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Abstract Estimating and constructing a simultaneous confidence band for the mean
function in the presence of outliers is an important problem in the framework of func-
tional data analysis. In this paper,we propose a robust estimator and a robust simultane-
ous confidence band for the mean function of functional data using M-estimation and
B-splines. The robust simultaneous confidence band is also extended to the difference
of mean functions of two populations. Further, the asymptotic properties of the M-
basedmean function estimator, such as the asymptotic consistency and asymptotic nor-
mality, are studied. The performance of the proposed robust methods and their robust-
ness are demonstrated with an extensive simulation study and two real data examples.

Keywords Confidence band · Functional data analysis · Robust statistics · Spline
smoothing · M-estimator · Pseudo-data

1 Introduction

Due to the advancements in computer technology, experimenters collect complex,
high-dimensional data sets, such as curves, 2D or 3D images and other objects living
in a functional space. This type of dataset so-called functional data is nowadays seen
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in almost all scientific fields such as geophysics (Ferraty et al. 2005), environmetrics
(Febrero et al. 2008), ecology (Embling et al. 2012), chemometrics (Daszykowski et al.
2007). A general overview of the functional data analysis (FDA) and an extensive list
of references can be found in the seminal work of Silverman and Ramsay (2005) and
Ferraty (2011). In the last two decades, many FDA techniques have been developed as
extensions of multivariate data analysis techniques. In all these techniques, as in the
multivariate data analysis, it is assumed that functional data are homogeneous which
are free of outliers. Although robust multivariate statistical techniques have been stud-
ied heavily in multivariate setting, this phenomenon has not been studied widely in
functional data setting. Only recently some robust FDA techniques have been pro-
posed. Among the recent literature, Gervini (2008) proposed a robust estimator for
the location parameter of contaminated datasets, by extending the notion of median to
functional datasets, and also proposed a robust alternative for the functional principal
components analysis (FPCA) based on the spherical principal components defined
in Locantore et al. (1999). Bali et al. (2011) and Lee et al. (2013) proposed robust
estimators for the functional principal components by adapting the projection pursuit
approach and based onMM estimation, respectively. Kraus and Panaretos (2012) used
a different approach, instead estimating the dispersion operator containing influential
observations. Maronna and Yohai (2013) established a robust version of spline-based
estimators for a linear functional regression model. Further, Shin and Lee (2016) pro-
posed a robust procedure based on convex and non-convex loss functions in functional
linear regression models and the theoretical developments of this estimator by using
numerical studies with various types of robust loss are provided.

In the presence of outliers, which are the observed curves behaving differently from
the remaining curves, the estimate of the functional mean, and therefore simultane-
ous confidence bands (SCBs) for the mean function, may be affected badly which
would yield misleading statistical conclusions. The inherent complexity of infinite-
dimensional functional spaces allows for a wide variety of possible outlier behaviors,
adding further complication to estimating functional mean and constructing SCB for
the functional mean. Therefore, in this study we aim at developing outlying-resistant
methods for themean function in the functional setting that can provide valid statistical
inference even in the presence of a significant proportion of outlier curves.

More recently, Lima et al. (2017) proposed LAD-based estimation of the mean
function, and the asymptotic consistency of the LAD estimator was studied. However,
the variance of the LAD-based estimator of the mean function was not derived due
to the lack of an explicit form of the variance function of the LAD estimator and,
consequently, the asymptotic normality of the mean function estimator was not pro-
vided. In Lima et al. (2017), this problem was overcome by using a spherical principal
component based robust estimation of the covariance function of the LAD estimator
(Gervini 2008) and simulated correction factors which resulted in SCBs with a large
width. In this study, we have overcome these circumstances by developing M-based
estimator. To the best of our knowledge, our proposal is the first publicly available
implementation that allows such a robust estimator and confidence band for FDA,
while prior work either limits the SCB to homogeneous functional data, such as Gu
et al. (2014) and Cao et al. (2012) or to the LAD estimator without the theoretical
support for the asymptotic normality of the estimator and RSCB (Lima et al. 2017).
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M-based simultaneous inference for the mean function 579

The problem of simultaneous inference for functional data as well as the inclusion
of robustness is non-trivial. First, the greatest technical difficulty is to formulate SCB
for a mean function of infinite-dimensional functional response and establish their
theoretical properties. Second, unlike the scenarios considered in the classical FDA
literature, in our settings, the outlier structure considered is complex.

In this paper, we have two main contributions. First, we develop the asymptotic
theory for a class of robust estimators for the mean function of functional data, based
on M-estimation and B-splines smoothing techniques. Second, we propose a method
for constructing SCB that is resilient to outlying curves. We further extend the robust
simultaneous inference to the two-sample case and evaluate the equality of mean
functions from twogroupswhenatypical curves exist.Our numerical simulation results
show that the proposed bands are superior to existing classical methods which do not
account for atypical curves.

The paper is organized as follows. We begin by establishing the model of our anal-
ysis and then present our proposed methods in Sect. 2. In this section, we first define
a robust estimator for the mean function when the dataset contains outliers, extending
the M-estimation techniques and B-splines smoothing to functional data and asymp-
totic properties of the B-spline smoothedM-estimator are studied. Thenwe construct a
RSCB for themean function based on the proposed robust estimator for themean func-
tion, and a modified definition of pseudo-data. In addition, we extend this method to
form a RSCB for the difference of mean functions of two populations in the same sec-
tion. In Sects. 3 and 4 , the performance of the proposed methods and their robustness
are demonstrated with an extensive simulation study and real data examples. Finally,
we conclude our paper with discussion and conclusion. “Appendix” contains technical
proofs and further simulation study for the estimation of the variance of pseudo-data.

2 Proposed methods

2.1 Model

A functional dataset can be defined as a collection of i.i.d. random samples, {Yi (x)}n
i=1,

where i is the subject index, from a smooth and square integrable random function
Y (x) ∈ L2, with unknown mean function, E[Y (x)] = m(x). The model is

Yi (x) = m (x) + εi (x), 1 ≤ i ≤ n

where {εi (·)}n
i=1 are independent random noise and without loss of generality, we

assume x ∈ [0, 1]. In this paper, we also assume an equally spaced dense design, i.e.,
each random curve Yi (·) is measured at the points Xi j = j/N , 1 ≤ j ≤ N , 1 ≤ i ≤ n,
where N is the number of recorded data for each curve. Then, the j-th observation for
the i-th subject can be written as

Yi j = Yi (Xi j ) = m
(
Xi j

) + ei j , (1)

where ei j = εi ( j/N ). Notice that if E(εi ) = 0, then m(·) is the mean function
in the traditional statistical sense. If we weaken this assumption, only requiring that
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distribution of εi is symmetric, although we cannot guarantee the existence ofE[Y (·)],
m(·) can be viewed as a center function of the functional data. We discuss the specific
assumptions in Sect. 2.3, but, for simplicity, we will use the term mean function when
we refer to the function m(·).

