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Abstract We consider classifiers for high-dimensional data under the strongly spiked
eigenvalue (SSE) model. We first show that high-dimensional data often have the
SSE model. We consider a distance-based classifier using eigenstructures for the SSE
model. We apply the noise-reduction methodology to estimation of the eigenvalues
and eigenvectors in the SSE model. We create a new distance-based classifier by
transforming data from the SSE model to the non-SSE model. We give simulation
studies and discuss the performance of the new classifier. Finally, we demonstrate the
new classifier by using microarray data sets.

Keywords Asymptotic normality · Data transformation · Discriminant analysis ·
Large p small n · Noise-reduction methodology · Spiked model

1 Introduction

Acommon feature of high-dimensional data is that the data dimension is high, however,
the sample size is relatively low. This is the so-called “HDLSS” or “large p, small n”
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474 M. Aoshima, K. Yata

data situation where p/n → ∞; here p is the data dimension and n is the sample size.
Suppose we have independent and p-variate two populations, πi , i = 1, 2, having
an unknown mean vector μi and unknown covariance matrix Σ i for each i . We do
not assume Σ1 = Σ2. The eigen-decomposition of Σ i is given by Σ i = H iΛiHT

i ,
where Λi = diag(λi(1), ..., λi(p)) is a diagonal matrix of eigenvalues, λi(1) ≥ · · · ≥
λi(p) ≥ 0, and H i = [hi(1), ..., hi(p)] is an orthogonal matrix of the corresponding
eigenvectors. We have independent and identically distributed (i.i.d.) observations,
xi1, ..., xini , from each πi . We assume ni ≥ 4, i = 1, 2. We estimate μi and Σ i by
xi = ∑ni

j=1 xi j/ni and Si = ∑ni
j=1(xi j − xi )(xi j − xi )T /(ni − 1). Let x0 be an

observation vector of an individual belonging to one of the twopopulations.We assume
x0 and xi j s are independent. When the πi s are Gaussian, a typical classification rule
is that one classifies an individual into π1 if

(x0 − x1)T S
−1
1 (x0 − x1) − log

{
det(S2S

−1
1 )
}

< (x0 − x2)T S
−1
2 (x0 − x2),

and into π2 otherwise. However, the inverse matrix of Si does not exist in the HDLSS
context (p > ni ). Also, we emphasize that the Gaussian assumption is strict in real
high-dimensional data analyses. Bickel and Levina (2004) considered a naive Bayes
classifier for high-dimensional data. Fan and Fan (2008) considered classification after
feature selection. Cai and Liu (2011), Shao et al. (2011) and Li and Shao (2015) gave
sparse linear or quadratic classification rules for high-dimensional data. The above
references all assumed the following eigenvalues condition: There is a constant c0 > 0
(not depending on p) such that

c−1
0 < λi(p) and λi(1) < c0 for i = 1, 2. (1)

Dudoit et al. (2002) considered using the inverse matrix defined by only diagonal ele-
ments of Si . Aoshima and Yata (2011, 2015a) considered substituting {tr(Si )/p}I p
for Si by using the difference of a geometric representation of HDLSS data from each
πi . Here, I p denotes the identity matrix of dimension p. On the other hand, Hall et al.
(2005, 2008) and Marron et al. (2007) considered distance weighted classifiers. Ahn
and Marron (2010) considered a HDLSS classifier based on the maximal data piling.
Hall et al. (2005), Chan and Hall (2009), Aoshima and Yata (2014) and Watanabe
et al. (2015) considered distance-based classifiers. Aoshima and Yata (2014) gave the
misclassification rate-adjusted classifier for multiclass, high-dimensional data whose
misclassification rates are nomore than specified thresholds under the following eigen-
values condition:

λ2i(1)

tr(Σ2
i )

→ 0 as p → ∞ for i = 1, 2. (2)

We emphasize that (2) is much milder than (1) because (2) includes the case that
λi(1) → ∞ as p → ∞. See Remark 1 for the details. Aoshima and Yata (2014)
considered the distance-based classifier as follows: Let

W (x0) =
(
x0 − x1 + x2

2

)T
(x2 − x1) − tr(S1)

2n1
+ tr(S2)

2n2
. (3)
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Distance-based classifier by data transformation 475

Then, one classifies x0 into π1 if W (x0) < 0 and into π2 otherwise. Here,
−tr(S1)/(2n1) + tr(S2)/(2n2) is a bias-correction term. Note that the classifier (3)
is equivalent to the scale-adjusted distance-based classifier given by Chan and Hall
(2009). Aoshima andYata (2015b) called the classification rule (3) the “distance-based
discriminant analysis (DBDA)”.

Recently, Aoshima and Yata (2018) considered the “strongly spiked eigenvalue
(SSE) model” as follows:

lim inf
p→∞

{
λ2i(1)

tr(Σ2
i )

}

> 0 for i = 1 or 2. (4)

On the other hand, Aoshima and Yata (2018) called (2) the “non-strongly spiked
eigenvalue (NSSE) model”. Note that (4) holds under the condition:

lim inf
p→∞

{
λi(1)

tr(Σ i )

}

> 0 for i = 1 or 2, (5)

from the fact that tr(Σ2
i ) ≤ tr(Σ i )

2. Here, λi(1)/tr(Σ i ) is the first contribution ratio.
We call (5) the “super strongly spiked eigenvalue (SSSE) model”.

Remark 1 Let us consider a spiked model such as

λi(r) = ai(r) p
αi(r) (r = 1, ..., ti ) and λi(r) = ci(r) (r = ti + 1, ..., p) (6)

with positive and fixed constants, ai(r)s, ci(r)s and αi(r)s, and a positive and fixed
integer ti . Note that the NSSE condition (2) holds when αi(1) < 1/2 for i = 1, 2. On
the other hand, the SSE condition (4) holds when αi(1) ≥ 1/2, and further the SSSE
condition (5) holds when αi(1) ≥ 1. See Yata and Aoshima (2012) for the details of
the spiked model.

We observed

λi(r)

tr(Σ i )
(= εi(r), say) and

λ2i(r)

tr(Σ2
i )

(= ηi(r), say), i = 1, 2; r = 1, 2, ...,

for sixwell-knownmicroarray data sets by using the noise-reductionmethodology and
the cross-data-matrix methodology. For those methods, see Yata and Aoshima (2010,
2012). Note that εi(r) is the contribution ratio and ηi(r) is a quadratic contribution
ratio of the r -th eigenvalue. We estimated εi(r) by ε̂i(r) = λ̃i(r)/tr(Si ) and ηi(r) by
η̂i(r) = λ́2i(r)/Ψ̂i(1), where λ̃i(r) is defined by (16), and λ́i(r) and Ψ̂i(1) are defined in
Sect. 4.3. We note that ε̂i(r) and η̂i(r) are consistent estimators of εi(r) and ηi(r) when
p → ∞. See (18) and (23) for the details. The six microarray data sets are as follows:

(D-i) Non-pathologic tissues data with 1413 genes, consisting of π1: placenta or
blood (104 samples) and π2 : other solid tissue (113 samples) given by Chris-
tensen et al. (2009);
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476 M. Aoshima, K. Yata

Table 1 Estimates of (εi(1), ηi(1)) by (ε̂i(1), η̂i(1)) for the six well-known microarray data sets

(D-i) (D-ii) (D-iii) (D-iv) (D-v) (D-vi)

p 1413 2000 2905 7129 12625 47293

(n1, n2) (104, 113) (40, 22) (111, 57) (58, 19) (36, 137) (84, 44)

ε̂1(1) 0.636 0.153 0.108 0.22 0.038 0.091

ε̂2(1) 0.233 0.157 0.083 0.386 0.035 0.085

η̂1(1) 0.995 0.569 0.304 0.71 0.283 0.502

η̂2(1) 0.582 0.523 0.363 0.963 0.269 0.403

Fig. 1 Estimates of the first ten contribution ratios by ε̂i(r)s for the six well-known microarray data sets

(D-ii) Colon cancer data with 2000 genes, consisting of π1: colon tumor (40 samples)
and π2 : normal colon (22 samples) given by Alon et al. (1999);

(D-iii) Breast cancer data with 2905 genes, consisting of π1 : good (111 samples) and
π2 : poor (57 samples) given by Gravier et al. (2010);

(D-iv) Lymphoma data with 7129 genes, consisting of π1 : DLBCL (58 samples) and
π2 : follicular lymphoma (19 samples) given by Shipp et al. (2002);

(D-v) Myeloma data with 12625 genes, consisting of π1 : patients without bone
lesions (36 samples) and π2 : patients with bone lesions (137 samples) given
by Tian et al. (2003);

(D-vi) Breast cancer data with 47293 genes, consisting of π1 : luminal group (84
samples) and π2 : non-luminal group (44 samples) given by Naderi et al.
(2007).

The data sets (D-ii), (D-iv) and (D-v) are given in Jeffery et al. (2006), (D-i) and (D-iii)
are given in Ramey (2016), and (D-vi) is given in Glaab et al. (2012). We summarized
the results for ε̂i(1) and η̂i(1) in Table 1. We also visualized the first ten contribution
ratios given by ε̂i(r) (r = 1, ..., 10; i = 1, 2) in Fig. 1 and the first ten quadratic
contribution ratios given by η̂i(r) (r = 1, ..., 10; i = 1, 2) in Fig. 2. See (18) and (23)
for the details.

We observed from Fig. 1 that the first several eigenvalues are much larger than
the rest for the microarray data sets (except (D-v)). In particular, the first eigenvalues
for (D-i) and (D-iv) are extremely large. These data appear to be consistent with the
SSSE asymptotic domain given in (5). On the other hand, the first several eigenvalues
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Distance-based classifier by data transformation 477

Fig. 2 Estimates of the first ten quadratic contribution ratios by η̂i(r)s for the six well-known microarray
data sets

for (D-v) are relatively small. However, from Table 1 and Fig. 2, ηi(1)s for (D-v) are
not sufficiently small. Also, ηi(1)s for (D-ii), (D-iii) and (D-vi) are relatively large in
Table 1 and Fig. 2. Hence, the six microarray data appear to be consistent with the SSE
asymptotic domain given in (4). See Sect. 4.3. In this paper, we consider classifiers
under the SSE model. We do not assume the normality of the population distributions.
We propose an effective distance-based classifier for such high-dimensional data sets.

The organization of this paper is as follows. In Sect. 2, we introduce asymptotic
properties of the distance-based classifier for high-dimensional data. We discuss the
distance-based classifier in the SSE model. In Sect. 3, we consider a distance-based
classifier using eigenstructures for the SSEmodel. In Sect. 4, we discuss estimation of
the eigenvalues and eigenvectors for the SSE model. We create a new distance-based
classifier by estimating the eigenstructures. In Sect. 5, we give simulation studies
and discuss the performance of the new classifier. Finally, we demonstrate the new
classifier by using microarray data sets.

