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In this supplementary material, we give proofs to the Theorems in the Section 2.3. We

begin by proving several useful lemmas.

Asymptotic Consistency

To prove Theorem 1, we need to introduce several lemmas firstly. The following lemma pro-

vides an initial approximation of m(x) by a spline function, resulting in an approximation

bias.

Lemma 1 (Corollary 6.21, Schumaker (2007)) Define Rn(x) = BT(x)β∗ −m(x). If As-

sumption (A1) holds, then there exists β∗ ∈ RNm+p such that

sup
x∈[0,1]

|Rn(x)| = sup
x∈[0,1]

|BT(x)β∗ −m(x)| = O(N−pm ).

The above results states that to prove Theorem 1, we can replace m by m∗(·) = BT(·)β∗
up to a order of N−pm . In particular, we just need to prove ‖m̂ − m∗‖22 = OP

(
n−1Nm

)
.

Define

Sn =
n

N

N∑
j=1

B

(
j

N

)
BT

(
j

N

)
, B̃

(
j

N

)
= S−1/2n B

(
j

N

)
and θ = S1/2n (β − β∗), (1)

where β∗ is defined in Lemma 1.

Lemma 2 (Lemma A.3, Cao et al. (2012)) There are two positive constants M1 and M2,

such that except on an event whose probability tends to zero, all the eigenvalues of (Nm/n)Sn
fall between M1 and M2, and Sn is invertible consequently.

By Lemma 2, and the definition of B̃(·) in (1), we have Yij −BT

(
j
N

)
β = eij +Rnj −

B̃T

(
j
N

)
θ. This implies that

min
β∈RNm+p

n∑
i=1

1

N

N∑
i=1

ρ

(
Yij −BT

(
j

N

)
β

)

= min
θ∈RNm+p

n∑
i=1

1

N

N∑
i=1

[
ρ

(
eij +Rnj − B̃T

(
j

N

)
θ

)
− ρ (eij +Rnj)

]
, (2)
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where ρ(eij+Rnj) is a constant term with respect to θ, so it does not change the minimum.

Let Γn(θ) be the operator defined in (2), that is,

Γn(θ) =

n∑
i=1

1

N

N∑
j=1

[
ρ

(
eij +Rnj − B̃T

(
j

N

)
θ

)
− ρ (eij +Rnj)

]
,

and define

∆n(θ) = Γn(θ)− E (Γn(θ)) +

n∑
i=1

1

N

N∑
j=1

[
ψ(eij)B̃

T

(
j

N

)
θ

]
. (3)

Before proving Theorem 1, we need to obtain asymptotic upper bounds on ∆n (θ), Γn(θ)

and E (Γn(θ)) in the following three lemmas.

Lemma 3 Under Assumptions (A1) - (A4) and (A6) and for a fixed constant L > 1,

sup
‖θ‖2<1

∣∣∣∣ 1

Nm
∆n

(
N1/2
m Lθ

)∣∣∣∣ = oP (1). (4)

Proof Bernstein’s theorem is used to prove that P
(

sup‖θ‖2≤1
1
Nm

∣∣∣∆n

(
N

1/2
m Lθ

)∣∣∣ ≥ ε)
→ 0, for any ε > 0. To do this, first define Π =

{
θ ∈ RNm+p; ‖θ‖2 ≤ 1

}
, and find a

decomposition Π = Π1 ∪ · · · ∪ΠKn
, where {Πk}Kn

k=1 are pairwise disjoint sets and for any

1 ≤ k ≤ Kn, diam(Πk) = maxθ1,θ2∈Πk
{‖θ1 − θ2‖2} ≤ qo = εC−1Nmn

−1. Notice that we

can find such decomposition with Kn ≤
(

2
√
Nm+p
q0

+ 1
)Nm+p

. For each 1 ≤ k ≤ Kn, select

θk ∈ Πk. Then, by (3) we have

min
1≤k≤Kn

1

Nm

∣∣∣∆n

(
N1/2
m Lθ

)
−∆n

(
N1/2
m Lθk

)∣∣∣
≤ min

1≤k≤Kn

1

Nm

∣∣∣Γn(N1/2
m Lθ)− Γn(N1/2

m Lθk)
∣∣∣

+ min
1≤k≤Kn

1

Nm

∣∣∣E(Γn(N1/2
m Lθ)

