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Abstract We consider classifiers for high-dimensional data under the strongly spiked
eigenvalue (SSE) model. We first show that high-dimensional data often have the
SSE model. We consider a distance-based classifier using eigenstructures for the SSE
model. We apply the noise-reduction methodology to estimation of the eigenvalues
and eigenvectors in the SSE model. We create a new distance-based classifier by
transforming data from the SSE model to the non-SSE model. We give simulation
studies and discuss the performance of the new classifier. Finally, we demonstrate the
new classifier by using microarray data sets.

Keywords Asymptotic normality - Data transformation - Discriminant analysis -
Large p small n - Noise-reduction methodology - Spiked model

1 Introduction

A common feature of high-dimensional data is that the data dimension is high, however,
the sample size is relatively low. This is the so-called “HDLSS” or “large p, small n”
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data situation where p/n — oo; here p is the data dimension and 7 is the sample size.
Suppose we have independent and p-variate two populations, 7;, i = 1,2, having
an unknown mean vector g; and unknown covariance matrix X; for each i. We do
not assume X | = X5. The eigen-decomposition of X; is given by ¥; = H; A; H iT,
where A; = diag(A;(1), ..., Ai(p)) is a diagonal matrix of eigenvalues, A;1) > --- >
Ai(py = 0, and H; = [h;(1), ..., hi(p)] is an orthogonal matrix of the corresponding
eigenvectors. We have independent and identically distributed (i.i.d.) observations,
Xil, ..., Xin;, from each ;. We assume n; > 4, i = 1, 2. We estimate u; and ¥; by
fl' = Z};l:l x,://n,- and S,' = Zl;izl(x,'j - f,-)(xij - f,')T/(n,' - l). Let X0 be an
observation vector of an individual belonging to one of the two populations. We assume
x¢ and x;;s are independent. When the 7;s are Gaussian, a typical classification rule
is that one classifies an individual into 7y if

(xo —x¥1)7 87 (xo —¥1) — log [det(S287H} < (xo —¥2)7 85 (x0 — ¥2),

and into 71 otherwise. However, the inverse matrix of S; does not exist in the HDLSS
context (p > n;). Also, we emphasize that the Gaussian assumption is strict in real
high-dimensional data analyses. Bickel and Levina (2004) considered a naive Bayes
classifier for high-dimensional data. Fan and Fan (2008) considered classification after
feature selection. Cai and Liu (2011), Shao et al. (2011) and Li and Shao (2015) gave
sparse linear or quadratic classification rules for high-dimensional data. The above
references all assumed the following eigenvalues condition: There is a constant ¢p > 0
(not depending on p) such that

Cal < Ai(py and A;1y <o fori =1,2. (1)

Dudoit et al. (2002) considered using the inverse matrix defined by only diagonal ele-
ments of S;. Aoshima and Yata (2011, 2015a) considered substituting {tr(S;)/p}1 ,
for S; by using the difference of a geometric representation of HDLSS data from each
;. Here, I, denotes the identity matrix of dimension p. On the other hand, Hall et al.
(2005, 2008) and Marron et al. (2007) considered distance weighted classifiers. Ahn
and Marron (2010) considered a HDLSS classifier based on the maximal data piling.
Hall et al. (2005), Chan and Hall (2009), Aoshima and Yata (2014) and Watanabe
et al. (2015) considered distance-based classifiers. Aoshima and Yata (2014) gave the
misclassification rate-adjusted classifier for multiclass, high-dimensional data whose
misclassification rates are no more than specified thresholds under the following eigen-
values condition:

A2
i)
tr(X?)

— 0 asp - oofori =1, 2. 2)

We emphasize that (2) is much milder than (1) because (2) includes the case that
Ai(y — oo as p — oo. See Remark 1 for the details. Aoshima and Yata (2014)
considered the distance-based classifier as follows: Let

tr(S1) | tr(S2)

X1+ X2 n
2n4 2ny

W) = (xo ~ 2 2) o6y —w) - )
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Then, one classifies xg into wy if W(xg) < O and into 7, otherwise. Here,
—tr(S1)/(2n1) + tr(S2)/(2n2) is a bias-correction term. Note that the classifier (3)
is equivalent to the scale-adjusted distance-based classifier given by Chan and Hall
(2009). Aoshima and Yata (2015b) called the classification rule (3) the “distance-based
discriminant analysis (DBDA)”.

Recently, Aoshima and Yata (2018) considered the “strongly spiked eigenvalue
(SSE) model” as follows:

Az
liminf { —01 > 0 fori = 1or2. (4)
p> | (22

On the other hand, Aoshima and Yata (2018) called (2) the “non-strongly spiked
eigenvalue (NSSE) model”. Note that (4) holds under the condition:

)L'
liminf { 22 ¥ S 0 fori =1 or2, 5)
p—oo | tr(Z;)

from the fact that tr(X 1.2) < tr(X;)%. Here, Ai(1y/tr(X;) is the first contribution ratio.
We call (5) the “super strongly spiked eigenvalue (SSSE) model”.

Remark 1 Let us consider a spiked model such as
iy = ainp™ @ (r=1,...4) and Ay =ciph r=t+1,....,p) (6

with positive and fixed constants, a; (s, ¢;s and «;()s, and a positive and fixed
integer #;. Note that the NSSE condition (2) holds when «;(1) < 1/2 fori =1,2. On
the other hand, the SSE condition (4) holds when «;(1) > 1/2, and further the SSSE
condition (5) holds when «;(1y > 1. See Yata and Aoshima (2012) for the details of
the spiked model.

We observed

2

A
(= €i(r), say) and (Z;) (=ni¢y, say), i =12, r=1,2,..,

Ai(r)
r(X;)

for six well-known microarray data sets by using the noise-reduction methodology and
the cross-data-matrix methodology. For those methods, see Yata and Aoshima (2010,
2012). Note that () is the contribution ratio and 7;( is a quadratic contribution
ratio of the r-th elgenvalue We estimated ¢;(-) by &; " = A,(r) /tr(S ) and 7;( by
Nigry = l(r)/llf,(l), where A,(,) is defined by (16), and Al ¢y and llf,(l) are defined in
Sect. 4.3. We note that &;( and 7); (- are consistent estimators of €;(.) and ;) when
p — o0. See (18) and (23) for the details. The six microarray data sets are as follows:

(D-i1) Non-pathologic tissues data with 1413 genes, consisting of my: placenta or
blood (104 samples) and 75 : other solid tissue (113 samples) given by Chris-
tensen et al. (2009);
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Table 1 Estimates of (g;(1), n;(1)) by (&;(1), fli(1)) for the six well-known microarray data sets

