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1 A copula not in any max-domain of attraction

The following result provides a one parametric family of bivariate rv, which
are easy to simulate. Each member of this family has the property that its
corresponding copula does not satisfy the extreme value condition (2). How-
ever, as the parameter tends to zero, the copulas of interest come arbitrarily
close to a GPC, which, in general, is in the domain of attraction of an EVD.

Lemma S.1 Let the rv V have df Hλ(u) := u
(
1 + λ sin(log(u))

)
, 0 ≤ u ≤ 1,

where λ ∈
[
−
√
2
2 ,
√
2
2

]
. Note that Hλ(0) = 0, Hλ(1) = 1 and H ′λ(u) ≥ 0

for 0 < u < 1. Furthermore let the rv U be independent of V and uniformly
distributed on (0, 1). Put S1 := U =: 1−S2. Then the copula Cλ corresponding
to the bivariate rv

X := −V
2

(
1

S1
,

1

S2

)ᵀ

∈ (−∞, 0]2 (S.1)

is not in the domain of attraction of any multivariate EVD if λ 6= 0, whereas
C0 is a GPC with corresponding D-norm

‖x‖D = ‖x‖1 −
|x1||x2|
‖x‖1

for x = (x1, x2)ᵀ 6= 0.

Denote by Fλ the df of −V/S1 =D −V/S2. Elementary computations yield
that it is given by

Fλ(x) =

{
|x|−1

(
1
2 + λ

5

)
, if x ≤ −1,

1− |x|
(

1
2 + λ

5

(
2 sin(log|x|)− cos(log|x|)

))
, if −1 < x < 0,

S. Aulbach · M. Falk · T. Fuller
University of Würzburg, Institute of Mathematics, Emil-Fischer-Str. 30, D-97074 Würzburg
E-mail: stefan.aulbach@uni-wuerzburg.de



2 Stefan Aulbach et al.

and, thus, Fλ is continuous and strictly increasing on (−∞, 0].

Proof We show that

lim
s↓0

1− Cλ(1− s, 1− s)
s

does not exist for λ ∈
[
−
√
2
2 ,
√
2
2

]
\ {0}. Since Cλ coincides with the copula of

2X we obtain setting s = 1− Fλ(t), t ↑ 0,

1− Cλ
(
Fλ(t), Fλ(t)

)
1− Fλ(t)

=
1− P

(
−V/S1 ≤ t,−V/S2 ≤ t

)
1− P

(
−V/S1 ≤ t

)
=

1− P
(
V ≥ |t|max{U, 1− U}

)
1− P

(
V ≥ |t|U)

=

∫ 1

0
P
(
V ≤ |t|max{u, 1− u}

)
du∫ 1

0
P
(
V ≤ |t|u

)
du

=

∫ 1/2

0
Hλ

(
|t|(1− u)

)
du+

∫ 1

1/2
Hλ

(
|t|u
)
du∫ 1

0
Hλ

(
|t|u
)
du

= 2

∫ 1

1/2
Hλ

(
|t|u
)
du∫ 1

0
Hλ

(
|t|u
)
du

.

The substitution u 7→ u/|t| yields

1− 1

2

1− Cλ
(
Fλ(t), Fλ(t)

)
1− Fλ(t)

= 1−

∫ |t|
|t|/2Hλ(u) du∫ |t|
0
Hλ(u) du

=

∫ |t|/2
0

Hλ(u) du∫ |t|
0
Hλ(u) du

where we have for each 0 < c ≤ 1∫ c

0

Hλ(u) du =
c2

2
+ λ

∫ c

0

u sin(log(u)) du.

and ∫ c

0

u2 · 1

u
sin(log(u)) du =

c2

5

(
2 sin(log(c))− cos(log(c))

)
which can be seen by applying integration by parts twice. Hence we obtain∫ |t|/2

0
Hλ(u) du∫ |t|

0
Hλ(u) du

=
1

4

1
2 + λ

5

(
2 sin(log|t| − log(2))− cos(log|t| − log(2))

)
1
2 + λ

5

(
2 sin(log|t|)− cos(log|t|)

) ,

whose limit does not exist for t ↑ 0 if λ ∈
[
−
√
2
2 ,
√
2
2

]
\ {0}; consider, e.g., the

sequences t
(1)
n = − exp

(
(1− 2n)π

)
and t

(2)
n = − exp

(
(1/2− 2n)π

)
as n→∞.