)
− E

(
Γn(N1/2

m Lθk)
)∣∣∣

+ min
1≤k≤Kn

1

Nm

∣∣∣∣∣∣N1/2
m L

n∑
i=1

1

N

N∑
j=1

[
ψ(eij) · B̃T

(
j

N

)
θ − ψ(eij) · B̃T

(
j

N

)
θk

]∣∣∣∣∣∣
= I + II + III .
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We proceed by obtaining an asymptotic upper bound for I, II and III. Using the definition

of Γn(θ), we have

I = min
1≤k≤Kn

1

Nm

∣∣∣∣∣
n∑
i=1

1

N

N∑
i=1

[
ρ

(
eij +Rnj −N1/2

m L B̃T

(
j

N

)
θ

)
− ρ (eij +Rnj)

]

−
n∑
i=1

1

N

N∑
i=1

[
ρ

(
eij +Rnj −N1/2

m L B̃T

(
j

N

)
θk

)
− ρ (eij +Rnj)

]∣∣∣∣∣ ,
and using the mean value theorem on ρ(·) and Assumption (A2), we have

I ≤ N−1m CnN1/2
m L max

1≤j≤N

∥∥∥∥B̃T

(
j

N

)∥∥∥∥
2

min
1≤k≤Kn

‖θ − θk‖2.

Similarly, max{II, III} ≤ N−1m CnN
1/2
m Lmax1≤j≤N

∥∥∥B̃T

(
j
N

)∥∥∥
2

min1≤k≤Kn
‖θ−θk‖2. Com-

bining the previous results, we have

min
1≤k≤Kn

1

Nm

∣∣∣∆n

(
N1/2
m Lθ

)
−∆n

(
N1/2
m Lθk

)∣∣∣
≤ 3N−1m C min

1≤k≤Kn

‖θ − θk‖2 nN1/2
m L max

1≤j≤N

∥∥∥∥B̃T

(
j

N

)∥∥∥∥
2

≤ 3N−1m Cq0dn = 3εdn, (5)

where dn = Nm

[
max1≤j≤N

(∥∥∥B̃ ( j
N

)∥∥∥
2
LN

1/2
m + |Rnj |

)]
.

By Lemma 2 one has Nm

[
max1≤j≤N

∥∥∥B̃ ( j
N

)∥∥∥
2
LN

1/2
m

]
= O

(
N

3/2
m n−1/2

)
= o(1).

According to Lemma 1, one has Nm max1≤j≤N |Rnj | = O
(
N1−p
m

)
= o(1). Combining

these two upper bounds we have dn = o(1). In particular, by (5) and choosing dn < 1/12,

we have

min
1≤k≤Kn

1

Nm

∣∣∣∆n

(
N1/2
m Lθ

)
−∆n

(
N1/2
m Lθk

)∣∣∣ < ε/4. (6)

For any 1 ≤ i ≤ n, 1 ≤ j ≤ N , and θ ∈ RNm+p, define

Ωij(θ) = ρ

(
eij +Rnj −N1/2

m LB̃T

(
j

N

)
θ

)
− ρ (eij +Rnj) + ψ(eij)B̃

T

(
j

N

)
θ.

