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Abstract In this paper, we propose a novel andmathematically tractable frailtymodel
for clustered survival data by assuming a generalized exponential (GE) distribution
for the latent frailty effect. Both parametric and semiparametric versions of the GE
frailty model are studied with main focus for the semiparametric case, where an EM-
algorithm is proposed. Our EM-based estimation for the GE frailty model is simpler,
faster and immune to a flat likelihood issue affecting, for example, the semiparametric
gamma model, as illustrated in this paper through simulated and real data. We also
show that the GEmodel is at least competitive with respect to the gamma frailty model
undermisspecification.Abroad analysis is developed,with simulation results explored
viaMonte Carlo replications, to evaluate and comparemodels. A real application using
a clustered kidney catheter data is considered to demonstrate the potential for practice
of the GE frailty model.

Keywords Censored data · EM-algorithm · Flat likelihood · Gamma frailty model ·
Partial likelihood · Proportional hazards

1 Introduction

The semiparametric proportional hazards model by Cox (1972) is a widely used
approach to deal with lifetime data. However, this model is not suitable for sit-
uations where the observations are correlated, which may occur when clusters or
groups can be identified in the data configuration, or even when an important covariate
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(possibly non-observed) is not included in the model. In these cases, the Cox model
may underestimate the fixed covariate effects.

One way to handle this issue is to consider extensions of the Cox model by incor-
porating a latent random effect in the proportional hazards structure; this latent term
is well known in the literature as the frailty. The study by Vaupel et al. (1979) is one
of the first ones proposing a frailty model; in this case, the authors choose to work
with the gamma distribution. Other important papers about the gamma frailty model-
ing are Nielsen et al. (1992), Klein (1992), Andersen et al. (1997), Parner (1998) and
Therneau et al. (2003), where the first two propose an EM-algorithm for the semipara-
metric case. A modified version of this EM-algorithm is presented in Yu (2006) for
situations involving a large number of clusters (groups) and distinct event times.

Many other models, based on different frailty distributions, have emerged in the
literature as alternatives to the gamma model such as the log-normal (McGilchrist and
Aisbett 1991; McGilchrist 1993), inverse-Gaussian (Hougaard 1984), positive stable
(Hougaard 1986), power variance family (Crowder 1989; Hougaard et al. 1992) and
compound Poisson (Aalen 1992) frailties; this last reference also deals with the cure
fraction problem. More recently, Balakrishnan and Peng (2006) and Callegaro and
Iacobelli (2012) have introduced the generalized gamma and log-skew normal frailty
models, respectively. For an overview on frailty models, we suggest Hougaard (2000),
Duchateau and Janssen (2008) and Wienke (2011). More recent papers on this topic
are Ha et al. (2014), Enki et al. (2014), Christian et al. (2016) and Yavuz and Lambert
(2016), just to name a few.

According to Hougaard (2000) there is not a unique family of frailty models having
all desirable properties for inference. Choosing a model requires a detailed investiga-
tion of model properties for each distribution family, and this choice depends on the
context of the problem related to the application. The author suggests that one should
focus on finding the right tools for a given problem rather than using a single tool for
all applications.

This is the spirit motivating the study developed in the present paper. The main
aim here is to propose a novel frailty model to be considered by practitioners as an
additional option for their survival data analyses exploring and comparing different
well-known frailty distributions. In our proposed model, we assume a generalized
exponential (GE) distribution for the frailty component; some references with details
about the GE distribution are Gupta et al. (1998), Gupta and Kundu (1999) and Gupta
and Kundu (2001). The GE distribution has been an interesting alternative to existing
and well-established survival models in the literature such as gamma, Weibull, log-
normal and inverse-Gaussian (IG) distributions, to name a few. As it will be shown
along the paper, assuming a GE frailty determines a mathematically tractable and
computationally appealing model; which in turn configures an alternative and strong
competitor to other known frailty models.

The gamma frailty is perhaps the most popular model due to its analytical tractabil-
ity. If we restrict our attention to the subclass of semiparametric frailty models, we
can basically find two options: the gamma and the log-normal; the second one being
computationally expensive since it is not tractable as the gamma case. The semipara-
metric GE frailty model arises as another alternative, challenging the gamma frailty
model in many aspects; this is an important motivating point in this paper.
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Semiparametric generalized exponential frailty model 681

We summarize below the main contributions and advantages of the GE frailty
over the popular gamma frailty model with respect to mathematical tractability and
computational features.

– Mathematical tractability:
– The GE frailty model also has a simple and explicit form for the likelihood
function under the parametric and semiparametric approaches.

– The conditional distributions of the frailty given the censoring indicator (dis-
tribution of frailties among the survivors and the frailty of individuals dying
at time t) can also be determined explicitly.

– As it will be shown later, the semiparametric gamma frailty model can suffer
with a flat likelihood and this issue is not present in the GE case. We have
observed this on both simulated and real data; see Figs. 3 and 7.

– Computational advantages of the semiparametric GE model:
– It also provides a simple EM-algorithm, since all conditional expectations
involved in the E-step are obtained in explicit form.

– The estimate of the frailty parameter in each loop (M-step) of theEM-algorithm
has a closed form, contrasting with a maximization procedure used in the
semiparametric gamma model. Therefore, our model has lower computational
cost.

– In simulation studies, for both parametric and semiparametric configurations,
we show that the GE model is at least competitive with respect to the gamma
under misspecification.

The paper is organized in the following manner. Section 2 introduces some notations
and the parametric GE frailty model. The semiparametric GE frailty (main focus of the
paper) is presented in Sect. 3; which also discusses the estimation of parameters based
on the partial likelihood, the EM-algorithm and how to get the estimates standard
errors. In Sect. 4 we study the finite-sample behavior of the estimators for the GE
model with respect to the gamma case under misspecification through a Monte Carlo
simulation. Section 5 investigates the performance of theGE frailtymodel in a real data
analysis. Concluding remarks and possible points for future research are presented in
Sect. 6.

