valued process G such that

(iii-a) �−�
n (Gn − G)

ucp−−→ 0,
(iii-b) Gt− > 0 for every t > 0,
(iii-c) G is an Itô semimartingale of the form

Gt = G0 +
∫ t

0
b̂sds +

∫ t

0
σ̂sdWs

+
∫ t

0
σ̂ ′
sdŴs

+
∫ t

0

∫

|̂δ(s,z)|≤1}
δ̂(s, z)(μ − ν)(ds, dz)

+
∫ t

0

∫

|̂δ(s,z)|>1
δ̂(s, z)μ(ds, dz),

where b̂s is a locally bounded and (Ft )-progressively measurable real-valued
process, σ̂s and σ̂ ′

s are càdlàg (Ft )-adapted processes, Ŵs is an (Ft )-standard
Wiener process independent of W , and δ̂ is an (Ft )-predictable real-valued
function on � × R+ × E such that there is a sequence (ρ̂ j ) of (Ft )-stopping
times increasing to infinity and, for each j , a deterministic nonnegative function
γ̂ j on E satisfying

∫
γ̂ j (z)2 ∧ 1λ(dz) < ∞ and |̂δ(ω, t, z)| ≤ γ̂ j (z) for all

(ω, t, z) with t ≤ ρ̂ j (ω).

Furthermore, maxp=0,1,...,Nn
T
E
[
�−1

n (tnp+1 − tnp)|Ftnp

]
is tight as n → ∞ for

every t > 0.

[A2 ] The volatility process σ is an Itô semimartingale of the form

σt = σ0 +
∫ t

0
b̃sds +

∫ t

0
σ̃sdWs +

∫ t

0
σ̃ ′
sdW̃s

+
∫ t

0

∫

|̃δ(s,z)|≤1}
δ̃(s, z)(μ − ν)(ds, dz)

+ ∫ t
0

∫
|̃δ(s,z)|>1 δ̃(s, z)μ(ds, dz)
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where b̃s is a locally bounded and (Ft )-progressivelymeasurable process, σ̃s and
σ̃ ′
s are càdlàg (Ft )-adapted processes, W̃s is an (Ft )-standard Wiener process

independent ofW , and δ̃ is an (Ft )-predictable function on �×R+ × E . More-
over, for each j there is an (Ft )-stopping time ρ j , a bounded (Ft )-progressively
measurable process b( j)s , a deterministic nonnegative function γ j on E , and a
constant � j such that ρ j ↑ ∞ as j → ∞ and, for each j ,

(i) b(ω)s = b( j)(ω)s if s < ρ j (ω),
(ii) E

[|b( j)t1 − b( j)t2 |2|Ft1∧t2
] ≤ � j E

[|t1 − t2|� |Ft1∧t2
]
for any (Ft )-stopping

times t1 and t2 bounded by j ,
(iii)

∫ {
γ j (z)2 ∧ 1

}
λ(dz) < ∞ and |δ(ω, t, z)| ∨ |̃δ(ω, t, z)| ≤ γ j (z) for all

(ω, t, z) with t ≤ ρ j (ω),
(iv) E

[|δ(t1 ∧ ρ j , z) − δ(t2 ∧ ρ j , z)|2|Ft1∧t2
] ≤ � jγ j (z)2E

[|t1 − t2|� |Ft1∧t2
]

for any (Ft )-stopping times t1 and t2 bounded by j .

[A3 ] Qt ’s satisfy Eq. (4) and there is a sequence (ρ′
j ) j≥1 of (Ft )-stopping times

increasing to infinity such that

sup
ω∈�,t<ρ′

j (ω)

∫

u6Qt (ω, du) < ∞.

Moreover, for each j there is a bounded càdlàg (Ft )-adapted process α( j)t and
a constant �′

j such that
(i) α( j)(ω)t = α(ω)t if t < ρ′

j (ω),

(ii) E
[|α( j)t1 − α( j)t2 |2|Ft1∧t2

] ≤ �′
j E
[|t1 − t2|� |Ft1∧t2

]
for any (Ft )-stopping

times t1 and t2 bounded by j .

[A4 ] A regular conditional probability of P givenH exists for any sub-σ -fieldH of
F .

Remark 2 Assumptions [A1]–[A4] are almost identical to the ones imposed to prove a
central limit theorem for PRVn

T in Koike (2016). A few differences appear in [A1] and
[A3]: We add an additional (mild) assumption on the tightness of random variables

max
p=0,1,...,Nn

T

E
[
�−1

n (tnp+1 − tnp)|Ftnp

]
.

to [A1] (note that this assumption automatically follows from [A1](ii)–(iii) ifN n = ∅).
In the meantime, [A3] requires the finiteness of the sixth moment of the noise process.

Remark 3 SinceAssumption [A1] contains some non-standard aspects comparedwith
common ones used in the literature, we brieflymake some comments on it (see Remark
3.2 of Koike (2016) for more details).

1. A typical example satisfying this assumption is the restricted discretization scheme
introduced in Chapter 14 of Jacod and Protter (2012), where the tnp’s are modeled
as

tnp = tnp−1 + θntnp−1
εnp, p = 1, 2, . . . ,
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with θn being a càdlàg (Ft )-adapted process, (εnp)p≥1 being a sequence of i.i.d. pos-
itive variables independent of b, σ , δ, W , μ, and such that E[εnp] = 1 and
E[(εnp)r ] < ∞ for every r > 0, and tn0 = 0. An appropriate construction of
the filtration (Ft ) allows us to assume the independence between εnp and Ftnp−1

for

all n, p. In this case we have [A1](i)–(ii) by setting N n = ∅ and Gn = �−1
n θn .

Then, [A1](iii) corresponds to (a weaker version of) Assumption (E) of Jacod and
Protter (2012), and Eq. (5) follows fromLemma 14.1.5 of Jacod and Protter (2012)
(note that the last condition on tightness is automatically satisfied once [A1](iii)
holds true since N n = ∅).

2. The main reason why we introduce an involved assumption compared with the
standard ones is that our assumption does not rule out the dependence between
εnp’s and X (see Example 4.1 of Koike (2016) for instance). However, we remark
that [A1] rules out some kind of dependence between the observation times and
the jumps of the observed process because we take the conditional expectation
given Gtnp ’s instead of Ftnp ’s in [A1](ii). In fact, our assumption does not allow the
case that tnp’s are given by hitting times of a pure-jump Lévy process whose jump
measure is μ (note that in this case the Lévy process must have infinite activity
jumps due to Eq. (5)). We, however, note that our assumption does not exclude
such a dependence completely; see Example 4.2 of Koike (2016) for instance.

3. The setN n can be interpreted as a set of exceptional indices p for which the equa-
tion E[�−1

n (tnp+1 − tnp)
∣
∣Gtnp ] = Gn

tnp
does not hold true. This additional complexity

is useful to ensure the stability of Assumption [A1] under the localization used in
the proof (see Lemma 6.1 of Koike (2016). Non-empty N n also excludes some
trivial exceptions of [A1] withN n = ∅, such as tn0 = log n/n and tnp = tnp−1 +�n

for p ≥ 1.

3.2.3 Results

Theorem 3 Suppose that [A1]–[A4] are satisfied. Then

⎛

⎝�
−1/4
n

(
PRVn

T −[X, X ]T
)
,�

−1/4
n

⎛

⎝PCVn
T −

∑

0≤s≤T

(�Xs)
3

⎞

⎠

⎞

⎠

∗
→S �

1/2
T ζ

as n → ∞, where ζ is a bivariate standard normal variable which is defined on an
extension of B and independent of F , and �T is the R

2 ⊗ R
2-valued variable given

by

�T =
⎡

⎣
�c
T + �

11
T �

12
T

�
12
T �

22
T

⎤

⎦

with

�c
T = 4

ψ2
2

∫ T

0

[

�22θσ 4
s Gs + 2

�12

θ
σ 2
s αs + �11

θ3
α2
s

Gs

]

ds,
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�
11
T = 4

ψ2
2

∑

0≤s≤T

(�Xs)
2
{

�22θ
(
σ 2
s Gs + σ 2

s−Gs−
)

+ �12

θ
(αs + αs−)

}

,

�
12
T = 6

ψ2ψ3

∑

0≤s≤T

(�Xs)
3
{
θ
(
�23+σ 2

s Gs + �23−σ 2
s−Gs−

)

+θ−1 (�′
23+αs + �′

23−αs−
)}

,

�
22
T = 9

ψ2
3

∑

0≤s≤T

(�Xs)
4
{
θ
(
�3+σ 2

s Gs + �3−σ 2
s−Gs−

)
+ θ−1 (�′

3+αs + �′
3−αs−

)}
.