Using an argument similar to equation (5), we can prove that sup‖θ‖2≤1 |Ωij(θ)| = O(N−1m ),

and consequently sup‖θ‖2≤1 |Ωij(θ)− E(Ωij(θ))| = O(N−1m ). Using the previous equation,

we have sup‖θ‖2≤1
∑n

i=1 Var
(

1
N

∑N
j=1Ωij(θ)

)
= O

(
nN−1N−1m

)
. Using the above three
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upper bounds, Bernstein’s Inequality and Assumption (A1), we have

P

(
sup
‖θ‖2≤1

1

Nm

∣∣∣∆n

(
N1/2
m Lθ

)∣∣∣ ≥ ε)

≤
Kn∑
k=1

P
(∣∣∣∆n

(
N1/2
m Lθk

)∣∣∣ ≥ εNm

2

)

≤
Kn∑
k=1

P

 1

n

n∑
i=1

 1

N

N∑
j=1

|Ωij(θk)− E(Ωij(θk))|

 ≥ εNm

2n


≤ Kn exp

(
− Cn (εNm/2n)2

N−1N−1m +N−1m (εNm/2n)

)

≤ Kn exp

(
− Cε2NN3

m

n+ εNNm

)
= o(1).

Therefore, the Lemma 3 is proved. �

The asymptotic bound for Γn(θ) is given by the following lemma.

Lemma 4 Under the Assumptions (A1) and (A4), for a fixed constant L > 1,

sup
‖θ‖2<L

∣∣∣∣∣∣N−1/2m

n∑
i=1

1

N

N∑
j=1

[
ψ(eij) · B̃T

(
j

N

)
θ

]∣∣∣∣∣∣ = oP (1). (7)

Proof Notice that by Assumption (A4) and Lemma 2, one has

Var

 1

N
1/2
m

n∑
i=1

1

N

N∑
j=1

[
ψ(eij) · B̃T

(
j

N

)
θ

]
≤ 1

Nm

n∑
i=1

1

N

N∑
j=1

E [ψ(eij)]
2

[
B̃T

(
j

N

)
θ

]2
≤ CN−1m ‖θ‖2.

Using Tchebychev’s Inequality, the lemma is proved. �

The last asymptotic bound needed is given by the following lemma.

Lemma 5 Under Assumptions (A1) - (A5) and for a fixed constant L > 1,

P
(

inf
‖θ‖2=L

∣∣∣∣ 1

Nm
E
[
Γn

(
N1/2
m θ

)]∣∣∣∣ > 0

)
→ 1.
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Proof By Lemma 2 we can assume that sup‖θ‖2≤L

(
|Rnj |+N

1/2
m

∥∥∥B̃T

(
j
N

)
θ
∥∥∥2
2

)
< C. By

Assumption (A4) we have

N−1m E
(
Γn

(
N1/2
m Lθ

))
= N−1m

n∑
i=1

1

N

N∑
j=1

∫ Rnj−N1/2
m B̃T( j

N )θ

Rnj

E (ψ(eij + u)) du

= N−1m

n∑
i=1

1

N

N∑
j=1

∫ Rnj−N1/2
m B̃T( j

N )θ

Rnj

δ

(
j

N

)
u+O(u2)du

= N−1m

n∑
i=1

1

N

N∑
j=1

δ

(
j

N

)
1

2

[(
Rnj −N1/2

m B̃T

(
j

N

)
θ

)2

−R2
nj

]
+ o(1)

=

n∑
i=1

1

N

N∑
j=1

δ

(
j

N

)[
1

2

(
B̃T

(
j

N

)
θ

)2

−N−1/2m RnjB̃
T

(
j

N

)
θ

]
+ o(1)

≥ Cn inf
x∈R

δ(x)‖θ‖22 −
n∑
i=1

1

N

N∑
j=1

N−1/2m RnjB̃
T

(
j

N

)
θ + o(1)

= CnL2 − CnL+ o(1), (8)

which is positive for large enough L. This finishes the proof of the lemma. �

The following lemma is standard in the spline approximation theory and we omit the

proof here.

Lemma 6 (Theorem 5.4.2, DeVore and Lorentz (1993)) There is a constant Cp > 0,

such that for any spline S(·) =
∑Nm

J=1−p γJBJ(·) of order p, and for each 0 < p ≤ ∞,

CpN
−1
m ‖γ‖22 ≤ ‖S‖22 ≤ N−1m ‖γ‖22, where γ = (γ1−p, . . . , γNm

)T.