On the other hand, elementary computations show for x = (x1, x2)ᵀ ∈
(−∞, 0]2 \ {0}

lim
ε↓0

1− C0(1 + εx)

ε
= 2E(max{|x1|S1, |x2|S2}) = ‖x‖1 −

|x1||x2|
‖x‖1

.
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The remaining assertion is thus implied by Section 2 of Aulbach et al (2012).
ut

Remark S.1 Similar results as in Lemma S.1 can be obtained for different dis-
tributions of the rv (S1, S2) in (S.1), which is still assumed to be independent
of V . If λ = 0, then S1 = U1, S2 = U2 gives

‖x‖D = ‖x‖∞ +
(‖x‖1 − ‖x‖∞)

2

3‖x‖∞
, x 6= 0,

where U1, U2 are independent and uniformly distributed on [0, 1]. However, if
λ 6= 0, then we obtain for t ∈ (−1, 0)

1− Cλ
(
Fλ(t), Fλ(t)

)
1− Fλ(t)

=
4

3

(
1 + λ

sin(log|t|) + cos(log|t|)
10 + 4λ

(
2 sin(log|t|)− cos(log|t|)

)),
which has no limit for t ↑ 0; consider, e.g., the sequences

(
t
(1)
n

)
n

and
(
t
(2)
n

)
n

as in the proof of Lemma S.1.
However, if U is uniformly distributed on [0, 1], then S1 = S2 = U implies

Cλ(u1, u2) = P

(
− V
S1
≤ F−1λ (u1),− V

S2
≤ F−1λ (u2)

)
= Fλ

(
min

{
F−1λ (u1), F−1λ (u2)

})
= min{u1, u2} for u1, u2 ∈ (0, 1),

which does not depend on λ. Moreover, Cλ is the copula of an EVD with
D-norm ‖·‖D = ‖·‖∞, cf. (3), and satisfies ε−1(1− Cλ(1 + εx)) = ‖x‖∞ for

x ∈ (−∞, 0]2 whenever 0 < ε ≤ ‖x‖−1∞ .

Example S.1 Let η1, η2 be two independent and standard negative exponential
distributed rv. Put for t ∈ [0, 1]

Xt := max

(
−V

2 exp
(
η1
1−t
) , −V

2 exp
(
η2
t

)) =
−V

2 exp
(

max
(
η1
1−t ,

η2
t

)) ,
where the rv V is independent of η1, η2 and follows the df Hλ defined in Lemma

S.1 with λ ∈
[
−
√
2
2 ,
√
2
2

]
. Note that

max

(
η1

1− t
,
η2
t

)
=D η1 =D η2

and, thus, the process X = (Xt)t∈[0,1] has identical continuous marginal df.
For λ = 0, the process X is a generalized Pareto process, whose pertaining

copula process is in the max-domain of attraction of a SMSP, see Aulbach et al
(2013). For λ 6= 0 this is not true: Just consider the bivariate rv (X0, X1) =D

−V2 (1/U1, 1/U2), where U1 = exp(η1), U2 = exp(η2) and repeat the arguments
in Lemma S.1.
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2 Simulations

In this section we provide some simulations, which indicate the performance of
the test statistics Tn(cn) and T̂n(cn) from Theorem 1 and Theorem 2, respec-
tively. All computations were performed using the R package CompQuadForm
written by Pierre Lafaye de Micheaux and Pierre Duchesne. We chose Imhof’s
(1961) method for computing the p-values of our test statistics; cf. Duchesne
and Lafaye de Micheaux (2010) for an overview of simulation techniques of
quadratic forms in normal variables.