(D-i) (D-ii) (D-iii) (D-iv) (D-v) (D-vi)
p 1413 2000 2905 7129 12625 47293
(n1,n2) (104, 113) (40, 22) (111, 57) (58, 19) (36, 137) (84, 44)
é](]) 0.636 0.153 0.108 0.22 0.038 0.091
52(1) 0.233 0.157 0.083 0.386 0.035 0.085
ﬁl(l) 0.995 0.569 0.304 0.71 0.283 0.502
'72(1) 0.582 0.523 0.363 0.963 0.269 0.403
€1 - (D-) €1n) -~ (D-i)
‘ = (D-ii) . = (D-ii)
S % +- (D-iii) L\ «- (D-iii)
2 ll s (D-iv) 02r N + (D-iv)
3 - (D-v) ) \ —=- (D-v)
o3 B ) (D-vi) 015} .\_‘\:\\ (D-vi)
o1t A k. 01 12
0.05 : 005}
0 rooo r

1 2 3 4 5 6 7 8 9 10

Fig. 1 Estimates of the first ten contribution ratios by &;(,ys for the six well-known microarray data sets

(D-ii) Colon cancer data with 2000 genes, consisting of 71: colon tumor (40 samples)
and 7> : normal colon (22 samples) given by Alon et al. (1999);

(D-iii) Breast cancer data with 2905 genes, consisting of 71 : good (111 samples) and
75 @ poor (57 samples) given by Gravier et al. (2010);

(D-iv) Lymphoma data with 7129 genes, consisting of 771 : DLBCL (58 samples) and
17 : follicular lymphoma (19 samples) given by Shipp et al. (2002);

(D-v) Myeloma data with 12625 genes, consisting of 7r; : patients without bone
lesions (36 samples) and > : patients with bone lesions (137 samples) given
by Tian et al. (2003);

(D-vi) Breast cancer data with 47293 genes, consisting of 71 : luminal group (84
samples) and w5 : non-luminal group (44 samples) given by Naderi et al.
(2007).

The data sets (D-ii), (D-iv) and (D-v) are given in Jeffery et al. (2006), (D-1) and (D-iii)
are given in Ramey (2016), and (D-vi) is given in Glaab et al. (2012). We summarized
the results for &;(1y and 7);(1) in Table 1. We also visualized the first ten contribution
ratios given by &) (r = 1,...,10; i = 1,2) in Fig. 1 and the first ten quadratic
contribution ratios given by ;) (r =1, ..., 10; i = 1, 2) in Fig. 2. See (18) and (23)
for the details.

We observed from Fig. 1 that the first several eigenvalues are much larger than
the rest for the microarray data sets (except (D-v)). In particular, the first eigenvalues
for (D-i) and (D-iv) are extremely large. These data appear to be consistent with the
SSSE asymptotic domain given in (5). On the other hand, the first several eigenvalues
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T - (D-i) N2 - (D-)
». (D-ii) » (D-ii)

".‘| +- (D-iii) «- (D-iii)
06t it 4 (D=iv) 06 o + (D-iv)
+*- (D-v) m ' - (D-v)
(D-vi) LY (D-vi)

Fig. 2 Estimates of the first ten quadratic contribution ratios by 7); (s for the six well-known microarray
data sets

for (D-v) are relatively small. However, from Table 1 and Fig. 2, n;(1)s for (D-v) are
not sufficiently small. Also, n;(1)s for (D-ii), (D-iii) and (D-vi) are relatively large in
Table 1 and Fig. 2. Hence, the six microarray data appear to be consistent with the SSE
asymptotic domain given in (4). See Sect. 4.3. In this paper, we consider classifiers
under the SSE model. We do not assume the normality of the population distributions.
We propose an effective distance-based classifier for such high-dimensional data sets.

The organization of this paper is as follows. In Sect. 2, we introduce asymptotic
properties of the distance-based classifier for high-dimensional data. We discuss the
distance-based classifier in the SSE model. In Sect. 3, we consider a distance-based
classifier using eigenstructures for the SSE model. In Sect. 4, we discuss estimation of
the eigenvalues and eigenvectors for the SSE model. We create a new distance-based
classifier by estimating the eigenstructures. In Sect. 5, we give simulation studies
and discuss the performance of the new classifier. Finally, we demonstrate the new
classifier by using microarray data sets.

2 Distance-based classifier for high-dimensional data

In this section, we introduce asymptotic properties of the distance-based classifier for
high-dimensional data. As for any positive-semidefinite matrix M, we write the square
root of M as M'/?. Let

1/2
Xij = HiAi/ Zij + Wi,

where z;; = (zij1), ---» Zij( p))T is considered as a sphered data vector having the zero
mean vector and identity covariance matrix. Similar to Bai and Saranadasa (1996)
and Chen and Qin (2010), we assume the following assumption for 7;, i = 1, 2, as
necessary:

(A-D) limsup E(z};,)) < oo forallr, E(},, 27 ) = E@} ) E(@ ) = 1,

p—)OO

E(zij(r)Zij(s)Zijr)) = 0 and E(zi()2ij(s)2ij (1) Zijw)) = 0 forall r # s, 1, u.
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478 M. Aoshima, K. Yata

When the 7;s are Gaussian, (A-i) naturally holds. Let
B=m — My, A=|pl* nmin=min{ny, ny} and m = min{p, nmin},
where || - || denotes the Euclidean norm. Note that E{W (x¢)} = (—1)!A/2 when

xo € m; fori = 1, 2. Also, note that the divergence condition “p — oo, ny — 00
and np — o0” is equivalent to “m — 00”. Let

(XY (21X — (X 2
(&> (21272 r(Z;

Soi = i

o : o +22n1(m—1)}

n:
i =1

and §; = {82 + nT(Zi + Zy/ny)p}l/? fori = 1,2; i’ # i. Note that §7 =
Var{W (x¢)} when xg € m; fori =1, 2.

Let e(i) denote the error rate of misclassifying an individual from 7; into the other
class for i = 1, 2. Then, for the classification rule (3) DBDA, Aoshima and Yata
(2014) gave the following result.

Theorem 1 (Aoshima and Yata 2014) Assume the following conditions:
T

LR Xipn

(AY-i) A—z’

max;=1,2 tr(Zl.z)

—0asp—oofori=1,2;

(AY-ii)

— 0 asm — oc.
Himin A2
min

Then, for DBDA, we have that as m — 00
e(i) > 0 fori =1,2. (7)
Remark 2 For DBDA, under (AY-i1) and (AY-ii), one may write (7) as
e(i) = 0(87/A%) fori =1,2.

Next, we consider the asymptotic normality of the classifier. Hereafter, for a
function, f(-), “f(p) € (0,00) as p — o0” implies liminf, .~ f(p) > 0 and
lim sup p—oo J(P) < 00.Let “=7” denote the convergence in distribution, let N (0, 1)
denote a random variable distributed as the standard normal distribution and let
@ (-) denote the cumulative distribution function of the standard normal distribution.

Aoshima and Yata (2014) gave the following result.

Theorem 2 (Aoshima and Yata 2014) Assume the following conditions:

T
%, iH(E1 2
@vii) 22" 0 asm - oo, timinf T2 L 0 pri = 1.2 and
52 P (22
r(X})
5 € (0, 0) as p — oo.
ir(Z3)
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Distance-based classifier by data transformation 479

Assume also the NSSE condition (2). Under a certain assumption milder than (A-i), it
holds that as m — oo

W(xo) — (—D'A/2
(Sai

= N(0,1) whenxg € m; fori =1,2.