2 Distance-based classifier for high-dimensional data

In this section, we introduce asymptotic properties of the distance-based classifier for
high-dimensional data. As for any positive-semidefinite matrix M, wewrite the square
root of M as M1/2. Let

xi j = H iΛ
1/2
i zi j + μi ,

where zi j = (zi j (1), ..., zi j (p))T is considered as a sphered data vector having the zero
mean vector and identity covariance matrix. Similar to Bai and Saranadasa (1996)
and Chen and Qin (2010), we assume the following assumption for πi , i = 1, 2, as
necessary:

(A-i) lim sup
p→∞

E(z4i j (r)) < ∞ for all r , E(z2i j (r)z
2
i j (s)) = E(z2i j (r))E(z2i j (s)) = 1,

E(zi j (r)zi j (s)zi j (t)) = 0 and E(zi j (r)zi j (s)zi j (t)zi j (u)) = 0 for all r �= s, t, u.
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478 M. Aoshima, K. Yata

When the πi s are Gaussian, (A-i) naturally holds. Let

μ = μ1 − μ2, Δ = ‖μ‖2, nmin = min{n1, n2} and m = min{p, nmin},

where ‖ · ‖ denotes the Euclidean norm. Note that E{W (x0)} = (−1)iΔ/2 when
x0 ∈ πi for i = 1, 2. Also, note that the divergence condition “p → ∞, n1 → ∞
and n2 → ∞” is equivalent to “m → ∞”. Let

δoi =
{
tr(Σ2

i )

ni
+ tr(Σ1Σ2)

ni ′
+

2∑

l=1

tr(Σ2
l )

2nl(nl − 1)

}1/2

and δi = {δ2oi + μT (Σ i + Σ i ′/ni ′)μ}1/2 for i = 1, 2; i ′ �= i . Note that δ2i =
Var{W (x0)} when x0 ∈ πi for i = 1, 2.

Let e(i) denote the error rate of misclassifying an individual from πi into the other
class for i = 1, 2. Then, for the classification rule (3) DBDA, Aoshima and Yata
(2014) gave the following result.

Theorem 1 (Aoshima and Yata 2014) Assume the following conditions:

(AY-i)
μTΣ iμ

Δ2 → 0 as p → ∞ for i = 1, 2;

(AY-ii)
maxi=1,2 tr(Σ2

i )

nminΔ2 → 0 as m → ∞.

Then, for DBDA, we have that as m → ∞

e(i) → 0 for i = 1, 2. (7)

Remark 2 For DBDA, under (AY-i) and (AY-ii), one may write (7) as

e(i) = O(δ2i /Δ
2) for i = 1, 2.

Next, we consider the asymptotic normality of the classifier. Hereafter, for a
function, f (·), “ f (p) ∈ (0,∞) as p → ∞” implies lim inf p→∞ f (p) > 0 and
lim supp→∞ f (p) < ∞. Let “⇒” denote the convergence in distribution, let N (0, 1)
denote a random variable distributed as the standard normal distribution and let
Φ(·) denote the cumulative distribution function of the standard normal distribution.
Aoshima and Yata (2014) gave the following result.

Theorem 2 (Aoshima and Yata 2014) Assume the following conditions:

(AY-iii)
μTΣ iμ

δ2oi
→ 0 as m → ∞, lim inf

p→∞
tr(Σ1Σ2)

tr(Σ2
i )

> 0 for i = 1, 2, and

tr(Σ2
1)

tr(Σ2
2)

∈ (0,∞) as p → ∞.
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Assume also the NSSE condition (2). Under a certain assumption milder than (A-i), it
holds that as m → ∞

W (x0) − (−1)iΔ/2

δoi
⇒ N (0, 1) when x0 ∈ πi for i = 1, 2.

Furthermore, for DBDA, it holds that as m → ∞

e(i) − Φ

(−Δ

2δoi

)

= o(1) when x0 ∈ πi for i = 1, 2. (8)

Remark 3 Aoshima and Yata (2015b) gave a different asymptotic normality from
Theorem 2 under different conditions. From the facts that δoi/δi → 1 as m → ∞
under (AY-iii) and Var{W (x0)} = δ2i when x0 ∈ πi , one may write (8) as

e(i) − Φ{−Δ/(2δi )} = o(1) when x0 ∈ πi for i = 1, 2.

By using the asymptotic normality, Aoshima and Yata (2014) proposed the mis-
classification rate-adjusted classifier (MRAC) in high-dimensional settings.

In this paper,we consider the distance-based classifier fromadifferent point of view.
We consider the classifier under the SSE model. We emphasize that high-dimensional
data often have the SSE model. See Table 1, Figs. 1 and 2. If the SSE condition (4) is
met, one cannot claim the asymptotic normality in Theorem 2. In addition, if the SSE
condition (4) is met, (AY-ii) in Theorem 1 is equivalent to

λ2i(1)/(nminΔ
2) = o(1) for i = 1, 2. (9)

Thus (AY-ii) in the SSE model is stricter than that in the NSSE model. For example,
for the NSSE model as the spiked model in (6) with αi(1) < 1/2, i = 1, 2, (AY-ii) is
equivalent to p/(nminΔ

2) = o(1). On the other hand, for the SSE model as (6) with
αi(1) > 1/2 (and αi(1) ≥ αi ′(1) for i ′ �= i), (AY-ii) is equivalent to p2αi(1)/(nminΔ

2) =
o(1). That means nmin or Δ should be quite large for the SSE model compared to
the NSSE model. Thus if the SSE condition (4) is met, DBDA has the classification
consistency (7) under (AY-i) in Theorem 1 and the strict condition (9). In order to
overcome the difficulties, we propose a new distance-based classifier by estimating
eigenstructures for the SSE model.

3 Distance-based classifier using eigenstructures

Let

Ψi(r) = tr(Σ2
i ) −

r−1∑

s=1

λ2i(s) =
p∑

s=r

λ2i(s) for i = 1, 2; r = 1, ..., p.

In this section, similar to Aoshima and Yata (2018), we assume the following model
for i = 1, 2:
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(M-i) There exists a fixed integer ki (≥ 1) such that λi(1), ..., λi(ki ) are distinct in the
sense that lim inf p→∞(λi(r)/λi(s) − 1) > 0 when 1 ≤ r < s ≤ ki , and λi(ki )
and λi(ki+1) satisfy

lim inf
p→∞

λ2i(ki )

Ψi(ki )
> 0 and

λ2i(ki+1)

Ψi(ki+1)
→ 0 as p → ∞.

Note that (M-i) implies the SSE condition (4), that is (M-i) is one of the SSE models.
For example, (M-i) holds in the spiked model in (6) with

αi(1) ≥ · · · ≥ αi(ki ) ≥ 1/2 > αi(ki+1) ≥ · · · ≥ αi(ti ) and ai(r) �= ai(s)

for 1 ≤ r < s ≤ ki ; i = 1, 2. We emphasize that (M-i) is a natural model under
the SSE condition (4). See Fig. 2. The six microarray data appear to be consistent
with (M-i). Similar to (9), we note that the sufficient condition (AY-ii) in Theorem 1
is equivalent to

ki∑

r=1

λ2i(r)/(nminΔ
2) = o(1) for i = 1, 2 (10)

under (M-i). According to the arguments in the last paragraph of Sect. 2, if (M-i) is
met, DBDA has the classification consistency (7) under (AY-i) in Theorem 1 and the
strict condition (10). Also, one cannot claim the asymptotic normality in Theorem 2
under (M-i). In order to overcome the difficulties, along the lines of Aoshima and Yata
(2018), we consider a data transformation from the SSE model to the NSSE model in
this section.

Let us see a toy example of the model (M-i) such as

Σ1 = Σ2, λi(1) = p and λi(2) = · · · = λi(p) = 1.

Then, the sufficient condition (10) is equivalent to “p2/(nminΔ
2) = o(1)”. Now,

we consider the following data transformation, based on the first eigenvector of Σ i ,
so as to avoid the strongly spiked eigenspace. We transform x0 and xi j s into (I p −
hi(1)hTi(1))x0 (= x0,h, say) and (I p−hi(1)hTi(1))xi j (= xi j,h, say), respectively. Note

that Var(x0,h) = Var(xi j,h) =∑p
r=2 λi(r)hi(r)hTi(r) (= Σ i,h, say) when x0 ∈ πi . Let

Δh = ‖E(x1 j,h)−E(x2 j ′,h)‖2. Then,Δh = Δ−(hTi(1)μ)2. From Theorem 1, DBDA
based on the transformed data has the classification consistency (7) under

μTΣ i,hμ/Δ2
h = o(1), i = 1, 2, and p/(nminΔ

2
h) = o(1)

because tr(Σ2
i,h) = O(p). We note that lim inf p→∞ Δh/Δ > 0 in a natural situation

where lim supp→∞ |hTi(1)μ/Δ1/2| < 1. In that sense, “μTΣ i,hμ/Δ2
h = o(1)” ismilder

than (AY-i). Also, “p/(nminΔ
2
h) = o(1)” is much milder than “p2/(nminΔ

2) = o(1)”
which is equivalent to (AY-ii). Therefore, the above data transformation probably
improves the classification consistency (7). This is a reason why we consider such a
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Distance-based classifier by data transformation 481

data transformation. In Sect. 3.1, we give a general data transformation for the model
(M-i).

3.1 Data transformation

Recall that hi(r) is the r -th eigenvector of Σ i . Let

Ai = I p −
ki∑

r=1

hi(r)hTi(r) =
p∑

r=ki+1

hi(r)hTi(r) and xi j,A = Ai xi j

for j = 1, ..., ni ; i = 1, 2. Note that A2
i = Ai for i = 1, 2. Let us write that μi,A =

Aiμi , Σ i,A = AiΣ i Ai = ∑p
r=ki+1 λi(r)hi(r)hTi(r), i = 1, 2, μA = μ1,A − μ2,A and

ΔA = ‖μA‖2. Note that E(xi j,A) = μi,A and Var(xi j,A) = Σ i,A for all i, j . Thus the
transformed data, xi j,A, have the NSSE model in the sense that

{λmax(Σ i,A)}2/tr(Σ2
i,A) = λ2i(ki+1)/Ψi(ki+1) → 0 as p → ∞,

where λmax(M) denotes the largest eigenvalue of any positive-semidefinite matrix,
M. Hence, we can say that a classifier based on the transformed data satisfies the
classification consistency (7) under mild conditions and provided (M-i) is satisfied. In
addition, one can claim the asymptotic normality of the classifier even when the SSE
condition (4) is met.

Now, we propose the classifier by using the transformed data. Let us write that
A∗ = (A1 + A2)/2, x0,A∗ = A∗x0 and xi,A = ∑ni

j=1 xi j,A/ni = Ai xi for i = 1, 2.
We consider the following classifier:

WA(x0) =
(

x0,A∗ − x1,A + x2,A
2

)T

(x2,A − x1,A) − tr(A1S1)
2n1

+ tr(A2S2)
2n2

= xT0,A∗(x2,A − x1,A) +
n1∑

j< j ′

xT1 j,Ax1 j ′,A

n1(n1 − 1)
−

n2∑

j< j ′

xT2 j,Ax2 j ′,A

n2(n2 − 1)
. (11)

Then, one classifies x0 into π1 if WA(x0) < 0 and into π2 otherwise. Let A1,2 =
A1 − A2. Here, let us write that Σ i,A∗ = A∗Σ i A∗,

δoi,A =
{
tr(Σ i,A∗Σ i,A)

ni
+ tr(Σ i,A∗Σ i ′,A)

ni ′
+

2∑

l=1

tr(Σ2
l,A)

2nl(nl − 1)

}1/2

;

and δi,A =
{
δ2oi,A + μT

AΣ i,A∗μA + μT
i A1,2Σ i,AA1,2μi/(4ni )

+(μA − A1,2μi/2)
TΣ i ′,A(μA − A1,2μi/2)/ni ′

}1/2

123



482 M. Aoshima, K. Yata

for i = 1, 2; i ′ �= i . Then, we claim that when x0 ∈ πi for i = 1, 2,

E{WA(x0)} = (−1)i
ΔA

2
− (−1)i

μT
i A1,2μA

2
and Var{WA(x0)} = δ2i,A. (12)

Remark 4 In general, μT
i A1,2μA in (12) is not sufficiently large because of

rank(A1,2) ≤ k1 + k2 (< ∞). If A1 = A2, it holds that E{WA(x0)} = (−1)iΔA/2
and

Var{WA(x0)} = tr(Σ2
i,A)

ni
+ tr(Σ1,AΣ2,A)

ni ′
+

2∑

l=1

tr(Σ2
l,A)

2nl(nl − 1)

+ μT
A(Σ i,A + Σ i ′,A/ni ′)μA

when x0 ∈ πi for i = 1, 2; i ′ �= i .