A proof of the above result is given in Sect. 4.3. Combining the above result with
the delta method for stable convergence, we obtain the asymptotic distribution of
PCVn

T /
(
PRVn

T

)3/2 as follows:

Theorem 4 Under the assumptions of Theorem 3, we have

�
−1/4
n

(
PCVn

T
(
PRVn

T

)3/2 −
∑

0≤s≤T (�Xs)
3

([X, X ]T )3/2

)

→S
√

d21,T (�c
T + �

11
T ) + 2d1,T d2,T�

12
T + d22,T�

22
T × ζ

as n → ∞, where ζ is a standard normal variable which is defined on an extension
of B and independent of F , and

d1,T = −3

2

∑
0≤s≤T (�Xs)

3

([X, X ]T )5/2
, d2,T = 1

([X, X ]T )3/2
.

Remark 4 The stable convergence result on the first component �
−1/4
n(

PRVn
T −[X, X ]T

)
in Theorem 3 is a special case of Theorem 3.1 from Koike (2016).

In contrast, the stable convergence result on the second component

�
−1/4
n

⎛

⎝PCVn
T −

∑

0≤s≤T

(�Xs)
3

⎞

⎠

in Theorem 3 is new even in the equidistant sampling case tni = i�n . As is remarked
in Introduction, Theorem 16.3.1 of Jacod and Protter (2012) deals with the asymptotic
distribution of the statistic

1

kn

Nn
T −kn+1∑

i=0

f (Y i )

in the equidistant sampling case for a C2 function f : R → R which is a linear
combinations of positively homogeneous functions with degree (strictly) bigger than
3. Since the cubic function f (x) = x3 does not have this property, Theorem 16.3.1 of
Jacod and Protter (2012) is not applicable to deriving the asymptotic distribution of
PCVn

T .
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Remark 5 The main difference between the asymptotic distributions given in Theo-
rems 1–2 and Theorems 3–4 is that the former ones are in generalnotF-conditionally
Gaussian due to the additional randomness caused by the uniform variables Uq ,U ′

q ,
while the latter ones are always F-conditionally Gaussian. This is a byproduct of the
pre-averaging procedure and commonly observed in the literature of pre-averaging
estimators for functionals of jumps.

Remark 6 If X is continuous, Theorem 3 implies �
−1/4
n PCVn

T →P 0 as n → ∞,

hence we will need a larger scaling factor than �
−1/4
n to obtain a non-degenerate

asymptotic distribution of PCVn
T . To the best of our knowledge, nothing is known

about the non-trivial asymptotic distribution of PCVn
T even in the equidistant sampling

setting. An analogy to the non-noisy case suggests that the proper scaling factor is
�

−1/2
n and �

−1/2
n PCVn

T would converge stably in law to a mixed normal distribution
with a nonzero conditional mean (cf. Example 6 of Kinnebrock and Podolskij (2008)
for the equidistant sampling setting and Theorem 2 of Li et al. (2014) for an irregular
sampling setting).

Remark 7 We note that the main reason why the asymptotic distribution of the
realized skewness obtained in the previous section is centered is because we have√

�n
∑Nn

T
i=1(X

c
tni

− Xc
tni−1

)3 →P 0 as n → ∞ as long as tni = i�n . This is in general

not true when we consider more general sampling schemes as (tni ) such that they
depend on the process Xc. In particular, Assumption [A1] does not rule out situations

where the variables
√

�n
∑Nn

T
i=1(X

c
tni

−Xc
tni−1

)3 converge in probability to some nonzero

random variable as n → ∞; see e.g., Example 3.2 from Koike (2017) and Example
5 from Li et al. (2014). In such a situation, we conjecture that the asymptotic distri-
bution of the realized skewness estimator would be no longer centered. In contrast,
Theorem 4 tells us that the estimator PCVn

T /
(
PRVn

T

)3/2 is asymptotically centered
even under [A1]. This is another byproduct of the pre-averaging procedure.

Remark 8 In the absence of noise, the simultaneous presence of jumps and the random-
ness of observation times typically addsmore complexity to the asymptotic distribution
of statistics of the form Eq. (3) more complex, as seen in Bibinger and Vetter (2015),
Vetter and Zwingmann (2017) and Martin and Vetter (2016). In this sense, the result
of Theorem 3 again contrasts with non-noisy cases because the estimators PRVn

T and
PCVn

T are asymptotically mixed normal even with stochastic sampling times. This is
also a byproduct of the pre-averaging procedure.

4 Proofs

4.1 Proof of Theorem 1

First of all, a standard localization procedure, described in detail in Lemma 4.49 of
Jacod and Protter (2012), for instance, allows us to assume that there are a positive
constant A and a nonnegative deterministic measurable function γ on E such that
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|b(ω)t | ≤ A, |σ(ω)t | ≤ A, |X (ω)t | ≤ A, |Xc(ω)t | ≤ A,

|δ(ω, t, z)| ≤ γ (z) ≤ A,

∫

γ (z)2λ(dz) ≤ A.

⎫
⎬

⎭
(6)

The strategy of the proof is the same as the one used in the proof of Theorem 5.1.2
from Jacod and Protter (2012), and we divide the proof into several steps. For the part
corresponding to Steps 1–3 of Jacod and Protter (2012)’s proof, we can adopt almost
the same argument as the original one, hence it is just briefly sketched in Step 2. In the
remainder steps, we will need an argument which is somewhat different from theirs.

Throughout the discussions, for random variables X and Y which may depend on
the parameters n,m, i , X � Y means that there exists a (non-random) constant K > 0
independent of n,m, i such that X ≤ KY a.s.

Step 1) We begin with introducing some notations. For each m ∈ N, set Am = {z :
γ (z) > 1/m}. Noting that ν(Am) < ∞, we denote by (S(m, j)) j≥1 the successive
jump times of the Poisson process (μ((0, t] × (Am \ Am−1)))t≥0. Let (Sp)p≥1 be
a reordering of the double sequence (S(m, j)), and we denote by Pm the set of all
indices p such that Sp = S(m′, j) for some j ≥ 1 and some m′ ≤ m. In the light of
Proposition 5.1.1 from Jacod and Protter (2012), we may assume that (Sp) = (Tq)
without loss of generality.

Set

b(m)t = bt −
∫

Am∩{z:|δ(t,z)|≤1}
δ(t, z)λ(dz), C(m)t = X0 +

∫ t

0
b(m)sds + Xc

t ,

X (m)t = C(m)t +
∫ t

0

∫

Ac
m

δ(s, z)(μ − ν)(ds, dz),

X ′(m)t = Xt − X (m)t =
∫ t

0

∫

Am

δ(s, z)μ(ds, dz),

X ′′(m)t = X (m)t − Xc
t = X0 +

∫ t

0
b(m)sds +

∫ t

0

∫

Ac
m

δ(s, z)(μ − ν)(ds, dz),

Y (m)t = Xt −
∫ t

0

∫

Ac
m

δ(s, z)(μ − ν)(ds, dz) = C(m)t + X ′(m)t ,

(7)

and denote by�n(T,m) the set of allω such that each interval [0, T ]∩((i−1)�n, i�n]
contains at most one jump of X ′(m)(ω). Note that the notations here are consistent
with those from Eq.(5.1.10) of Jacod and Protter (2012). Since X ′(m) has finitely
many jumps on [0, T ], it holds that P(�n(T,m)) → 1 as n → ∞. We also set
inp = �Sp/�n� so that Sp is in ((inp − 1)�n, inp�n]. Here, for a real number x , �x�
denotes the minimum integer l satisfying l ≥ x . Then we define

R(n, p) = 1√
�n

(
�n

inp
X − �XSp

)
,

ζ n
p = 1√

�n

(
g(�n

inp
X) − g(�XSp ) − g(

√
�n R(n, p))

)
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and Yn
T (m) = ∑

p∈Pm :Sp≤�n�T/�n� ζ n
p . Moreover, for any semimartingale S, we set

Vn
T (S, g) = 1√

�n

⎛

⎝Vn
T (S, g) −

∑

0≤s≤T

g(�Ss)

⎞

⎠ ,

Z
n
T (S) = 1√

�n

(
RVn

T (S) − [S, S]�T/�n��n

)
.

Step 2) First we fix m. With p fixed, the sequence R(n, p) is tight due to Proposition
4.4.10 of Jacod and Protter (2012). Therefore, we have g(

√
�n R(n, p))/

√
�n →P 0

as n → ∞ because g(x) = O(x2) as x → 0. On the other hand, repeated applications
of the fundamental theorem of calculus yield

g(�n
i p X) − g(�XSp ) = g′(�XSp )

√
�n R(n, p)

+
∫ √

�n R(n,p)

0

∫ u

0
g′′(�XSp + v)dvdu.

Since X is bounded and g′′ is continuous, we have

1√
�n

∫ √
�n R(n,p)

0

∫ u

0
g′′(�XSp + v)dvdu →P 0

as n → ∞. Consequently, we conclude that ζ n
p −g′(�XSp )R(n, p) →P 0 as n → ∞.