2.1 Selection of the parameters

Recall that the test statistics under consideration depend on several sequences,
which are required to have certain asymptotic properties as the sample size
grows to infinity. For a finite sample size, however, we will see later in this
section that the test results are highly sensitive to a proper selection of the
corresponding elements of these sequences. These elements are referred to as
the parameters of the test statistics in what follows. Additionally, we assume
that δ > 0 is given by the application; e.g., we could use δ = 1 for testing
whether the Gumbel-Hougaard family in Example 1 of the article is a candidate
for modeling the copula of the observed data.

For convenience, we assume for a moment that our data consist of indepen-
dent copies U (1), . . . ,U (n) of a rv U which is distributed according to a copula.
If we want to test the hypothesis that this copula is in a δ-neighborhood of a
GPC for some fixed δ > 0, the test statistic Tn(cn) depends on the parame-
ters k and cn, where k ≥ 2 is an integer and cn ∈ (0, 1) has the asymptotic
properties cn → 0, ncn → ∞, and nc1+2δ

n → 0 as n → ∞. Note that, if the
copula is actually in a δ0-neighborhood for some δ0 > δ, then we get

1− P
(
U ≤

(
1− cn

j

)
1

)
=
cn
j
mD +

(
cn
j

)1+δ(
cn
j

)δ0−δ 1− P
(
U ≤

(
1− cn

j

)
1
)
− cn

j mD(
cn
j

)1+δ0
=
cn
j
mD + o

((
cn
j

)1+δ
)

for j = 1, . . . , k.

Thus, the same arguments that proved Theorem 1 also show:

Corollary S.1 Let δ > 0 and k ∈ N, k ≥ 2. If a copula C is in the δ0-
neighborhood of a GPC for some δ0 > δ, and cn ∈ (0, 1) satisfies cn → 0,
ncn → ∞, and nc1+2δ

n → s ≥ 0, then the conclusions of Theorem 1 remain
valid.

Since this result suggests that the condition nc1+2δ
n →n→∞ 0 is rather a

mild one, we focus on exploiting cn → 0 and ncn →∞ as n→∞ in order to
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derive a reasonable value cn for a finite sample size n. Given that the df of U
is in the δ-neighborhood of a GPC for some δ > 0, we obtain for j = 1, . . . , k

E(nj(cn)) = nP

(
SU

(
−cn
j

))
= ncn ·

1− P
(
U ≤

(
1− cn

j

)
1
)

cn
∼ ncnmD

j
(S.2)

and

max
1≤j≤k−1

∣∣∣∣∣1− P
(
U ≤

(
1− cn

j+1

)
1
)

1− P
(
U ≤

(
1− cn

j

)
1
) − j

j + 1

∣∣∣∣∣ = O
(
cδn
)

(S.3)

as n → ∞, where nj(cn) is for each j = 1, . . . , k the number of exceedances
of the threshold

(
1 − cn

j

)
1 among U (1), . . . ,U (n). Therefore, the task is, on

the one hand, to choose cn small enough such that the thresholds
(
1− cn

j

)
1,

j = 1, . . . , k, are sufficiently close to 1 in order to detect the δ-neighborhood;
cf. (δ-n). On the other hand, cn must be large enough in order to guarantee
that there are sufficiently many observations “above” the thresholds, cf. (S.2),
such that the asymptotic normality as in the proof of Theorem 1 is justified.

Recall that Tn(cn) is based on the estimators j
ncn

nj(cn), j = 1, . . . , k, of the
unknown value mD. Thus, if (δ-n) holds, we expect the graph of the function
γ∗ : (0, 1] → [0,∞), c 7→ γ∗(c) := 1

ncn1(c) to be almost constant on some
interval, since – for proper arguments – this function estimates the (unknown)
constant mD; cf. (S.3). Moreover, we obtain pointwise approximate confidence
intervals for mD from the asymptotic normality(

ncn
γ∗(cn)

)1/2

(γ∗(cn)−mD)→D N(0, 1), (S.4)

which can be derived from (10) and (11). Therefore, we expect that there
is some interval I ⊂ (0, 1] with the both properties that the restriction of
γ∗ to I is constant, apart from random fluctuations, and that the pointwise
approximate confidence intervals based on (S.4) are not too wide for c ∈ I.
Due to the identity nj(c) = n1(c/j) for j = 1, . . . , k, it is reasonable to choose
cn and k such that cn and cn/k are points in I and such that nk(cn) is
not too small. Altogether, the selection of cn for finite n is a typical tradeoff
situation, similar to the problem of choosing a threshold for the adaption of
a generalized Pareto distribution to univariate data, see e.g. Embrechts et al
(1997, Section 6.5).