2.2 B-spline smoothed M-estimator for the mean function

To describe the spline function, we first introduce a sequence of equally space points,
{tJ }Nm

J=1, called interior knots which divide the interval [0, 1] into (Nm + 1) equal
subintervals IJ = [tJ , tJ+1), J = 0, . . . , Nm − 1, INm = [tNm , 1]. For any posi-
tive integer p, introduce left boundary knots t1−p, . . . , t0, and right boundary knots
tNm+1, . . . , tNm+p, satisfying t1−p = . . . t0 = 0 < t1 < · · · < tNm < 1 = tNm+1 =
· · · = tNm+p, where tJ = J/(Nm + 1), 0 ≤ J ≤ Nm + 1. Denote by H(p−2)

the p-th order spline space, i.e., p − 2 times continuously differentiable functions
on [0, 1] that are polynomials of degree p − 1 on [tJ , tJ+1], J = 0, . . . , Nm . Then
H(p−2) = {∑Nm

J=1−p βJ BJ (x), βJ ∈ R, x ∈ [0, 1]}, where BJ is the J-th B-spline
basis of order p.

Define the B-spline smoothed M-estimator of the mean function by

m̂(x) = arg min
g(·)∈H(p−2)

n∑

i=1

N∑

j=1

ρ
(
Yi j − g ( j/N )

) =
Nm∑

J=1−p

β̂ J BJ (x),

where

{
β̂1−p, . . . , β̂Nm

}T = argmin{
β1−p,...,βNm

}∈RNm+p

n∑

i=1

N∑

j=1

ρ

×
⎛

⎝Yi j −
Nm∑

J=1−p

β J BJ ( j/N )

⎞

⎠ , (2)

andρ is a suitably chosen loss function. In thiswork,we focus on convex loss functions,
which guarantee that Eq. (2) has a unique solution. Different choices of ρ would lead
to different estimation properties of the mean function m. For example, if ρ(x) = x2,
we obtain the ordinary least-squares (OLS) estimator which was studied in Cao et al.
(2012). If ρ(x) = |x |, we obtain the least absolute deviation (LAD) estimator which
was studied by Lima et al. (2017). The robust properties of different choices of ρ

functions have been extensively studied in the literature, see Maronna et al. (2006).
Define the function ψ(x) = ρ′(x), then the estimated coefficients in (2) can also

be obtained by the following system of equations

n∑

i=1

N∑

j=1

ψ

⎛

⎝Yi j −
Nm∑

J=1−p

β̂ J BJ ( j/N )

⎞

⎠ Bk( j/N ) = 0, for any 1 − p ≤ k ≤ Nm .
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M-based simultaneous inference for the mean function 581

A closed form solution of the above equation usually does not exist, but an approx-
imate solution can be obtained using an iteratively re-weighted least-squares fitting
algorithm. This algorithm is implemented in the function rlm from the MASS R-
package, Venables and Ripley (2002). Notice that, since we assume that ρ is a convex
loss function, the uniqueness of the solution is guaranteed.

2.3 Asymptotic properties of the B-spline smoothed M-estimator

In this section we will explore the asymptotic properties of the proposed B-spline
smoothed M-estimator for the mean function of functional data. Before stating the
first result, we need to introduce some notations. For 0 < r < 1, denote by C p,r the
Hölder function space, that is, the space of functions with continuous derivatives up
to order p, and with r -Hölder continuous p-derivative. For a real-valued function, f ,
denote by ‖ f ‖2 the standard L2 space norm, that is, ‖ f ‖22 = ∫ 1

0 | f (x)|2dx . Similarly,

for any vector V = (V1, . . . , Vk) ∈ R
k , let ‖V‖22 = ∑k

i=1 |Vi |2 and for a matrix A,
‖A‖2 = supV �=0 ‖AV‖2/‖V‖2. Let λmax (A) and λmin (A) be the largest and smallest
eigenvalues of matrix A, respectively. Note that ‖A‖2 = λmax(A) and if matrix A is
non-singular, ‖A−1‖2 = λmin(A)−1. Throughout this section, C denotes a uniform
positive constant. We need the following assumptions for the asymptotic consistency
and the asymptotic normality of the proposed estimator:

(A1) Let p > 1 be the order of the smoothing splines, Nm be the number of inte-
rior knots and assume that (n/N )1/2 log1/2(n) � Nm � min(n1/3, n/N ) and
Nm log Nm � N .

(A2) The function m(x) satisfies m ∈ C p,r .
(A3) Define ψ(x) = ρ′(x), and ψ(x) be continuous, non-decreasing and uniformly

bounded, |ψ(x)| < C , ∀x ∈ R. Also, ρ(·) is a convex function.
(A4) Eψ(ei j ) = 0.
(A5) There exists a bounded function δ(x) satisfying 0 < inf x∈[0,1] δ(x) <

supx∈[0,1] δ(x) < ∞, such that
∣∣E[ψ(ei j + u)] − δ ( j/N ) · u

∣∣ ≤ Cu2, where
|u| < C .

(A6) E
[
ψ(ei j + u) − ψ(ei j )

]2 ≤ C |u|, and |ψ(u + v) − ψ(v)| < C , for |u| < C ,
and v ∈ R.

(A7) Define ei = (ei1, . . . , ei N )T, ψ(ei ) = (ψ(ei1), . . . , ψ(ei N ))T and Gi =
E

(
ψ(ei ) · ψ(ei )

T
)
, 1 ≤ i ≤ n. Also, min1≤i≤n λmin (Gi ) ≥ λ0.