Furthermore, for DBDA, it holds that as m — 00

e(i)— @ (;SA) =o0(l) whenxg € 7 fori =1, 2. (8)

Remark 3 Aoshima and Yata (2015b) gave a different asymptotic normality from
Theorem 2 under different conditions. From the facts that §,;/8; — 1 asm — oo
under (AY-iii) and Var{W (xqo)} = 8? when xq € m;, one may write (8) as

e(i) —P{—A/(26))} = o(1) whenxg € m; fori =1, 2.

By using the asymptotic normality, Aoshima and Yata (2014) proposed the mis-
classification rate-adjusted classifier (MRAC) in high-dimensional settings.

In this paper, we consider the distance-based classifier from a different point of view.
We consider the classifier under the SSE model. We emphasize that high-dimensional
data often have the SSE model. See Table 1, Figs. 1 and 2. If the SSE condition (4) is
met, one cannot claim the asymptotic normality in Theorem 2. In addition, if the SSE
condition (4) is met, (AY-ii) in Theorem 1 is equivalent to

M/ (minA®) = o(1) fori =1,2. ©)

Thus (AY-ii) in the SSE model is stricter than that in the NSSE model. For example,
for the NSSE model as the spiked model in (6) with o1y < 1/2,i =1, 2, (AY-ii) is
equivalent to p/ (NminA%) = o(1). On the other hand, for the SSE model as (6) with
a1y > 1/2 (and ;1) > a1y fori’ # i), (AY-ii) is equivalent to p>%® / (nymin A?) =
o(1). That means nmi, or A should be quite large for the SSE model compared to
the NSSE model. Thus if the SSE condition (4) is met, DBDA has the classification
consistency (7) under (AY-i) in Theorem 1 and the strict condition (9). In order to
overcome the difficulties, we propose a new distance-based classifier by estimating
eigenstructures for the SSE model.

3 Distance-based classifier using eigenstructures

Let

r—1 p
Wiy =t(E]) = D Ay =D My fori=121r=1..p.
s=1 s=r
In this section, similar to Aoshima and Yata (2018), we assume the following model

fori =1, 2:
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480 M. Aoshima, K. Yata

(M-i) There exists a fixed integer k; (> 1) such that A;(1y, ..., A ;) are distinct in the
sense that liminf, oo (A;()/Ais) —1) > Owhen 1 <r < s < k;, and A;,)
and A;,+1) satisfy

e e
liminf —%) < 0 and —&TD 0 a5 p — .
P00 Wik;) Yiki+1)
Note that (M-i) implies the SSE condition (4), that is (M-i) is one of the SSE models.

For example, (M-i) holds in the spiked model in (6) with
Qi) = = Wiy = 1/2 > i1y = 0 = i) and aigy # aigs)

forl <r <s <kj; i = 1,2. We emphasize that (M-i) is a natural model under
the SSE condition (4). See Fig. 2. The six microarray data appear to be consistent
with (M-i). Similar to (9), we note that the sufficient condition (AY-ii) in Theorem 1

is equivalent to
ki

fo(,)/(nminﬁ) =o(l) fori=1,2 (10

r=1
under (M-i). According to the arguments in the last paragraph of Sect. 2, if (M-i) is
met, DBDA has the classification consistency (7) under (AY-i) in Theorem 1 and the
strict condition (10). Also, one cannot claim the asymptotic normality in Theorem 2
under (M-i). In order to overcome the difficulties, along the lines of Aoshima and Yata
(2018), we consider a data transformation from the SSE model to the NSSE model in
this section.

Let us see a toy example of the model (M-i) such as

Xi1=2%, Mip=p and Aoy =---=Li(p) = L.

Then, the sufficient condition (10) is equivalent to “p~/ (MminA2) = 0(1)”. Now,
we consider the following data transformation, based on the first eigenvector of X;,
so as to avoid the strongly spiked eigenspace. We transform x¢ and x;;s into (I, —
hi(l)hiT(l))xo (=xo,,, say)and (I, —hi(l)hiT(l))xij (= xjjn, say),respectively. Note
that Var(xo ) = Var(x;j ;) = Zf:z )»i(,)hi(,)hiT(r) (= X, say) whenxg € m;. Let
Ap = |E(x1j1) — E(x2j)|I>. Then, Ay = A— (hiT(l)u)Z. From Theorem 1, DBDA
based on the transformed data has the classification consistency (7) under

w' Ziam/A2 =o(1), i =1,2, and p/(nminA}) = o(1)

because tr(X 12 ») = O(p). We note that liminf ,_, o Ap/A > 0 in a natural situation
wherelimsup,,_, , |hiT(1)/L/A1/2| < l.Inthatsense, “;LTZ‘,-,;,;L/A%! = 0(1)” is milder
than (AY-i). Also, “p/(nminA%) = 0(1)” is much milder than “p /(nminAz) =o0(1)”
which is equivalent to (AY-ii). Therefore, the above data transformation probably
improves the classification consistency (7). This is a reason why we consider such a
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Distance-based classifier by data transformation 481

data transformation. In Sect. 3.1, we give a general data transformation for the model
(M-i).

3.1 Data transformation
Recall that k; - is the r-th eigenvector of X;. Let

ki

p
T T
A,' = Ip — Zhi(r)hi(r) = Z hi(r)hi(r) and Xij,A = A,-xij
r=1 r=ki+1

for j =1, ...,n;; i = 1,2. Note that Al.2 = A; fori = 1, 2. Let us write that u; 4 =
Aitis Zia = AiZiAi = Y0 hiohiohl) i = 1,2, 4 = iy 4 — Bo 4 and

= ||uA||2. Note that E(x;j,4) = M; 4 and Var(x;j a) = X; 4 foralli, j. Thus the
transformed data, x;; 4, have the NSSE model in the sense that

Pmax (21 AV /0(EF 0) = A1)/ Picki+1) — 0 as p — oo,

where Amax (M) denotes the largest eigenvalue of any positive-semidefinite matrix,
M. Hence, we can say that a classifier based on the transformed data satisfies the
classification consistency (7) under mild conditions and provided (M-i) is satisfied. In
addition, one can claim the asymptotic normality of the classifier even when the SSE
condition (4) is met.