In the more general case where the margins of the data are unknown, cf.
Theorem 2, we have the additional parameter mn ∈ N with mn ≤ n, which has,
among others, the asymptotical properties mn →∞ and mn/n→ 0 as n→∞.
Since mn is the size of the subsample that is used to compute the test statistic
T̂n(cn) from – a restriction that is due to the need to estimate the margins
from the data –, it is reasonable to require that the rate of convergence of
mn/n→n→∞ 0 is rather low. Indeed, our practical experience from simulation
studies suggests m200 = 86 and m10 000 = 2037. For different values of n,
the sequence mn = n/(log(n))5/7 might be helpful, which roughly reproduces
our empirical findings. Based on an earlier version of this paper, where the
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conditions on mn were more restrictive, we originally aimed at a graphical
approach that would allow to choose cn and mn simultaneously. It turned out,
however, that the results drastically improved once that we decided to specify
mn first and cn afterwards. The aforementioned values of mn resulted from
this investigation and turned out to perform well also in the current setting.

Once the value mn has been chosen, the approach for copula data from
above can be modified in order to select cn and k. As remarked directly after
Theorem 2, we now have the asymptotic properties cn → 0, mncn →∞, and
mnc

1+2δ
n → 0 as n → ∞, where we will focus on the former two; cf. Corol-

lary S.1. Thus, the function γ∗ is replaced with γ̂
(mn)
∗ (c) := 1

mnc
n̂1,mn(c), where

n̂1,mn(c) is given as in (16), and we obtain pointwise asymptotic confidence
intervals from(

mncn

γ̂
(mn)
∗ (cn)

)1/2(
γ̂
(mn)
∗ (cn)−mD

)
→D N(0, 1) as n→∞. (S.5)

Again, if the copula that underlies the data is in a δ-neighborhood of a GPC,

we expect that there is an interval Î ⊂ (0, 1] such that γ̂
(mn)
∗ is almost constant

on Î and that the confidence intervals motivated by (S.5) are not too wide.
Thus, we choose cn and k such that cn, cn/k ∈ Î and such that n̂k,mn(cn) is
not too small.

2.2 Simulation results

In order to check the performance of the test statistics Tn(cn) and T̂n(cn) from
Theorem 1 and Theorem 2, respectively, we now apply our tests to simulated
data, i.e. we know whether the underlying copula is in a δ-neighborhood. Pre-
cisely, we consider the parametric family of copulas introduced in Lemma S.1,

which is indexed with a parameter λ ∈
[
−
√
2
2 ,
√
2
2

]
, and apply the strategies

derived in Section 2.1. Recall that for λ = 0 we obtain a GPC with mD = 3
2 ,

whereas the case λ 6= 0 leads to a copula that is not in any δ-neighborhood of
any GPC.

2.2.1 Copula data

First we apply the approach for copula data: For λ = 0 and n = 10 000,
Figure S.1 shows that the estimation of mD by means of the function γ∗
performs quite well for a wide range of arguments. According to Section 2.1,
it appears reasonable to choose c10 000 = 0.2 and k = 2, which means that
there are n2(0.2) = 1 482 exceedances of the threshold (1 − 0.2

2 )1. Table S.1
summarizes the results derived from the test in Theorem 1, where the p-values
are computed as p(cn) = 1− Fk(Tn(cn)) and Fk denotes the df of

∑k−1
i=1 λiξ

2
i

in Theorem 1. It can be seen that the hypothesis that the underlying copula
belongs to a δ-neighborhood is not rejected for λ = 0 at a 5 % type I error
level, as expected. Moreover, for k = 2, the test detects that the hypothesis
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Fig. S.1 Plot of the function γ∗ (black, left scale) for λ = 0 and n = 10 000, together with
pointwise approximate 95 % confidence intervals (dashed), cf. (S.4). The dashed horizontal
line marks the lower bound of the constant mD, cf. Section 3. The gray line (right scale)
displays the the function c 7→ n2(c), i.e. k = 2.