Proof (Proof of Theorem 1) Combining Lemmas 3, 4 and 5, and using the convexity of ρ(·)
we have

P
(

inf
‖θ‖2≥L

1

Nm
Γ (N1/2

m θ) > 0

)
= P

(
inf
‖θ‖2=L

1

Nm
Γ (N1/2

m θ) > 0

)
→ 1.

This in turn implies

P

 inf
‖θ‖2≥LN1/2

m

n∑
i=1

1

N

N∑
j=1

ρ

(
eij +Rnj −N1/2

m LB̃T

(
j

N

)
θ

)
>

n∑
i=1

1

N

N∑
j=1

ρ (eij +Rnj)


→ 1. (9)
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Define θ̂ = S
−1/2
n

(
β̂ − β∗

)
= arg minθ∈RNm+p Γn(θ). By equation (9) one has ‖θ̂‖2 =

OP (N
1/2
m ), and using Lemma 2, we obtain ‖β̂ − β∗‖22 = OP

(
n−1N2

m

)
. The approximation

property of B-Splines implies that ‖m̂(·)−B(·)Tβ∗‖22 = ‖B(·)T(β̂−β∗)‖22 = O(N−1m )‖β̂−
β∗‖22 = OP

(
n−1Nm

)
, where the second-to-last equality comes from Lemma 6. Finally, by

Lemma 1 and Assumption (A2), Theorem 1 is proved. �

Asymptotic Normality

In this section we will prove the asymptotic normality of the estimator m̂(x) for 0 ≤ x ≤
1. Let W̃n = S−1/2n WnS

−1/2
n and θ̃ = W̃−1n

∑n
i=1

1
N

∑N
j=1 B̃

(
j
N

)
ψ(eij), Where Wn was

defined in equation (5). The first step is to obtain an asymptotic upper bound on the

difference between θ̂ and θ̃.

Lemma 7 Under Assumptions (A1) - (A7), we have N
−1/2
m ‖θ̂ − θ̃‖2 = oP (1).

Proof By Assumption (A5), note that W̃n is invertible and, for all n, λmin (W̃n) > λ̃0 > 0

for some constant λ̃0. We will use an to the proof of the Theorem 1, and first show that,

for any fixed ε > 0, P
(

infN−1/2
m ‖θ−θ̃‖2≥εN

−1
m |Γ (θ)− Γ (θ̃)| > 0

)
→ 1. To prove the above

result, using the convexity of ρ(·), we only need to show that

P

(
inf

N
−1/2
m ‖θ−θ̃‖2=ε

N−1m |Γ (θ)− Γ (θ̃)| > 0; N−1/2m ‖θ̃‖2 < L

)
→ 1. (10)

Using (3) and the argument similar to show the bound in equation (8), we have

N−1m Γn(θ) = N−1m

∆n(θ) + E(Γn(θ))−
n∑
i=1

1

N

N∑
j=1

ψ(eij)B̃
T

(
j

N

)
θ


= N−1m

[
∆n(θ) +

θTW̃nθ

2
− θ̃TW̃nθ

]
+ o(1). (11)

Notice that 2θ̃TW̃nθ = θTW̃nθ + θ̃TW̃nθ̃ − (θ − θ̃)TW̃n(θ − θ̃). Substituting this into

equation (11) we obtain

1

Nm
Γn(θ) =

1

Nm

[
(θ − θ̃)TW̃n(θ − θ̃)

2
− θ̃

TW̃nθ̃

2
+∆n(θ)

]
+ o(1). (12)

In particular we have

1

Nm
Γn(θ̃) =

1

Nm

[
− θ̃

TW̃nθ̃

2
+∆n(θ̃)

]
+ o(1). (13)
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Using Lemmas 2 and Assumption (A3) we have ‖θ̃‖2 = O(N
1/2
m ), which implies that for

a large enough constant L > 0, we can assume N
−1/2
m ‖θ̃‖2 < L. Notice that if N