Assumption (A2) is standard in B-spline approximation, see Huang et al. (2004)
and Cao et al. (2012) for example, and allows for arbitrarily good approximations of
m(x) by spline functions. Assumption (A3) guarantees the existence of the solution
of the optimization problem in (2). One notable example for the loss function ρ is the
Huber loss function, i.e.,

ρk(x) =
{

x2/2, |x | ≤ k,

k(|x | − k/2), |x | > k,
(3)

where k > 0 is a constant. Note that ρk allows it to combine much of the sensitivity of
the mean-unbiased, minimum-variance estimator of the mean (OLS) and the robust-
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ness of the median-unbiased estimator (LAD). The parameter k controls a trade-off
between the resistance to outlying observations and efficiency of the estimator (Huber
1964). The boundedness of ψ is a technical assumption needed for the proof of the
consistency of the estimator. It doesn’t pose a large restriction, since most of the ψ

functions chosen in practice satisfy this condition, such as the Huber loss function.
Assumption (A4) states that the function ψ adds some regularity to the errors ei j .
Assumptions (A5) and (A6) are regularity conditions on the function ψ . Assumption
(A7) is needed for the asymptotic normality of the proposed estimator. Assumptions
(A4)–(A7) on the score function ψ are also standard conditions in M-estimation liter-
ature (Wei and He 2006; Tang and Cheng 2012). For error terms ei j satisfying these
assumptions we can cite, for example, ei j following a zero mean Gaussian process or
mixture Normal–Cauchy distribution. We provide more detailed examples for ei j in
Sect. 3.1.

2.3.1 Asymptotic consistency

Theorem 1 (Asymptotic consistency) Under Assumptions (A1)–(A6) we have

‖m̂ − m‖22 = OP

(
n−1Nm + N−2p

m

)
. (4)

Remark 1 As a consequence from Theorem 1, the L2 distance between m̂ and m has
an order of magnitude bounded by the maximum of n−1Nm and N−2p

m . Choosing
Nm = O(n1/(2p+1)) produces an optimal convergence rate equal to OP (n−2p/(2p+1))

(Stone 1985).

2.3.2 Asymptotic normality

We prove that m̂(·) converges to a normal distribution. Besides the convergence in
distribution, this theorem provides an estimator for the variance of m̂(·), which is of
fundamental importance when constructing the robust simultaneous confidence band
in Sect. 2.4. Note also that the convergence provided in Theorem 2 is only point-wise;
therefore, this result cannot be directly used to construct a simultaneous confidence
band.

Before presenting the second theorem, we need some additional notations. Let

Wn = nN−1
N∑

j=1

δ ( j/N ) B ( j/N ) BT ( j/N ) , (5)

where δ(·) is defined in the Assumption (A5).

Theorem 2 (Asymptotic normality) Under Assumptions (A1)–(A7) and
n(2p−1)/(2p+1) � N, we have

m̂(x) − m(x)√
Dn(x)

d−→ N (0, 1), 0 ≤ x ≤ 1, (6)
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where Dn(x) = B (x)T W−1
n

(∑n
i=1 N−2

B
T
GiB

)
W

−1
n B (x), where Gi was defined

in the Assumption (A7), and B is a N × (Nm + p) matrix with columns B( j/N ),
j = 1, . . . , N.

Remark 2 By adding the condition n(2p−1)/(2p+1) � N , the bias term of m̂(x) is
asymptotically negligible. The result of Theorem 2 can be used to construct asymptotic
confident intervals.

Remark 3 In practice, we first estimate error terms as êi j = Yi j − m̂( j/N ), so theGi

is estimated as Ĝi ≡ n−1 ∑n
i=1

(
ψ (̂ei ) · ψ (̂ei )

T
)
. The δ(·) function defined in (A5)

needs to be estimated based on the chosen ρ function. For example, in the case of
the Huber loss function 3, by applying using the Taylor expansion on ψ(x), we find
that δ( j/N ) = P(|ei j | ≤ k) ≈ n−1 ∑n

i=1 I (|ei j | ≤ k), where constant k is given in
(3). The variance term can be estimated as D̂n(x) = B (x)T W−1

n

(∑n
i=1 N−2

B
T
ĜiB

)

W
−1
n B (x).

The proofs of Theorems 1 and 2 are given in the Supplementary Material.

2.4 Robust simultaneous confidence band

Obtaining SCB for homogeneous functional datasets has been discussed in previous
literature, such as Cao et al. (2012), in which the SCB is obtained by first estimating
the covariance function of the functional process, and then calculating the quantile
of a Gaussian process with the same covariance structure. This procedure, though, is
very sensitive to outliers, as discussed in Sect. 3. The result of Theorem 2 alone is not
enough to provide aRSCB, butwith the help of amodified pseudo-data transformation,
we can translate the calculation of the RSCB to the simpler problem of obtaining a
SCB for homogenous functional datasets.

2.4.1 Pseudo-data

The objective of this section is first to modify the contaminated dataset into a homo-
geneous dataset to mitigate the effect of outliers, and then the resulting homogeneous
dataset is used to construct SCB for the mean function by using the classical (non-
robust) method to calculate the SCB.

To accomplish the first objective, we transform each curve in the original dataset
into the new homogeneous curves borrowing the idea of the pseudo-data, which was
first introduced in Cox (1983). The concept of pseudo-data suggests an equivalence
between a robust estimator and a more conventional least-squares method. In our
study, we modify the definition of the pseudo-data to allow for heteroscedasticity of
the random errors considered in our model. In particularly, we generate pseudo-data
Zi j based on the original dataset Yi j , while Zi j share the similar information as Yi j ,
for example, both of them have the same mean functions, but Zi j is free of outliers.
In this work, we define the pseudo-data derived from the dataset Yi j as
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584 I. R. Lima et al.

Zi j = m( j/N )+√
2nDn( j/N )ψ

(
ei j/

√
2nDn( j/N )

)
, i = 1, . . . , n, j = 1, . . . , N

(7)
where Dn(·) is the variance of m̂(·) obtained from Theorem 2.

To understand the multiplication by
√
2nDn(x) in (7), a simple example is helpful.

Assume that {Yi j }n,N
i, j=1 is homogeneous, i.e., errors {ei j }N

j=1 are i.i.d. and Var(ei j ) <

∞. Also, consider the least-squares loss function, ρL S(x) = x2/2, x ∈ R. Then, a
direct calculation results in that Dn(x) is the B-spline smoothing of {Yi j }n,N

i, j=1. That
is, the pseudo-data defined in (7) is the original homogeneous dataset, Zi j ≡ Yi j .