2 Model specification

In this section, we introduce the generalized exponential (in short GE) frailty mod-
eling. The presentation begins with a short description of the GE distribution stating
important results for our purposes.

Let Z be a random variable having the GE distribution, with scale and shape param-
eters γ > 0 and α > 0, respectively. We denote Z ∼ GE(γ, α) and the corresponding
density function takes the form f (z) = γαe−γ z(1 − e−γ z)α−1, for z > 0. For a
standard GE random variable Z , that is assuming γ = 1, we denote Z ∼ GE(α).

The associated Laplace transform L(s) = E(e−sZ ) is given by

L(s) = Γ (α + 1)Γ (s/γ + 1)

Γ (α + s/γ + 1)
, s > 0, (1)
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where Γ (τ) = ∫ ∞
0 xτ−1e−xdx , for τ > 0, is the gamma function. The first two

cumulants of Z are E(Z) = γ −1{Ψ (α + 1) − Ψ (1)} and Var(Z) = γ −2{Ψ ′(1) −
Ψ ′(α + 1)}, with Ψ (τ) = d logΓ (τ)/dτ and Ψ ′(τ ) = dΨ (τ)/dτ for τ > 0 being the
digamma and trigamma function, respectively.

The next step is to introduce the frailty model without covariates; the regression
structure is discussed later. At this point, consider a subject with lifetime denoted by a
random variable T whose hazard function, conditional on a latent variable Z , satisfies
λ(t |Z) = Zλ0(t) for t > 0, where λ0(t) is a baseline hazard function and Z is the
frailty of the individual. In this paper, we assume that Z follows a GE distribution. In
order to avoid non-identifiability issues, we set γ = 1, i.e., Z ∼ GE(α). The parameter
α controls the heterogeneity.

Using basic results on frailty models and the expression in (1), one can determine
that the marginal survival S(·) and density function f (·) of T are, respectively,

S(t) = L(Λ0(t)) = Γ (α + 1)Γ (Λ0(t) + 1)

Γ (α + Λ0(t) + 1)

and

f (t) = −λ0(t)L
′(Λ0(t))

= Γ (α + 1)λ0(t)Γ (Λ0(t) + 1)

Γ (α + Λ0(t) + 1)
{Ψ (α + Λ0(t) + 1) − Ψ (Λ0(t) + 1)} ,

for t > 0, where Λ0(t) = ∫ t
0 λ0(u)du is the cumulative hazard function, L ′(s) =

dL(s)/ds and Ψ (s) is the digamma function defined previously.
The hazard function of T can then be written as λ(t) = λ0(t) {Ψ (α + Λ0(t) + 1)

−Ψ (Λ0(t) + 1)}, t > 0.
In the next step, we find the frailty distribution among the survivors and the deaths

(or failures) at time t ; these results are important for the implementation of the EM-
algorithm. We begin by finding the conditional distribution of Z given T > t , that is
the distribution of the frailty among the survivors at time t . The conditional density of
Z |T > t [for instance, see Eq. (3.8) from Wienke (2011)] is

f (z|T > t) = f (z)S(t |z)
S(t)

= 1

B(α, 1 + Λ0(t))
exp (−(Λ0(t) + 1)z) (1 − exp(−z))α−1, z > 0,

where B(a, b) = Γ (a)Γ (b)/Γ (a + b) is the beta function, with a, b > 0. This
density is related to the beta exponential (BE) distribution in Nadarajah and Kotz
(2006). A random variable Y has a BE distribution, denoted by Y ∼ BE(γ, β, α),

if its density assumes the form g(y) = γ

B(α, β)
exp(−γβy) (1 − exp(−γ y))α−1, for

y > 0, where γ > 0 is a scale parameter and β, α > 0 are shape parameters. This
provides Z |T > t ∼ BE(1,Λ0(t) + 1, α). In particular, using the results of the

123



Semiparametric generalized exponential frailty model 683

BE distribution given in Nadarajah and Kotz (2006), we have that E(Z |T > t) =
Ψ (α + Λ0(t) + 1) − Ψ (Λ0(t) + 1).

Now, we find the distribution of the frailty given a failure at time t , that is the con-
ditional distribution of Z |T = t . Using basic probability, we have that the conditional
density of Z |T = t , denoted by f (z|t), is given by

f (z|t) = zΓ (α + Λ0(t) + 1)

Γ (α)Γ (Λ0(t) + 1)

exp (−(Λ0(t) + 1)z) (1 − exp(−z))α−1

Ψ (α + Λ0(t) + 1) − Ψ (Λ0(t) + 1)
, z > 0.

It can be shown that the conditional mean is

E(Z |T = t) = Ψ (α + Λ0(t) + 1) − Ψ (Λ0(t) + 1)

+Ψ ′(Λ0(t) + 1) − Ψ ′(α + Λ0(t) + 1)

Ψ (α + Λ0(t) + 1) − Ψ (Λ0(t) + 1)
,

where Ψ ′(s) is the trigamma function defined previously.
The next discussion explains how to obtain the log-likelihood function of the GE

frailty model including a regression structure. Consider m clusters (or groups) with
the i-th group containing ni individuals, for i = 1, . . . ,m. The total sample size is
n = ∑m

i=1 ni . Let T
0
i j andCi j be the failure and censoring times for the individual (i, j)

and xi j be a p × 1 associated covariate vector, for i = 1, . . . ,m and j = 1, . . . , ni .
The random variable Ti j = min{T 0

i j ,Ci j } is observable and δi j = I {T 0
i j ≤ Ci j } is the

failure indicator; more generally, I {A} = 1 if the event A occurs (0 otherwise).
The i-th cluster is associated with a random variable Zi , representing the frailty of

that cluster, which induces dependence among the members. Let Z1, . . . , Zm be i.i.d.
positive random variables with Zi ∼ GE(α). Two final assumptions are required to
complete the model specification according Nielsen et al. (1992). The first one is that
given Zi , {(T 0

i j ,Ci j ), j = 1, . . . , ni } are conditionally independent and both T 0
i j and

Ci j are independent, for j = 1, . . . , ni . The second assumption is that the censoring
times within the cluster {Ci j , j = 1, . . . , ni } are non-informative about Zi . Further,
given Zi , the conditional hazard function of T 0

i j takes the form

λ(ti j |Zi ) = Zi λ0(ti j ) exp(x�
i jβ), ti j > 0, (2)

for i = 1, . . . ,m, j = 1, . . . , ni . Here, λ0(·) is a baseline hazard function as before
and β is a p × 1 parameter vector associated to the covariates.