Table S.1 Test results for different values of λ and k with n = 10 000 and cn = 0.2.

k λ p-value nk(0.2)

2 0.00000 0.60789 1 482
0.70711 0.00063 1 548
0.20000 0.03504 1 434
−0.20000 0.40295 1 524
−0.70711 0.00004 1 703

3 0.00000 0.44411 972
0.70711 0.00000 908
0.20000 0.08966 952
−0.20000 0.36178 1 030
−0.70711 0.00002 1 167

is not true in the cases λ ∈
{
−
√
2
2 , 0.2,

√
2
2

}
. For λ = −0.2, however, the test

does not reject the hypothesis although it is not satisfied, i.e., the test appears
to be more sensitive to positive values of λ than to negative ones. Note that
we obtain similar results if we choose k = 3 instead of k = 2. One exception is
that the p-value for λ = 0.2 increases slightly, which leads not to a rejection
of the hypothesis.

These results can be analyzed further if we consider the p-value as a func-
tion of cn, i.e., we plot the function c 7→ p(c). We observe that the shape of
this graph depends on the cases λ = 0, λ > 0, and λ < 0. For a GPC (λ = 0),
cf. Figure S.2, the p-value is typically above the 5 % line for c ∈ (0, 0.5]. Even
if the curve falls below this line on this range, it normally returns to greater
values almost instantly.1 Opposed to that, the p-value curve has for λ > 0,
cf. Figure S.3, typically some high peaks for small values of c and then falls

1 For the sake of completeness, we remark that a copula which is not a GPC itself but
which is in a δ-neigborhood of a GPC would have a similar p-value curve. However, the
point where the graph falls below the 5 % line would be notably smaller than c = 0.5.
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Fig. S.2 p-values as a function of c ∈ (0, 1) for λ = 0 with k = 2 (left) and k = 3 (right).
The horizontal solid line marks the 5 % type I error level.

below the 5 % line. After another set of peaks for intermediate values of c, the
graph normally attains values smaller than 0.05. Contrary to Table S.1, where
the case λ = 0.2 performed better for k = 2 than for k = 3, Figure S.3 reveals
that the curve is somewhat coarse for k = 2, whereas it has its expected shape
if we put k = 3. Moreover, the case λ < 0, cf. Figure S.4, appears to yield a
curve that is, roughly, above the 5 % line on some interval with left endpoint
zero and then falls and stays below this line. Although the top line of this
figure suggests that the right endpoint of this interval is relatively close to
zero as well, the plots for λ = −0.2 indicate that the interval may also include
intermediate values of c, but with some kind of a downward trend. Opposed
to that, the curves for λ = 0 tend to attain large values for c close to 0.5 and
then fall below the 5 % line abruptly, cf. Figure S.2.

In order to complement the above results, we also divided for each λ ∈{
−
√
2
2 ,−0.2, 0, 0.2,

√
2
2

}
the corresponding sample of 10 000 copula observa-

tions into 50 subsamples. The resulting sample size of n = 200 appears to be
too small to obtain stable results since the corresponding p-value curves of the
cases λ = 0, λ > 0, and λ < 0 were hardly distinguishable. Moreover, a plot
like Figure S.1 showed quite wide 95 % confidence intervals that cover almost
the whole range [1, 2]; recall that 1 ≤ mD ≤ 2 for bivariate data. However, if
we consider the rate of rejection – i.e. the number of subsamples where the
δ-neighborhood hypothesis is rejected divided by the total number of subsam-
ples – and plot it as a function of c ∈ (0, 1), cf. Figure S.5, we observe that the
test seems to satisfy the type I error level of 5 % for λ = 0, whereas there is a

peak at about c = 0.11 for λ =
√
2
2 . Note that, among the 50 subsamples, the

mean number of exceedances above the thresholds
(
1− 0.11

2

)
1 and

(
1− 0.11

3

)
1

were 29.64 and 19.44, respectively, for λ = 0. This also indicates that there
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Fig. S.3 p-values as a function of c ∈ (0, 1) for λ > 0. Top: λ =
√

2/2 with k = 2 (left) and
k = 3 (right). Bottom: λ = 0.2 with k = 2 (left) and k = 3 (right).

may be too few observations exceeding the thresholds in order to justify the
required approximate normal distribution.