In the general case,with outlier contaminated datasets, and robust loss functions, the
pseudo-data Zi j has a similar behavior as the original dataset, excluding the influence
of the outlier curves. For each j = 1, . . . , N , the variance of Zi j is close to the variance
of the original dataset, after excluding the influence of the outlier curves. A simulation
to support this claim is presented in “Appendix.”

Recently, Lim and Oh (2015) used the concept of pseudo-data to obtain SCB
for regression function with i.i.d. data. Here we will extend this idea to work with
functional data and transform the estimation of the RSCB for the mean function of
contaminated functional data to the estimation of a SCB for the mean function of
homogeneous functional data.

More precisely, we will apply the estimation method for the SCB for the mean
function developed in Cao et al. (2012) to the pseudo-data Zi j . Since neither the
mean function nor the random error is directly observable, we calculate the empirical
pseudo-data as

Ẑi j = m̂( j/N )+√
2nDn( j/N )ψ

(
êi j/

√
2nDn( j/N )

)
, i = 1, . . . , n, j = 1, . . . , N ,

where m̂(·) is the B-spline M-estimator of the mean function defined in Sect. 2.2 and
êi j is the empirical estimator of the random error defined as êi j = Yi j − m̂( j/N ).
Once we have empirical pseudo-data, Ẑi j , we can easily construct the SCB for the
mean function based on the non-robust SCBmethod by Cao et al. (2012). The method
to calculate the RSCB is provided in the following algorithm.

Algorithm 1: Robust simultaneous confidence band for the mean function

Input: Empirical Pseudo-Data, Ẑi j ;
1 Estimate the mean function of the empirical pseudo-data using B-spline Smoothed least-square;

m̂ pd ;
2 Estimate the sample covariance function of empirical pseudo-data using B-spline smoothing;

Ĝ pd (x, x ′), x, x ′ ∈ [0, 1];
3 Calculate the empirical quantile of Gaussian process with the same covariance structure with

empirical pseudo-data: Q̂ pd
1−α [the same algorithm proposed in Cao et al. (2012)];

Output: Robust simultaneous confidence band: m̂ pd (x) ± Q̂ pd
1−αn−1/2

√
Ĝ pd (x, x), x ∈ [0, 1].
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2.5 Robust simultaneous confidence band for the difference of the two mean
functions

The framework proposed here to obtain a RSCB for themean function can be extended
to construct a RSCB for the difference of the mean functions of two populations.
Denote d = 1, 2 representing the samples coming from each population, satisfying
the model defined in (1) and

Ydi j = md
(
Xi j

) + edi j , 1 ≤ i ≤ nd , 1 ≤ j ≤ N .

Define the ratio of two-sample sizes as r̂ = n1/n2 and assume that limn1→∞ r̂ = r >

0. For each group, we obtain the M-estimator for the mean function as described in
Sect. 2.2.

Following the procedure in Sect. 2.4, we can obtain empirical pseudo-samples Ẑd,i j

for each population.We can then use the empirical pseudo-samples to obtain theRSCB
for the difference of the mean functions. First, we obtain estimators for the covariance
function of each group, Ĝ pd

d (·, ·), then compute the empirical quantile, Q̂12,1−α , of a
Gaussian process having covariance structure defined by

Ĝ pd
1 (x, x ′) + r̂ Ĝ pd

2 (x, x ′)
{

Ĝ pd
1 (x, x) + r̂ Ĝ pd

2 (x, x)
}1/2 {

Ĝ pd
1 (x ′, x ′) + r̂ Ĝ pd

2 (x ′, x ′)
}1/2 , x, x ′ ∈ [0, 1].

The RSCB for m1(x) − m2(x) is then given as

(
m̂1(x) − m̂2(x)

) ± n1/2
1

[
Ĝ pd

1 (x, x) + r̂ Ĝ pd
2 (x, x)

]1/2
Q̂12,1−α.

The confidence band for the difference of the mean functions can be used to perform
a hypothesis test of the form H0 : m1(x) ≡ m2(x), ∀x ∈ [0, 1] versus HA : m1(x) �=
m2(x), ∃ x ∈ [0, 1]. The test can be performed by calculating the appropriate (1 −
α) × 100% RSCB and checking if the horizontal line y = 0 is fully contained in
the RSCB. Although the p-value for the test cannot be calculated directly, it can be
estimated by finding the largest α for which H0 is rejected.

3 Simulation

In this section, we perform a numerical study to analyze the finite-sample performance
of methods proposed in this paper. We investigate the consistency of the B-Spline
smoothed M-estimator for the mean function, and the empirical coverage and band
area of the RSCB. We use the SCB (non-robust) proposed in Cao et al. (2012) as a
baseline for comparison. Since outlier curves often have different types of outlying
behaviors in functional data, we consider several typical types of outliers for the
assessment of the performance of the RSCB.

123



586 I. R. Lima et al.

3.1 Simulation setting

Based on the model proposed in Cao et al. (2012), we generate the functional data
from

Yi j = m( j/N ) + ei j 1 ≤ j ≤ N , 1 ≤ i ≤ n,

where ei j = ∑2
k=1 ξikφk ( j/N ) + εi j , m(x) = 10 + sin{2π(x − 1/2)}, φ1(x) =

−2 cos{π(x − 1/2)}, φ2(x) = sin{π(x − 1/2)} and ξik ∼ N (0, 1), k = 1, 2 and
εi j ∼ N (0, 0.25). The random component of the sample curves, ei j , is decomposed
into the between-subject variation in the functional sample and the within-subject
variation. We generate the number of observations N = �1.22n(2p−2)/(2p+1) log(n)�
for each sample. The number of knots is taken as Nm = �0.3n1/p log(n)�, where p = 4
(cubic spline).

Under this functional model, we introduce outlier curves, Y o
i j , to the generated

functional sample by contaminating a subset, Io, of the original functional sample.
The contamination proportion varies from 0.00 to 0.20, at 0.05 increment. In addition,
we consider two-heavy-tailed model error distributions to assess the performance of
the proposed method. All of these settings are described as in the following.

1. Peak outliers To simulate an outlier with a punctual influence, each curve was
contaminated at a single measurement point, j∗/N , by adding a random value si

taken from a uniform distribution on [−su,−sl ] ∪ [sl , su], that is,

Y o
i j∗ = Yi j∗ + si , i ∈ Io, j∗ = �0.05N�.