In Sects. 3.2 and 3.3, we give consistency properties and an asymptotic normality
of WA(x0). We assume the following conditions as necessary:

(C-i)
μT

A(Σ i,A∗ + Σ i ′,A/ni ′)μA

Δ2
A

→ 0 as p → ∞ for i = 1, 2; i ′ �= i ;

(C-ii)
tr(Σ i,A∗Σ l,A)

nlΔ2
A

→ 0 as m → ∞ for i, l = 1, 2;

(C-iii)
μT
i A1,2μA

ΔA
→ 0 as p → ∞ and lim sup

m→∞
μT
i A2

1,2μi

n1/2minΔA

< ∞ for i = 1, 2;

(C-iv)
μT

A(Σ i,A∗ + Σ i ′,A/ni ′)μA

δ2oi,A
→ 0 as m → ∞, lim inf

p→∞
tr(Σ1,AΣ2,A)

tr(Σ2
i,A)

> 0

for i = 1, 2 (i ′ �= i), and
tr(Σ2

1,A)

tr(Σ2
2,A)

∈ (0,∞) as p → ∞;

(C-v)
μT
i A1,2μA

δoi,A
→ 0 as m → ∞, lim sup

m→∞
μT
i A2

1,2μi

n1/2minδoi,A
< ∞,

and
λmax(Σ

1/2
i,A∗Σ l,AΣ

1/2
i,A∗)

tr(Σ i,A∗Σ l,A)
→ 0 as p → ∞ for i, l = 1, 2.

3.2 Consistency of the classifier (11)

Weconsider consistency properties ofWA(x0).We note that δ2i,A/Δ2
A → 0 asm → ∞

under (C-i) to (C-iii). See Sect. 6.1. Then, we have the following results.

Theorem 3 Assume (M-i). Assume also (C-i) to (C-iii). Then, it holds that as m → ∞
WA(x0)

ΔA
= (−1)i

2
+ oP (1) when x0 ∈ πi for i = 1, 2.

For the classification rule (11), we have the classification consistency (7) as m → ∞.
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Corollary 1 If A1 = A2, for the classification rule (11), we have the classification
consistency (7) as m → ∞ under (M-i) and the following conditions:

μT
AΣ i,AμA

Δ2
A

→ 0 as p → ∞ and
tr(Σ2

i,A)

nminΔ
2
A

→ 0 as m → ∞ for i = 1, 2.

Remark 5 For the classification rule (11), under (M-i) and (C-i) to (C-iii), one may
write (7) as

e(i) = O(δ2i,A/Δ2
A) for i = 1, 2.

Now, we consider the sufficient condition (C-ii) in Theorem 3. When λ2i(1)
/tr(Σ2

i,A) → ∞ as p → ∞ for i = 1, 2, it holds that

tr(Σ i,A∗Σ l,A) ≤ {tr(Σ2
i,A∗)tr(Σ2

l,A)}1/2 = o
[
{tr(Σ2

i )tr(Σ
2
l )}1/2

]

for i, l = 1, 2, from the fact that tr(Σ2
i,A∗) ≤ tr(Σ2

i ). Then, (C-ii) is milder than (AY-ii)
if Δ and ΔA are of the same order.

3.3 Asymptotic normality of the classifier (11)

We consider the asymptotic normality of WA(x0). We have the following results.

Theorem 4 Assume (A-i) and (M-i). Assume also (C-iv) and (C-v). Then, it holds that
as m → ∞

WA(x0) − (−1)iΔA/2

δoi,A
⇒ N (0, 1) when x0 ∈ πi for i = 1, 2.

Furthermore, for the classification rule (11), it holds that as m → ∞

e(i) − Φ

( −ΔA

2δoi,A

)

= o(1) when x0 ∈ πi for i = 1, 2. (13)

Corollary 2 If A1 = A2, for the classification rule (11), (13) holds as m → ∞ under
(A-i), (M-i) and the following conditions:

μT
AΣ i,AμA

δ2oi,A
→ 0 as m → ∞, lim inf

p→∞
tr(Σ1,AΣ2,A)

tr(Σ2
i,A)

> 0 for i = 1, 2;

and
tr(Σ2

1,A)

tr(Σ2
2,A)

∈ (0,∞) as p → ∞.
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Remark 6 From (30) in Sect. 6, we note that δoi,A/δi,A → 1 as m → ∞ under (C-iv)
and (C-v). Hence, one may write (13) as

e(i) − Φ{−ΔA/(2δi,A)} = o(1) when x0 ∈ πi for i = 1, 2.

Now, let us show an easy example to check the performance of DBDA and the
classifier (11) for the SSE model. We considered the following setting:

(S-i) We set p = 2s, s = 5, ..., 13, and n1 = �p2/5
 and n2 = 2n1, where
�x
 denotes the smallest integer ≥ x . Independent pseudo random obser-
vations were generated from πi : Np(μi ,Σ i ), i = 1, 2. We set μ1 = 0
and μ2 = (0, ..., 0, 1, ..., 1)T whose last �p1/2
 elements are 1, Σ1 =
diag(p2/3, p1/2, 1, ..., 1) and Σ2 = 2Σ1.

We note that (A-i), (M-i), (AY-i) to (AY-iii) and (C-i) to (C-v) are met for (S-i) from
the facts that Δ = ΔA = �p1/2
 and A1 = A2 with k1 = k2 = 2, so that Theorems 1,
3 and 4 hold. However, the NSSE condition (2) is not met, so that Theorem 2 does not
hold. In general, Ai s are unknown in (11). Hence, we considered a naive estimator of

Ai as Âi = I p −∑ki
r=1 ĥi(r) ĥ

T
i(r) and checked the performance of the classifier given

by

ŴA(x0) = − { Â1(x1n1 − x0) + Â2(x2n2 − x0)
}T ( Â2x2 − Â1x1

)
/2

− tr( Â1S1)/(2n1) + tr( Â2S2)/(2n2). (14)

Here, ĥi(r) denotes the r -th (unit) eigenvector of Si for each i, r . Then, one classifies
x0 into π1 if ŴA(x0) < 0 and into π2 otherwise. On the other hand, by using a bias-
corrected estimator of the eigenstructures, we create a new distance-based classifier
given by (21) in Sect. 4.We also checked the performance of the new classification rule
(21). We call the classification rule (21) the “transformed distance-based discriminant
analysis (T-DBDA)”. We also describe the classification rule (11) as “T-DBDA before
estimation (T-DBDA(b))” and the classification rule (14) as “T-DBDA by the naive
estimator (T-DBDA(n))”. For x0 ∈ πi (i = 1, 2) we calculated each classifier 2000
times to confirm if each rule does (or does not) classify x0 correctly and defined Pir =
0 (or 1) accordingly for eachπi .We calculated the error rates, e(i) =∑2000

r=1 Pir/2000,
i = 1, 2. Their standard deviations are less than 0.011. In Fig. 3, we plotted e(1) and
e(2) for DBDA, T-DBDA(n), T-DBDA(b) and T-DBDA. From Theorems 2 and 4 in
view of Remarks 3 and 6, we also plotted the asymptotic error rates, Φ{−Δ/(2δi )} (=
ė(i), say) and Φ{−ΔA/(2δi,A)} (= ėA(i), say), in Fig. 3.

We observed that e(i) by T-DBDA(b) behaves very close to the asymptotic error
rate, Φ{−ΔA/(2δi,A)}, as expected theoretically. However, e(i) by DBDA does not
converge toΦ{−Δ/(2δi )}. This is because the classifier does not claim the asymptotic
normality in Theorem 2 for the SSE model. Both DBDA and T-DBDA(b) have the
classification consistency (7). However, T-DBDA(b) gave a much better performance
thanDBDA.This is probably due to the convergence rates. For the sufficient conditions
in Theorems 1 and 3, we note that
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Fig. 3 The left panel displays e(1) and the right panel displays e(2). The error rates (dashed lines) of
DBDA (the classifier (3)), T-DBDA(b) (the classifier (11)), T-DBDA(n) (the classifier (14)) and T-DBDA
(the classifier (21)). The asymptotic error rates (solid lines) by ė(i) (= Φ{−Δ/(2δi )}) and ėA(i) (=
Φ{−ΔA/(2δi,A)})

max
i=1,2

tr(Σ2
i )/(nminΔ

2) = O(p1/3/nmin) = O(p−1/15) in (AY-ii);

tr(Σ i,A∗Σ l,A)/(nlΔ
2
A) = O(n−1

l ) = O(p−2/5) for i, l = 1, 2, in (C-ii).

Hence, the error rates of T-DBDA(b) were smaller than those of DBDA. The T-
DBDA(n) gave a worse performance than T-DBDA(b). This is probably because of
the bias caused by the naive estimator, Âi . See Sect. 4.1 for the details. Hence, we
will consider a bias-correction of the naive estimator in Sect. 4. On the other hand,
the performances of T-DBDA and T-DBDA(b) became similar to each other when p
is large. We will discuss T-DBDA in Sect. 4.2.

In Sect. 4, we discuss estimation of the unknown parameters in (11). We create
T-DBDA by the bias-corrected estimator of the parameters.

4 Distance-based classifier by estimating eigenstructures

In this section, we assume (A-i) and (M-i). Let x0,i(r) = xT0 hi(r) and

xi j (r) = xTi jhi(r) = λ
1/2
i(r)zi j (r) + μi(r) for all i, j, r, where μi(r) = μT

i hi(r).