Assuming the structure (2) and using first equation of page 138 fromWienke (2011),
we obtain that the joint survival function of Ti1, . . . , Tini is given by

S(ti1, . . . , tini )

= Γ (α + 1)ζ

⎛

⎝
ni∑

j=1

Λ0(ti j )e
x�
i jβ + 1, α

⎞

⎠ , ti j > 0, j = 1, . . . , ni , (3)
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for i = 1, . . . ,m, where ζ(b, a) = Γ (b)/Γ (b + a) for a, b > 0. The joint density
function associated to the joint survival function (3) is

f (ti1, . . . , tini )

= Γ (α + 1)
ni∏

j=1

λ0(ti j ) exp

⎛

⎝
ni∑

j=1

x�
i jβ

⎞

⎠ ζ (ni )

⎛

⎝
ni∑

j=1

Λ0(ti j )e
x�
i jβ + 1, α

⎞

⎠ ,

for ti j > 0, j = 1, . . . , ni and i = 1, . . . ,m, where ζ (0)(b, a) ≡ ζ(b, a)

and ζ (k)(b, a) = (−1)k ∂kζ(b, a)/∂bk for integer k ≥ 1. We have in particu-
lar that ζ (1)(b, a) = ζ(b, a) {Ψ (a + b) − Ψ (b)} and ζ (2)(b, a) = ζ(b, a) {(Ψ (b)
−Ψ (b + a))2 + Ψ ′(b) − Ψ ′(b + a)

}
. Analytical expressions for higher-order deriva-

tives of ζ(a, b) can be obtained through programs such asMathematica and Maple.
Denote L(θ) as the likelihood function, 
(θ) the log-likelihood and θ =

(β,Λ0, α)� the parameter vector. The likelihood function is given by

L(θ) =
m∏

i=1

∫ ∞

0

ni∏

j=1

(
ziλ0(ti j )

× exp(x�
i jβ)

)δi j
exp(−ziΛ0(ti j )e

x�
i jβ)αe−zi (1 − e−zi )α−1dzi . (4)

Using expression (4) and the integral

∫ ∞

0
zne−bz(1 − e−z)a−1dz = (−1)n

∂n

∂bn
B(a, b) = Γ (α)ζ (n)(b, a),

we obtain that the log-likelihood function assumes the form


(θ) =
m∑

i=1

ni∑

j=1

δi j

(
x�
i jβ + log λ0(ti j )

)
+ m(logα − logΓ (α))

+
m∑

i=1

log

⎡

⎣ζ (di )

⎛

⎝
ni∑

j=1

Λ0(ti j )e
x�
i jβ + 1, α

⎞

⎠

⎤

⎦ , (5)

where di = ∑ni
j=1 δi j , for i = 1, . . . ,m.

In a parametric approach, the baseline hazard λ0(·)must be specified. In this paper,
we assume the Weibull baseline hazard function λ0(t) = σφtφ−1 (thus Λ0(t) = σ tφ)
for t > 0, where σ > 0 and φ > 0 are scale and shape parameters, respectively.

3 Semiparametric approach and EM-algorithm

This section presents the semiparametric version of the GE frailty model, where the
baseline hazard function λ0(·) does not need to be specified as opposed to the para-
metric case. In brief, we consider a discrete version of the functionΛ0(t), being a step
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Semiparametric generalized exponential frailty model 685

function at the observed failure times, and then use an EM-algorithm for estimating
parameters.

The complete data are represented by (ti j , δi j , Zi ), for i = 1, . . . ,m and
j = 1, . . . , ni , where the pairs (ti j , δi j )’s are observable and the Zi ’s are
the latent frailties; define Z = (Z1, . . . , Zn)

�. The complete likelihood func-
tion is Lc(θ) = L1(β,Λ; Z) L2(α; Z), where we have defined L1(β,Λ; Z) =
∏m

i=1
∏ni

j=1

(
ziλ0(ti j ) exp(x�

i jβ)
)δi j

exp(−ziΛ0(ti j )e
x�
i jβ) and L2(α; Z) = ∏m

i=1 α

e−zi (1 − e−zi )α−1.
The complete log-likelihood is then 
c(θ) = 
1(β,Λ; Z) + 
2(α; Z), with


1(β,Λ; Z) ≡ log L1(β,Λ; Z) ∝
m∑

i=1

ni∑

j=1

δi j

(
x�
i jβ + log λ0(ti j )

)

−
m∑

i=1

ni∑

j=1

ZiΛ0(ti j )e
x�
i jβ (6)

and


2(α; Z) ≡ log L2(α; Z) ∝ m logα + (α − 1)
m∑

i=1

log(1 − e−Zi ). (7)

In a discrete version of the cumulative baseline hazard function, we replace Λ0(t) by
Λd

0(t) = ∑
k:t(k)≤t λ0

(
t(k)

)
, where t(1) < · · · < t(q) are the ordered distinct failure

times ti j ’s (q is the number of distinct failure times). As a result, the first term of the
log-likelihood 
c in (6) becomes


1(β,Λd ; Z) ∝
q∑

k=1

d(k) log λ0(t(k)) +
m∑

i=1

ni∑

j=1

δi jx�
i jβ

−
q∑

k=1

λ0(t(k))
∑

i, j∈R(t(k))

Zie
x�
i jβ , (8)

where R(t(k)) = {(i, j) : ti j > t(k)} is the risk set at time t(k) and d(k) is the number
of failures at t(k), for k = 1, . . . , q.