This produces a peak outlier curve with a peak at the point j∗/N . The parameters
sl and su control the strength of outliers.

2. Bump outliers This type is an extension of the peak outliers and the contamination
occurs in an interval, [b0, b1], rather than at a single point, that is,

Y o
i j∗ = Yi j∗ + si , i ∈ Io, j∗/N ∈ [b0, b1].

In the simulation, the interval is chosen as [b0, b1] = [0.5, 0.53].
3. Step outliers A further extension of the bump outliers is created by contaminating

the curve in the interval [ci , 1], where ci is randomly chosen from [0.5, 1] for each
outlying curve, i.e.,

Y o
i j∗ = Yi j∗ + si , i ∈ Io, j∗/N ≥ ci .

4. Mixture Normal–Slash To simulate outliers with heavy-tailed distribution, we con-
sider for the distribution of the within-subject variation a mixture of a normal
distribution N (0, 0.25) and a Slash distribution with location 0 and scale 0.5.

5. Mixture Normal–Cauchy Similar to previous item, but using a mixture of a normal
distribution N (0, 0.25) and a Cauchy distribution with location 0 and scale 0.5.
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3.2 An illustrative example

We first illustrate the performance of the proposed RSCB using a toy example. We
generate a functional sample of n = 50 curves from the model defined in Sect. 3.1
and contaminate the data by using all types of outliers defined previously, using a
contamination proportion of 20%, sl = 10 and su = 20 for the contamination type of
outliers, types 1 to 3, and using a mixture proportion of 20% for the mixture model
outlier, types 4 and 5.We construct the 95%confidence band using the proposedRSCB
(black) and (red) SCB for the mean function for each scenario listed in Sect. 3.1. We
also construct the SCB and RSCB for the mean function when the sample does not
have outlier curves to assess the consistency of the proposed RSCB. Figure 1 depicts
the effects of outlier curves on the SCB and RSCB methods.

The first graph (top left in Fig. 1) for no outlier case shows that the proposed RSCB
behaves the same as the SCB when there are no outlier curves in the data. For peak,
bump and step outliers (top right and second row in Fig. 1), the width of the non-robust
SCB is strongly deformed around the outlier location, resulting in a non-informative
SCB. The RSCB is less influenced by the outliers, resulting in a SCB with similar
characteristics to the SCB for clean dataset.

For the mixture outliers (bottom row in Fig. 1), the influence of the outliers is most
notable, with a strong deformation of the non-robust mean estimation and the SCB for
mixture Normal–Slash and mixture Normal–Cauchy distributions. The RSCB is not
much influenced by the presence of outliers, albeit a slight increase in the bandwidth
when compared to the clean dataset.

This illustrative example provides evidence that when there are outlier curves in
a functional dataset, estimates of the mean function and the SCB are both strongly
affected badly while the proposed RSCB based on the R mean estimator performs
well for different types of outlier curves and heavy-tailed error distributions.

3.3 Asymptotic consistency of the mean function estimator

To evaluate the performance of the proposed estimator for the mean function, we
generated functional sample from the model in Sect. 3.1 for sample sizes n = 50, 100
and 200, with sl = 5 and su = 7 for outlier types peak, bump and step. Each simulation
is repeated 500 times.

The average L2 distance between the truemean function and theB-Spline smoothed
M-estimator was calculated. As a baseline comparison, the least-squares method used
in Cao et al. (2012) was also calculated. The results are presented in Tables 1, 2 and 3.

The B-spline smoothed M-estimator has a comparable or faster convergence rate,
as measured by the average L2 distance between the estimator and the true mean
function, than that of the non-robust method for all outliers, with a smaller or similar
standard deviation. For localized outliers, the results are similar, but robust method
shows better results for large contamination, as can be seen in Table 1, for step outliers,
with n = 200 and 20% contamination proportion, the average L2 distance between
the robust estimator and the real mean function is 0.120, while the non-robust is 0.133.
The standard deviation of the L2 distance is also smaller for the robust (0.058), when
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Fig. 1 Comparison between RSCB (black) and non-robust SCB (red) for a simulated dataset. Sample size
n = 50, contamination proportion is 20% (colour figure online)

compared to the non-robust (0.063). The improvement of the robust method is made
clearer for mixtures of heavy-tailed distributions, such as the mixture Normal–Slash
and mixture Normal–Cauchy, when the convergence of the non-robust estimator is
most influenced by the outlying curves. From Table 2, the average L2 distance for
mixture Normal–Cauchy outliers, with n = 200 and 20% contamination is 0.100,
with a standard deviation of 0.060, while for the non-robust the average L2 distance is
0.915, with a standard deviation of 2.322, an increase of approximately 9 times for the
average distance, and 38 times for the standard deviation. In Table 3, notice that the
results for the robust case are very similar to the results for the clean dataset, for which
the average distance is 0.094 and the standard deviation 0.054. This further indicates
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Table 1 Average (SD) of L2 distance between the real mean function and the estimated mean function
with contamination outliers

Outlier type n Method Contamination prop.

0.05 0.10 0.15 0.20

Peak 50 R 0.200 (0.114) 0.193 (0.109) 0.193 (0.105) 0.196 (0.110)

NR 0.198 (0.114) 0.189 (0.103) 0.192 (0.104) 0.199 (0.107)

100 R 0.141 (0.081) 0.126 (0.076) 0.133 (0.078) 0.129 (0.072)

NR 0.140 (0.083) 0.139 (0.079) 0.138 (0.079) 0.140 (0.076)

200 R 0.094 (0.054) 0.099 (0.057) 0.103 (0.060) 0.098 (0.053)

NR 0.097 (0.053) 0.097 (0.059) 0.096 (0.056) 0.092 (0.053)

Bump 50 R 0.200 (0.114) 0.195 (0.113) 0.200 (0.107) 0.200 (0.112)

NR 0.200 (0.112) 0.197 (0.112) 0.202 (0.106) 0.202 (0.111)

100 R 0.138 (0.081) 0.145 (0.082) 0.137 (0.076) 0.143 (0.080)

NR 0.139 (0.081) 0.146 (0.082) 0.138 (0.076) 0.145 (0.079)

200 R 0.096 (0.053) 0.098 (0.055) 0.099 (0.056) 0.102 (0.056)

NR 0.096 (0.052) 0.099 (0.055) 0.100 (0.055) 0.103 (0.056)

Step 50 R 0.207 (0.113) 0.217 (0.110) 0.224 (0.114) 0.249 (0.119)

NR 0.208 (0.109) 0.232 (0.114) 0.253 (0.127) 0.272 (0.134)

100 R 0.146 (0.077) 0.148 (0.078) 0.166 (0.081) 0.176 (0.088)

NR 0.153 (0.075) 0.165 (0.078) 0.174 (0.085) 0.187 (0.088)

200 R 0.104 (0.052) 0.110 (0.055) 0.113 (0.053) 0.120 (0.058)

NR 0.111 (0.056) 0.114 (0.052) 0.121 (0.055) 0.133 (0.063)

that the B-spline smoothed M-estimator is successfully diminishing the influence of
the outliers in the estimation of the mean function.