Now, we propose the classifier by using the transformed data. Let us write that
A* = (A1 + Az)/z, X0,Ax = A*x() andf,-,A = ZSL’:I x,-j,A/n,' = Aifi fori = 1, 2.
We consider the following classifier:

X1,4+X24

tr(A1S1) tr(A2S7)
2 +

2n1 2ny

T
Wa(xo) = (xO,A* — ) (X2,4 —X1,4) —

(11)

xT X1j.A x? X2 A
le J 2]A J%
—XOA*(xZA—xlA)"i‘Z —Z
= ni(ny — 1) . na(ny —

Then, one classifies xo into m; if Wa(x0) < 0 and into mp otherwise. Let A1, =
A1 — Aj. Here, let us write that ¥; 4, = A, X; A,

2 2 1/2
SoiAz{tr(z,-,A*z,-,u +tr(z,~,A*z,~/,A>+Zztr<z,,A> } |

n; n;
and §; 4 = {5(2,,-,A + i Ziawms + 0] AL2Z A AL/ (4y)

12
(s — Arapi /)T Zi Al — A1,2ﬂi/2)/ni’}
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fori = 1,2; i’ # i. Then, we claim that when x¢ € 7; fori = 1, 2,

A uTa
E{Wa(xo)} = (—1)’TA _(mpyi i A2k

and Var{Wa(xo)} =67 ,. (12)
Remark 4 In general, [LI-TALzlLA in (12) is not sufficiently large because of
rank(A12) < ki + ko (< 00). If A| = A,, it holds that E{W(x¢)} = (—1)'Ax/2
and

(X7 ) LCIVE IV 3 (X7 )

Var{Wa (x0)} = 2ni(n; — 1)

n n;
1 1 I1=1

+ o (Zia+ i a/nidma

whenxg € 7; fori = 1,2; i’ #1i.

In Sects. 3.2 and 3.3, we give consistency properties and an asymptotic normality
of W4 (xp). We assume the following conditions as necessary:

RE(Ziae+ Zia/nidta

(C-i) e —0asp—>oofori=1,2; i #1i;
A
tr(X; a4« X
(C-ii) L*ZI’A) — 0 asm — oo fori,l =1,2;
nlAA .
T
TA A ;
(C-iii) B 21204 — 0 as p — oo and lim sup ﬂll/zl’zﬂl < oo fori =1,2;
Agp m—00 nminAA

RE(Ziae+ Zia/nidta

r(X,4%2,4)
———" >0

(C-iv) 5 — 0 asm — oo, liminf 5
85ia p=oo (X7 )
. L, w(Z7 ) _
fori =1,2 (" #1i), and ——— €(0,00) as p — o0;
tr(X5 4)
' 2
T T
P A . i AT
(C-v) Bi 21204 0 asm — 00, 11msup% < 00,
o0i,A m—>00 nminaui,A
12 12
dmax (EE A2
and A% LAY L0 asp— oo fori,l=1,2.

(X A X14)

3.2 Consistency of the classifier (11)

We consider consistency properties of W4 (x¢). We note that 8% A/ AIZL‘ — Qasm — oo
under (C-i) to (C-iii). See Sect. 6.1. Then, we have the following results.

Theorem 3 Assume (M-i). Assume also (C-i) to (C-iii). Then, it holds that as m — 00

W —1)
Waleo) _ D74 (1) when xo € mi fori = 1,2,
Agp 2

For the classification rule (11), we have the classification consistency (7) as m — o0.
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Distance-based classifier by data transformation 483

Corollary 1 If A1 = Ao, for the classification rule (11), we have the classification
consistency (7) as m — oo under (M-i) and the following conditions:

T 2

% r(E2,)

M—)Oaspaooand I’Az—>0asm—>oof0ri=1,2.
A4 Nmin A%

Remark 5 For the classification rule (11), under (M-i) and (C-i) to (C-iii), one may
write (7) as

e(i) = 087 ,/A%) fori =1,2.

Now, we consider the sufficient condition (C-ii) in Theorem 3. When )‘1'2(1)

/(X7 ) — oo as p — oo fori = 1,2, it holds that
K(Ziae E1.a) = (02 )u(EF )2 = o [(r(EDu(zD) 2]

fori, I = 1, 2, from the fact that tr(ZizA*) < tr(El.z). Then, (C-ii) is milder than (AY-ii)
if A and A4 are of the same order.

3.3 Asymptotic normality of the classifier (11)

We consider the asymptotic normality of W4 (xo). We have the following results.

Theorem 4 Assume (A-i) and (M-i). Assume also (C-iv) and (C-v). Then, it holds that
asm — o0

Wa(xo) — (=1)/ A4 /2
8oi, A

= N(0,1) whenxg € m; fori =1,2.

Furthermore, for the classification rule (11), it holds that as m — oo

—An
280i,A

e(i) — @ ( > =o0(l) whenxgy € m; fori =1, 2. (13)

Corollary 2 If A1 = A, for the classification rule (11), (13) holds as m — oo under
(A-i), (M-i) and the following conditions:

T
X tr( X 4%
ILA;—’AMA — 0 asm — o0, liminszz’A) >0 fori =1,2;
8oi,A P00 tr(zi,A)
r(x? )
and %E(0,00) as p — oo.
tr(X3 4)
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Remark 6 From (30) in Sect. 6, we note that 6,; 4/8;, 4 — 1 as m — oo under (C-iv)
and (C-v). Hence, one may write (13) as

e(i) — P{—A4s/(25; 4)} =0(1) whenxg € m; fori =1, 2.

Now, let us show an easy example to check the performance of DBDA and the
classifier (11) for the SSE model. We considered the following setting:

(S-i) Weset p = 25, s = 5,...,13, and ny = [p*3] and n» = 2n;, where
[x] denotes the smallest integer > x. Independent pseudo random obser-
vations were generated from 7; : Np(p;, X;), i = 1,2. Weset u; = 0
and u, = (0,...,0,1, .., DT whose last |'p1/2'| elements are 1, ¥| =
diag(p*3, p'/2,1,...,1) and X, =2X.

We note that (A-i), (M-i), (AY-i) to (AY-iii) and (C-i) to (C-v) are met for (S-1) from
the factsthat A = Ay = (p1/2] and A| = A with k; = kp = 2, so that Theorems 1,
3 and 4 hold. However, the NSSE condition (2) is not met, so that Theorem 2 does not
hold. In general, A;s are unknown in (11). Hence, we considered a naive estimator of

~ .~ AT
AjasA; =1, — Zf’: 1 hiryh; () and checked the performance of the classifier given
by

Waxo) = — [A1F1n, — x0) + A2 Fony — xo)}T(szz —A1%1)/2
—r(A181)/(2n1) + tr(A282)/(2n2). (14)

Here, IAzi(,) denotes the r-th (unit) eigenvector of S; for each 7, r. Then, one classifies
X into 7y if WA (xp) < 0 and into 7, otherwise. On the other hand, by using a bias-
corrected estimator of the eigenstructures, we create a new distance-based classifier
given by (21) in Sect. 4. We also checked the performance of the new classification rule
(21). We call the classification rule (21) the “transformed distance-based discriminant
analysis (T-DBDA)”. We also describe the classification rule (11) as “T-DBDA before
estimation (T-DBDA(b))” and the classification rule (14) as “T-DBDA by the naive
estimator (T-DBDA(n))”. For xo € wr; (i = 1, 2) we calculated each classifier 2000
times to confirm if each rule does (or does not) classify x( correctly and defined P; =
0 (or 1) accordingly for each ;. We calculated the error rates, e(i) = 230:010 P;,- /2000,
i = 1, 2. Their standard deviations are less than 0.011. In Fig. 3, we plotted e(1) and
e(2) for DBDA, T-DBDA(n), T-DBDA(b) and T-DBDA. From Theorems 2 and 4 in
view of Remarks 3 and 6, we also plotted the asymptotic error rates, ®{—A/(25;)} (=
é(i), say) and @{—A4/(28;.4)} (= éa(i), say), in Fig. 3.