On the other hand, an argument similar to the proof of Lemma 5.4.10 from Jacod and

Protter (2012) implies that
(
Z
n
T (C(m)), (R(n, p))p≥1

)
→S

(√
2I QTU 0,

(
Rp
)
p≥1

)

as n → ∞. Hence it holds that

(

Z
n
T (C(m)),

(
�XSp R(n, p)

)
p≥1 ,

(
ζ n
p

)

p≥1

)

→S
(√

2I QTU
0,
(
�XSp Rp

)
p≥1 ,

(
ζp
)
p≥1

)

as n → ∞, where ζp = g′(�XSp )Rp. Since the set {Sp : p ∈ Pm} ∩ [0, T ] is finite,
it follows that
(
Z
n
T (C(m)),Zn

T (m),Yn(m)T

)
→S (√2I QTU

0,ZT (X ′(m), 2),VT (X ′(m), g)
)

as n → ∞, where Zn
T (m)T = 2

∑
p∈Pm :Sp≤�n�T/�n� �XSp R(n, p). Furthermore,

the same argument as the last part of the proof of Lemma 5.4.10 from Jacod and
Protter (2012) implies that Z

n
T (C(m)) + Zn

T (m)T − Z
n
T (Y (m)) →P 0 as n → ∞.

Consequently, we conclude that

(
Z
n
T (Y (m)),Yn

T (m)
)

→S (
√
2I QTU

0 + ZT (X ′(m), 2),VT (X ′(m), g))

as n → ∞.
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Next we vary m. We can prove

VT (X ′(m), g) →P VT (X, g)

as m → ∞ by the same argument as the proof of Eq.(5.1.16) from Jacod and Protter
(2012) and

limm→∞ lim supn→∞ P
(∣
∣
∣Z

n
T (Y (m)) − Z

n
T (X)

∣
∣
∣ > η

)
→ 0,

ZT (X ′(m), 2) →P ZT (X, 2) as m → ∞

}

for any η > 0 by the same argument as in the proof of Lemma 5.4.12 from Jacod and
Protter (2012) where our Y (m) is denoted by X (m).

Now, noting that [X, X ]�T/�n��n − [X, X ]T = oP (
√

�n) and the decomposition

Vn
T (X, g) = Vn

T (X (m), g) + Yn
T (m)

holding on the set �n(T,m) as well as limn→∞ P(�n(T,m)) = 1 for every m ∈ N,
the proof of the theorem is completed once we show that

lim
m→∞ lim sup

n→∞
P

(

�n(T,m) ∩
{∣
∣
∣
∣V

n
T (X (m), g) − 1√

�n
Vn
T (Xc, g)

∣
∣
∣
∣ > η

})

= 0

(8)

for any η > 0.

Step 3) We begin by showing three inequalities used in the proof. The first and the
second ones are elementary: if ρ ∈ (0, 2], the Lyapunov and Doob inequalities as well
as (6) yield

E

[

sup
(i−1)�n≤t≤i�n

∣
∣
∣
∣
∣

∫ t

(i−1)�n

∫

Ac
m

δ(s, z)(μ − ν)(ds, dz)

∣
∣
∣
∣
∣

ρ]

≤ (
4�nγm

)ρ/2
,

whereγm := ∫
Ac
m

γ (z)2λ(dz). Therefore, noting that
∣
∣
∣
∫
Am∩{z||δ(t,z)|≤1} δ(t, z)ν(dz)

∣
∣
∣ ≤

Am, there exists a positive constant Kρ such that

E
[
sup(i−1)�n≤t≤i�n

∣
∣X ′′(m)t − X ′′(m)(i−1)�n

∣
∣ρ
] ≤ Kρ

{
(m�n)

ρ + (
�nγm

)ρ/2
}

(9)

for every i, n,m. On the other hand, for every ρ ≥ 1 there exists a constant K ′
ρ such

that

E
[
sup(i−1)�n≤t≤i�n

∣
∣
∣Xc

t − Xc
(i−1)�n

∣
∣
∣
ρ] ≤ K ′

ρ�
ρ/2
n (10)

for every i, n, due to the Burkholder–Davis–Gundy inequality and (6).
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Now we prove the third one. By using integration by parts repeatedly we obtain

�n
i X

c (�n
i X

′′(m)
)2= 2

∫ i�n

(i−1)�n

(Xc
s − Xc

(i−1)�n
)(X ′′(m)s− − X ′′(m)(i−1)�n )dX

′′(m)s

+
∫ i�n

(i−1)�n

∫

Ac
m

(Xc
s − Xc

(i−1)�n
)δ(s, z)2μ(ds, dz)

+
∫ i�n

(i−1)�n

(X ′′(m)s− − X ′′(m)(i−1)�n )
2dXc

s

=: 2I
n
i + II

n
i + III

n
i .

First consider I
n
i . We decompose it as

I
n
i =

∫ i�n

(i−1)�n

(Xc
s − Xc

(i−1)�n
)(X ′′(m)s− − X ′′(m)(i−1)�n )b(m)sds

+
∫ i�n

(i−1)�n

∫

Ac
m

(Xc
s − Xc

(i−1)�n
)(X ′′(m)s− − X ′′(m)(i−1)�n )δ(s, z)(μ − ν)(ds, dz)

=: I
n,1
i + I

n,2
i .

The Schwarz inequality and (9)–(10) yield

E
[∣
∣
∣I
n,1
i

∣
∣
∣
]

≤ Cm
∫ i�n

(i−1)�n

E
[∣
∣
∣(Xc

s − Xc
(i−1)�n

)(X ′′(m)s− − X ′′(m)(i−1)�n )

∣
∣
∣
]
ds

� m�
3/2
n

(
m�n +√

γm�n

)
.

On the other hand, since integration by parts implies that

(Xc
s − Xc

(i−1)�n
)(X ′′(m)s− − X ′′(m)(i−1)�n )

=
∫ s−

(i−1)�n

(Xc
u−Xc

(i−1)�n
)dX ′′(m)u+

∫ s

(i−1)�n

(X ′′(m)u− − X ′′(m)(i−1)�n )dX
c
u,

the Doob inequality, (6) and (9)–(10) imply that

E

[

sup
(i−1)�n≤s≤i�n

∣
∣
∣(Xc

s − Xc
(i−1)�n

)(X ′′(m)s − X ′′(m)(i−1)�n )

∣
∣
∣
2
]

� �2
n

(
m2�n + γm

)
,

hence the Lyapunov and Doob inequalities yield

E
[∣
∣
∣I
n,2
i

∣
∣
∣
]

≤
{

4γm

∫ i�n

(i−1)�n

E

[∣
∣
∣(Xc

s − Xc
(i−1)�n

)(X ′′(m)s− − X ′′(m)(i−1)�n )

∣
∣
∣
2
]

ds

}1/2

� �
3/2
n

(
m
√

γm�n + γm

)
.
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Consequently, it holds that E
[|Ini |

]
� �

3/2
n
(
m2�n + m

√
γm�n + γm

)
. On the other

hand, since ν is the compensator of μ, we have

E
[|IIni |

] ≤ E

[∫ i�n

(i−1)�n

∫

Ac
m

∣
∣
∣Xc

s − Xc
(i−1)�n

∣
∣
∣ δ(s, z)2ν(ds, dz)

]

� �
3/2
n γm

by (6) and (10), whereas the Davis inequality, (6) and (9) imply that

E
[|IIIni |

]
� E

[{∫ i�n
(i−1)�n

(X ′′(m)s− − X ′′(m)(i−1)�n )
4σ 2

s ds
}1/2

]

� �
1/2
n E

[
sup(i−1)�n≤s≤i�n

(X ′′(m)s − X ′′(m)(i−1)�n )
2
]

� �
3/2
n

(
m2�n + γm

)
.

After all, there exists a positive constant K ′′ such that

E
[∣
∣
∣�n

i X
c (�n

i X
′′(m)

)2
∣
∣
∣
]

≤ K ′′�3/2
n

(
m2�n + m

√
γm�n + γm

)
(11)

for every i, n,m.