2.2.2 More general data

We close our empirical analysis with some results for data with unknown
margins. In order to compare these results with the ones for copula data, we
apply the test of Theorem 2 to the same samples as in Section 2.2.1, but we
claim that we would not know the margins of the data.

As outlined previously, we choose mn = 2 037 for n = 10 000 and apply
essentially the same strategy as in Section 2.2.1. Since we now have to estimate
the margins – or merely certain quantiles of the margins – from the data, the
test itself is applied to the first mn observations only, cf. Section 3.2 of the
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Fig. S.4 p-values as a function of c ∈ (0, 1) for λ < 0. Top: λ = −
√

2/2 with k = 2 (left)
and k = 3 (right). Bottom: λ = −0.2 with k = 2 (left) and k = 3 (right).

main work. Therefore, we expect the following results to be coarser than those
discussed above.

By considering Figure S.6, it appears reasonable to choose again c10 000 =
0.2 and k = 2 or k = 3. We observe that the results in Table S.2 are similar to
those in Table S.1. The main differences are that the numbers of exceedances
of the corresponding thresholds are, of course, smaller and that in the case
λ = 0.2 the alternative is not detected anymore; the p-value is now larger
than 0.05. Note that considering the p-value curves for λ = ±0.2 reveals that
increasing k may lead to weaker results, cf. Figure S.7, whereas in Section 2.2.1
one could get the impression that greater values of k cause slightly better
results. Since the remaining p-value plots had their typical shapes as discussed
in Section 2.2.1, we skip them here.
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Fig. S.5 Rates of rejection as a function of c ∈ (0, 1) among the test results of the 50
subsamples for k = 3. Left: λ = 0. Right: λ =

√
2/2. The plots for k = 2 were very similar

and are, therefore, omitted.
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Fig. S.6 Plot of the function γ̂
(mn)
∗ (black, left scale) for λ = 0, n = 10 000, and mn =

2 037, together with pointwise approximate 95 % confidence intervals (dashed), cf. (S.5). The
dashed horizontal lines mark the lower and the upper bound of the constant mD, cf. Section
3. The gray line (right scale) displays the the function c 7→ n̂2,mn (c), i.e. k = 2, cf. (16).

Finally, we again split the sample up into 50 subsamples, each of size 200.

As before, we see a slight peak in Figure S.8 for λ =
√
2
2 at about c = 0.11,

which indicates that the test has the tendency to detect the alternative even
in relatively small samples. However, this peak is rather small, which is not
surprising since we already noted in Section 2.2.1 that this sample size may
not be large enough in order to obtain stable results.

Altogether, the tests proposed in Theorem 1 and Theorem 2 perform quite
well when they are used to detect a GPC itself. If the copula of the data is
not a GPC, the test results are sensitive to a proper selection of cn, where
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Table S.2 Test results for different values of λ and k with n = 10 000, mn = 2 037, and
cn = 0.2.

k λ p-value n̂k,mn (0.2)

2 0.00000 0.80883 306
0.70711 0.00020 295
0.20000 0.77657 306
−0.20000 0.90475 315
−0.70711 0.00737 364

3 0.00000 0.85423 209
0.70711 0.00011 183
0.20000 0.93852 201
−0.20000 0.84153 205
−0.70711 0.03447 244

we considered quite a number of graphical tools, whose shapes appear to be a
reliable indicator whether the hypothesis is true or not. Where applicable, the
choice of mn, however, appears to be sufficiently solved by the representation
in Section 2.1. A great advantage of the p-value curve approach is that a
practitioner does not need to specify a suitable value of cn explicitly, but can
make the decision based on a highly intelligible graphical tool. Given that we
test for a tail property of a distribution – i.e. a large sample size is needed to
detect this property –, the above results suggest that even for relatively small
samples, there is at least a tendency of detecting the alternative.