The complete log-likelihood 
c(θ) = 
1(β,Λd ; Z) + 
2(α; Z) can now be used to
build an EM-algorithm; 
1 and 
2 are presented in (8) and (7), respectively. First, we
determine the Expectation step of the algorithm assuming Zi ’s as latent random vari-
ables. The conditional density of Zi given (ti j , δi j )

ni
j=1 is necessary for this task. It can

be shown that the conditional density f (zi |ti j , δi j , j = 1, . . . , ni ) = f (ti j , δi j , j =
1, . . . , ni |zi ) f (zi )/ f (ti j , δi j , j = 1, . . . , ni ) assumes the form
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f (zi |ti j , δi j , j = 1, . . . , ni )

=
zdii (1 − e−zi )α−1 exp

{
−zi

(∑ni
j=1 Λ0(ti j )e

x�
i jβ + 1

)}

Γ (α)ζ (di )
(∑ni

j=1 Λ0(ti j )e
x�
i jβ + 1, α

) , zi > 0,

(9)

for i = 1, . . . ,m.
Conditional on the observable data, the frailties Z1, . . . , Zn are independent random

variables with density given in (9). The Q-function of the algorithm can be denoted by
Q(θ; θ (r)) ≡ E(
c(θ)|(ti j , δi j ), i = 1, . . . ,m, j = 1, . . . , ni ; θ (r)), with θ (r) being
the estimate of θ in the r -th step. In order to obtain the Q-function, the conditional

expectations E
(
Zi |(ti j , δi j )nij=1

)
and E

(
log(1 − e−Zi )|(ti j , δi j )nij=1

)
must be calcu-

lated. These expectations are presented in the next proposition and can be obtained
after some algebra.

Proposition 1 (E-step of the EM-algorithm) For i = 1, . . . ,m, we have that

ωi (θ) ≡ E
(
Zi

∣
∣(ti j , δi j )

ni
j=1

)
=

ζ (di+1)
(∑ni

j=1 Λ0(ti j )e
x�
i jβ + 1, α

)

ζ (di )
(∑ni

j=1 Λ0(ti j )e
x�
i jβ + 1, α

)

and

κi (θ) ≡ −E
(
log(1 − e−Zi )

∣
∣(ti j , δi j )

ni
j=1

)

= −Ψ (α) −
χ(di )

(∑ni
j=1 Λ0(ti j )e

x�
i jβ + 1, α

)

ζ (di )
(∑ni

j=1 Λ0(ti j )e
x�
i jβ + 1, α

) ,

where χ(d)(b, a) = ∂ζ (d)(b, a)/∂a, for d ∈ N and a, b > 0.

Therefore the Q-function can expressed as Q(θ; θ̂
(r)

) = Q1(β,Λd
0 ; θ̂

(r)
) +

Q2(α; θ̂
(r)

), where

Q1(β,Λd
0 ; θ̂

(r)
) ∝

q∑

k=1

d(k) log λ0(t(k)) +
m∑

i=1

ni∑

j=1

δi jx�
i jβ

−
q∑

k=1

λ0(t(k))
∑

i, j∈R(t(k))

exp
(

x�
i jβ + logωi (̂θ

(r)
)
)

and

Q2(α; θ̂
(r)

) ∝ m logα − (α − 1)
m∑

i=1

κi (̂θ
(r)

). (10)
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Moving to the M-step of the algorithm, consider the previous Q-function and note
that (β,Λd

0) and α can be estimated independently in each iteration. Starting by

estimating (β,Λd
0), we fix β and take ∂Q(θ; θ̂

(r)
)/∂λ0(t(k)) = 0; this implies that

∂Q1(β,Λd
0 ; θ̂

(r)
)/∂λ0(t(k)) = 0. Hence, we get

λ̃0(t(k)) = d(k)
∑

i, j∈R(t(k))
exp

(
x�
i jβ + logωi

(
θ̂

(r)
)) , (11)

for k = 1, . . . , q. Replacing λ0(t(k)) by (11) determines that the Q1-function, now
depending only on β, is

Q1(β; θ̂
(r)

) ∝ −
q∑

k=1

d(k) log

⎛

⎝
∑

i, j∈R(t(k))

exp
(

x�
i jβ + logωi

(
θ̂

(r)
))

⎞

⎠

+
m∑

i=1

ni∑

j=1

δi jx�
i jβ.

The above profile Q1-likelihood function has the usual formof the partial likelihood

function of the Cox model with the inclusion of the offset logωi (̂θ
(r)

). Therefore, the
estimation of β in each step of the EM-algorithm can be performed through the Cox
approach. The same holds for the estimation of the parameters λ0(t(1)), . . . , λ0(t(q)).

Once β̂
(r+1)

(the parameter vector β estimated in the (r + 1)-th step of the EM-
algorithm) is obtained, the parameter λ0(t(k)) can be estimated as in (11) by replacing

β with β̂
(r+1)

, this yields λ̂0(t(k))(r+1) for k = 1, . . . , q. This estimation procedure
can be applied using existing computational packages in the literature to fit the Cox
model.

The nonparametric estimator of the baseline cumulative hazardΛ0(·), in the (r+1)-
th step of the EM-algorithm, is given by

Λ̂0(t)
(r+1) =

∑

k:t(k)≤t

d(k)
∑

i, j∈R(t(k))
exp

(
x�
i j β̂

(r+1) + logωi (̂θ
(r)

)
) , t > 0. (12)

The estimate of the parameter α in the (r+1)-th step of the algorithm is obtained by

solving the equation ∂Q(θ; θ̂
(r)

)/∂α = 0, which in the GE case is ∂Q2(α; θ̂
(r)

)/∂α =
0. This provides

α̂(r+1) = m

/ m∑

i=1

κi

(
θ̂

(r)
)

. (13)

This is an important result in the comparison with the well-known semiparametric
gamma frailtymodel. The estimation ofα (related to the frailty distribution) is obtained
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in a closed form in each step of the EM-algorithm for theGEmodel. The corresponding
procedure in the semiparametric gamma frailtymodel requires the use ofmaximization
routines such as the Newton-Raphson method (Yu 2006) R via optim.