Step 4) Setting k(x, y) = g(x + y) − g(x) − g(y), we have

Vn
T (X (m), g) − 1√

�n
Vn
T (Xc, g) = 1√

�n

∑�T/�n�
i=1 k(�n

i X
c,�n

i X
′′(m)) + Vn

T (X ′′(m), g)

because X (m) = Xc + X ′′(m). Therefore, the proof is completed once we verify the
following equations for any η > 0:

lim
m→∞ lim sup

n→∞
P

⎛

⎝�n(T,m) ∩
⎧
⎨

⎩

1√
�n

∣
∣
∣
∣
∣
∣

�T/�n�∑

i=1

k(�n
i X

c,�n
i X

′′(m))

∣
∣
∣
∣
∣
∣
> η

⎫
⎬

⎭

⎞

⎠ = 0,

(12)

lim
m→∞ lim sup

n→∞
P
(
�n(T,m) ∩

{∣
∣
∣Vn

T (X ′′(m), g)
∣
∣
∣ > η

})
= 0. (13)

This step is devoted to the proof of (12). First, since g(0) = g′(0) = 0 and g′′(x) =
O(|x |) as x → 0, there exists a positive constant α such that

|x | ≤ 6A ⇒ |g(x)| ≤ α|x |3, |g′(x)| ≤ α|x |2, |g′′(x)| ≤ α|x |. (14)

Next, using the fundamental theorem of calculus repeatedly, we have

k(x, y) =
∫ y

0

∫ x

0
g′′(v + u)dvdu,
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hence (14) yields

|x | + |y| ≤ 6A ⇒ |k(x, y)| ≤ α
(
|x |2|y| + |x ||y|2

)
. (15)

Since |�n
i X

c| ≤ 2A and |�n
i X (m)| ≤ |�n

i X | + |�n
i X

′(m)| ≤ 3A on �n(T,m) due
to (6), we obtain

E

⎡

⎣

∣
∣
∣
∣
∣
∣

1√
�n

�T/�n�∑

i=1

k(�n
i X

c,�n
i X

′′(m))

∣
∣
∣
∣
∣
∣
1�n(T,m)

⎤

⎦

� �
−3/2
n

{
�n

(
m�n +√

γm�n

)
+ �

3/2
n

(
m2�n + m

√
γm�n + γm

)}

by (15), the Schwarz inequality and (9)–(11). Therefore, noting that γm → 0 as
m → ∞ because of (6) and the dominated convergence theorem and that �X (m)s =
�X ′′(m)s as well as �Xc

s = 0 for all s ≥ 0, (12) has been shown.

Step 5)Nowwe prove (13) and complete the proof of the theorem. First, set φ(x, y) =
k(x, y) − g′(x)y. If |y| > |x |, (14) and (15) yield

|x | ≤ 5A, |y| ≤ A ⇒ |φ(x, y)| ≤ 3α|x ||y|2, (16)

whereas repeated applications of the fundamental theorem of calculus imply that
φ(x, y) = ∫ y

0

∫ u
0 g′′(x + v)dvdu − g(y), hence, if |y| ≤ |x |, by (14) we have

|x | ≤ 5A, |y| ≤ A ⇒ |φ(x, y)| ≤ α(|x | + |y|)|y|2 + α|y|3 ≤ 3α|x ||y|2,

and thus (16) holds true.
Next, for any i , an application of Itô’s formula to the process �(m, i)t =∫ t

0 1{s>(i−1)�n}dX ′′(m)s and the function g yields

g(�(m, i)t ) =
∫ t

(i−1)�n

g′(�(m, i)s−)dX ′′(m)s

+
∑

(i−1)�n<s≤t

{φ(�(m, i)s−,�X (m)s) + g(�X (m)s)}

for any t > (i − 1)�n . Therefore, noting that
∑

(i−1)�n<s≤t g(�X (m)s) is well-
defined by assumption, for any t > (i − 1)�n we have

g(�(m, i)t ) −
∑

(i−1)�n<s≤t

g(�X (m)s)

∫ t

(i−1)�n

g′(�(m, i)s−)rmdX ′′(m)s+
∫ t

(i−1)�n

∫

Ac
m

φ(�(m, i)s−, δ(s, z))μ(ds, dz)

=
∫ t

(i−1)�n

a(n,m, i)udu +
∫ t

(i−1)�n

∫

Ac
m

k(�(m, i)s−, δ(s, z))(μ − ν)(ds, dz)

=: A(n,m, i)t + M(n,m, i)t , (17)
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where a(n,m, i)u = g′(�(m, i)u)b(m)u + ∫Ac
m

φ(�(m, i)u, δ(u, z))λ(dz). Note that
A(n,m, i) and M(n,m, i) are well-defined due to (6) and (15)–(16).

Let us set T (n,m, i) = inf{s > (i−1)�n : |�(m, i)s | > 5A}. On the set�n(T,m)

we have |�(m, i)s | ≤ 5A for all s ≤ T and i ≤ �T/�n� due to the decomposition
X ′′(m) = X − Xc − X ′(m) and (6), hence T (n,m, i) > i�n . Thus, in view of (17),
we have

P
(
�n(T,m) ∩

{∣
∣
∣Vn

T (X ′′(m), g)
∣
∣
∣ > η

})

≤ P

⎛

⎝ 1√
�n

�T/�n�∑

i=1

|A(n,m, i)(i�n)∧T (n,m,i)| >
η

2

⎞

⎠

+ P

⎛

⎝ 1√
�n

∣
∣
∣
∣
∣
∣

�T/�n�∑

i=1

M(n,m, i)(i�n)∧T (n,m,i)

∣
∣
∣
∣
∣
∣
>

η

2

⎞

⎠ . (18)

Therefore, in order to prove (13) it suffices to show that2

limm→∞ lim supn→∞ 1√
�n

E
[∑�T/�n�

i=1 |A(n,m, i)(i�n)∧T (n,m,i)|
]

= 0,

limm→∞ lim supn→∞ 1
�n

E
[∑�T/�n�

i=1 〈M(n,m, i)〉(i�n)∧T (n,m,i)

]
= 0,

⎫
⎬

⎭
(19)

where we apply the Lenglart inequality to derive the convergence of the second term in
the right side of Eq. (18) from the second convergence of Eq. (19) (for this application
we need to introduce the stopping time T (n,m, i), which enables us to drop the
indicator 1�n(T,m)). Recall that |b(m)| ≤ (1 + m)A and |δ(s, z)| ≤ γ (z) ≤ A due to
(6), so we have for (i − 1)�n ≤ u < T (n,m, i) (then |�(m, i)u | ≤ 5A):

|a(n,m, i)u | � m|�(m, i)u |2 + γm |�(m, i)u |,
∫

Ac
m

k(�(m, i)u, δ(u, z))2λ(dz) � γm |�(m, i)u |2

by (6), (14)–(15) and (16). Combining these estimates with (9) as well as the fact that
γm → 0 as m → ∞, we conclude that (19) holds true. �

4.2 Proof of Proposition 1

We can easily check that ga is a C2 function and we have

g′
a(x) = x |x | {3 sin(2a log |x |) + 2a cos(2a log |x |)}

2 Recall that, for a locally square-integrable martingale M such that M0 = 0, 〈M〉 denotes the predictable
quadratic variation of M , i.e., the predictable increasing process such that M2 − 〈M〉 is a local martingale
(such a process always exists and is unique; see e.g., Theorem 4.2 from Chapter I of Jacod and Shiryaev
(2003).
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Asymptotic properties of the realized skewness 725

and

g′′
a (x) = |x |

{
6 sin(2a log |x |) + 10a cos(2a log |x |) − 4a2 sin(2a log |x |)

}

for any x ∈ R. Hence claim (a) holds true.
Next we prove claim (b). In the following we denote by N the standard normal

density. First we show that there is a real number a such that

∫ ∞

0
x3 sin(2a log x)N(x)dx 
= 0. (20)

In fact, substituting y = log x , we have

∫ ∞

0
x3 sin(2a log x)N(x)dx =

∫ ∞

−∞
e4yN(ey) sin(2ay)dy.

Since the function R � y �→ e4yN(ey) ∈ R is square integrable and not even, the
imaginary part of its Fourier transform is not identical to zero. Hence Eq. (20) holds
true for some a ∈ R.

Now we show that the variables Vn
T (Xc, ga)/

√
�n do not converge in law with

�n = exp(−nπ/a) if a satisfies Eq. (20) (note that such an a must not be zero). To
obtain a contradiction, suppose that the variables Vn

T (Xc, ga)/
√

�n converge in law
to some random variable Z as n → ∞. Since we have

Var

[
1√
�n

Vn
T (Xc, ga)

]

= 1

�n

�T/�n�∑

i=1

Var
[
ga(�

n
i X

c)
]

≤ 1

�n

�T/�n�∑

i=1

E
[
(�n

i X
c)6
]

= O(�n)

and

1√
�n

|E[Vn
T (Xc, ga)]| ≤ 1√

�n

�T/�n�∑

i=1

E
[
|�n

i X
c|3
]

= O(1),

we obtain

sup
n∈N

E

[∣
∣
∣
∣

1√
�n

Vn
T (Xc, ga)

∣
∣
∣
∣

2
]

< ∞.