Let us write that x̄i(r) = ∑ni
j=1 xi j (r)/ni for all i, r . Then, one can write (11) as

follows:

WA(x0) =W (x0) +
k1∑

r=1

x0,1(r)

{

x̄1(r) − 1

2
hT1(r)

(

x2 −
k2∑

s=1

x̄2(s)h2(s)

)}

−
k2∑

r=1

x0,2(r)

{

x̄2(r) − 1

2
hT2(r)

(

x1 −
k1∑

s=1

x̄1(s)h1(s)

)}

−
k1∑

r=1

∑n1
j< j ′ x1 j (r)x1 j ′(r)

n1(n1 − 1)
+

k2∑

r=1

∑n2
j< j ′ x2 j (r)x2 j ′(r)

n2(n2 − 1)
. (15)
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In order to use WA(x0), it is necessary to estimate hi(r)s, x0,i(r)s, xi j (r)s and ki s.
Let δomin,A = min{δo1,A, δo2,A}. In this section, we assume the following condi-

tions as necessary:

(C-vi) lim sup
p→∞

⎛

⎝
ki∑

r=1

hTi(r)Σ i ′hi(r)
λi(r)

⎞

⎠ < ∞ for i = 1, 2 (i ′ �= i);

(C-vii) lim sup
m→∞

⎛

⎝
ki∑

r=1

ni {μ2
i(r) + (μT

i ′ hi(r))
2}

λi(r)

⎞

⎠ < ∞, lim sup
m→∞

λl(1)

niλi(ki )
< ∞,

and lim sup
m→∞

(
μT
l,AΣ i,Aμl,A

λ2i(ki )

)

< ∞ for i, l = 1, 2 (i ′ �= i);

(C-viii)
λi(1)

nminΔA
→ 0 and

μT
i,A(Σ i,A/ni + Σ i ′,A/ni ′)μi,A

Δ2
A

→ 0 as m → ∞
for i = 1, 2 (i ′ �= i);

(C-ix)
λi(1)

nminδomin,A
→ 0 and

μT
i,A(Σ i,A/ni + Σ i ′,A/ni ′)μi,A

δ2omin,A

→ 0 as m → ∞
for i = 1, 2 (i ′ �= i).

4.1 Estimation of hi(r)s, x0,i(r)s and xi j (r)s

Let X i = [xi1, ..., xin], X i = [xi , ..., xi ] and Pni = Ini − 1ni 1
T
ni /ni for i = 1, 2,

where 1ni = (1, ..., 1)T . Note that Si = X i Pni X
T
i /(ni − 1) = (X i − X i )(X i −

X i )
T /(ni − 1). We define the ni × ni dual sample covariance matrix by

Si D = Pni X
T
i X i Pni /(ni − 1) = (X i − X i )

T (X i − X i )/(ni − 1) for i = 1, 2.

Note that Si and Si D share nonzero eigenvalues. Let us write the eigen-decomposition
of Si and Si D as

Si =
p∑

r=1

λ̂i(r) ĥi(r) ĥ
T
i(r) and Si D =

ni−1∑

r=1

λ̂i(r)ûi(r)û
T
i(r) for i = 1, 2,

where ĥi(r) and ûi(r) denote unit eigenvectors corresponding to λ̂i(r). We assume
hTi(r) ĥi(r) ≥ 0 w.p.1 for all i, r without loss of generality. Note that ĥi(r) can be

calculated by ĥi(r) = {(ni − 1)λ̂i(r)}−1/2(X i − X i )ûi(r). However, as observed in
Sect. 3.2, the classifier by ĥi(r)s gave an inadequate performance.

Yata and Aoshima (2012) proposed a bias-corrected eigenvalue estimation called
the noise-reduction (NR) methodology, which was brought about by a geometric rep-
resentation of Si D . If one applies the NR methodology, the λi(r)s are estimated by

λ̃i(r) = λ̂i(r) − tr(Si D) −∑r
s=1 λ̂i(s)

ni − 1 − r
(r = 1, ..., ni − 2; i = 1, 2). (16)
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Note that λ̃i(r) ≥ 0w.p.1 for r = 1, ..., ni−2 and the second term in (16) is an estimator
of
∑p

r=ki+1 λi(r)/(ni − 1) (= κi , say). When applying the NR methodology to the
PC direction vector, one obtains

h̃i(r) = {(ni − 1)λ̃i(r)}−1/2(X i − X i )ûi(r) for r = 1, ..., ni − 2; i = 1, 2. (17)

For (λ̂i(r), ĥi(r))s and (λ̃i(r), h̃i(r))s, Aoshima and Yata (2018) gave the following
results.

Proposition 1 (Aoshima and Yata 2018) Assume (A-i) and (M-i). It holds as m → ∞

λ̂i(r)

λi(r)
= 1 + κi

λi(r)
+ OP (n−1/2

i ), (hTi(r) ĥi(r))
2 =

(

1 + κi

λi(r)

)−1

+ OP (n−1/2
i ),

λ̃i(r)

λi(r)
= 1 + OP (n−1/2

i ) and (hTi(r) h̃i(r))
2 = 1 + OP (n−1

i )

for r = 1, ..., ki ; i = 1, 2.

If κi/λi(r) → ∞ as m → ∞, λ̂i(r) and ĥi(r) are strongly inconsistent in the sense
that λi(r)/λ̂i(r) = oP (1) and hTi(r) ĥi(r) = oP (1). For example, in (S-i), κi/λi(2) → ∞
as m → ∞, so that hTi(2) ĥi(2) = oP (1). This is the main reason why the classifier by

(14) gave an inadequate performance in Fig. 3. On the other hand, λ̃i(r) and h̃i(r) are
consistent estimators even when κi/λi(r) → ∞ as m → ∞. We note that tr(Si ) =
tr(Σ i ){1 + oP (1)} as m → ∞ for i = 1, 2, under (A-i) and (M-i) from the fact
that Var{tr(Si )} = O{tr(Σ2

i )/ni } = o{tr(Σ i )
2} under (A-i) and (M-i). Hence, from

Proposition 1 we claim that as m → ∞
ε̂i(r) = εi(r){1 + oP (1)} for r = 1, ..., ki ; i = 1, 2, (18)

under (A-i) and (M-i).
Next, we consider an estimation of x0,i(r). Let

x̃0,i(r) = xT0 h̃i(r) for all i, r. (19)

Note that Var(x0,i(r)) = O(λi(r)) as p → ∞ under (C-vi) when x0 ∈ πi ′ for r =
1, ..., ki ; i = 1, 2; i ′ �= i . Then, we have the following results.

Proposition 2 Assume (A-i), (M-i) and (C-vi). Assumealso lim supp→∞ [{tr(Σ i,AΣ i ′)

+ maxl=1,2 μT
l Σ i,Aμl}/λ2i(ki )] < ∞ and lim supp→∞(

∑ki
r=1{μ2

i(r) +(μT
i ′ hi(r))

2}/
λi(r)) < ∞ for i = 1, 2; i ′ �= i . Then, it holds as m → ∞

xT0 ĥi(r) = x0,i(r)
(1 + κi/λi(r))1/2

+ OP

{
(λi(r)/ni )

1/2
}

and x̃0,i(r) = x0,i(r) + OP

{
(λi(r)/ni )

1/2
}

when x0 ∈ πl for r = 1, . . . , ki ; i, l = 1, 2.
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Thus one can estimate x0,i(r) by x̃0,i(r) even when κi/λi(r) → ∞ as m → ∞.
Finally, we consider estimating xi j (r). We note that xTi j h̃i(r) is biased for high-

dimensional data. This is because xTi j h̃i(r) includes ‖xi j − μi‖2 which is very biased
for high-dimensional data. Now, we explain the main reason why the inner products
involve the large bias terms. We note that 1Tni ûi(r) = 0 and Pni ûi(r) = ûi(r) when

λ̂i(r) > 0 since 1Tni Si D1ni = 0. Also, note that

{(ni − 1)λ̃i(r)}1/2 h̃i(r) = Xo,i Pni ûi(r) = Xo,i ûi(r) when λ̂i(r) > 0,

where Xo,i = X i − μi1
T
ni . Let us write that ûi(r) = (ûi1(r), ..., ûini (r))

T for all

i, r . Then, it holds that {(ni − 1)λ̃i(r)}1/2 h̃Ti(r)(xi j − μi ) = ûTi(r)X
T
o,i (xi j − μi ) =

ûi j (r)‖xi j − μi‖2 +∑ni
l=1( �= j) ûil(r)(xl − μi )

T (x j − μi ), so that ûi j (r)‖xi j − μi‖2 is
strongly biased since E(‖xi j − μi‖2)/(ni − 1) ≥ κi . In fact, κ

−1
i = O(ni/p) = o(1)

as m → ∞ for the spiked model in (6) under ni/p → 0. Hence, one should not
apply the h̃i(r)s (or the ĥi(r)s) to the estimation of xi j (r). See Section 5.1 in Aoshima
and Yata (2018) for more details. We consider a bias-reduced estimation of xi j (r). We
modify ûi(r) as

ûi j (r) = (ûi1(r), ..., ûi j−1(r),−ûi j (r)/(ni − 1), ûi j+1(r), ..., ûini (r))
T

whose j-th element is −ûi j (r)/(ni − 1) for all i, j, r . Note that
∑ni

j=1 ûi j (r)/ni =
{(ni − 2)/(ni − 1)}ûi(r). Let

h̃i j (r) = (ni − 1)1/2(X i − X i )ûi j (r)

(ni − 2)λ̃1/2i(r)

for all i, j, r.

Then, it holds that
∑ni

j=1 h̃i j (r)/ni = h̃i(r) and

(ni − 2){λ̃i(r)/(ni − 1)}1/2 h̃Ti j (r)(xi j − μi )

= (xi j − μi )
T Xo,i Pni ûi j (r) =

ni∑

l=1( �= j)

(
ûil(r) + ûi j (r)

ni − 1

)
(xi j − μi )

T (xil − μi )

when λ̂i(r) > 0 from the fact that

Pni ûi j (r) = (ûi1(r), ..., ûi j−1(r), 0, ûi j+1(r), ..., ûini (r))
T + (ni − 1)−1ûi j (r)1ni ( j),

where 1ni ( j) = (1, ..., 1, 0, 1, ..., 1)T whose j-th element is 0. Thus the large biased
term, ‖xi j − μi‖2, is removed. Let

x̃i j (r) = xTi j h̃i j (r) for all i, j, r. (20)
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See Section 5.1 in Aoshima and Yata (2018) for theoretical comparisons between
xTi j ĥi(r), x

T
i j h̃i(r) and x̃i j (r).

4.2 Distance-based classifier by the NR methodology

Let x̃ i(r) = ∑ni
j=1 x̃i j (r)/ni for all i, r . By combining (15) with (17), (19) and (20),

we propose the following classifier:

W̃A(x0) = W (x0) +
k1∑

r=1

x̃0,1(r)

{

x̃1(r) − 1

2
h̃
T
1(r)

(

x2 −
k2∑

s=1

x̃2(s) h̃2(s)

)}

−
k2∑

r=1

x̃0,2(r)

{

x̃2(r) − 1

2
h̃
T
2(r)

(

x1 −
k1∑

s=1

x̃1(s) h̃1(s)

)}

−
k1∑

r=1

∑n1
j< j ′ x̃1 j (r) x̃1 j ′(r)

n1(n1 − 1)
+

k2∑

r=1

∑n2
j< j ′ x̃2 j (r) x̃2 j ′(r)

n2(n2 − 1)
. (21)

Then, one classifies x0 into π1 if W̃A(x0) < 0 and into π2 otherwise. In general, ki s
are unknown in W̃A(x0). See Sect. 4.3 for estimation of ki s. We call the classification
rule (21) the “transformed distance-based discriminant analysis (T-DBDA)”.

Now, we give asymptotic properties of T-DBDA. We have the following results.

Theorem 5 Assume (A-i) and (M-i). Assume also (C-i) to (C-iii) and (C-vi) to (C-viii).
Then, it holds that as m → ∞

W̃A(x0)
ΔA

= (−1)i

2
+ oP (1) when x0 ∈ πi for i = 1, 2.

For T-DBDA, we have the classification consistency (7) as m → ∞.