3.4 Simulation of the SCB for the mean function and the difference of two mean
functions

3.4.1 Case I: SCB for the mean function, m(x)

To evaluate the performance of the proposed RSCBmethod for the mean function, we
calculate the empirical coverage rate. We generate functional samples from the model
in Sect. 3.1 for sample sizes n = 50, 100 and 200, with sl = 5 and su = 7 for outlier
types 1 to 3. Each simulation is repeated 500 times.

The empirical coverage rates for contamination proportions varying from 0.05 to
0.20 are presented in Tables 4, 5 and 6. The results for clean datasets are similar
for robust and non-robust methods. When the empirical coverage for both methods
approaching 95%, the area of RSCB is smaller than the area of non-robust SCB.
For outlier contaminated datasets, the advantage of the RSCB becomes clear, with a
breakdown point of around 20%, while the non-robust SCB has a breakdown point at
5–10%. The precision in the RSCB is also greater, with the area of the RSCB smaller
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Table 2 Average (SD) of L2 distance between the real mean function and the estimated mean function
with mixture model outliers

Outlier type n Method Contamination prop.

0.05 0.10 0.15 0.20

Mixture
Normal–Slash

50 R 0.192 (0.110) 0.193 (0.105) 0.193 (0.107) 0.200 (0.109)

NR 0.362 (0.684) 1.128 (7.103) 1.796 (13.37) 5.940 (109.9)

100 R 0.140 (0.081) 0.141 (0.078) 0.137 (0.078) 0.144 (0.082)

NR 0.458 (2.896) 5.060 (60.09) 6.983 (98.27) 1.510 (5.676)

200 R 0.095 (0.054) 0.101 (0.059) 0.095 (0.057) 0.100 (0.051)

NR 0.545 (3.406) 0.616 (1.676) 0.948 (2.655) 1.602 (10.99)

Mixture
Normal–Cauchy

50 R 0.199 (0.111) 0.200 (0.116) 0.194 (0.112) 0.205 (0.111)

NR 0.534 (3.067) 0.529 (1.213) 1.820 (13.74) 1.147 (5.073)

100 R 0.132 (0.080) 0.140 (0.077) 0.143 (0.079) 0.143 (0.079)

NR 0.416 (1.615) 1.561 (15.47) 0.786 (2.189) 3.621 (56.44)

200 R 0.095 (0.057) 0.095 (0.056) 0.097 (0.054) 0.100 (0.060)

NR 0.750 (8.707) 0.633 (3.040) 0.823 (2.279) 0.915 (2.322)

Table 3 Average (SD) of L2

distance between the real mean
function and the estimated mean
function with clean data

Method n

50 100 200

Clean dataset

R 0.195 (0.109) 0.135 (0.076) 0.094 (0.054)

NR 0.198 (0.114) 0.128 (0.077) 0.098 (0.057)

than the non-robust SCB. Peak outliers produce similar empirical convergence rate
for large sample size, but for n = 50, the advantage of the RSCB is apparent. For the
less localized outliers, bump and step, the robust method has better empirical coverage
and maintains the area of the RSCB reasonably constant for varying contamination
levels. The non-robust method shows a quicker decay of the empirical coverage, for
bump and at the same time has wider SCB. The mixture models more clearly show
better results of the robust method, with the heavy-tailed mixture models, Slash and
Cauchy, showing the significant advantage of the RSCB over the non-robust SCB.
The precision of the RSCB is kept at the same level as all other outlier types and the
clean dataset. This provides strong evidence that the proposed RSCB is less sensitive
to the presence of outliers in the dataset, maintaining both a good confidence level and
precision.

3.4.2 Case II: SCB for the difference of two mean functions, m1(x) − m2(x)

We also conducted a simulation to evaluate the performance of the RSCB method for
the difference between two mean functions, by testing the hypotheses described in
Sect. 2.5, H0 : m1(x) = m2(x), ∀x ∈ [0, 1] versus HA : m1(x) �= m2(x), ∃ x ∈
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Table 4 Robust (R) and non-robust (NR) empirical coverage rates (average area) of 95% SCB for contam-
ination outliers

Outlier type n Method Contamination prop.

0.05 0.10 0.15 0.20

Peak 50 R 0.902 (1.053) 0.924 (1.045) 0.890 (1.053) 0.880 (1.049)

NR 0.898 (1.055) 0.912 (1.047) 0.878 (1.056) 0.866 (1.054)

100 R 0.926 (0.743) 0.934 (0.748) 0.914 (0.746) 0.934 (0.748)

NR 0.928 (0.743) 0.934 (0.749) 0.914 (0.747) 0.936 (0.750)

200 R 0.952 (0.530) 0.938 (0.529) 0.904 (0.528) 0.958 (0.531)

NR 0.954 (0.530) 0.938 (0.530) 0.904 (0.528) 0.958 (0.531)

Bump 50 R 0.910 (1.047) 0.876 (1.036) 0.884 (1.054) 0.884 (1.048)

NR 0.906 (1.050) 0.870 (1.040) 0.872 (1.059) 0.872 (1.056)

100 R 0.898 (0.745) 0.886 (0.743) 0.908 (0.746) 0.874 (0.744)

NR 0.894 (0.747) 0.886 (0.747) 0.916 (0.751) 0.876 (0.751)

200 R 0.938 (0.529) 0.914 (0.529) 0.902 (0.530) 0.876 (0.529)

NR 0.930 (0.530) 0.898 (0.531) 0.886 (0.533) 0.838 (0.533)

Step 50 R 0.888 (1.080) 0.878 (1.165) 0.892 (1.232) 0.878 (1.324)

NR 0.906 (1.101) 0.896 (1.223) 0.874 (1.278) 0.868 (1.357)

100 R 0.872 (0.772) 0.924 (0.832) 0.894 (0.899) 0.890 (0.943)

NR 0.914 (0.794) 0.932 (0.873) 0.918 (0.928) 0.910 (0.965)

200 R 0.902 (0.545) 0.910 (0.592) 0.914 (0.637) 0.908 (0.669)

NR 0.890 (0.560) 0.926 (0.625) 0.936 (0.659) 0.928 (0.686)

Table 5 Robust (R) and non-robust (NR) empirical coverage rates (average area) of 95% SCB for mixture
outliers

Outlier type n Method Contamination prop.