We observed that e(i) by T-DBDA(b) behaves very close to the asymptotic error
rate, @{—A4/(25; o)}, as expected theoretically. However, e(i) by DBDA does not
converge to @ {—A /(26;)}. This is because the classifier does not claim the asymptotic
normality in Theorem 2 for the SSE model. Both DBDA and T-DBDA(b) have the
classification consistency (7). However, T-DBDA(b) gave a much better performance
than DBDA. This is probably due to the convergence rates. For the sufficient conditions
in Theorems 1 and 3, we note that
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e(1 g2 ;
(1) &) é(2)
04ty "f’) . DBDA O,AM ~ DBDA
R S e )| . - &2
03[0 + T-080A(D) | 03}, Syp I DEDA T “Se_—a— 4|4 7-0BDA(D)
- - -~ a e -~ ~ a
g ~ T ®ee|* €al1) S dng s DEDA 1= éa@
02 Sspo<\_ T~w_ DEDA |™ T-080AM| g5 éa(2) iy T-DEDAG)+.. T-DBDA(M)
“Tx:v‘—T—DBan\ 4. T-DBDA Ale Nt Lo T-0m08
P ~e_ =g
01" T_DEDAM),€a(1) g “v<T-DEDA@ O T ¥y
s T-DEDA(b)
0k . N N . . 1 log- » 0 s N N . . lo: )]
5 6 7 8 9 10 11 12 13 a1 5 6 7 8 9 10 11 12 13 Qa1

Fig. 3 The left panel displays e(1) and the right panel displays e(2). The error rates (dashed lines) of
DBDA (the classifier (3)), T-DBDA(b) (the classifier (11)), T-DBDA(n) (the classifier (14)) and T-DBDA
(the classifier (21)). The asymptotic error rates (solid lines) by é(i) (= @{—A/(25;)}) and é(i) (=
P{—A4/(25; AOD

l,rg%trw%)/(nmmAZ) = 0(p"?/nmin) = O(p~1) in (AY-ii);

(X aZ1,4)/ (A% = O ) = O(p™/3) fori, I = 1,2, in (C-ii).

Hence, the error rates of T-DBDA(b) were smaller than those of DBDA. The T-
DBDA(n) gave a worse performance than T-DBDA(b). This is probably because of
the bias caused by the naive estimator, A;. See Sect. 4.1 for the details. Hence, we
will consider a bias-correction of the naive estimator in Sect. 4. On the other hand,
the performances of T-DBDA and T-DBDA(b) became similar to each other when p
is large. We will discuss T-DBDA in Sect. 4.2.

In Sect. 4, we discuss estimation of the unknown parameters in (11). We create
T-DBDA by the bias-corrected estimator of the parameters.

4 Distance-based classifier by estimating eigenstructures

In this section, we assume (A-i) and (M-i). Let xq ;) = xg h;y and
iy =xLhiy = A2z ) foralli, j,r, where wi(y = ! h;
Xij(r) = XijRigry = A Zij(r) T Wiy toralli, j,r, where i) = i hic).

Let us write that x;) = Z;"zl Xij(ry/ni for all i, r. Then, one can write (11) as
follows:

k1 ka
- 1 _ -
Wa(x0) =W(xo) + Y x0.1¢r) {XW) - Eth(’) <x2 - Zx2(s)h2(s)>]

r=1 s=1
ko ki
_ 1 _ _

_ ZXO,Z(r) {X2(r) — EhZT(r) (x1 — le(s)hl(s)>}
r=1 s=1

k k

21: L X)X ) 22: YL X %2y)

p— ni(ny — 1) na(np—1)

(15)
r=I1
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In order to use W4 (xo), it is necessary to estimate k; (S, X0,;(-)S, Xij(r)S and k;s.
Let §omin,4 = min{dy1,4, 802, 4}. In this section, we assume the following condi-
tions as necessary:

o Skl Zihic)
(C-vi) limsup | Y~ ———— | < oo fori =1,2(" #i);
p—oo \Z o
o ki ni{,uiz(r) + (”v,?:hi(r))z} . ALl
(C-vii) limsup Z < 00, limsup ——— < oo,
m—oo \ £ Ai(r) m—>oo Mili(k)
T
. WA Zi Al A . g,
and lim sup (%) < oo fori,l =1,2 (i’ #1i);
m—00 )‘i(k,-)

T
Ai W (Xia/ng + X a/ni)p;
(Cviii) 0 0 qng —eAZRAE T AL T
NminAA AA
fori =1,2 G #1i);

— 0 asm — o0

T
Ai Bia(Zia/ni+ Zia/ni)w,
(Ceix) — 0, 0 anqg AR T AT

. . 2
Nmin9o min, A 8

omin, A
fori = 1,2 (i’ #1).

— 0 asm — o0

4.1 Estimation of h; s, x¢,; s and Xij(r)S

Let X; = [xi1, ..., Xinl, yi =[x;,...,x;land P,, = I,, — 1ni1r7;i/ni fori =1,2,
where 1,, = (1,..., DT. Note that §; = X; P, X! /(n; — 1) = (X; — X;))(X; —
X7 /(n; — 1). We define the n; x n; dual sample covariance matrix by

Sip =Py, X[ XiPy /(i = 1) = (X; = X)"(X; = X)/(n; — 1) fori =1,2.

Note that S; and S; p share nonzero eigenvalues. Let us write the eigen-decomposition
of §; and S;p as

p ni—1
A~ A AT ~ )
S, = E )\i(r)hi(r)h,'(r) and S;p = E Ai(,)ui(,)uiT(r) fori =1, 2,
r=1 r=1

where izi(,) and #;(y denote unit eigenvectors corresponding to ;(,). We assume
hiT(r)hi(r) > 0 w.p.1 for all i, r without loss of generality. Note that &;(y can be
calculated by h;;) = {(n; — l)ki(r)}_l/z(Xi — Yi)iti(r). However, as observed in
Sect. 3.2, the classifier by h;(ys gave an inadequate performance.