Theorem 6 Assume (A-i) and (M-i). Assume also (C-iv) to (C-vii) and (C-ix). Then,
it holds that as m → ∞

W̃A(x0) − (−1)iΔA/2

δoi,A
⇒ N (0, 1) when x0 ∈ πi for i = 1, 2.

Furthermore, for T-DBDA, (13) holds as m → ∞.

Remark 7 From (C-viii) or (C-ix) T-DBDA depends on the scale of μi s in the sense
that μT

i,AΣ l,Aμi,A for i, l = 1, 2. Hence, we recommend that one should apply the
classifier to a mean-centered data in actual data analyses. See Sect. 5.2 for example.

In Fig. 3, as expected theoretically, we observed that e(i) for T-DBDA becomes
close to that for T-DBDA(b) when p and n are large.
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4.3 Estimation of ki s

In this section, we introduce an estimation of ki given by Aoshima and Yata (2018).
Let ni1 = �ni/2
 and ni2 = ni − ni1. Let X i1 = [xi1, ..., xini1] and X i2 =

[xini1+1, ..., xini ] for i = 1, 2. We define

Si D(1) = {(ni1 − 1)(ni2 − 1)}−1/2(X i1 − X i1)
T (X i2 − X i2) for i = 1, 2,

where X il = [xil , ..., xil ] with xi1 = ∑ni1
j=1 xi j/ni1 and xi2 = ∑ni

j=ni1+1 xi j/ni2.
Note that rank(Si D(1)) ≤ ni2−1. By using the cross-data-matrix (CDM)methodology
by Yata and Aoshima (2010), we estimate λi(r) by the r -th singular value, λ́i(r), of
Si D(1), where λ́i(1) ≥ · · · ≥ λ́i(ni2−1) ≥ 0. Yata and Aoshima (2010, 2013) showed
that λ́i(r) has several consistency properties for high-dimensional non-Gaussian data.
Aoshima and Yata (2011) applied the CDM methodology to obtain an unbiased esti-
mator of tr(Σ2

i ) as tr(Si D(1)STi D(1)), i = 1, 2. Note that E{tr(Si D(1)STi D(1))} = tr(Σ2
i ).

Also, note that λ́2i(r) is the r -th eigenvalue of Si D(1)STi D(1). By using the CDMmethod-

ology, we consider an estimation of Ψi(r) as Ψ̂i(1) = tr(Si D(1)STi D(1)) and

Ψ̂i(r) = tr(Si D(1)STi D(1)) −
r−1∑

s=1

λ́2i(s) for r = 2, ..., ni2; i = 1, 2. (22)

Note that Ψ̂i(r) ≥ 0 w.p.1 for r = 1, ..., ni2, and η̂i(r) ∈ (0, 1] for λ́i(r) > 0. Then,
Aoshima and Yata (2018) gave the following result.

Lemma 1 (Aoshima and Yata 2018) Assume (A-i) and (M-i). Then, it holds that
Ψ̂i(r)/Ψi(r) = 1 + oP (1) as m → ∞ for r = 1, ..., ki + 1; i = 1, 2.

From (S7.1) in Appendix C of Aoshima and Yata (2018), it holds that λ́i(r)/λi(r) =
1 + oP (1) as m → ∞ for r = 1, ..., ki ; i = 1, 2, under (A-i) and (M-i). From
Lemma 1 we claim under (A-i) and (M-i) that as m → ∞

η̂i(r) = ηi(r){1 + oP (1)} for r = 1, ..., ki ; i = 1, 2. (23)

Let τ̂i(r) = Ψ̂i(r+1)/Ψ̂i(r) (= 1 − λ́2i(r)/Ψ̂i(r)) for all i, r . Note that 1 − τ̂i(1) = η̂i(1)

and τ̂i(r) ∈ [0, 1) for λ́i(r) > 0. Then, Aoshima and Yata (2018) gave the following
result.

Proposition 3 (Aoshima andYata 2018)Assume (A-i) and (M-i). It holds for i = 1, 2,
that as m → ∞

P(τ̂i(r) < 1 − cr ) → 1 with some fixed constant cr ∈ (0, 1) for r = 1, ..., ki ;
τ̂i(ki+1) = 1 + oP (1).
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Table 2 Estimates of ki by k̂i
for the six well-known
microarray data sets

(D-i) (D-ii) (D-iii) (D-iv) (D-v) (D-vi)

k̂1 2 3 2 2 1 2

k̂2 4 2 2 2 2 3

From Proposition 3, one may choose ki as the first integer r such that 1 − τ̂i(r+1) is
sufficiently small. In addition, Aoshima and Yata (2018) gave the following result for
τ̂i(ki+1).

Proposition 4 (Aoshima and Yata 2018) Assume (A-i) and (M-i). Assume also
λ2i(1)/Ψi(ki+1) = o(ni ) and λ2i(ki+1)/Ψi(ki+1) = O(n−c

i ) as m → ∞ with some
fixed constant c > 1/2 for i = 1, 2. It holds for i = 1, 2 that as m → ∞

P
(
τ̂i(ki+1) > {1 + (ki + 1)γ (ni )}−1

)
→ 1,

where γ (ni ) is a function such that γ (ni ) → 0 and n1/2i γ (ni ) → ∞ as ni → ∞.

From Propositions 3 and 4, if one can assume the conditions in Proposition 4, one
may consider ki as the first integer r (= k̂oi , say) such that

τ̂i(r+1){1 + (r + 1)γ (ni )} > 1 (r ≥ 0). (24)

Then, it holds that P(k̂oi = ki ) → 1 as m → ∞. Note that Ψ̂i(ni2) = 0 from the fact
that rank(Si D(1)) ≤ ni2−1. Thus onemay choose ki as k̂i = min{k̂oi , ni2−2} in actual
data analyses. Aoshima andYata (2018) recommended to use γ (ni ) = (n−1

i log ni )1/2.

Hence, in this paper, we use γ (ni ) = (n−1
i log ni )1/2 in (24). If k̂i = 0 (that is, (24)

holds when r = 0) for some i , one may consider the classifier by (21) with Ai = I p.
In addition, if k̂i = 0 for i = 1, 2, we recommend to use DBDA (the classifier by (3))
because one may assume the NSSE model when k̂i = 0 for i = 1, 2. We summarized
k̂i s in Table 2 for the six well-known microarray data sets, (D-i) to (D-vi).

5 Performances of the new classifier for the SSE model

In this section, we discuss the performance of T-DBDA in numerical simulations and
actual data analyses.

5.1 Simulation

We compared the performance of T-DBDA with other classifiers in complex settings.
In general, ki s are unknown in (21). Hence, we estimated ki by k̂i , where k̂i is given
in Sect. 4.3. Hereafter, we describe the classification rule (21) with k̂i instead of ki as
“T-DBDA(∗)”. We set γ (ni ) = (n−1

i log ni )1/2 in (24). We set p = 2s, s = 6, ..., 11,
μ1 = 0 and μ2 = (0, ..., 0, 1, ..., 1,−1....,−1)T whose last 2�p3/5/2
 elements are
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not 0. The last �p3/5/2
 elements are −1 and the previous �p3/5/2
 elements are 1.
Note that Δ = p3/5{1 + o(1)} as p → ∞.

First, we considered an intraclass correlation model given by

Γ t = (I t + 1t1Tt )/2.

Note that λmax(Γ t ) = (t + 1)/2 and the other eigenvalues are 1/2. Let Ω t (ρ) =
B(ρ|i− j |1/3)B, where B = diag[{0.5+ 1/(t + 1)}1/2, ..., {0.5+ t/(t + 1)}1/2]. Also,
note that [λmax{Ω t (ρ)}]2/tr[{Ω t (ρ)}2] = o(1) as t → ∞ for |ρ| < 1. We set n1 =
�p1/2
, n2 = 2n1 and

Σ i =
⎛

⎝
Γ pi(1) O O
O Γ pi(2) O
O O ciΩ pi(3) (ρ)

⎞

⎠ , i = 1, 2, (25)

where ρ = 0.3, p = pi(1) + pi(2) + pi(3) and (c1, c2) = (1, 1.3). We considered the
following settings:

(S-ii) We generated xi j , j = 1, 2, ... (i = 1, 2) independently from Np(μi ,Σ i ). We
set (p1(1), p1(2)) = (�p2/3
, �p1/2
) and (p1(1), p1(2)) = (2�p2/3
, 2�p1/2
);

(S-iii) We generated xi j , j = 1, 2, ... (i = 1, 2) independently from zi j (r) =
(yi j (r) − 1)/21/2 (r = 1, ..., p) in which yi j (r)s are i.i.d. as the chi-squared
distribution with 1 degree of freedom. We set (p1(1), p1(2)) = (�p/3
, �p/9
)
and (p1(1), p1(2)) = (2�p/3
, 2�p/9
).

For (S-ii) and (S-iii) we note that ΔA = Δ and λi(r) = (pi(r) + 1)/2, i, r = 1, 2, for
sufficiently large p, so that (M-i) with k1 = k2 = 2 is met. In particular, the SSSE
model (given by (5)) holds for (S-iii). Also, we note that (A-i), (AY-i), (C-i) to (C-iii)
and (C-vi) to (C-viii) are met both for (S-ii) and (S-iii), and (AY-ii) is met for (S-ii).
However, (AY-ii) is not met for (S-iii).

Next, we considered a Gaussian mixture model whose probability density function
is given by

fi ( y) = 1

3

3∑

l=1

g( y; μil(y),Σ i(y)), i = 1, 2, (26)

where g( y; μil(y),Σ i(y)) is the probability density function of Np(μil(y),Σ i(y)). We
set Σ1(y) = Ω p(0.3) and Σ2(y) = Ω p(0.5). Let q1(1) = �p2/3
, q2(1) = 2�p2/3
,
q1(2) = 2�p1/2
 and q2(2) = �p1/2
. We set μi1(y) = (31/2, ..., 31/2, 0, ..., 0)T

whose first qi(1) elements are 31/2, μi2(y) = (0, ..., 0, 31/2, ..., 31/2, 0, ..., 0)T whose
(qi(1) + 1)-th to (qi(1) + qi(2))-th elements are 31/2 and μi3(y) = 0. We generated yi j ,

j = 1, 2, ... (i = 1, 2) independently from (26).Note that E( yi j ) =∑3
l=1 μil(y)/3 for

i = 1, 2. We set xi j = yi j −
∑3

l=1 μil(y)/3+ μi for all i, j . Note that Σ i = Var( yi j )
for i = 1, 2, where

123



Distance-based classifier by data transformation 493

Var( yi j ) = 1

9

3∑

l<l ′
(μil(y) − μil ′(y))(μil(y) − μil ′(y))

T + Σ i(y).

We note that λi(1) = (2/3)qi(1){1+o(1)} and λi(2) = (1/2)qi(2){1+o(1)} as p → ∞
for i = 1, 2, so that (M-i)with k1 = k2 = 2 ismet. SeeCorollary 2 inYata andAoshima
(2015) for the details of the eigenvalues. Also, note that ΔA = Δ for sufficiently large
p and (A-i) is not met. We considered the following settings:

(S-iv) n1 = �p2/5
 and n2 = 2n1;
(S-v) n1 = �p3/5
 and n2 = 2n1.

We note that (AY-i), (AY-ii), (C-i) to (C-iii) and (C-vi) to (C-viii) are met both for
(S-iv) and (S-v).