0.05 0.10 0.15 0.20

Mixture Normal–Slash 50 R 0.908 (1.049) 0.888 (1.042) 0.890 (1.046) 0.822 (1.042)

NR 0.676 (2.397) 0.470 (4.326) 0.394 (5.299) 0.338 (6.205)

100 R 0.920 (0.745) 0.904 (0.744) 0.912 (0.740) 0.870 (0.739)

NR 0.604 (2.805) 0.436 (10.192) 0.384 (5.332) 0.292 (7.718)

200 R 0.944 (0.529) 0.910 (0.526) 0.918 (0.525) 0.888 (0.523)

NR 0.490 (2.613) 0.386 (3.929) 0.300 (5.919) 0.326 (7.606)

Mixture Normal–Cauchy 50 R 0.912 (1.047) 0.856 (1.046) 0.884 (1.043) 0.862 (1.042)

NR 0.680 (2.137) 0.556 (3.063) 0.442 (4.958) 0.348 (5.208)

100 R 0.920 (0.744) 0.906 (0.746) 0.910 (0.740) 0.910 (0.737)

NR 0.630 (4.167) 0.440 (5.504) 0.366 (4.401) 0.348 (18.69)

200 R 0.912 (0.528) 0.944 (0.529) 0.926 (0.526) 0.924 (0.524)

NR 0.494 (2.446) 0.414 (3.552) 0.304 (4.417) 0.318 (5.617)
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Table 6 Robust (R) and
non-robust (NR) empirical
coverage rates (average area) of
95% SCB for clean data

Method n

50 100 200

Clean dataset

R 0.922 (1.046) 0.932 (0.746) 0.946 (0.529)

NR 0.906 (1.050) 0.922 (0.747) 0.922 (0.530)

[0, 1]. We employ the same model in Sect. 3.1 for the one sample case. In this sim-
ulation setup, m1(x) = m2(x) = 10 + sin{2π(x − 1/2)}, 0 ≤ x ≤ 1, n1 = 100
and n2 = 130 correspond to the sample sizes for the first and the second population,
respectively. N = 100 is number of measurement points for both samples, and outlier
curves are introduced to the first population.

The results of the simulation are presented in Table 7 for all types of outliers.
For peak outliers, the empirical type I error for the robust method is kept close to the
nominal value,α = 0.05, decreasingwith the increase in the contamination proportion.
For the non-robust test, the empirical type I error is much smaller than the nominal
value, which indicates that the non-robust SCB is inflated. For less localized outliers,
step and bump, the robust method produces an empirical type I error closer to the
nominal value than the non-robust method for all contamination proportions. The
mixture models with heavy-tailed distributions, mixture Normal–Slash and Normal–
Cauchy highlight the most advantage of the robust method. The non-robust method
has the empirical type I error 1.0, while the proposed method keeps the empirical type
I errors similar to the non-contaminated dataset results.

In order to estimate the power of the RSCB method for the difference between two
mean functions, we modify the mean function of the second population by adding
0.7 sin(x), that is, m∗

2(x) = 10 + sin{2π(x − 1/2)} + 0.7 sin(x), 0 ≤ x ≤ 1. This
setting is similar to the simulation performed by Cao et al. (2012). The remaining
parameters are kept the same, and the first population is contaminated by the outlier
curves. The results of the estimation of the empirical power are presented in Table 8.
Similar to the previous results, the RSCB-based test has higher empirical power when
compared to the SCB-based test, with the heavy-tailed distributions providing the
highest separation between the two methods.

4 Applications

We illustrate our approach on two datasets: Octane dataset for the one sample case
and ground-level ozone concentration dataset for the two-sample case.

4.1 Octane dataset

This dataset consists of 39 near infrared (NIR) spectra of gasoline sample, obtained
from Esbensen et al. (1996). It is known that 6 of the samples contain added ethanol,
which corresponds to an upward translation on the upper wavelength, 1390 onward,
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Table 7 Empirical type I error.
Nominal type I error set at
α = 0.05. Hypothesis test for
the difference of mean functions.
Sample size fixed at n1 = 100,
n2 = 130, with N = 100
measurement points for both
groups

Outlier type Method Contamination prop.

0.05 0.10 0.15 0.20

Peak R 0.044 0.038 0.032 0.036

NR 0.036 0.030 0.024 0.032

Bump R 0.050 0.044 0.050 0.052

NR 0.040 0.034 0.042 0.046

Step R 0.064 0.050 0.066 0.098

NR 0.044 0.060 0.082 0.096

Mixture Slash R 0.038 0.056 0.046 0.042

NR 1.000 1.000 1.000 1.000

Mixture Cauchy R 0.030 0.042 0.058 0.062

NR 1.000 1.000 1.000 1.000

Clean dataset Method Empirical error

R 0.048

NR 0.052

Table 8 Empirical power.
Nominal level α = 0.05.
Hypothesis test for the
difference of mean functions.
Sample size fixed at n1 = 100,
n2 = 130, with N = 100
measurement points for both
groups. Difference between the
population mean functions is
0.7 sin(x)

Outlier type Method Contamination prop.

0.05 0.10 0.15 0.20

Peak R 0.944 0.938 0.958 0.956

NR 0.946 0.934 0.942 0.946

Bump R 0.950 0.958 0.968 0.958

NR 0.944 0.958 0.954 0.942

Step R 0.870 0.686 0.542 0.472

NR 0.726 0.530 0.456 0.442

Mixture Slash R 0.950 0.942 0.972 0.944

NR 0.000 0.000 0.000 0.000

Mixture Cauchy R 0.958 0.942 0.958 0.952

NR 0.000 0.000 0.000 0.000

Clean dataset Method Empirical error

R 0.958

NR 0.938

interval of the spectrum. These outlying curves have a behavior similar to the step
outliers described in Sect. 3.