In summary, the EM-algorithm for the semiparametric GE model has four main
steps:

1. Input a starting value θ (0) for θ . The Cox regressionmodel might be used for initial

guesses of β and Λ0(·). Consider ωi (̂θ
(0)

) = 1 and α̂(0) = 1.
2. (E-step) Update the Q-function using θ (r) through the conditional expectations

given in Proposition 1, where θ (r) is the estimate of θ in the step r .

3. (M-step) Find β̂
(r+1)

and Λ̂
(r+1)
0 by fitting a Cox regression model with offset

logωi (̂θ
(r)

) and compute α̂(r+1) using (13).
4. Verify a convergence criterion, e.g., max{||Q(̂θ

(r+1); θ̂
(r)

) − Q(̂θ
(r); θ̂

(r)
)||, ||̂θ (r+1) −

θ̂
(r)||} < ε, for some ε > 0. If this criterion is satisfied, set θ̂

(r+1)
as the estimate of

θ ; otherwise, update θ̂
(r)

with θ̂
(r+1)

and return to Step 2.

In order to obtain the standard errors of the parameters estimates,we proceed as indi-
cated in Klein (1992). The information matrix is I (β, α) = −∂2
(β, α)/∂(β, α)∂(β,

α)�, where 
 is the observed log-likelihood given in (5) with λ0(·) and Λ0(·) replaced
by (11) and (12), respectively. This matrix can be obtained numerically and we do not
present an explicit form for it here to be concise. Once the EM-algorithm convergence

is obtained after r steps, the estimated information matrix I (β̂
(r)

, α̂(r)) is calculated.

4 Monte Carlo simulation

In this section, we develop a simulation study to evaluate the performance of the
parametric and semiparametric versions of the proposed GE frailty model. The results
are compared to those obtained from other frailty models well known in the literature.
The Monte Carlo strategy is considered to avoid drawing conclusions from a single
sample and to allow a broader analysis investigating the inherit bias and the variability
associatedwith the estimators. First, we explore the parametric configuration assuming
theWeibull distribution to represent the behavior of the baseline hazard function. Next,
we study the semiparametric version,which provides amore attractive analysiswithout
the strong restriction of choosing a distribution to model the baseline hazard.

In order to generate the data, we consider the following steps:

1. Set the real values for β, σ , φ and α. The first three parameters may differ between
the two mechanisms generating the failure and censoring time points.

2. Generate the covariates. We choose to work with two covariates obtained from
the Bernoulli (0.5). The vector β is 2 × 1 and the intercept β0 is not included to
prevent identifiability issues with σ in the analysis of the parametric version (as
usual in frailty models).

3. Generate the frailties from one of the following distributions: GE (shape = α,
scale = 1), gamma (shape = 1/α, rate = 1/α) or IG (mean = 1, shape = 1/α). In
addition, the log-normal (LN) distribution (mean = 1, variance = eα − 1) is also
considered for the semiparametric case, as suggested by a referee. Using different
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frailty distributions to simulate data is useful to verify howwell the distinct models
can handle a correct or wrong frailty configuration.

4. Generate a failure time ti j by inverting the cumulative distribution function (cdf)
of the Cox regression model with Weibull baseline hazard.

5. The censoring time ci j is generated by inverting the cdf of a similar Cox regression
with Weibull baseline hazard (as mentioned in Step 1, β, σ and φ may differ here
from those used in Step 4).

6. Let yi j = min{ti j , ci j } and set δi j = 1, if ti j < ci j (δi j = 0 otherwise).

The steps 4–6 should be considered for i = 1, . . . ,m and j = 1, . . . , ni . Step 2 is
applied a single time to generate all samples for the Monte Carlo procedure, i.e., the
matrix of covariates is kept fixed along the Monte Carlo simulation.

All functions and programs to generate the data and to fit the different frailtymodels
were implemented through the R (R Core Team 2016) programming language. The R
package statmod (Giner and Smyth 2016) is used to sample from the IG distribution.
In the Monte Carlo studies, we have considered the R package snowfall (Knaus
2015) for faster results through parallel computing.

4.1 Results of the parametric model

The Monte Carlo simulation, presented in this section, is set to explore 1000 data
sets generated through the exact same configuration. The chosen real values for the
failure time generator are: β = (1.5,−1)�, σ = 0.25 and φ = 2. The censoring time
generator takes into account: β = (0, 0)�, σ = 0.05 and φ = 2. Given the assumption
of non-informative censoring of this study, we emphasize that our focus is to evaluate
the behavior of the estimators with respect to the real values reported for the failure
generating procedure only. The parameter α is set to be 1.5 in the frailty distribution.
All data sets have the same number of clusters (scenarios: m = 50, 100 and 200) with
ni = 2 observations each.

Themaximum likelihood estimation is considered in a comparative analysis involv-
ing three different frailtymodels tofit the simulateddata. The log-likelihood expression
of the parametric GE model, shown in (5), is maximized through the R general pur-
pose optimization command optim. The parametric gamma and inverse-Gaussian
(IG) frailty models (with Weibull baseline hazard function) are widely used in appli-
cations focused on the classical approach for inference and available in R through
the package parfm (Munda et al. 2012). In all cases, the maximization is developed
using the BFGS method (Fletcher 2000). The algorithm initial values for all parame-
ters (except α, starting at 1) are obtained by fitting the parametric proportional hazards
model without the frailty term; this is done through the function phreg from the R
package eha (Brostrom 2016).