−1/2
m ‖θ −

θ̃‖2 = ε and N
−1/2
m ‖θ̃‖2 < L, then N

−1/2
m ‖θ‖2 ≤ L + ε. Subtracting equation (13) from

(12) we get

inf
N

−1/2
m ‖θ−θ̃‖2=ε,N−1/2

m ‖θ̃‖2<L

1

Nm

∣∣∣Γ (θ)− Γ (θ̃)
∣∣∣

= N−1m

[
(θ − θ̃)TW̃n(θ − θ̃)

2
+∆n(θ)−∆n(θ̃)

]
+ o(1)

≥ λ̃0ε
2

2
− 2 sup

N
−1/2
m ‖θ‖2≤L+ε

N−1m |∆n(θ)|+ o(1) =
λ̃ε2

2
+ o(1),

where the last equality comes from Lemma 3. This proves equation (10) and implies that

N
−1/2
m ‖θ̂ − θ̃‖2 = oP (1). Lemma 7 is proved. �

Proof of Theorem 2

Proof By Lemmas 2 and 7, we have∥∥∥(β̂ − β∗)− S−1/2n θ̃
∥∥∥
2

=
∥∥∥S−1/2n

[
S1/2
n (β̂ − β∗)− θ̃

]∥∥∥
2

=
∥∥∥S−1/2n

∥∥∥
2

∥∥∥θ̂ − θ̃∥∥∥
2

= oP

(
Nmn

−1/2
)
,

which implies that, for any vector γ ∈ RNm+p, with ‖γ‖ ≤ L, for a fixed constant L > 0,

γT(β̂ − β∗) = γTS−1/2n θ̃ + oP

(
Nmn

−1/2
)

= γTW−1n
n∑
i=1

1

N

N∑
j=1

B

(
j

N

)
T

ψ(eij) + oP

(
Nmn

−1/2
)
. (14)

We can rewrite

γTW−1n
n∑
i=1

1

N

N∑
j=1

B

(
j

N

)
T

ψ(eij) =

n∑
i=1

1

N
vTψ(ei), (15)

where v =
(
γTW−1n B

(
1
N

)
, · · · ,γTW−1n B

(
N
N

))T
. Notice also that

Var

(
n∑
i=1

N−1vTψ(ei)

)
=

n∑
i=1

N−2vTGiv.
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Using this calculation, we can rewrite equation (15) as
∑n

i=1 aiξi, where a2i = N−2vTGiv,

1 ≤ i ≤ n, and {ξi}ni=1 are independent with mean zero and unit variance. By Linde-

berg’s Central Limit Theorem, if maxi=1,...,n a
2
i /
∑n

i=1 a
2
i = o(1), then

∑n
i=1 aiξi√∑n

i=1 a
2
i

converges

in distribution to N(0, 1). According to Assumption (A4) and Lemma 2, we have

max
i=1,...,n

a2i ≤ max
i=1,...,n

N−2‖v‖22
N∑
j=1

E [ψ(eij)]
2

≤ CN−1
N∑
j=1

(
γTW−1n B

(
j

N

))2

= O(N2
mn
−2).

We also have
∑n

i=1 a
2
i =

∑n
i=1N

−2vTGiv ≥ N−1λ0γ
TW−1n SnW−1n γ = O(Nmn

−1N−1),

where the inequality comes from the Assumption (A7), and the last equation from Lemma

2. Collecting the previous bounds we have

max
i=1,...,n

a2i /

n∑
i=1

a2i = O(NmNn
−1) = o(1)

due to Assumption (A1). This proves that the condition of Lindeberg’s central limit theo-

rem is satisfied. Setting γ = B(x) we obtain

n∑
i=1

N−2vTGiv = B (x)T W−1n

(
n∑
i=1

N−2BTGiB

)
W−1n B (x) = Dn(x),

and due to the Assumption (A1) and (14) we finish the proof of Theorem 2. �
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