We considered DBDA (the classifier (3)), T-DBDA (the classifier (21)) and T-
DBDA(∗) (the classifier (21) with k̂i instead of ki ). We also considered the following
three classifiers: Diagonal quadratic discriminant analysis (DQDA) given by Dudoit
et al. (2002), Geometrical quadratic discriminant analysis (GQDA) given by Aoshima
and Yata (2011, 2014), and Support vector machine (SVM). The rule of GQDA is
given by (6) in Aoshima and Yata (2014). SVM is the hard-margin linear rule. Similar
to Fig. 3, we calculated the error rates, e(1) and e(2), by 2000 replications. Also, we
calculated the average error rate, e = {e(1) + e(2)}/2. Their standard deviations are
less than 0.011. In Fig. 4, we plotted the results for (S-ii) to (S-v).

We observed that GQDA gives a better performance than DBDA, DQDA and SVM
for (S-ii). This is probably because tr(Σ1) �= tr(Σ2). DQDA performs better than
DBDA, GQDA and SVM for (S-v). This is probably because ni s are relatively large
and the diagonal elements of the two covariancematrices are not common. SeeSections
2 to 4 in Aoshima and Yata (2015b) for the details of DQDA and GQDA. For SVM,
e(1) and e(2) were unbalanced. The main reason must be due to a bias term in SVM.
See Section 2 in Nakayama et al. (2017) for the details. On the other hand, DBDA
gave a moderate performance for (S-iii). This is probably because DBDA is quite
robust for non-Gaussian HDLSS data. See Aoshima and Yata (2014) for the details.
On the whole, T-DBDA and T-DBDA(∗) gave adequate performances. In particular,
T-DBDA(∗) (or T-DBDA) gave a much better performance than the other classifiers
both for (S-iii), in which (5) holds, and (S-iv), in which ni s are relatively small. This
is probably due to the sufficient conditions of the consistency properties. See Sect. 3.3
for the details. The performances of T-DBDA and T-DBDA(∗) became quite similar
to each other in almost all the cases. Hence, we recommend to use “the classifier (21)
with k̂i instead of ki” when the SSE condition (4) or the SSSE condition (5) holds.

5.2 Example

In this section, we check the performance of T-DBDA(∗) by using the six well-known
microarray data sets in Table 1.

First, we used (D-v): myeloma data (p = 12625). We defined n1 = 36 samples
from π1 and n2 = 136 (the first 136) samples from π2 as the training data, and the
last (the 137-th) sample of π2 as the test data. We centered each sample by xi j −
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Fig. 4 The left panel displays e(1), the middle panel displays e(2) and the right panel displays e. The error
rates of the classifiers, DBDA, T-DBDA, T-DBDA(∗), DQDA, GQDA, SVM. In the left panels, e(1)s for
DQDA are not described because the error rates were too high
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(
∑2

i ′=1
∑ni ′

j ′=1 xi ′ j ′)/(n1 + n2) for all i, j , and x0 − (
∑2

i ′=1
∑ni ′

j ′=1 xi ′ j ′)/(n1 + n2),

so that
∑2

i=1
∑ni

j=1 xi j = 0. We set γ (ni ) = (n−1
i log ni )1/2 in (24). Let τ̃i(r) =

τ̂i(r){1 + rγ (ni )} for all i, r . We calculated that (τ̃1(1), τ̃1(2)) = (0.943, 1.046) and
(τ̃2(1), τ̃2(2), τ̃2(3)) = (0.878, 0.986, 1.168), so that k̂1 = 1 and k̂2 = 2. Thus, we
chose k1 = 1 and k2 = 2.We calculated that W̃A(x0) = 305.439, so that we classified
x0 into π2 (the true class).

Similarly, we checked the accuracy of T-DBDA(∗) by the leave-one-out cross-
validation (LOOCV) for (D-i) to (D-vi). Also, we checked the accuracy of the
classifiers, DBDA, DQDA, GQDA, SVM, by the LOOCV for (D-i) to (D-vi). In
addition, we checked the accuracy of the well-known classifiers, Diagonal linear
discriminant analysis (DLDA) given by Dudoit et al. (2002) and distance weighted
discrimination (DWD) given by Marron et al. (2007). For DWD, we calculated the
normal vector by the SOCP solver in Marron et al. (2007) and set the intercept term
as 0 since we used the mean-centered data.

We summarized misclassification rates, e(1), e(2) and e = {e(1) + e(2)}/2, in
Table 3.

We observed that T-DBDA(∗) gives adequate performances. In particular, the new
classifier gave a much better performance than the other classifiers (except SVM) for
(D-iv). This is probably because (D-iv) is close to the SSSE asymptotic domain (5). See
Table 1 or Fig. 1. The other classifiers were probably affected by the strongly spiked
eigenvalues directly. On the other hand, the new classifier is not directly affected by
such eigenvalues. See Theorems 3 and 5 for the details. This is the reason why the
new classifier gave a good performance for (D-iv). On the other hand, (D-i) is close
to the SSSE asymptotic domain (5). However, the several classifiers gave adequate
performances for (D-i). This is probably because ni s are relativity large compared to
p.

6 Proofs

6.1 Proof of Theorem 3

We note that for i, l = 1, 2; i ′ �= i

tr(Σ i,A∗Σ l,A) = {tr(Σ i,AΣ l,A)+2tr(Σ i,AΣ l,AAi ′)+tr(Σ i Ai ′Σ l,AAi ′)}/4. (27)

From the fact that tr(Σ i Ai ′Σ i,AAi ′) = tr(Σ1/2
i Ai ′Σ i,AAi ′Σ

1/2
i ) ≥ 0 (i ′ �= i), under

(C-ii), it holds that tr(Σ2
i,A)/(niΔ2

A) → 0 as m → ∞ for i = 1, 2. Thus we claim

that δ2oi,A/Δ2
A = o(1) for i = 1, 2, under (C-ii). Note that for i = 1, 2,

μT
i A1,2Σ l,AA1,2μi/nl ≤ μT

i A2
1,2μiλmax(Σ l,A)/nl

= (μT
i A2

1,2μi/n
1/2
l )(λl(kl+1)/n

1/2
l ), l = 1, 2; and

|μT
AΣ i ′,AA1,2μi | ≤ {(μT

AΣ i ′,AμA)(μT
i A1,2Σ i ′,AA1,2μi )}1/2, i ′ �= i. (28)
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Table 3 Error rates of the classifiers by the LOOCV for samples from (D-i) to (D-vi)

Classifier T-DBDA(∗) DBDA DLDA DQDA GQDA SVM DWD

Error rates

π1: 104 samples and π2: 113 samples in (D-i)

ē1 0.0 0.183 0.163 0.0 0.0 0.0 0.0

ē2 0.009 0.009 0.009 0.018 0.044 0.0 0.009

ē 0.004 0.096 0.086 0.009 0.022 0.0 0.004

π1: 40 samples and π2: 22 samples in (D-ii)

ē1 0.15 0.15 0.15 0.15 0.15 0.15 0.15

ē2 0.136 0.136 0.136 0.182 0.136 0.227 0.091

ē 0.143 0.143 0.143 0.166 0.143 0.189 0.12

π1 : 111 samples and π2 : 57 samples in (D-iii)

ē1 0.198 0.243 0.162 0.216 0.198 0.135 0.243

ē2 0.281 0.316 0.368 0.456 0.404 0.439 0.246

ē 0.239 0.28 0.265 0.336 0.301 0.287 0.244

π1 : 58 samples and π2 : 19 samples in (D-iv)

ē1 0.034 0.172 0.19 0.155 0.172 0.017 0.224

ē2 0.0 0.158 0.211 0.421 0.158 0.0 0.0

ē 0.017 0.165 0.2 0.288 0.165 0.009 0.112

π1 : 36 samples and π2 : 137 samples in (D-v)

ē1 0.25 0.278 0.528 0.639 0.278 0.75 0.222

ē2 0.197 0.292 0.219 0.109 0.299 0.058 0.365

ē 0.224 0.285 0.373 0.374 0.289 0.404 0.294

π1 : 84 samples and π2 : 44 samples in (D-vi)

ē1 0.143 0.107 0.06 0.083 0.143 0.06 0.107

ē2 0.182 0.25 0.318 0.227 0.227 0.25 0.205

ē 0.162 0.179 0.189 0.155 0.185 0.155 0.156

Thus by noting that λl(kl+1) = o{tr(Σ2
l,A)1/2} under (M-i) and δ2oi,A/Δ2

A = o(1) under

(C-ii), we claim that δ2i,A/Δ2
A = o(1) for i = 1, 2, under (M-i), (C-i) to (C-iii). From

(12) and Chebyshev’s inequality, we can conclude the results of Theorem 3. ��

6.2 Proof of Corollary 1

By noting that tr(Σ i,A∗Σ l,A) ≤ {tr(Σ2
i,A)tr(Σ2

l,A)}1/2 for i, l = 1, 2, when A1 = A2,
the result is obtained straightforwardly from Theorem 3. ��

6.3 Proof of Theorem 4

We first consider the case when x0 ∈ π1. Let ωi,A = {tr(Σ i,A∗Σ i,A)/ni +
tr(Σ i,A∗Σ i ′,A)/ni ′ }1/2 for i = 1, 2; i ′ �= i . Then, from (27), under (C-iv), we have
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that
δo1,A = ω1,A{1 + o(1)} (29)

and
∑2

l=1 tr(Σ
2
l,A)/nl = O(δ2o1,A) as m → ∞. From (27), we note that

λl(kl+1)/n
1/2
l = o[{tr(Σ2

l,A)/nl}1/2] = o(δo1,A) for l = 1, 2, under (M-i) and (C-
iv). Thus from (28) it holds that for i = 1, 2,

δ1,A = δo1,A{1 + o(1)} (30)

under (M-i), (C-iv) and (C-v). By combining (29) and (30), under (M-i), (C-iv) and
(C-v), we have that δ1,A = ω1,A{1 + o(1)} and

WA(x0) + ΔA

2
= (x0 − μ1)

T A∗{(x2,A − μ2,A) − (x1,A − μ1,A)} + oP (ω1,A).

(31)

Let us write that

v j = −(x0 − μ1)
T A∗(x1 j,A − μ1,A)/(n1ω1,A), j = 1, ..., n1;

vn1+ j = (x0 − μ1)
T A∗(x2 j,A − μ2,A)/(n2ω1,A), j = 1, ..., n2.