The boxplots in Fig. 1 represent the distributions of the percentages of censored
observations in the 1000 samples generated for theMonte Carlo simulations. Note that
all graphs are below the 50% horizontal level, suggesting that the chosen configuration
of true values of the parameters leads to a higher proportion of failure times in all
samples. The larger the number of clusters, the lower the variability expressed through
the boxplot size.
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Fig. 1 Percentage of censored observations in the simulated data sets evaluated in the Monte Carlo simu-
lation. The dashed horizontal line indicates the 50% level

The following analyses are entirely focused on the parameters β1, β2 and α, which
are present in both parametric and semiparametric versions of the studied models.
The results for the Weibull parameters φ and σ (estimated only in the parametric
version) are not reported here since their study is not critical for the model compar-
isons.

Figure 2 shows the behavior of the 1000 Monte Carlo estimates for β1, β2 and
the frailty variance. Each panel with three graphs represents a combination involving
the number of clusters (m = 50, 100 or 200) and the true frailty distribution used to
generate the data. The bottom of the graphs identifies the parametric frailty model and
the horizontal dashed lines indicate the true values of the parameters. For comparison
reasons, the analysis related to α is developed in terms of frailty variance, since α

has a different meaning in the GE model. Note that α is the variance of the gamma
and IG frailty distributions chosen to generate the data (in both cases the expected
value is 1). On the other hand, the variance of the chosen GE frailty distribution is
Ψ ′(1)−Ψ ′(α +1) and the expected value is Ψ (α +1)−Ψ (1). For comparison of the
frailty variances, note that model (2) is equivalent to λ(ti j |Zi ) = Z∗

i λ
∗
0(ti j ) exp(x

�
i jβ),

with Z∗
i ≡ Zi/E(Zi ) (mean equal to 1) and λ∗

0(ti j ) ≡ λ(ti j )E(Zi ). Therefore, the
comparison of frailty variances must consider the transformation for the GE case:
Var(Z∗

i ) = [Ψ ′(1) − Ψ ′(α + 1)]/[Ψ (α + 1) − Ψ (1)]2.
The overall picture clearly suggests two expected results: (i) the variability of

the estimates decreases when m increases and (ii) the medians are close to the real
values when fitting a model assuming the correct frailty distribution. In terms of
variability, the three fitted models tend to provide similar Monte Carlo standard
errors for the coefficients, when exploring the same data set. This comment is not
valid for the frailty variance estimates (higher Monte Carlo variability for the IG
model).

The behavior of the gamma and GE models are quite similar in any configuration;
they tend to fit well data sets generated with gamma or GE frailties, but some bias
is observed for an IG misspecification. In contrast, the IG model usually provides
biased estimates under misspecification; this is severe for all scenarios, except when
estimating β1 and β2 using GE data.

Table 1 reinforces the conclusions taken fromFig. 2. As can be seen, the gamma and
GEmodels have similarMonte Carlomeans for the coefficients and frailty variances in
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Table 1 Empiricalmean andmean square error (in parentheses) forβ1,β2 and the frailty variance. Columns
indicate the real frailty distribution and rows represent the fittedmodel. The real values of the frailty variance
are: 0.7 (GE) and 1.5 (gamma and IG)

m Model GE data Ga. data IG data

β1 50 GE 1.537 (0.140) 1.494 (0.167) 1.454 (0.132)

Ga. 1.535 (0.140) 1.496 (0.168) 1.454 (0.133)

IG 1.501 (0.135) 1.379 (0.183) 1.517 (0.138)

100 GE 1.522 (0.059) 1.506 (0.072) 1.458 (0.058)

Ga. 1.520 (0.059) 1.508 (0.073) 1.458 (0.059)

IG 1.489 (0.055) 1.372 (0.083) 1.522 (0.061)

200 GE 1.513 (0.031) 1.491 (0.034) 1.453 (0.031)

Ga. 1.511 (0.031) 1.493 (0.034) 1.454 (0.031)

IG 1.473 (0.030) 1.356 (0.053) 1.517 (0.032)

β2 50 GE −1.019 (0.138) −1.014 (0.171) −0.969 (0.134)

Ga. −1.017 (0.138) −1.015 (0.172) −0.969 (0.135)

IG −0.999 (0.144) −0.939 (0.183) −1.008 (0.141)

100 GE −1.008 (0.058) −0.999 (0.082) −0.966 (0.057)

Ga. −1.006 (0.058) −1.001 (0.082) −0.967 (0.058)

IG −0.984 (0.059) −0.910 (0.086) −1.010 (0.061)

200 GE −1.006 (0.026) −0.993 (0.034) −0.965 (0.029)

Ga. −1.004 (0.026) −0.994 (0.035) −0.965 (0.030)

IG −0.981 (0.026) −0.904 (0.042) −1.009 (0.030)

Var. 50 GE 0.705 (0.080) 1.413 (0.684) 0.651 (0.088)

Ga. 0.685 (0.092) 1.458 (0.789) 0.636 (0.103)

IG 1.839 (37.07) 4.509 (77.86) 2.226 (17.31)

100 GE 0.703 (0.037) 1.435 (0.626) 0.632 (0.046)

Ga. 0.680 (0.043) 1.482 (0.717) 0.615 (0.054)

IG 1.427 (1.065) 3.969 (14.12) 1.737 (2.380)

200 GE 0.709 (0.019) 1.429 (0.570) 0.636 (0.025)

Ga. 0.685 (0.023) 1.474 (0.647) 0.618 (0.031)

IG 1.366 (0.661) 3.684 (10.10) 1.627 (1.353)

all scenarios. Comparing all three models, the IG case shows significantly larger bias
for the frailty variance. In terms of mean square error (MSE), the GE model provides
the lowest values in most scenarios; in particular, the MSE of the gamma model is
never smaller than the one reported for the corresponding GE case, even when the data
comes from the gamma model.

4.2 Results of the semiparametric model

This section explores the results obtained via the EM-algorithm implemented to fit
the proposed semiparametric GE frailty model. Consider again the same configura-
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Fig. 3 Shape of the Q-function to be maximized in the EM-algorithm to estimate α. Curves built using a
data set generated with gamma frailty and m = 50 groups

Fig. 4 Percentage of censored observations in the simulated data sets evaluated in the Monte Carlo simu-
lation. The dashed horizontal line indicates the 50% level

tion to generate data and the same scenarios evaluated in the previous section. The
present analysis compares the GE results with those from the semiparametric version
of the gamma frailty model available in the literature (Klein 1992). In the convergence
criterion of the EM-algorithm, we set ε = 10−5 for both models.