Therefore, the variablesVn
T (Xc, ga)/

√
�n are uniformly integrable, and thus Theorem

3.5 of Billingsley (1999) implies that Z is integrable and

E

[
1√
�n

Vn
T (Xc, ga)

]

→ E[Z ] (21)
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as n → ∞. In the meantime, we have

E

[
1√
�n

Vn
T (Xc, ga)

]

= 1√
�n

�T/�n�∑

i=1

E
[
ga(�

n
i X

c)
]

= 2T

�
3/2
n

∫ ∞

0
ga(
√

�nx)N(x)dx + O(�n)

= 2T
∫ ∞

0
x3 sin

(
2a log(

√
�nx)

)
N(x)dx + O(�n)

as n → ∞. Hence, in view of Eq. (21), the sequence

cn :=
∫ ∞

0
x3 sin

(
2a log(

√
�nx)

)
N(x)dx, n = 1, 2, . . .

converges as n → ∞. Using the identity

sin
(
2a log(

√
�nx)

)
= sin(a log�n) cos (2a log x) + cos(a log�n) sin (2a log x) ,

we can rewrite cn as

cn = sin(a log�n)

∫ ∞

0
x3 cos (2a log x)N(x)dx

+ cos(a log�n)

∫ ∞

0
x3 sin (2a log x)N(x)dx .

Since �n = exp(−nπ/a), we obtain

cn = (−1)n
∫ ∞

0
x3 sin (2a log x)N(x)dx .

Therefore, the sequence cn does not converge due to Eq. (20), a contradiction. �

4.3 Proof of Theorem 3

4.3.1 Localization

As in Sect. 4.1, a standard localization argument allows us to replace the assumptions
[A2]–[A3] by the following strengthened versions:

[SA2 ] We have [A2], and the processes Xt , bt , σt , b̃t and σ̃t are bounded. Moreover,
there are a constant � and a nonnegative bounded function γ on E such that
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∫
γ (z)2λ(dz) < ∞ and |δ(ω, t, z)| ∨ |̃δ(ω, t, z)| ≤ γ (z) and

E
[
|bt1 − bt2 |2|Ft1∧t2

]
≤ �E

[|t1 − t2|� |Ft1∧t2
]
,

E
[
|δ(t1, z) − δ(t2, z)|2|Ft1∧t2

]
≤ �γ (z)2E

[|t1 − t2|� |Ft1∧t2
]

for any bounded (Ft )-stopping times t1 and t2.
[SA3 ] The process

∫
u6Qt (dz) is bounded and there is a constant �′ such that

E
[
|αt1 − αt2 |2|Ft1∧t2

]
≤ �′E

[|t1 − t2|� |Ft1∧t2
]

for any bounded (Ft )-stopping times t1 and t2. Moreover, αt is càdlàg.

In the following we fix a constant ξ ∈ (0, 1) such that

ξ >
11

12
∨ 2 + �

2(1 + �)
, (22)

and we set r̄n = �
ξ
n . By a similar argument to Section 6.1.1 of Koike (2016), we can

further replace the assumption [A1] by the following strengthened version:

[SA1 ] We have [A1], and for every n it holds that

sup
i≥0

(tni − tni−1) ≤ r̄n . (23)

4.3.2 Notation and estimates

We use the same notation as in Sect. 4.1 with the following change for the definition
of the set �n(T,m): For m, n ∈ N, we denote by �n(T,m) the set on which kn − 1 ≤
Nn
Sp− ≤ Nn

T − kn for all p ∈ Pm such that Sp ≤ T , and |Sp1 − Sp2 | > knr̄n for any
p1, p2 ∈ Pm such that p1 
= p2 and Sp1 , Sp2 < ∞. We have limn P(�n(T,m)) =
1. We additionally define the processes B(m) and Z(m) by B(m)t = ∫ t

0 b(m)sds
and Z(m)t = ∫ t

0

∫
Ac
m

δ(s, z)(μ − ν)(ds, dz), respectively. We also define the 2 × 2

symmetric matrix valued variable �(m)T by

�(m)11T = 4

ψ2
2

∑

p∈Pm ,Sp≤T

(�XSp )
2
{

�22θ
(
σ 2
SpGSp + σ 2

s−GSp−
)

+ �12

θ
(αs + αs−)

}

,

�(m)12T = 6

ψ2ψ3

∑

p∈Pm ,Sp≤T

(�XSp )
3
{
θ
(
�23+σ 2

SpGSp + �23−σ 2
Sp−GSp−

)

+ θ−1 (�′
23+αSp + �′

23−αSp−
) }

,

�(m)22T = 9

ψ2
3

∑

p∈Pm ,Sp≤T

(�XSp )
4
{
θ
(
�3+σ 2

SpGSp + �3−σ 2
Sp−GSp−

)

+ θ−1 (�′
3+αSp + �′

3−αSp−
) }

.
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We set gnp = g(p/kn) for p = 0, 1, . . . , kn and �(g)np = gnp+1 − gnp for p =
0, 1, . . . , kn − 1. We also set Ii = [tni−1, t

n
i ) and I i = [tni−1, t

n
i+kn−1) for i = 0, 1, . . . .

For every i ≥ 0 we define the process gni by gni (s) = ∑kn−1
p=1 gnp1Ii+p (s). For any

semimartingale V , we define the process V i,t by V i,t = ∫ t
0 g

n
i (s−)dVs . Note that

V i = V i,tni+kn−1
.

Recall that, for random variables X and Y which may depend on the parameters
n,m, i , X � Y means that there exists a (non-random) constant K > 0 independent
of n,m, i such that X ≤ KY a.s. In addition, if K possibly depends on m, we write
X �m Y instead.

[SA2] and Eq. (23) yield

E

[

sup
s∈I i

∣
∣
∣X ′(m)i,s

∣
∣
∣ |Ftni−1

]

� mE
[
|I i ||Ftni−1

]
� mknr̄n (24)

and

∣
∣
∣B(m)i

∣
∣
∣ � m

∣
∣I i
∣
∣ � mknr̄n . (25)

Here, | · | denotes the Lebesgue measure. The BDG inequality, [SA2] and Eq. (23)
yield

E

[

sup
s∈I i

∣
∣
∣X

c
i,s

∣
∣
∣
r |Ftni−1

]

� E
[
|I i |r/2|Ftni−1

]
� (knr̄n)

r/2 for any r > 0 (26)

and

E

[

sup
s∈I i

∣
∣
∣Z(m)i,s

∣
∣
∣
2 |Ftni−1

]

� γmE
[
|I i ||Ftni−1

]
� γmknr̄n, (27)

where γm = ∫
Ac
m

γ (z)2λ(dz). Note that γm → 0 as m → ∞ by the dominated
convergence theorem. The BDG inequality and [SA3]yield

E
[|εi |r |F]+ E

[
|εi |r |Fn

tni−1

]
≤ Krk

−r/2
n for any r ∈ [2, 6]. (28)

Finally, Lemma 6.1 of Koike (2017) implies that

Nn
T = Op(�

−1
n ) (29)

as n → ∞ for every t > 0.
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4.3.3 Main body

For each m ∈ N, we consider the following decomposition of �
−1/4
n(

PCVn
T −∑0≤s≤T (�Xs)

3
)
:

�
−1/4
n

⎛

⎝PCVn
T −

∑

0≤s≤T

(�Xs)
3

⎞

⎠

= �
−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

{(
X (m)i + εi

)3 −
(
X (m)i

)3
}

+ �
−1/4
n

⎧
⎨

⎩

1

ψ3kn

Nn
T −kn+1∑

i=0

(
X (m)i

)3 −
∑

0≤s≤T

(�X (m)s)
3

⎫
⎬

⎭

+ 3
�

−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

(
X (m)i + εi

)2
X ′(m)i

+ 3
�

−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

(
C(m)i + εi

) (
X ′(m)i

)2

+ 3
�

−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

Z(m)i

(
X ′(m)i

)2

+ �
−1/4
n

⎧
⎨

⎩

1

ψ3kn

Nn
T −kn+1∑

i=0

(
X ′(m)i

)3 −
∑

0≤s≤T

(�X ′(m)s)
3

⎫
⎬

⎭

=: In(m) + IIn(m) + IIIn(m) + IVn(m) + Vn(m) + VIn(m).

Recall that the process Y (m) is defined in Eq. (7) and corresponds to the process
obtained by removing “small” jumps from the process X . Since we have

lim
m→∞ lim sup

n→∞
Pn
(
�

−1/4
n

∣
∣
(
PRVn

T −[X, X ]T
)− (

PRV(m)nT − [Y (m), Y (m)]T
)∣
∣ > η

)
= 0

for any η > 0 by Proposition 6.3 from Koike (2016), where

PRV(m)nT = 1

ψ2kn

Nn
T −kn+1∑

i=0

(
Y (m)i + εi

)2 − ψ1

2ψ2kn

Nn
T∑

i=1

(Ytni − Ytni−1
)2,

and we obviously have �(m)T →P �T as m → ∞, the proof is completed once we
show the following convergences for any η > 0 due to Proposition 2.2.4 of Jacod and
Protter (2012):

123



730 Y. Koike, Z. Liu

lim
m→∞ lim sup

n→∞
Pn (|In(m)| > η) = 0, (30)

lim
m→∞ lim sup

n→∞
Pn (|IIn(m)| > η) = 0, (31)

IIIn(m) →P 0 for any m ∈ N, (32)
(
�

−1/4
n

(
PRV(m)nT − [Y (m),Y (m)]T

)
, IVn(m)

)∗ →S �(m)
1/2
T ζ, (33)

lim
m→∞ lim sup

n→∞
Pn (|Vn(m)| > η) = 0, (34)

VIn(m) →P 0 for any m ∈ N, (35)

where ζ is a bivariate standard normal variable which is defined on an extension of B
and independent of F , and

�(m)T =
[

�c
T + �(m)11T �(m)12T

�(m)12T �(m)22T

]

.