Yata and Aoshima (2012) proposed a bias-corrected eigenvalue estimation called

the noise-reduction (NR) methodology, which was brought about by a geometric rep-
resentation of S; p. If one applies the NR methodology, the A; (s are estimated by

- . tr(Sip) — S hics
Xty = ki) — — =1 210)

r=1,...,n,—2;i=1,2). (16)

n—1—r
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Note that )1,'(,) > Ow.p.1forr = 1, ..., n; —2 and the second term in (16) is an estimator
of Zf:k,-ﬂ Aigny/(m; — 1) (= k;, say). When applying the NR methodology to the
PC direction vector, one obtains

il,'(,) = {(n, — 1)5»1(,)}7]/2()(,' —Yi)ﬂj(r) forr = l, N (T 2; i = 1, 2. (17)

For ()A»,'(r), ﬁi(,))s and (Xi(,), izi(,))s, Aoshima and Yata (2018) gave the following
results.
Proposition 1 (Aoshima and Yata 2018) Assume (A-i) and (M-i). It holds as m — o0

ii(r) —1/2

=1+ —+Op(n
Aier) M(r)

Xicr _
)\E; =1+ 0pn; %) and (W], hiG)? =1+ Op@n")
r

—1
), (hlmhzm)z:( + ) +0p@m; '),

Ai(r)

forr=1,..ki; i=12

If k;/ k,(,) — 00 as m — 00, Al(r) and h,(r) are strongly inconsistent in the sense
that A,(r)/kl(r) =op(l)and hl(r)h,(r) = op(1). For example, in (S-1), «; /X;2) — 0
as m — 00, so that hi(z)hz(Z) = op(1). This is the main reason why the classifier by

(14) gave an inadequate performance in Fig. 3. On the other hand, ii(r) and h i(r) are
consistent estimators even when «; /A;y — 00 as m — 00. We note that tr(S;) =
tr(X;){1 + op(1)} as m — oo fori = 1,2, under (A-i) and (M-i) from the fact
that Var{tr(S;)} = O{tr(Ziz)/ni} = o{tr(X;)?} under (A-i) and (M-i). Hence, from
Proposition 1 we claim that as m — oo

iy = il +op(l)} forr =1, .., k; i=1,2, (13)

under (A-i) and (M-1).
Next, we consider an estimation of x¢ ;). Let

X0,i(r) = xgiti(r) for all i, r. (19)
Note that Var(xg ;) = O(Xi()) as p — oo under (C-vi) when x¢ € my forr =
l,....ki; i =1,2; i’ #i. Then, we have the following results.
Proposition 2 Assume (A-i), (M-i) and (C-vi). Assume also lim SUP, o0 [{tr(X;aXy)

. ki
+ maxi=1 2 1] Zi am}/ 3] < 00 and limsup,_, L {pf ) +(] i)}/
Ai(ry) < oo fori =1,2; i’ #i. Then, it holds as m — oo

X0,i(r)
(1 + ki /2i) /2

and Xoi() = X0,i¢r) + Op {()\i(r)/ni)l/z}

xgiz,-(,) = + Op i()\i(r)/”i)l/z}

whenxg € my forr =1,...,ki; i,1=1,2.
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Thus one can estimate x¢ ;(-) by Xo,;(-) even when «; /Ay — 00 as m — oo.
Finally, we consider estimating x;;(). We note that xiTjhi(r) is biased for high-
dimensional data. This is because xiTjiti(r) includes ||x;; — p; > which is very biased

for high-dimensional data. Now, we explain the main reason why the inner products
involve the large bias terms. We note that 1,{,.1Ali(r) = 0and P, &t;y = @;) when

ii(r) > 0 since IL Sipl,; = 0. Also, note that
{(n; — I)Xi(r)}]/zili(r) = Xo,iPn,-ﬁi(r) = Xa,iﬁi(r) when ii(r) > 0,

where X,; = X; — ;Lil,fi. Let us write that &;) = (li1¢), ... ﬁ,-,,i(r))T for all
i, r. Then, it holds that {(n; — 1)7\,-(r)}1/2izf(r)(xij — ) =l XD iy — ) =
ijor 1Xij — w4+ X0 ey i) (er — r) T (e — py), so that g llx i — w1 is
strongly biased since E(||x;; — p; ||2)/(n,- — 1) > ;. In fact, Kfl = O(n;/p) =o(1)
as m — oo for the spiked model in (6) under n;/p — 0. Hence, one should not
apply the izi(r)s (or the fl,-(,)s) to the estimation of x;; ). See Section 5.1 in Aoshima

and Yata (2018) for more details. We consider a bias-reduced estimation of x;; (). We
modify &;() as

Wiy = ity o Bijo1(r)s —ij(r)/ (i = 1)y B 1)s oos Bimp(r)

whose j-th element is —ii;;()/(n; — 1) for all i, j, r. Note that Z;”:l wijo/ni =
{(ni —2)/(n; — D}it;. Let

- (ni — DV2(X; — X o
hijoy = ! ! ~1/21 0 for alli, j, r.
(nj —2) i(r)

Then, it holds that Z’;’:l izij(r)/ni = ili(r) and

(i = Dlicr /(i = DY2hy 1 Ceij = )

i

. . i
= (xij — m) Xoi Pujtijr) = Z (uil(r) + n'lj_(r)l)(xij — 1) e — )
I=1(£)) !

when ;) > 0 from the fact that

Poitijry = @i1(r)s oo Bij—1)s O Bij1ys ooos Bimp ()T + (1 — D7 .6y L (9,

where 1, = (1,...,1,0, 1, ..., I)T whose j-th element is 0. Thus the large biased
term, |lx;; — p; %, is removed. Let

Kijiry = x];hijr) foralli, j,r. (20)
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See Section 5.1 in Aoshima and Yata (2018) for theoretical comparisons between
z(r), x h,(r) and iij(r)'

4.2 Distance-based classifier by the NR methodology

Let x:i(r) = Z;”zl Xij(ry/ni for all i, r. By combining (15) with (17), (19) and (20),
we propose the following classifier:

r=1
k2 _ 1~T ki _ B
- Fo20) {fz(r) — 7k (371 - Zflmhus)) }
r=1 =

k n ~ ~ k ns
- 2 Fiof o) 22: > i F2jmE2)m
ni(ny —1) na(ny — 1)

k1 k2
~ 5 — 1-~7 _ — -
Wa(xo) = W(xo) + E X0,1(r) {X1(r) - Ehl(’) (xz - E x2(s)h2(s)>}
s=1

2n

r=1 r=1

Then, one classifies x( into my if WA (xp) < 0 and into mp otherwise. In general, k;s
are unknown in WA (x0). See Sect. 4.3 for estimation of k;s. We call the classification
rule (21) the “transformed distance-based discriminant analysis (T-DBDA)”.

Now, we give asymptotic properties of T-DBDA. We have the following results.

Theorem 5 Assume (A-i) and (M-i). Assume also (C-i) to (C-iii) and (C-vi) to (C-viii).
Then, it holds that as m — o0

Waxo) _ (=1

iy — +op(1) whenxg € ; fori =1, 2.

For T-DBDA, we have the classification consistency (7) as m — o0.

Theorem 6 Assume (A-i) and (M-i). Assume also (C-iv) to (C-vii) and (C-ix). Then,
it holds that as m — oo

Wa(xo) — (=)' A4/2
‘Soi,A

= N(0, 1) whenxg € m; fori =1,2.

Furthermore, for T-DBDA, (13) holds as m — oo.
Remark 7 From (C-viii) or (C-ix) T-DBDA depends on the scale of p;s in the sense
that [LZ aZ1Aaki 4 fori, 1 = 1,2. Hence, we recommend that one should apply the

classifier to a mean-centered data in actual data analyses. See Sect. 5.2 for example.