Two main aspects must be clarified with respect to the study developed here: (i)
the IG model is not investigated since its semiparametric version is not yet proposed
or well explored in the literature, (ii) in order to provide a fair comparison, only the
non-penalized version of the gamma frailty model is considered in our study; this
version is based on the EM-algorithm by Klein (1992). A penalized semiparametric
gamma model with an EM-algorithm is available though the R package survival
(Therneau and Grambsch 2000; Therneau 2015). We believe that it would be more
appropriate to confront any penalized semiparametric frailty model from the liter-
ature with a penalized version of the semiparametric GE model. This topic is left
for future work since the present paper is focused on exploring the non-penalized
case.

Figure 3 presents the behavior of the Q-function to be maximized during the EM-
algorithm to estimate α. In the GE model, consider the expression in (10); for the
gamma case, see Klein (1992). The analysis here is based on the same data set, gen-
erated with m = 50 clusters and assuming the gamma distribution for the frailties.

123



694 W. Barreto-Souza, V. D. Mayrink

Fig. 5 Boxplots of the maximum likelihood estimates obtained in the Monte Carlo simulation for β1, β2
and the frailty variance; columns (number of clusters) and rows (real frailty distribution). In the fourth row,
the Log-normal (LN) distribution is assumed for the frailties. The horizontal dashed line indicates the true
value of the parameter. The real values of the frailty variances are: 0.7 (GE), 1.5 (gamma and IG) and 3.48
(LN)

As can be seen in this figure, the Q-function related to the gamma frailty model is
definitely flat, which implies in difficulties to estimate α. In contrast, the Q-function
associated with the GE case has an evident concave shape where a maximum (with a
closed form) can be easily identified; see (13).

Figure 4 shows that the percentages of censored observations are below the 50%
level for all generated samples. This configuration is very similar to the one investigated
in the previous section for the parametric models.

Figure 5 illustrates with boxplots the behavior of the 1000 Monte Carlo estimates
in each scenario; as expected, the variability exhibited by the graphs reduces as m
increases. This figure also suggests that the GE model works better than the gamma
for estimating both regression coefficients when the data is built with GE, IG and LN
frailties. The performance (for β1 and β2) is quite similar to the gamma case under
gamma frailty data; both semiparametric models indicate bias here. In terms of frailty
variance, the GE model provides smaller Monte Carlo standard errors and it estimates
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Table 2 Empiricalmean andmean square error (in parentheses) forβ1,β2 and the frailty variance. Columns
indicate the real frailty distribution and rows represent the fittedmodel. The real values of the frailty variance
are: 0.7 (GE), 1.5 (gamma and IG) and 3.48 (LN)

m Model GE data Ga. data IG data LN data

β1 50 GE 1.534 (0.114) 1.264 (0.163) 1.512 (0.114) 1.386 (0.132)

Ga. 1.353 (0.118) 1.238 (0.171) 1.325 (0.124) 1.271 (0.160)

100 GE 1.518 (0.056) 1.243 (0.119) 1.503 (0.055) 1.366 (0.076)

Ga. 1.350 (0.072) 1.233 (0.123) 1.329 (0.075) 1.266 (0.106)

200 GE 1.528 (0.027) 1.244 (0.089) 1.500 (0.027) 1.374 (0.042)

Ga. 1.368 (0.040) 1.240 (0.091) 1.337 (0.049) 1.280 (0.072)

β2 50 GE −1.028 (0.115) −0.835 (0.145) −1.014 (0.129) −0.936 (0.134)

Ga. −0.915 (0.103) −0.817 (0.147) −0.897 (0.115) −0.860 (0.135)

100 GE −1.008 (0.057) −0.831 (0.086) −1.003 (0.060) −0.901 (0.072)

Ga. −0.898 (0.058) −0.822 (0.090) −0.889 (0.060) −0.835 (0.083)

200 GE −1.016 (0.026) −0.827 (0.054) −0.983 (0.028) −0.915 (0.034)

Ga. −0.913 (0.029) −0.823 (0.055) −0.879 (0.038) −0.852 (0.047)

Var. 50 GE 0.727 (0.001) 0.799 (0.010) 0.729 (0.001) 0.758 (0.071)

Ga. 0.404 (0.122) 0.842 (0.092) 0.357 (0.154) 0.530 (0.289)

100 GE 0.731 (0.001) 0.807 (0.011) 0.732 (0.001) 0.764 (0.067)

Ga. 0.434 (0.089) 0.896 (0.076) 0.389 (0.114) 0.581 (0.220)

200 GE 0.734 (0.001) 0.810 (0.012) 0.736 (0.001) 0.767 (0.066)

Ga. 0.458 (0.069) 0.916 (0.066) 0.416 (0.092) 0.596 (0.195)

well this quantity under GE data; the gamma model clearly underestimates the frailty
variance in all scenarios. Results for the frailty variance are quite similar in the IG
and LN frailty scenarios. This is expected due the great similarity between these two
distributions; see page 96 of Wienke (2011). We believe that the gamma frailty model
does not perform well in this case due to the flatness behavior of the Q-function as
illustrated in Fig. 3.

Table 2 shows the empirical means and MSEs calculated for the Monte Carlo
replications in each scenario. As can be seen, the results from both models tend to
differ mainly for the frailty variance estimation. TheMSEs of the GEmodel are almost
always lower than those from the gamma model; the only exceptions are found for β2
in the scenarios with m = 50 groups (GE and IG data).