Proof of (35) On the set �n(T,m) we have

VIn(m) = �
−1/4
n

ψ3

∑

p∈Pm :Sp≤T

{(
1

kn

kn−1∑

i=1

(
gni
)3
)

− ψ3

}
(
�XSp

)3
.

Since 1
kn

∑kn−1
i=1

(
gni
)3 = ψ3 + O(k−1

n ) by the Lipschitz continuity of g and
limn P(�n(T,m)) = 1, we obtain the desired result. ��
Proof of (30) We decompose the target quantity as

In(m) = �
−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

[

3
(
Z(m)i

)2
εi

+
{(

X (m)i + εi

)3 −
(
X (m)i

)3 − 3
(
Z(m)i

)2
εi

}]

=: I
(1)
n (m) + I

(2)
n (m).

It suffices to prove

lim
m→∞ lim sup

n→∞
Pn
(∣
∣
∣I(l)n (m)

∣
∣
∣ > η

)
= 0 (36)

for l = 1, 2. First, by Eqs. (28) and (27) we have

E
[∣
∣
∣I(1)n (m)

∣
∣
∣
]

� 1

kn
E

⎡

⎣
Nn
T +1∑

i=0

(
Z(m)i

)2
⎤

⎦ � γm

kn
E

⎡

⎣
Nn
T +1∑

i=0

∣
∣I i
∣
∣

⎤

⎦ � γm,
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where we use the following inequality to obtain the final upper bound:

Nn
T +1∑

i=0

∣
∣I i
∣
∣ =

Nn
T +1∑

i=0

kn−1∑

p=0

|Ii+p| =
kn−1∑

p=0

Nn
T −kn+1∑

i=0

|Ii+p| +
Nn
T +1∑

i=Nn
T −kn+2

kn−1∑

p=0

|Ii+p|

≤ knT + kn(kn − 1)r̄n � kn .

Hence Eq. (36) holds true for l = 1.
Next we consider the case l = 2, and we start with some preliminary results. First

we note that

sup
Nn
T −kn+1<i≤Nn

T +1

∣
∣V i
∣
∣ = Op(

√
knr̄n) (37)

forV ∈ {X (m), Z(m)}. In fact, summationbyparts yieldsV i = −∑kn−1
p=0 �(g)np(Vtni+p

− Vtni ), and sup|h|≤h0 |Vt+h − Vt | = Op(
√
h0) as h0 ↓ 0 by [SA2] and the Doob

inequality, hence Eq. (37) holds true by Eq. (23). Next, for any K > 0 we define the
(Ft )-stopping time Rn

K by

Rn
K = inf

{
s : n−1Nn

s > K
}

. (38)

Since �Nn
s ≤ 1 for every s, it holds that

Nn
s∧Rn

K
≤ Kn + 1 (39)

for all s ≥ 0. Moreover, by Eq. (29) we also have

lim sup
K→∞

lim sup
n→∞

P
(
Rn
K ≤ t

) = 0. (40)

Now we turn to the proof of Eq. (36) for the case l = 2. For each m, set

ζ(m)ni = �
−1/4
n

ψ3kn

{(
X (m)i + εi

)3 −
(
X (m)i

)3 − 3
(
Z(m)i

)2
εi

}

, i = 0, 1, . . . .

Then, by Eqs. (28) and (37) we have I
(2)
n (m) = ∑Nn

T +1
i=0 ζ(m)ni + op(1) as

n → ∞. Therefore, by the Markov inequality and Eq. (40) it is enough to prove
∑Nn

T∧RnK
+1

i=0 ζ(m)ni = op(1) as n → ∞ for any fixed K > 0 and m ∈ N.
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Since integration by parts yields X
c
i Z(m)i = ∫

I i
X
c
i,s−dZ(m)i,s + ∫

I i
Z(m)i,s−

dX
c
i,s , we have

E

[∣
∣
∣X

c
i Z(m)i

∣
∣
∣
2 |Ftni−1

]

� E

[(

sup
s∈I i

∣
∣
∣X

c
i,s−

∣
∣
∣
2 + sup

s∈I i

∣
∣
∣Z(m)i,s−

∣
∣
∣
2
)
∣
∣I i
∣
∣

]

� (knr̄n)
2

(41)

by [SA2], Eqs. (23) and (26)–(27). Moreover, we can rewrite ζ(m)ni as

ζ(m)ni = �
−1/4
n

ψ3kn

{

3

((
C(m)i

)2 + 2C(m)i Z(m)i

)

εi + 3X (m)i (εi )
2 + (εi )

3
}

.

Hence, using the relationC(m)t = X0+B(m)t +Xc
t and estimates Eqs. (25)–(28) and

(41), we obtain E[|ζ(m)ni |2|Fn
tni−1

] �m r̄2n . Therefore, noting that ζ(m)ni is Fn
tni+kn−1

-

measurable, we have

E

⎡

⎢
⎢
⎣

∣
∣
∣
∣
∣
∣
∣

Nn
T∧RnK

+1
∑

i=0

(
ζ(m)ni − E[ζ(m)ni |Fn

tni−1
]
)
∣
∣
∣
∣
∣
∣
∣

2⎤

⎥
⎥
⎦ �m �−1

n knr̄
2
n = o(1).

Hence it holds that
∑Nn

T∧RnK
+1

i=0 ζ(m)ni = ∑Nn
T∧RnK

+1

i=0 E[ζ(m)ni |Fn
tni−1

] + op(1). Now,

since E[εi |F] = 0, we can decompose
∑Nn

T∧RnK
+1

i=0 E[ζ(m)ni |Fn
tni−1

] as

Nn
T∧RnK

+1
∑

i=0

E[ζ(m)ni |Fn
tni−1

] = �
−1/4
n

ψ3kn

Nn
T∧RnK

+1
∑

i=0

{
3E[X (m)i (εi )

2 |Fn
tni−1

] + E[(εi )3 |Fn
tni−1

]
}

=: A1,n + A2,n

(we drop the index m because we fix it here). First we consider A1,n . We can rewrite
it as

A1,n = 3�−1/4
n

ψ3kn

Nn
T∧RnK

+1
∑

i=0

kn−1∑

p=0

(�(g)np)
2E[X (m)iαtni+p

|Fn
tni−1

].

Since we have E[X (m)iαtni−1
|Ftni−1

] = E[B(m)iαtni−1
|Ftni−1

], it holds that
∣
∣
∣E[X (m)iαtni+p

|Ftni−1
]
∣
∣
∣ ≤ E

[∣
∣
∣X (m)i (αtni+p

− αtni−1
)

∣
∣
∣ |Ftni−1

]
+ E

[∣
∣
∣B(m)iαtni−1

∣
∣
∣ |Ftni−1

]

�m (knr̄n)
(1+�)/2 + knr̄n
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by the Schwarz inequality, [SA3] and Eqs. (25)–(27). Therefore, we obtain A1,n =
Op

(

�
− 1

4+
(
1+�
2 ∧1

)(
ξ− 1

2

)

n

)

= op(1) by Eq. (22) after distinguishing the cases� ≥ 1

and � < 1. Next, let us consider A2,n . For any nonnegative integers p, q, r ,
E[εtni+p

εtni+q
εtni+r

|Fn
tni−1

] does not vanish only if p = q = r , hence we have

A2,n = �
−1/4
n

ψ3kn

Nn
T∧RnK

+1
∑

i=0

kn−1∑

p=0

(�(g)np)
3E
[
(εtni+p

)3|Fn
tni−1

]

= Op(�
−1/4
n k−1

n · �−1
n k−2

n ) = op(1).

Consequently, we conclude that
∑Nn

T∧RnK
+1

i=0 ζ(m)ni = op(1) and the proof is
completed. ��
Proof of (33) The proof is analogous to that of Proposition 6.2 of Koike (2016), which
is based on Propositions 6.4–6.7 of that paper. So we omit it. ��

We recall that, for a locally square-integrable martingale M such that M0 = 0,
〈M〉 denotes the predictable quadratic variation of M (see also footnote 2). The next
inequality plays a key role in the remaining proof:

Lemma 1 We have

E

[

sup
τ1≤t≤τ2

|Mt | |Fτ1

]

≤ 3E
[√〈M〉τ2 |Fτ1

]

for any stopping time τ1, τ2 such that τ1 ≤ τ2 and for any locally square-integrable
martingale M such that M0 = 0.