In Fig. 3, as expected theoretically, we observed that e(i) for T-DBDA becomes
close to that for T-DBDA(b) when p and n are large.
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4.3 Estimation of k;s

In this section, we introduce an estimation of k; given by Aoshima and Yata (2018).
Let nj1 = [n;/2] and nj = n; — n;1. Let X;1 = [xi1, ...,x,'nil] and X;» =
[Xin;+1, ..., Xin; ] fori =1, 2. We define

Sipay = {(ni1 — Dz — DY V2(Xi1 — Xi)T (Xin — Xj) fori = 1,2,

where Y,‘l = [f”, ceey f,’[] With f,’l = Z;li] xij/nil and f,‘z = Z;;nil+] x,'j/niz.
Note that rank(S; p(1y) < n;»—1. By using the cross-data-matrix (CDM) methodology
by Yata and Aoshima (2010), we estimate A;(y by the r-th singular value, ii(r), of
Sip(1y, where Ai(1y = -+ = Ai(n,—1) = 0. Yata and Aoshima (2010, 2013) showed
that ii(r) has several consistency properties for high-dimensional non-Gaussian data.
Aoshima and Yata (2011) applied the CDM methodology to obtain an unbiased esti-
mator of tr(X7) as tr(Sip(1yS{p 1)), i = 1, 2. Note that E{tr(Sip1yS{p))} = w(Z}).

Also, note that )11.2(,) is the r-th eigenvalue of S/,'\D(D Sl-TD(l). By using the CDM method-
ology, we consider an estimation of ¥;(y as ¥;(1) = tr(SiD(l)SiTD(l)) and

r—1
Wiy = t(Sin)Sipay) — D My forr=2,..min; i =1,2. (22)

s=1

Note that @(,) > 0 w.p.l forr = 1,...,n;2, and 7;(y € (0, 1] for i[(r) > 0. Then,
Aoshima and Yata (2018) gave the following result.

LAemma 1 (Aoshima and Yata 2018) Assume (A-i) and (M-i). Then, it holds that
Yiy/Wiy =14+op(l)asm — oo forr =1, ..,k +1; i =1,2.

From (S7.1) in Appendix C of Aoshima and Yata (2018), it holds that ii(r) [higy =

1+op(l)yasm — oo forr = 1,...,k;; i = 1,2, under (A-i) and (M-i). From
Lemma 1 we claim under (A-i) and (M-1) that as m — o0

ity = M1 +op (D) forr =1, ks i = 1,2, (23)

Let 'Ei(r) = Eli(r—t—l)/@(r) (=1-— )/‘z'z(r)/&;i(”)) for all i, ». Note that 1 — ‘f,'(l) = ﬁ,‘(])
and 7;( € [0, 1) for )1,-(,) > 0. Then, Aoshima and Yata (2018) gave the following
result.

Proposition 3 (Aoshima and Yata 2018) Assume (A-i) and (M-i). It holds fori = 1,2,
that as m — o0

P(%iry < 1 —c¢;) = 1 with some fixed constant ¢, € (0, 1) forr =1, ..., k;;
.Ei(ki+]) =1+op(1).
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Table 2 Estimates of k; by I?i
for the six well-known

microarray data sets P 2 3 2 2 1 2

b4 2 2 2 2

(D-) (D)  (Ddil) (D-v)  (D-v)  (D-vi)

From Proposition 3, one may choose k; as the first integer r such that 1 — ;41 is
sufficiently small. In addition, Aoshima and Yata (2018) gave the following result for

Ti(k+1)-

Proposition 4 (Aoshima and Yata 2018) Assume (A-i) and (M-i). Assume also
)Ll.z(l)/dli(kiH) = o(n;) and )‘1'2(1(,.+1)/Wi(ki+1) = O(n;c) as m — o0 with some
fixed constant ¢ > 1/2 fori = 1, 2. It holds for i = 1, 2 that as m — oo

P(fign > 0+ G+ Dy@)™) > 1,

where y (n;) is a function such that y (n;) — 0 and nil/zy(n,-) — 00 as n; — oQ.

From Propositions 3 and 4, if one can assume the conditions in Proposition 4, one
may consider k; as the first integer r (= k,;, say) such that

Lig+enil + (r+ Dyt >1 (r>0). (24)

Then, it holds that P(km =k;) —> 1 as m — o0. Note that lII, (nig) = 0 from the fact
thatrank(S; p(1)) < n;2—1. Thus one may choose k; as k = rnln{km , njp—2}inactual
data analyses. Aoshima and Yata (2018) recommended touse y (n;) = (n; ! logn;) 172,
Hence, in this paper, we use y (n;) = (nl._1 log n)V/% in (24). If 12,- = 0 (that is, (24)
holds when r = 0) for some i, one may consider the classifier by (21) with A; = I ,.
In addition, if k; = 0 fori = 1,2, we recommend to use DBDA (the classifier by (3))
lA)ecause one may assume the NSSE model when k; = 0 fori = 1, 2. We summarized
k;s in Table 2 for the six well-known microarray data sets, (D-i) to (D-vi).

5 Performances of the new classifier for the SSE model

In this section, we discuss the performance of T"-DBDA in numerical simulations and
actual data analyses.

5.1 Simulation

We compared the performance of T-DBDA with other classifiers in complex settings.
In general, k;s are unknown in (21). Hence, we estimated k; by 12,', where 12,- is given
in Sect. 4.3. Hereafter, we describe the classification rule (21) with 12,- instead of k; as
“T-DBDA(%)”. We set y (n;) = (n; ' logn;)'/? in (24). We set p = 2°, s =6, ..., 11
pn;=0and pn, =(,...,0,1,...,1,—1..., —l)T whose last 2|'p3/5/2'| elements are
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not 0. The last [p3/3 /2] elements are —1 and the previous [p3/3 /2] elements are 1.
Note that A = p3/>{1 + o(1)} as p — 0.
First, we considered an intraclass correlation model given by

r,=d{a, +1,1hHy2.

Note that Amax(I';) = (¢ + 1)/2 and the other eigenvalues are 1/2. Let £;(p) =
B(p=1I"*)B, where B = diag[{0.5+ 1/(t + 1)}/2, ..., {0.5 + 1 /(t + 1)}'/2]. Also,
note that [Amax {£2; (0)}12/tr[{£2,(0)}*] = o(1) as t — oo for |p| < 1. We set nj =
[p'/?1, ny = 2n; and

| o o
5= o r,, o |. i=12 (25)
0 o Cigp,'(:;)(p)

where p = 0.3, p = p;) + pi2) + pi3) and (c1, c2) = (1, 1.3). We considered the
following settings:

(S-ii) We generated x;;, j = 1,2, ... (i = 1, 2) independently from N, (u;, ¥;). We
set (pi(1), p12) = ([p*1, [p'/2]) and (piqry, p12y) = 2[p*31, 2[p!*1);

(S-iii) We generated x;;, j = 1,2,... (i = 1,2) independently from z;j;) =
ijoy — 1/2Y2 (r = 1, ..., p) in which y;; (s are i.i.d. as the chi-squared
distribution with 1 degree of freedom. We set (p1(1y, p12)) = ([ p/31, [p/91)
and (p1(1y, p12) = 2[p/31,2[p/9D).