3 Proof of Example 2

Put y := (Φ(xi))
d
i=1. Then we have

C(y) = P (Φ(Xi) ≤ yi, 1 ≤ i ≤ d)

= P (Xi ≤ xi, 1 ≤ i ≤ d)

= 1− P

(
d⋃
i=1

{Xi > xi}

)

= 1−
d∑
i=1

P (Xi > xi) +
∑

T⊂{1,...,d},|T |≥2

(−1)|T |P (Xi > xi, i ∈ T )

= 1− ‖1− y‖1 +
∑

T⊂{1,...,d},|T |≥2

(−1)|T |P (Xi > xi, i ∈ T )

by the inclusion-exclusion theorem.

By c we denote in what follows a positive generic constant. We have∣∣∣∣∣∣
∑

T⊂{1,...,d},|T |≥2

(−1)|T |P (Xi > xi, i ∈ T )

∣∣∣∣∣∣ ≤ c
∑

1≤i 6=j≤d

P (Xi > xi, Xj > xj).
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Fig. S.7 p-values as a function of c ∈ (0, 1). Top: λ = 0.2 with k = 2 (left) and k = 3
(right). Bottom: λ = −0.2 with k = 2 (left) and k = 3 (right).

We will show that for all i 6= j

P (Xi > xi, Xj > xj)(∑d
m=1(1− Φ(xm))

)1+δ ≤ c, 1 ≤ i 6= j ≤ d, (S.6)

for x ≥ x0, where x0 ∈ Rd is specified later. This, obviously, implies the
assertion.

Equation (S.6) is implied by the inequality

P (Xi > xi, Xj > xj)
1

1+δ

1− Φ(xi) + 1− Φ(xj)
≤ c, 1 ≤ i 6= j ≤ d, (S.7)

for x ≥ x0, which we will establish in the sequel.
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Fig. S.8 Rates of rejection as a function of c ∈ (0, 1) among the test results of the 50
subsamples for k = 3, n = 200, and mn = 86. Left: λ = 0. Right: λ =

√
2/2. The plots for

k = 2 were very similar and are, therefore, omitted.

Fix i 6= j. To ease the notation we put X := Xi, Y := Xj , x := xi, y :=

xi, ρ := ρij . The covariance matrix of (X,Y )ᵀ is ΣX,Y =

(
1 ρ
ρ 1

)
, its inverse is

Σ−1X,Y = 1
1−ρ2

(
1 −ρ
−ρ 1

)
and, hence,

Σ−1X,Y

(
x
y

)
=

1

1− ρ2

(
x− ρy
y − ρx

)
> 0

if x, y > 0; recall that ρ < 0. From Savage (1962) (see also Tong (1990) and
Hashorva and Hüsler (2003)) we obtain the bound

P (X > x, Y > y) ≤ c 1

(x− ρy)(y − ρx)
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
, x, y > 0.

(S.8)
By the obvious inequality

δ = min
1≤k 6=m≤d

ρ2km
1− ρ2km

≤ ρ2

1− ρ2

we obtain
1

1 + δ
≥ 1− ρ2

and, thus, equation (S.8) implies

P (X > x, Y > y)
1

1+δ ≤ c 1

((x− ρy)(y − ρx))1−ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
.
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From the fact that 1 − Φ(x) ∼ ϕ(x)/x as x → ∞, where ϕ = Φ′ denotes
the standard normal density, we obtain for x, y ≥ x0

P (X > x, Y > y)
1

1+δ

1− Φ(x) + 1− Φ(y)
≤ c

x exp
(
x2

2

)
+ y exp

(
y2

2

)
((x− ρy)(y − ρx))1−ρ2 exp

(
x2−2ρxy+y2

2

)
= c

x exp
(
−y

2

2

)
+ y exp

(
−x

2

2

)
((x− ρy)(y − ρx))1−ρ2 exp(−ρxy)

≤ c
x exp

(
−y

2

2

)
+ y exp

(
−x

2

2

)
(xy)1−ρ2 exp(−ρxy)

≤ c (xy)ρ
2

exp(−ρxy)