Proof This result is a direct consequence of Theorem 5 from Chapter 1, Section 9 of
Liptser and Shiryayev (1989). ��
Proof of (32) Set L(m) = Xc + Z(m). Then we have

|IIIn(m)| ≤ 6
�

−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

{(
L(m)i

)2 +
(
B(m)i + εi

)2
} ∣
∣
∣X ′(m)i

∣
∣
∣

=: III
(1)
n + III

(2)
n ,

so it suffices to prove III
(l)
n →P 0 as n → ∞ for l = 1, 2 (note that we drop the index

m because it is fixed in this part). First, Eqs. (25), (28) and (24) yield

E
[∣
∣
∣III(2)n

∣
∣
∣
]

�m
�

−1/4
n

k2n
E

⎡

⎣
Nn
T +1∑

i=0

∣
∣
∣X ′(m)i

∣
∣
∣

⎤

⎦ �m �
−1/4
n k−1

n = o(1),

hence we have III
(2)
n →P 0 as n → ∞.
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To prove III
(1)
n →P 0 as n → ∞, it suffices to show that there is a constant K

(which may depend on m) such that

E

[∣
∣
∣
∣

(
L(m)i

)2
X ′(m)i

∣
∣
∣
∣ |Ftni−1

]

≤ K (knr̄n)
2 (42)

for any i, n because of the Lenglart inequality, Eq. (29) and the fact that ξ > 7/8. To

prove Eq. (42), we consider the following decomposition of
(
L(m)i

)2
X ′(m)i , which

is obtained by applying integration by parts repeatedly (note that [L(m), X ′(m)] ≡ 0
by construction):

(
L(m)i

)2
X ′(m)i =

∫

I i

(
L(m)i,s−

)2
dX ′(m)i,s

+ 2
∫

I i
X ′(m)i,s−L(m)i,s−dL(m)i,s

+
∫

I i
X ′(m)i,s−d[L(m)i,·]s

=: An,1
i + 2An,2

i + An,3
i .

Then, it is enough to show that

E
[∣
∣
∣An,l

i

∣
∣
∣ |Ftni−1

]
�m (knr̄n)

2 (43)

for every l = 1, 2, 3. First, we have

E
[∣
∣
∣An,1

i

∣
∣
∣ |Ftni−1

]
�m E

[

sup
s∈I i

(
L(m)i,s

)2 |I i |
∣
∣Ftni−1

]

�m knr̄n E

[

sup
s∈I i

(
L(m)i,s

)2 |Ftni−1

]

�m (knr̄n)
2

by [SA2], Eqs. (23) and (26)–(27), so Eq. (43) holds true for l = 1. Next, Lemma 1
and Eq. (23) yield

E
[∣
∣
∣An,2

i

∣
∣
∣ |Ftni−1

]
≤ 3E

[{∫

I i

∣
∣
∣X ′(m)i,s−L(m)i,s−

∣
∣
∣
2
d〈L(m)i,·〉s

}1/2
|Ftni−1

]

� E

[

sup
s∈I i

∣
∣
∣X ′(m)i,s L(m)i,s

∣
∣
∣

√

|I i ||Ftni−1

]

�
√
knr̄n E

[

sup
s∈I i

∣
∣
∣X ′(m)i,s L(m)i,s

∣
∣
∣ |Ftni−1

]

.
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Now, integration by parts, Lemma 1, [SA2], Eqs. (23), (24) and (26)–(27) imply that

E

[

sup
s∈I i

∣
∣
∣X ′(m)i,s L(m)i,s

∣
∣
∣ |Ftni−1

]

�m E

[

sup
s∈I i

∣
∣
∣X ′(m)i,s

∣
∣
∣

√∣
∣I i
∣
∣|Ftni−1

]

+ E

[

sup
s∈I i

∣
∣
∣L(m)i,s

∣
∣
∣
∣
∣I i
∣
∣ |Ftni−1

]

�m (knr̄n)
3/2 .

Consequently, (43) holds true for l = 2. Finally, by [SA2], Eqs. (23) and (24) we have

E
[∣
∣
∣An,3

i

∣
∣
∣ |Ftni−1

]
�m E

[

sup
s∈I i

∣
∣
∣X ′(m)i,s

∣
∣
∣ |I i ||Ftni−1

]

� (knr̄n)
2 ,

hence Eq. (43) holds true for l = 3. This completes the proof. ��

Proof of (34) Define the processes B ′(m) and Z ′(m) by B ′(m)t = ∫ t
0

∫
Am

δ(s, z)ds

λ(dz) and Z ′(m)t = X ′(m)t − B ′(m)t = ∫ t
0

∫
Am

δ(s, z)(μ − ν)(ds, dz). Since we
have

|Vn(m)| ≤ 3
�

−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

{∣
∣
∣
∣Z(m)i

(
B ′(m)i

)2
∣
∣
∣
∣+

∣
∣
∣
∣Z(m)i

(
Z ′(m)i

)2
∣
∣
∣
∣

}

=: V
(1)
n (m) + V

(2)
n (m),

it suffices to prove

lim
m→∞ lim sup

n→∞
Pn
(
V

(l)
n (m) > η

)
= 0 (44)

for l = 1, 2.
We have

E

[∣
∣
∣
∣Z(m)i

(
B ′(m)i

)2
∣
∣
∣
∣ |Ftni−1

]

�m (knr̄n)
2E
[∣
∣
∣Z(m)i

∣
∣
∣ |Ftni−1

]
�m (knr̄n)

5/2

by [SA2], Eqs. (23) and (27). Therefore, Eq. (44) holds true for l = 1 by the Lenglart
inequality, Eq. (29) and the fact that ξ > 4/5.

Now we prove Eq. (44) for l = 2. We start with introducing a further localiza-
tion procedure for the observation times. For each K ∈ N, we define the sequence
(tni (K ))∞i=−1 inductively by tn−1(K ) = 0 and

tni (K ) =
{
tni , if max j=1,...,i E

[
�−1

n |I j |
∣
∣Ftnj−1

]
≤ K and �nNn

tni−1
≤ K ,

tni−1(K ) + �n, otherwise.
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By construction tni (K ) is an (Ft )-stopping time for every i . Moreover, by [A1] and
Eq. (29) we have supn P(tni 
= tni (K ) for some i ∈ {0, 1, . . . , Nn

T }) → 0 as K → ∞.
Consequently, it suffices to show that

lim
m→∞ lim sup

n→∞
Pn
(
V

(2)
n (m) > η, tni = tni (K ) for any i ∈ {0, 1, . . . , Nn

T }
)

= 0 (45)

for any fixed K ∈ N.
Set Ĩi = [tni−1(K ), tni (K )) and define the process g̃ni by g̃

n
i (s) = ∑kn−1

p=1 gnp1 Ĩi+p
(s).

For any semimartingale V , we define the process Ṽi,t by Ṽi,t = ∫ t
0 g̃

n
i (s−)dVs . Then,

to prove Eq. (45) it is enough to show that

lim
m

lim sup
n

E

⎡

⎣�
−1/4
n

kn

Ñn
T +1∑

i=0

∣
∣
∣
∣Z̃(m)i,tni+kn−1(K )

(
Z̃ ′(m)i,tni+kn−1(K )

)2
∣
∣
∣
∣

⎤

⎦ = 0, (46)

where Ñ n
T = max{i : tni (K ) ≤ T }. Note that Ñ n

T ≤ (K + T )�−1
n by construction.

Set Ĩ+
i = [tni−1(K ), tni+kn−1(K )). To prove Eq. (46), we consider the following

decomposition, which is obtained by applying integration by parts repeatedly (note
that [Z(m), Z ′(m)] ≡ 0 by construction):

Z̃(m)i,tni+kn−1(K )

(
Z̃ ′(m)i,tni+kn−1(K )

)2 =
∫

Ĩ+
i

(
Z̃ ′(m)i,s−

)2
d Z̃(m)i,s

+ 2
∫

Ĩ+
i

Z̃(m)i,s− Z̃ ′(m)i,s−d Z̃ ′(m)i,s

+
∫

Ĩ+
i

Z̃(m)i,s−d[Z̃ ′(m)i,·]s

=: A(m)
n,1
i + 2A(m)

n,2
i + A(m)

n,3
i .