The robust estimation of themean and the 95%RSCB, aswell as themean estimator
and confidence band using the method in Cao et al. (2012), are calculated. The results
are presented in Fig. 2, showing the full spectrum measure (left panel) and magnified
on the second half of the spectrum to display the differences more apparently between
the non-robust and robust SCBs (right panel).

We observe that the robustmean estimator remains close to the non-outlying curves,
while the non-robust estimate of themean function is heavily influenced by the outliers,
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Fig. 2 95% SCB comparison for the octane dataset. non-robust (red) versus robust (black) methods. Left:
full spectrum. Right: magnified on the second half of the spectrum (colour figure online)

resulting in an upward shift. The non-robust SCB is also heavily influenced by the
outliers, translating in a very wide band on the second half of the spectrum. However,
the proposed RSCB shows a smaller variation of the width across the spectrum.

4.2 Ground-level ozone concentration dataset

This dataset consists of hourly average measurements of ground-level ozone (O3)
concentrations from a monitoring station in Richmond, BC, Canada, from the years of
2004–2012.The presence of ozone at ground level is highly undesirable and considered
a serious air pollutant. Since the concentration of ground-level ozone typically peaks
at summermonths, only themonth of August is analyzed, resulting in 31 samples, with
24 measurement points for each sample. The same dataset was studied in Boente and
Salibian-Barrera (2015). They proposed S-estimators for the principal components
and examined the data for potential outliers by looking at the scores of each point
on the estimated principal eigenvectors. The presence of outliers was detected in the
year of 2005. For illustrative purposes, we take the ozone levels for the year of 2005
as one sample and the ozone levels for the year of 2007, which has no outlier curves
(Boente and Salibian-Barrera 2015), as the other sample. The plot of the ground-level
O3 concentration for years 2005 and 2007 is presented in Fig. 3, top panel, with the
year of 2005 in gray/black, and the year of 2007 in red. The outliers detected by Boente
and Salibian-Barrera (2015) are highlighted.

We set up our hypotheses for testing if there is a difference between the ozone
mean functions of the years 2005 and 2007 in Richmond, Canada. The outliers in the
dataset are similar to the bump outliers described in Sect. 3, but they are asymmetrical,
localized only in the upper portion of the dataset. The 95% SCB of the difference
between the mean functions of the ground-level O3 concentration in years of 2005
and 2007 is presented in the bottom left panel in Fig. 3. We also calculate the 95%
SCB for the difference between the mean functions with the outliers kept for the
RSCB, and excluding the outliers for the non-robust SCB. This is presented in the
bottom right panel in Fig. 3. This plot provides a comparison of the SCB between
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Fig. 3 Top: O3 Levels in years of 2005 (gray and black) and 2007 (red) in Richmond. Black lines are
the outliers which are determined in Boente and Salibian-Barrera (2015). Bottom left: 95% non-robust
SCB (red) and RSCB (gray) for the difference between the mean functions of the 2years. Bottom right:
95% non-robust SCB (red) and RSCB (gray) for the difference between the mean functions of the 2years,
keeping outliers for RSCB, excluding outliers for non-robust SCB (colour figure online)

the robust and non-robust methods. The non-robust SCB has a smaller width around
the location of the outliers, but due to the asymmetrical disposition of the outlying
curves, the estimated difference of mean functions is shifted slightly upwards by the
non-robust method.

Notice that the robust method does not reject the null hypothesis at a significance
level α = 0.05, while the non-robust test rejects the null hypothesis (bottom left
in Fig. 3). The result for the non-robust test is contradictory with the result of the
hypothesis test using the dataset with outlier curves removed, which does not reject
the null hypothesis at α = 0.05 (bottom right in Fig. 3).

5 Discussion

In this paper we consider M-estimator and simultaneous inference for functional data
observed in a dense functional design. We propose a robust way to estimate the mean
function in the presence of outlier curves which is unlike the existing literature on
this topic (Cao et al. 2012). It does not rely on strict assumptions about the mea-
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surement error distribution. The method is applicable to contaminated as well as
non-contaminated responses. We have derived the variance function for the M-based
estimator of the mean function and shown the asymptotic normality of the proposed
estimator. A RSCB is also proposed based on theM-estimator and pseudo-data (trans-
formed data). This robust band can directly accommodate outlying curves observed
on functional designs, which is the key advantage of our approach over available FDA
methods. Because of this closed form for variance function and normality, we obtain
more precise confidence bands based on M-estimator than the ones in Lima et al.
(2016).

Numerical results show that the estimation performance of our approach is superior
to existing classical approaches when the outlier curves are indeed present, and is
very competitive with non-contaminated dataset. In spite of the robustness, the robust
confidence band produces similar empirical convergence rate but with a narrower
bandwidth compared to the classical one. Further, we applied our proposed robust
estimator and the RSCB to the datasets in food science and climatology and found that
the RSCB is resilient to outlier curves and can maintain type I error. An R-package for
implementation of the proposed framework is posted publicly at: http://www.auburn.
edu/~gzc0009/software.html.

Appendix: Variance of pseudo-data

In order to evaluate the efficiency of pseudo-datamethod, we compare the sample vari-
ance of the pseudo-data with the real variance of the uncontaminated model defined
in Sect. 3.1. To further emphasize the influence of outliers in the calculation of the
variance, we also compared the results with the sample variance of the outlier contam-
inated dataset, using the least-squares method as the estimator for the mean function.
We generate a functional dataset from the model in Sect. 3.1 for sample size n = 200,
with sl = 5 and su = 7 for peak outlier case. Each simulation is repeated 500 times.
The results are presented in Fig. 4. We only present the results for peak outliers, as all
other cases have similar results. The results show that the variance of the pseudo-data
is very close to the true sample variance computed from the clean dataset, while the
non-robust estimation of the variance of the contaminated dataset is strongly affected
by the outlier curves.
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Fig. 4 Comparison of the real
variance (solid), sample variance
of pseudo-data (dotted) and
sample variance of contaminated
data (dashed). Peak outlier with
5% contamination
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