≤ c;

recall that ρ < 0. This implies equation (S.7) and, thus, the assertion. ut

4 Proof of Lemma 2

Analogously to Lemma 1, we assume j = 1 without loss of generality and
obtain for arbitrary η > 0 that

P

(∣∣∣∣n1,mn(cn)− n̂1,mn(cn)

(mncn)1/2

∣∣∣∣ > η

)
≤ P

(
n1,mn(cn)− n̂1,mn(cn)

(mncn)1/2
> η,

∣∣U〈n(1−cn)〉:n − µn∣∣ ≤ εn)
+ P

(
n1,mn(cn)− n̂1,mn(cn)

(mncn)1/2
< −η,

∣∣U〈n(1−cn)〉:n − µn∣∣ ≤ εn)
+ 2P

(∣∣U〈n(1−cn)〉:n − µn∣∣ > εn
)

where µn := E
(
U〈n(1−cn)〉:n

)
= 〈n(1 − cn)〉/(n + 1) and εn is given as in the

proof of Lemma 1. Again, Reiss (1989, Lemma 3.1.1) shows that the last term
has limit 0 as n→∞. Moreover, the first term satisfies for large n

P

(
n1,mn(cn)− n̂1,mn(cn)

(mncn)1/2
> η,

∣∣U〈n(1−cn)〉:n − µn∣∣ ≤ εn)
≤ P

(
mn∑
i=1

1{U(i)�(1−cn)1[0,1]} −
mn∑
i=1

1{U(i)�(µn+εn)1[0,1]} > (mncn)1/2η

)

= 1− P

(
mn∑
i=1

1{U(i)≤(µn+εn)1[0,1]}\{U(i)≤(1−cn)1[0,1]} ≤ (mncn)1/2η

)
→ 0 as n→∞
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by (33), (34), the functional δ-neighborhood condition, and the same argu-
ments as in Lemma 1. Analogously, one shows that the second term vanishes
asymptotically. ut

5 Proof of Lemma 3

Analogously to Lemma 1, we assume j = 1 without loss of generality. As
before, Reiss (1989, Lemma 3.1.1) yields

P

(
max

1≤r≤dn

∣∣U〈n(1−cn)〉:n,r − µn∣∣ > εn

)
≤ dn exp

(
− n

cn
ε2n ·

1

3

(
1 + o(1)

))
= exp

(
log(dn)

(
1− nε2n

cn log(dn)
· 1

3

(
1 + o(1)

)))
(S.9)

as n → ∞, where µn := E
(
U〈n(1−cn)〉:n,1

)
= 〈n(1 − cn)〉/(n + 1) and εn :=(

cn
mn

δ
1/2
n

)1/2
with δn as in the proof of Lemma 1. Since (18) shows

nε2n
cn log(dn)

≥ δ
−1/2
n

log(dn)
=

(
max

{
m

1/2
n

n1/2
,

1

(mncn)1/2

}
log(dn)

)−1
,

we obtain from (39) that (S.9) has limit 0 as n→∞.
Due to (37) and (38), we have for large n and arbitrary η > 0

P

(
n1,mn(cn)− n̂1,mn(cn)

(mncn)1/2
> η, max

1≤r≤dn

∣∣U〈n(1−cn)〉:n,r − µn∣∣ ≤ εn)
≤ 1− P

(
mn∑
i=1

1[0,(µn+εn)1]\[0,(1−cn)1]
(
U

(i)
dn

)
≤ (mncn)1/2η

)
(S.10)

where (35) and (36) show

P
(
U

(i)
dn
∈ [0, (µn + εn)1] \ [0, (1− cn)1]

)
= εn

[(
1 +O

(
1

nεn

))
mD,dn +O

(
c1+δn

εn

)]
∼ εnmD as n→∞.

By the arguments in the proof of Lemma 1, (S.10) has limit 0 as n → ∞.
Similarly, one also shows

P

(
n1,mn(cn)− n̂1,mn(cn)

(mncn)1/2
< −η, max

1≤r≤dn

∣∣U〈n(1−cn)〉:n,r − µn∣∣ ≤ εn)→ 0

for arbitrary η > 0 as n→∞, which implies the assertion, cf. (19). ut
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