Note that
∑n1+n2

j=1 E(v2j ) = 1 and
∑n1+n2

j=1 v j = (x0−μ1)
T A∗{(x2,A−μ2,A)−(x1,A−

μ1,A)}/ω1,A. Then, it holds that E(v j |v j−1, ..., v1) = 0 for j = 2, ..., n1 + n2. We
consider applying the martingale central limit theorem given by McLeish (1974). In
a way similar to the equations (23) and (24) in Aoshima and Yata (2014), we can
evaluate that under (A-i)

(nl j ω1)
4E(v4j ) = O[tr(Σ1,A∗Σ l j ,A)2 + tr{(Σ1,A∗Σ l j ,A)2}] and (32)

(nl j nl j ′ )
2ω4

1E(v2jv
2
j ′)

= tr(Σ1,A∗Σ l j ,A)tr(Σ1,A∗Σ l j ′ ,A) + O{tr(Σ1,A∗Σ l j ,AΣ1,A∗Σ l j ′ ,A)}
+ O[{tr(Σ1,A∗Σ l j ,AΣ1,A∗Σ l j ,A)tr(Σ1,A∗Σ l j ′ ,AΣ1,A∗Σ l j ′ ,A)}1/2] (33)

for j �= j ′, where l j = 1 for j ∈ [1, ..., n1] and l j = 2 for j ∈ [n1 + 1, ..., n1 + n2].
For any τ > 0 we note that

∑n1+n2
j=1 E{v2j I (v2j ≥ τ)} ≤ ∑n1+n2

j=1 E(v4j )/τ from
Chebyshev’s inequality and Schwarz’s inequality, where I (·) is the indicator function.
Also, note that tr{(Σ1,A∗Σ l,A)2} ≤ tr(Σ1,A∗Σ l,A)2 for l = 1, 2. Then, from (32),
under (A-i), it holds that for Lindeberg’s condition

n1+n2∑

j=1

E{v2j I (v2j ≥ τ)} = O

[
tr(Σ1,A∗Σ1,A)2/n31 + tr(Σ1,A∗Σ2,A)2/n32

ω4
1,A

]

= o(1)
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for any τ > 0. Note that for l, l ′ = 1, 2,

tr(Σ1,A∗Σ l,AΣ1,A∗Σ l ′,A) = tr{(Σ1/2
1,A∗Σ l,AΣ

1/2
1,A∗)(Σ

1/2
1,A∗Σ l ′,AΣ

1/2
1,A∗)}

≤ λmax(Σ
1/2
1,A∗Σ l,AΣ

1/2
1,A∗)tr(Σ

1/2
1,A∗Σ l ′,AΣ

1/2
1,A∗)

= o{tr(Σ1,A∗Σ l,A)tr(Σ1,A∗Σ l ′,A)}

under (C-v), so that (nl j nl j ′ )
2ω4

1E(v2jv
2
j ′) = tr(Σ1,A∗Σ l j ,A)tr(Σ1,A∗Σ l j ′ ,A){1+o(1)}

for j �= j ′. Hence, by using Chebyshev’s inequality, from (32) and (33), under (A-i)
and (C-v), it holds that for any τ > 0

P

⎛

⎝
∣
∣
∣

n1+n2∑

j=1

v2j − 1
∣
∣
∣ ≥ τ

⎞

⎠ ≤
E
[∑n1+n2

j, j ′=1{v2j − E(v2j )}{v2j ′ − E(v2j ′)}
]

τ 2
= o(1),

so that
∑n1+n2

j=1 v2j = 1+oP (1). Hence, by using the martingale central limit theorem,

we obtain that
∑n1+n2

j=1 v j ⇒ N (0, 1) under (A-i) and (C-v). Thus from (31) we
conclude the result when x0 ∈ π1.When x0 ∈ π2, we can conclude the result similarly.
The proof is completed. ��

6.4 Proof of Corollary 2

When A1 = A2, we note that λmax(Σ
1/2
i,A∗Σ l,AΣ

1/2
i,A∗) ≤ λi(ki+1)λl(kl+1) and

tr(Σ i,A∗Σ l,A) = tr(Σ i,AΣ l,A) for i, l = 1, 2. On the other hand, when A1 = A2,
it holds that μT

AΣ i ′,AμA/(ni ′δ2oi,A) = o(1) as m → ∞ for i = 1, 2; i ′ �= i , under

μT
AΣ i ′,AμA/(δ2oi ′,A) = o(1) asm → ∞ and tr(Σ2

1,A)/tr(Σ2
2,A) ∈ (0,∞) as p → ∞.

Hence, from Theorem 4 we can conclude the results. ��

6.5 Proof of Proposition 2

We assume (A-i) and (M-i). Let ui(r) = (zi1(r), ..., zini (r))/(ni − 1)1/2 and u̇i(r) =
‖ui(r)‖−1ui(r) for all i, j . Then, from (S6.1) to (S6.3) and (S6.5) in Appendix B of
Aoshima and Yata (2018), we can claim that as m → ∞ for i = 1, 2,

λ̃i(r)/λi(r) = ||ui(r)||2 + OP (n−1
i ) = 1 + OP (n−1/2

i )

and ûTi(r)u̇i(r) = 1 + OP (n−1
i ) for r = 1, ..., ki ; (34)

ûTi(s)ui(r) = OP (n−1/2
i λi(s)/λi(r))

and ûTi(r)ui(s) = OP (n−1/2
i ) for r < s ≤ ki . (35)

From (34) there exists a unit random vector ζ i(r) such that u̇
T
i(r)ζ i(r) = 0 and

ûi(r) = {1 + OP (n−1
i )}u̇i(r) + ζ i(r) × OP (n−1/2

i ) (36)
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for r = 1, ..., ki ; i = 1, 2. We note that 1Tn ûi(r) = 0 and Pni ûi(r) = ûi(r) when
λ̂i(r) > 0 since 1Tni Si D1ni = 0. Also, when λ̂i(r) > 0, note that

h̃i(r) = (X i − μi1
T
ni )Pni ûi(r)

{(ni − 1)λ̃i(r)}1/2
=
∑p

s=1 λ
1/2
i(s)hi(s)u

T
i(s)ûi(r)

λ̃
1/2
i(r)

,

so that xT0 h̃i(r) = ∑p
s=1 λ

1/2
i(s)x0,i(s)u

T
i(s)ûi(r)/λ̃

1/2
i(r). Here, we claim that when x0 ∈

πl , l = 1, 2,

E

⎧
⎨

⎩

(∑p
s=ki+1 λ

1/2
i(s)x0,i(s)u

T
i(s)ui(r)

λ
1/2
i(r)

)2
⎫
⎬

⎭
= O

{
tr(Σ lΣ i,A) + μT

l Σ i,Aμl

niλi(r)

}

;

E

⎧
⎨

⎩

∥
∥
∥
∥
∥

∑p
s=ki+1 λ

1/2
i(s)x0,i(s)ui(s)

λ
1/2
i(r)

∥
∥
∥
∥
∥

2
⎫
⎬

⎭
= O

{
tr(Σ lΣ i,A) + μT

l Σ i,Aμl

λi(r)

}

for r = 1, ..., ki ; i = 1, 2. Then, from (34) and (36), it holds that when x0 ∈ πl , l =
1, 2,

∑p
s=ki+1 λ

1/2
i(s)x0,i(s)u

T
i(s)ûi(r)

λ̃
1/2
i(r)

= OP

⎧
⎨

⎩

(
tr(Σ lΣ i,A) + μT

l Σ i,Aμl

niλi(r)

)1/2
⎫
⎬

⎭
(37)

for r = 1, ..., ki ; i = 1, 2, from the fact that
∑p

s=ki+1 λ
1/2
i(s)x0,i(s)u

T
i(s)ζ i(r)

/λ
1/2
i(r) ≤ ‖λ−1/2

i(r)

∑p
s=ki+1 λ

1/2
i(s)x0,i(s)ui(s)‖ · ‖ζ i(r)‖ and Markov’s inequality. Note

that E(x20,i(s)) = hTi(s)(Σ l + μlμ
T
l )hi(s) when x0 ∈ πl (l = 1, 2) for all i, s, so that

x0,i(s) = OP [{hTi(s)(Σ l + μlμ
T
l )hi(s)}1/2]. Then, from (34) and (35), we have that

when x0 ∈ πl , l = 1, 2,

∑ki
s=1 λ

1/2
i(s)x0,i(s)u

T
i(s)ûi(r)

λ̃
1/2
i(r)

= x0,i(r) + OP

⎧
⎪⎨

⎪⎩

⎛

⎝
ki∑

s=1

λi(s)hTi(s)(Σ l + μlμ
T
l )hi(s)

ni max{λ2i(s)/λi(r), λi(r)}

⎞

⎠

1/2
⎫
⎪⎬

⎪⎭
(38)

for r = 1, . . . , ki ; i = 1, 2. By combining (37) and (38), we can conclude the second
result of Proposition 2. For the first result, from Proposition 1 and the second result,
it concludes the result. ��
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6.6 Proofs of Theorems 5 and 6

Assume (A-i) and (M-i). We first consider the proof of Theorem 5. Let ψi(r) =
tr(Σ2

i )/(n
2
i λi(r))+μT

i Σ iμi/(niλi(r)) for r = 1, ..., ki ; i = 1, 2. Then, from Lemma
B.1 and (S6.27) in Appendix B of Aoshima and Yata (2018), we claim that asm → ∞

x̃ i(r) = x̄i(r) + OP (ψ
1/2
i(r)) and x̄i(r) = μi(r) + OP

{
(λi(r)/ni )

1/2
}

(39)

for r = 1, ..., ki ; i = 1, 2. Note that under (C-vii)

ψi(r) = O

(
λ2i(1) + niμT

i,AΣ i,Aμi,A

n2i λi(r)

)

for r = 1, ..., ki ; i = 1, 2. (40)

Note that tr(Σ i,AΣ i ′) = tr(Σ1,AΣ2,A) + O(λi(ki )λi ′(1)) = O(λi(ki )λi ′(1)) and

μT
i ′ Σ i,Aμi ′ = O(μT

i ′,AΣ i,Aμi ′,A + ∑ki ′
s=1 λi(ki )μ

2
i ′(s)) for i = 1, 2; i ′ �= i

from the facts that tr(Σ1,AΣ2,A) ≤ {tr(Σ2
1,A)tr(Σ2

2,A)}1/2 = O(λ1(k1)λ2(k2)) and

μT
i ′,AΣ i,Ahi ′(s)μi ′(s) = O(μT

i ′,AΣ i,Aμi ′,A + λi(ki )μ
2
i ′(s)) for s = 1, ..., ki ′ . From (37)

and (38) we have that when x0 ∈ πl , l = 1, 2,

x̃0,i(r) = x0,i(r) + OP

⎧
⎨

⎩

(
λ2i(r) + μT

l,AΣ i,Aμl,A

niλi(r)

)1/2
⎫
⎬

⎭
+ OP {(λl(1)/ni )1/2}

and x0,i(r) = OP (λ
1/2
i(r)) for r = 1, ..., ki ; i = 1, 2 (41)

under (C-vi) and (C-vii). Then, from (39) to (41), under (C-vi) to (C-viii), we have
that when x0 ∈ πl , l = 1, 2,

x̃0,i(r) x̃ i(r) − x0,i(r) x̄i(r) = (x̃0,i(r) − x0,i(r))x̃ i(r) + x0,i(r)(x̃ i(r) − x̄i(r))

= oP (ΔA) for r = 1, ..., ki ; i = 1, 2. (42)

On the other hand, from (S6.29) in Appendix B of Aoshima and Yata (2018) we claim
that for r = 1, ..., k1 and s = 1, ..., k2

h̃
T
1(r) h̃2(s) = hT1(r)h2(s) + OP (n−1/2

min ), h̃
T
1(r)(h̃2(s) − h2(s)) = OP (n−1/2

2 ),

h̃
T
2(s)(h̃1(r) − h1(r)) = OP (n−1/2

1 )

and (h̃1(r) − h1(r))T (h̃2(s) − h2(s)) = OP {(n1n2)−1/2}. (43)

Note that x̄i(r)hi(r) − x̃ i(r) h̃i(r) = x̄i(r)(hi(r) − h̃i(r)) − (x̃ i(r) − x̄i(r))h̃i(r) for all i, r .
Then, from (39) and (43), we have that for r = 1, ..., ki ; i = 1, 2; i ′ �= i ,
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h̃
T
i(r)

ki ′∑

s=1

(x̄i ′(s)hi ′(s) − x̃ i ′(s) h̃i ′(s))