Then, it is enough to show that

lim
m

lim sup
n

E

⎡

⎣�
−1/4
n

kn

Ñn
T +1∑

i=0

∣
∣
∣A(m)

n,l
i

∣
∣
∣

⎤

⎦ = 0 (47)

for every l = 1, 2, 3. First, we consider the case l = 1. Lemma 1 and [SA2]yield

E
[∣
∣
∣A(m)

n,1
i

∣
∣
∣ |Ftni−1(K )

]
�
√

γmE

⎡

⎣ sup
s∈ Ĩ+

i

(
Z̃ ′(m)i,s

)2√| Ĩ+
i ||Ftni−1(K )

⎤

⎦

�
√

γmE

⎡

⎢
⎣ sup
s∈ Ĩ+

i

(
Z̃ ′(m)i,s

)2

√
√
√
√
√

∣
∣
∣
∣
∣
∣

kn−1∑

p=1

(
| Ĩi+p| − E

[
| Ĩi+p|

∣
∣FT K

i+p−1

])
∣
∣
∣
∣
∣
∣
|Ftni−1(K )

⎤

⎥
⎦
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+√
γmE

⎡

⎢
⎣ sup
s∈ Ĩ+

i

(
Z̃ ′(m)i,s

)2

√
√
√
√
√

kn−1∑

p=1

E
[
| Ĩi+p|

∣
∣FT K

i+p−1

]
|Ftni−1(K )

⎤

⎥
⎦

=: √γm

(
B(m)

n,1
i + B(m)

n,2
i

)
.

It suffices to prove

lim
m

lim sup
n

E

⎡

⎣�
−1/4
n

kn

Ñn
T +1∑

i=0

√
γmB(m)

n, j
i

⎤

⎦ = 0 (48)

for j = 1, 2. By the Hölder and BDG inequalities and Eq. (23), we have

B(m)
n,1
i � (knr̄

2
n )1/4

⎧
⎨

⎩
E

⎡

⎣ sup
s∈ Ĩ+

i

(
Z̃ ′(m)i,s

)2p |Ftni−1(K )

⎤

⎦

⎫
⎬

⎭

1/p

for any p ∈ (1, 2]. Therefore, the Novikov inequality (Theorem 1 of Novikov (1975)
implies that

B(m)
n,1
i � (knr̄

2
n )1/4(knr̄n)

1/p

for any p ∈ (1, 2]. Now, we can take p ∈ (1,
ξ− 1

2
7
8− ξ

2

) because ξ > 11
12 , hence the above

inequality yields Eq. (48) for j = 1. On the other hand, the construction of (tni (K ))

and the Doob inequality imply that

B(m)
n,2
i �

√
kn�n E

⎡

⎣ sup
s∈ Ĩ+

i

(
Z̃ ′(m)i,s

)2 |Ftni−1(K )

⎤

⎦

�
√
kn�n E

[∣
∣ Ĩ+
i

∣
∣ |Ftni−1(K )

]
� (kn�n)

3/2 ,

hence Eq. (48) also holds true for j = 2.
Next consider the case l = 2. Lemma 1, [SA2] and the Schwarz inequality yield

E
[∣
∣
∣A(m)

n,2
i

∣
∣
∣ |Ftni−1(K )

]
� E

⎡

⎣ sup
s∈ Ĩ+

i

∣
∣
∣Z̃(m)i,s Z̃ ′(m)i,s

∣
∣
∣

√∣
∣ Ĩ+
i

∣
∣|Ftni−1(K )

⎤

⎦

�

√
√
√
√
√E

⎡

⎣ sup
s∈ Ĩ+

i

∣
∣
∣Z̃(m)i,s Z̃ ′(m)i,s

∣
∣
∣
2 |Ftni−1(K )

⎤

⎦ E
[∣
∣ Ĩ+
i

∣
∣ |Ftni−1(K )

]
.
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Noting [Z(m), Z ′(m)] ≡ 0 by construction, we obtain the following identity for
s ∈ Ĩ+

i by applying integration by parts:

Z̃(m)i,s Z̃ ′(m)i,s =
∫ s

tni−1(K )

Z̃(m)i,u−d Z̃ ′(m)i,u +
∫ s

tni−1(K )

Z̃ ′(m)i,u−d Z̃(m)i,u .

Therefore, the Doob inequality yields

E

⎡

⎣ sup
s∈ Ĩ+

i

∣
∣
∣Z̃(m)i,s Z̃ ′(m)i,s

∣
∣
∣
2 |Ftni−1(K )

⎤

⎦

� E

⎡

⎣

⎛

⎝ sup
s∈ Ĩ+

i

Z̃(m)
2
i,s + γm sup

s∈ Ĩ+
i

Z̃ ′(m)
2

i,s

⎞

⎠
∣
∣ Ĩ+
i

∣
∣ |Ftni−1(K )

⎤

⎦ .

Hence, by an analogous argument to the proof of the case l = 1 we obtain

E

⎡

⎣ sup
s∈ Ĩ+

i

∣
∣
∣Z̃(m)i,s Z̃ ′(m)i,s

∣
∣
∣
2 |Ftni−1(K )

⎤

⎦ � γm(kn�n)
2.

Consequently, we conclude that

E
[∣
∣
∣A(m)

n,2
i

∣
∣
∣ |Ftni−1(K )

]
�
√

γm(kn�n)
3/2,

and thus we obtain Eq. (47) for l = 2.
Finally consider the case l = 3. Since [SA2] yields

E
[∣
∣
∣A(m)

n,3
i

∣
∣
∣ |Ftni−1(K )

]
� E

⎡

⎣ sup
s∈ Ĩ+

i

∣
∣
∣Z̃(m)i,s

∣
∣
∣
∣
∣ Ĩ+
i

∣
∣ |Ftni−1(K )

⎤

⎦ ,

we can again apply an analogous argument to the proof of the case l = 1, and thus
Eq. (47) holds true for l = 3. This completes the proof. ��

Proof of (31) We decompose the target quantity as

IIn(m) = �
−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

(
C(m)i

)3 + 3�−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

(
C(m)i

)2
Z(m)i

+ 3�−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

C(m)i

(
Z(m)i

)2
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+ �
−1/4
n

⎧
⎨

⎩

1

ψ3kn

Nn
T −kn+1∑

i=0

(
Z(m)i

)3 −
∑

0≤s≤T

(�X (m)s)
3

⎫
⎬

⎭

=: II
(1)
n (m) + II

(2)
n (m) + II

(3)
n (m) + II

(4)
n (m).

It suffices to prove

lim
m→∞ lim sup

n→∞
Pn
(∣
∣
∣II(l)n (m)

∣
∣
∣ > η

)
= 0 (49)

for every l = 1, 2, 3, 4.
Since Proposition 4.1 ofKoike (2017) yields II

(1)
n (m) →P 0 as n → ∞ for everym,

Eq. (49) holds true for l = 1.Moreover, we can prove Eq. (49) for l = 2, 3 analogously
to the proof of Eq. (34). So it remains to prove Eq. (49) for l = 4. Applying integration
by parts repeatedly, we can decompose the target quantity as

II
(4)
n (m) = 3�−1/4

n

ψ3kn

Nn
T −kn+1∑

i=0

∫

I i

(
Z(m)i,s−

)2
dZ(m)i,s

+ 3�−1/4
n

ψ3kn

Nn
T −kn+1∑

i=0

∫

I i
Z(m)i,s−d[Z(m)i,·]s

+ �
−1/4
n

⎧
⎨

⎩

1

ψ3kn

Nn
T −kn+1∑

i=0

[
Z(m)i,·, [Z(m)i,·]

]

tni+kn−1

−
∑

0≤s≤T

(�X (m)s)
3

⎫
⎬

⎭

=: A
(1)
n (m) + A

(2)
n (m) + A

(3)
n (m),

hence it is enough to prove

lim
m→∞ lim sup

n→∞
Pn
(∣
∣
∣A(l)

n (m)

∣
∣
∣ > η

)
= 0 (50)

for every l = 1, 2, 3. For l = 1, 2, Eq. (50) can be shown analogously to the
proof of Eq. (44) for l = 2. On the other hand, since we have [Z(m)i,·]s =
∑kn−1

p=1 (gnp)
2∑

tni+p−1<u≤s(�X (m)u)
2 for s ∈ I i and �Z(m) = �X (m), we obtain

A
(3)
n (m) = �

−1/4
n

⎧
⎪⎨

⎪⎩

1

ψ3kn

Nn
T∑

p=1

⎛

⎝
(p−1)∧(Nn

T −kn+1)∑

i=(p−kn+1)+
(gnp−i )

3

⎞

⎠

∑

tnp−1<s≤tnp

(�X (m)s)
3 −

∑

0≤s≤T

(�X (m)s)
3

⎫
⎪⎬

⎪⎭
.
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Now, since we have
∑

(t−h)+<s≤t |�X (m)s |3 = Op(h) as h ↓ 0 by [SA2], we can

deduce that A
(3)
n (m) → 0 as n → ∞ for every m, so Eq. (50) holds true for l = 3. ��
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