The semiparametric version of the LN frailty model [see, for example, Zeng
et al. (2008)] was not investigated in this paper, since its implementation is not
available through any R package or for download from a repository. The imple-
mentation of this model is not straightforward and would be computationally
demanding, configuring a point that is outside the scope of our paper which
is focused on the comparison of the GE model with the most popular com-
petitor (the gamma). The comparison including the LN model is left for future
work.
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5 Empirical illustration

The main goal of this section is to present a real data application exploring the para-
metric and semiparametric versions of the proposed GE frailty model. The analysis
also involves a comparison with the gamma (parametric and semiparametric cases)
and the IG modeling (parametric case). We choose to work with the kidney catheter
data in McGilchrist and Aisbett (1991), which is a data set often used to illustrate sur-
vival models with random effects; data available through the R package survival
(Therneau 2015). The response is the time to infection from the insertion of a catheter
in a patient using portable dialysis equipment. The time of first and second infections
are registered for each patient; there are 38 subjects and thus 76 time observations for
the analysis (18 of them are right-censored). After the occurrence (or censoring) of
the first event, enough time is allowed to cure the infection before initiating the second
insertion. The data set includes an indicator variable identifying the event status (1
for infection, 0 for censoring) and three covariates: gender, age in years and disease
type (with four categories). Following other studies in the literature [for instance, see
Ibrahim et al. (2001)], the covariate “disease type” is not considered in our analyses.

Table 3 contains the estimates of the parameters and the corresponding standard
errors for the parametric and semiparametric GE and gamma frailty models; again,
only the parametric version of the IG model is evaluated. The semiparametric gamma
(non-penalized) and GE models required 106 and 40 iterations of the EM-algorithm,
respectively, to reach convergence. The coefficients estimates exhibited here resemble
those reported in the literature; see for example Ibrahim et al. (2001) for results in a
Bayesian context. In the parametric case, the GE and gamma models tend to provide
similar results. Some differences can be noted when comparing the corresponding
parametric and semiparametric estimates. As an example, both versions of the GE
model produce similar results (suggesting robustness), whereas this behavior is not
observed for the gamma modeling. In the penalized semiparametric gamma case, the
standard error for α̂ is missing since the R package survival does not estimate this
quantity.

The values reported in Table 3 do not provide a clear picture of which model is the
most suitable for this real data set. In order to assess the goodness of fit, we choose to
investigate the deviance residuals, whose calculation is a transformation to deal with
the typical skewness of the martigale residuals. Deviance and martingale residuals
have been widely used in the literature to verify the adequacy of a Cox proportional
hazards model fit. The reader should refer to Therneau et al. (1990) for further details.

A residual sum of squares (RSS) tells how much of the variation in the data is not
explained by the model. In essence, it is the sum of the squared differences between
the actual and the predicted response; the greater the RSS, the poorer is the model fit.
Figure 6 shows the behavior of the cumulativeRSSacross the kidney data observations;
this analysis is focused on the semiparametric models. As can be seen, the solid line
is almost always below the others suggesting a lower RSS for the GE model fit. The
non-penalized and penalized versions of the gamma model provide similar RSS and
thus indicates their equivalence in terms of model adequacy.

Figure 7 exhibits the Q-function being maximized during the EM-algorithm for
the semiparametric frailty gamma and GE models in the present kidney catheter data
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Fig. 6 Cumulative residuals (deviance) sum of squares for the semiparametric models; GE (solid line),
non-penalized gamma (dashed line) and penalized gamma (dotted line)

Fig. 7 Shape of the Q-function to be maximized in the EM-algorithm to estimate α. Curves built using
the kidney catheter data

application.Note that, again, the corresponding Q-function is flat for the gammamodel
and it is not flat for the GE case. This result reinforces the discussion for Fig. 3 (in
the simulated data analysis) and confirms that the maximization to find α is indeed
problematic for the gamma frailty model.

6 Concluding remarks and future research

The main goal of this paper was to introduce a new tractable and computationally
attractive frailty model that can be seen as an additional option (having important
features) to be explored, in practical situations, jointly with the existing frailty models
in the literature. In the proposed model, the frailty follows a generalized exponential
distribution; this lifetime distribution has been an alternative to other survival models
such as: gamma, inverse-Gaussian andWeibull. The advantages of the semiparametric
GE model over the gamma frailty model were emphasized along the study.

Results obtained through simulated data were explored in a Monte Carlo setup
involving1000 replications.Threemodelswere compared (GE, gammaand IG) assum-
ing nine different data configurations (varying the sample size and the true frailty
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distribution). The results suggested, for both parametric and semiparametric cases, a
good performance of the GE model under GE data and at least a similar performance,
with respect to the gamma model, under misspecification (non-GE data). The simula-
tion study, was also important to illustrate the fact that the semiparametric GE model
does not suffer with a flat likelihood issue; such issue compromises the estimates of
the frailty variance in the gamma model. The estimator for α has an explicit form in
each step of the EM-algorithm for the GEmodel. In contrast, the gamma case requires
a maximization of a function with a severe flat shape depending on the data.

The final study was devoted to investigate a real data set related to a kidney catheter
experiment known in the literature. The estimates of the regression coefficients are, in
general, relatively close to those reported in otherworks.Comparing theparametric and
semiparametric estimates, the results aremore consistent for theGE case than those for
the gammamodel, which can be a consequence of thementioned flat behavior. In terms
ofmodel fit, the residual sum of squares (based on deviance residuals, i.e., transformed
martingale residuals) are lower for the semiparametric GE case; this suggests, if not
a significantly better adjustment, a similar performance compared to the widely used
semiparametric gamma model.

Again, following the ideas inHougaard (2000), this paper is not intended to promote
the GE frailty model as the best choice for all situations. The practitioner/researcher
should always evaluate different models, with the proposed GE model being an addi-
tional alternative shown to be tractable, computationally attractive and behaving well
under different data scenarios.

Possible points for future research are extensions of the GE frailty model in the
following directions: (a) GE frailty model with cure fraction; (b) time-varying GE
frailty model; (c) multivariate GE frailty model; and further (d) penalized likelihood
to improve the estimation of the frailty variance parameter. Some of these points are
currently under investigation.
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