= OP

⎛

⎝
ki ′∑

s=1

(ψ
1/2
i ′(s)(h

T
i(r)hi ′(s) + n−1/2

min ) + λ
1/2
i ′(s)/ni ′ + μi ′(s)/n

1/2
i ′ )

⎞

⎠ . (44)

Similar to the proof of Proposition 2 and (41), under (C-vi) and (C-vii), we can claim
that for r = 1, ..., ki ; i = 1, 2; i ′ �= i ,

h̃
T
i(r)xi ′,A = hTi(r)xi ′,A + OP

⎧
⎨

⎩

(
λ2i(r)/nmin + μT

i ′,AΣ i,Aμi ′,A
niλi(r)

)1/2
⎫
⎬

⎭

+ Op[{λi ′(1)/(n1n2)}1/2]. (45)

Note that
∑ki ′

s=1(h
T
i(r)hi ′(s))

2/λi ′(s) = O(1/λi(r)) under (C-vi) for r = 1, ..., ki ; i =
1, 2; i ′ �= i . From (40), (44) and (45) we have that for r = 1, ..., ki ; i = 1, 2; i ′ �= i ,

h̃
T
i(r)

⎛

⎝xi ′ −
ki ′∑

s=1

x̃ i ′(s) h̃i ′(s)

⎞

⎠− hTi(r)

⎛

⎝xi ′ −
ki ′∑

s=1

x̄i ′(s)hi ′(s)

⎞

⎠

= OP

⎧
⎨

⎩

(
μT
i ′,AΣ i,Aμi ′,A

niλi(r)
+ μT

i ′,AΣ i ′,Aμi ′,A
min{λi(r), nminλi ′(ki ′ )}ni ′

+ λi(1) + λi ′(1)
n2min

+ λ2i ′(1)
n2minλi(r)

)1/2
⎫
⎬

⎭

(46)

under (C-vi) and (C-vii). Note that hTi(r)(xi ′ −
∑ki ′

s=1 x̄i ′(s)hi ′(s)) = OP {(λi(r) /ni ′)1/2}
under (C-vi) and (C-vii) for r = 1, ..., ki ; i = 1, 2; i ′ �= i . Then, similar to (42),
from (41) and (46), we have that

x̃0,i(r) h̃
T
i(r)

⎛

⎝xi ′ −
ki ′∑

s=1

x̃ i ′(s) h̃i ′(s)

⎞

⎠− x0,i(r)hTi(r)

⎛

⎝xi ′ −
ki ′∑

s=1

x̄i ′(s)hi ′(s)

⎞

⎠

= oP (ΔA) for r = 1, ..., ki ; i = 1, 2; i ′ �= i (47)

under (C-vi) to (C-viii). Also, from (S6.28) in Appendix B of Aoshima and Yata
(2018), we claim that for r = 1, ..., ki ; i = 1, 2,

ni∑

j< j ′

x̃i j (r) x̃i j ′(r) − xi j (r)xi j ′(r)
ni (ni − 1)

= OP

{
ψ

1/2
i(r)(ψ

1/2
i(r) + λ

1/2
i(r)/n

1/2
i + μi(r))

}
.
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Note that under (C-vii) and (C-viii)

ki∑

r=1

ψ
1/2
i(r)(ψ

1/2
i(r) + λ

1/2
i(r)/n

1/2
i + μi(r))

= O

(
λi(1)λi(ki ) + μT

i,AΣ i,Aμi,A

niλi(ki )
+ (λ2i(1) + niμT

i,AΣ i,Aμi,A)1/2

n3/2i

)

= oP (ΔA)

(48)

for i = 1, 2. By combining (42), (47) and (48), it holds that W̃A(x0) = WA(x0) +
oP (ΔA) when x0 ∈ πi , i = 1, 2 under (C-vi) to (C-viii). It concludes the results of
Theorem 5.

Similar to the proof of Theorem 5, it holds that W̃A(x0) = WA(x0) + oP (δomin,A)

when x0 ∈ πi , i = 1, 2 under (C-vi), (C-vii) and (C-ix). It concludes the results of
Theorem 6. ��
Acknowledgements We would like to thank two anonymous referees for their constructive comments.

References

Ahn, J.,Marron, J. S. (2010). Themaximal data piling direction for discrimination.Biometrika, 97, 254–259.
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., et al. (1999). Broad patterns of gene

expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proceedings of the National Academy of Sciences of the United States of America, 96, 6745–
6750.

Aoshima, M., Yata, K. (2011). Two-stage procedures for high-dimensional data. Sequential Analysis (Edi-
tor’s special invited paper), 30, 356–399.

Aoshima, M., Yata, K. (2014). A distance-based, misclassification rate adjusted classifier for multiclass,
high-dimensional data. Annals of the Institute of Statistical Mathematics, 66, 983–1010.

Aoshima, M., Yata, K. (2015a). Geometric classifier for multiclass, high-dimensional data. Sequential
Analysis, 34, 279–294.

Aoshima,M.,Yata,K. (2015b).High-dimensional quadratic classifiers in non-sparse settings. arXivpreprint.
arXiv:1503.04549.

Aoshima, M., Yata, K. (2018). Two-sample tests for high-dimension, strongly spiked eigenvalue models.
Statistica Sinica, 28, 43–62.

Bai, Z., Saranadasa, H. (1996). Effect of high dimension: By an example of a two sample problem. Statistica
Sinica, 6, 311–329.

Bickel, P. J., Levina, E. (2004). Some theory for Fisher’s linear discriminant function, “naive Bayes”, and
some alternatives when there are many more variables than observations. Bernoulli, 10, 989–1010.

Cai, T. T., Liu, W. (2011). A direct estimation approach to sparse linear discriminant analysis. Journal of
the American Statistical Association, 106, 1566–1577.

Chan, Y.-B., Hall, P. (2009). Scale adjustments for classifiers in high-dimensional, low sample size settings.
Biometrika, 96, 469–478.

Chen, S. X., Qin, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set
testing. The Annals of Statistics, 38, 808–835.

Christensen, B. C., Houseman, E. A., Marsit, C. J., Zheng, S., Wrensch, M. R., Wiemels, J. L., et al. (2009).
Aging and environmental exposures alter tissue-specificDNAmethylation dependent uponCpG island
context. PLoS Genetics, 5, e1000602.

Dudoit, S., Fridlyand, J., Speed, T. P. (2002). Comparison of discrimination methods for the classification
of tumors using gene expression data. Journal of the American Statistical Association, 97, 77–87.

123

http://arxiv.org/abs/1503.04549


Distance-based classifier by data transformation 503

Fan, J., Fan, Y. (2008). High-dimensional classification using features annealed independence rules. The
Annals of Statistics, 36, 2605–2637.

Glaab, E., Bacardit, J., Garibaldi, J. M., Krasnogor, N. (2012). Using rule-based machine learning for
candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS
ONE, 7, e39932.

Gravier, E., Pierron, G., Vincent-Salomon, A., Gruel, N., Raynal, V., Savignoni, A., et al. (2010). A prognos-
tic DNA signature for T1T2 node-negative breast cancer patients. Genes, Chromosomes and Cancer,
49, 1125–1134.

Hall, P., Marron, J. S., Neeman, A. (2005). Geometric representation of high dimension, low sample size
data. Journal of the Royal Statistical Society, Series B, 67, 427–444.

Hall, P., Pittelkow, Y., Ghosh, M. (2008). Theoretical measures of relative performance of classifiers for
high dimensional data with small sample sizes. Journal of the Royal Statistical Society, Series B, 70,
159–173.

Jeffery, I. B., Higgins, D. G., Culhane, A. C. (2006). Comparison and evaluation of methods for generating
differentially expressed gene lists from microarray data. BMC Bioinformatics, 7, 359.

Li, Q., Shao, J. (2015). Sparse quadratic discriminant analysis for high dimensional data. Statistica Sinica,
25, 457–473.

Marron, J. S., Todd, M. J., Ahn, J. (2007). Distance-weighted discrimination. Journal of the American
Statistical Association, 102, 1267–1271.

McLeish, D. L. (1974). Dependent central limit theorems and invariance principles. The Annals of Proba-
bility, 2, 620–628.

Naderi, A., Teschendorff, A. E., Barbosa-Morais, N. L., Pinder, S. E., Green, A. R., Powe, D. G., et al.
(2007). A gene-expression signature to predict survival in breast cancer across independent data sets.
Oncogene, 26, 1507–1516.

Nakayama, Y., Yata, K., Aoshima, M. (2017). Support vector machine and its bias correction in high-
dimension, low-sample-size settings. Journal of Statistical Planning and Inference, 191, 88–100.

Ramey J. A. (2016). Datamicroarray: collection of data sets for classification. https://github.com/ramhiser/
datamicroarray.

Shao, J., Wang, Y., Deng, X., Wang, S. (2011). Sparse linear discriminant analysis by thresholding for high
dimensional data. The Annals of Statistics, 39, 1241–1265.

Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C., et al. (2002). Diffuse large
B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning.
Nature Medicine, 8, 68–74.

Tian, E., Zhan, F., Walker, R., Rasmussen, E., Ma, Y., Barlogie, B., et al. (2003). The role of the Wnt-
signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. The New
England Journal of Medicine, 349, 2483–2494.

Watanabe, H., Hyodo, M., Seo, T., Pavlenko, T. (2015). Asymptotic properties of the misclassification rates
for Euclidean distance discriminant rule in high-dimensional data. Journal of Multivariate Analysis,
140, 234–244.

Yata, K., Aoshima, M. (2010). Effective PCA for high-dimension, low-sample-size data with singular value
decomposition of cross data matrix. Journal of Multivariate Analysis, 101, 2060–2077.

Yata, K., Aoshima,M. (2012). Effective PCA for high-dimension, low-sample-size datawith noise reduction
via geometric representations. Journal of Multivariate Analysis, 105, 193–215.

Yata, K., Aoshima, M. (2013). PCA consistency for the power spiked model in high-dimensional settings.
Journal of Multivariate Analysis, 122, 334–354.

Yata, K., Aoshima, M. (2015). Principal component analysis based clustering for high-dimension, low-
sample-size data. arXiv preprint. arXiv:1503.04525.

123

https://github.com/ramhiser/datamicroarray
https://github.com/ramhiser/datamicroarray
http://arxiv.org/abs/1503.04525

	Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models
	Abstract
	1 Introduction
	2 Distance-based classifier for high-dimensional data
	3 Distance-based classifier using eigenstructures
	3.1 Data transformation
	3.2 Consistency of the classifier (11)
	3.3 Asymptotic normality of the classifier (11)

	4 Distance-based classifier by estimating eigenstructures
	4.1 Estimation of hi(r)s, x0,i(r)s and xij(r)s
	4.2 Distance-based classifier by the NR methodology
	4.3 Estimation of kis

	5 Performances of the new classifier for the SSE model
	5.1 Simulation
	5.2 Example

	6 Proofs
	6.1 Proof of Theorem 3
	6.2 Proof of Corollary 1
	6.3 Proof of Theorem 4
	6.4 Proof of Corollary 2
	6.5 Proof of Proposition 2
	6.6 Proofs of Theorems 5 and 6

	Acknowledgements
	References