For (S-ii) and (S-iii) we note that Ay = A and A;(-) = (pi¢) + 1)/2,i,r =1, 2, for
sufficiently large p, so that (M-i) with k; = kp = 2 is met. In particular, the SSSE
model (given by (5)) holds for (S-iii). Also, we note that (A-1), (AY-i), (C-i) to (C-iii)
and (C-vi) to (C-viii) are met both for (S-ii) and (S-iii), and (AY-ii) is met for (S-ii).
However, (AY-ii) is not met for (S-iii).

Next, we considered a Gaussian mixture model whose probability density function
is given by

1< ,
fily) = glz;g(y; ity Ziw)s 1=1,2, (26)

where g(y; Kii(y), Zi(y)) is the probability density function of N (t;;(y), Xi(y)). We
set Zl(y) = Qp(0.3) and Zz(y) = .Qp(O.S). Let q1(1) = [p2/31, q2(1) = 2|—p2/3—|,
q12) = 2[p'*1 and g22) = [p'/?1. We set iy = (3'/2,...,32,0,..., 0)F
whose first g;(1) elements are 3172, Moy = o, ..., 0, 32 . 312 0, .., 0)T whose
(qi1y + 1)-th to (g; (1) + gi(2))-th elements are 312 and Rizy) = 0. We generated Yijs
J=1,2,..(G = 1,2) independently from (26). Note that E(y;;) = Z?:l Riiy/3 for
i=12 Wesetx;; =y;; — 213:1 Rii(y)/3+ p; forall i, j. Note that X'; = Var(y,;)
fori =1, 2, where

@ Springer



Distance-based classifier by data transformation 493

3
1
Var(y;;) = 5 E (Kircy)y = Bir ) (Riry) — Mil/(y))T + Zi(y)-
1<l

We note that A;(1) = (2/3)q;(1y{1+o(1)} and A;2) = (1/2)qioy{1+0o(1)}asp — oo
fori = 1, 2, sothat (M-i) with k| = k» = 2ismet. See Corollary 2 in Yata and Aoshima
(2015) for the details of the eigenvalues. Also, note that A4 = A for sufficiently large
p and (A-i) is not met. We considered the following settings:

(S-iv) ny = [p*°] and nr = 2ny;
S-v) n; = (p3/51 and ny = 2n;.

We note that (AY-1), (AY-ii), (C-i) to (C-iii) and (C-vi) to (C-viii) are met both for
(S-iv) and (S-v).

We considered DBDA (the classifier (3)), T-DBDA (the classifier (21)) and T-
DBDA(*) (the classifier (21) with Ig,' instead of k;). We also considered the following
three classifiers: Diagonal quadratic discriminant analysis (DQDA) given by Dudoit
et al. (2002), Geometrical quadratic discriminant analysis (GQDA) given by Aoshima
and Yata (2011, 2014), and Support vector machine (SVM). The rule of GQDA is
given by (6) in Aoshima and Yata (2014). SVM is the hard-margin linear rule. Similar
to Fig. 3, we calculated the error rates, e(1) and e(2), by 2000 replications. Also, we
calculated the average error rate, e = {e(1) + e(2)}/2. Their standard deviations are
less than 0.011. In Fig. 4, we plotted the results for (S-ii) to (S-v).

We observed that GQDA gives a better performance than DBDA, DQDA and SVM
for (S-ii). This is probably because tr(X1) # tr(X,). DQDA performs better than
DBDA, GQDA and SVM for (S-v). This is probably because n;s are relatively large
and the diagonal elements of the two covariance matrices are not common. See Sections
2 to 4 in Aoshima and Yata (2015b) for the details of DQDA and GQDA. For SVM,
e(1) and e(2) were unbalanced. The main reason must be due to a bias term in SVM.
See Section 2 in Nakayama et al. (2017) for the details. On the other hand, DBDA
gave a moderate performance for (S-iii). This is probably because DBDA is quite
robust for non-Gaussian HDLSS data. See Aoshima and Yata (2014) for the details.
On the whole, T-DBDA and T-DBDA(x) gave adequate performances. In particular,
T-DBDA(x) (or T-DBDA) gave a much better performance than the other classifiers
both for (S-iii), in which (5) holds, and (S-iv), in which #n;s are relatively small. This
is probably due to the sufficient conditions of the consistency properties. See Sect. 3.3
for the details. The performances of T-DBDA and T-DBDA(x) became quite similar
to each other in almost all the cases. Hence, we recommend to use “the classifier (21)
with 12,- instead of k;”” when the SSE condition (4) or the SSSE condition (5) holds.

5.2 Example

In this section, we check the performance of T-DBDA () by using the six well-known
microarray data sets in Table 1.

First, we used (D-v): myeloma data (p = 12625). We defined n; = 36 samples
from 71 and ny = 136 (the first 136) samples from > as the training data, and the
last (the 137-th) sample of 7> as the test data. We centered each sample by x;; —
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(8-iil): 245(r) = Wij(r) — 1)/2Y/2 (r = 1,...,p) in which Ysj(r)s are i.i.d. as the chi-squared
distribution with 1 degree of freedom, (A1(1),A1(2)) = (p/6,p/18) and (Ag(1),A2(2)) =~
(p/3,p/9).

e(1) €(2) e
04f .- 04} 04f DQDA
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oeca s | GQDA ” . T-DBDA
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6 7 8 9 10 11
(S-iv): The mixture model given by (26) and (n1,n2) = ([p?/°], 2[p?/?]).

(2) 8
- DEDA - DBDA
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Y TEElTee +- T-DBDA(* )
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(S-v): The mixture model given by (26) and (ny,n2) = ([p3/°], 2[p3/5]).

Fig.4 The left panel displays e(1), the middle panel displays e(2) and the right panel displays e. The error
rates of the classifiers, DBDA, T-DBDA, T-DBDA(x), DQDA, GQDA, SVM. In the left panels, e(1)s for
DQDA are not described because the error rates were too high

@ Springer



Distance-based classifier by data transformation 495

(i) X5 i)/ (ny 4 no) forall i, j, and xo — (37 2y 30 %irj)/ (1 + n2),
so that Ziz:] 27’21 xij = 0. We set y(n;) = (nf1 logn;)'/? in (24). Let %) =
f,'(r){l + ry(n;)} for all i, r. We calculated that (f](l), 51(2)) = (0.943, 1.046) and
(F21), T22)» 723)) = (0.878,0.986, 1.168), so that k; = 1 and k» = 2. Thus, we
chose k1 = 1 and k» = 2. We calculated that W4 (xo) = 305.439, so that we classified
X into > (the true class).

Similarly, we checked the accuracy of T-DBDA(x) by the leave-one-out cross-
validation (LOOCYV) for (D-i) to (D-vi). Also, we checked the accuracy of the
classifiers, DBDA, DQDA, GQDA, SVM, by the LOOCYV for (D-i) to (D-vi). In
addition, we checked the accuracy of the well-known classifiers, Diagonal linear
discriminant analysis (DLDA) given by Dudoit et al. (2002) and distance weighted
discrimination (DWD) given by Marron et al. (2007). For DWD, we calculated the
normal vector by the SOCP solver in Marron et al. (2007) and set the intercept term
as 0 since we used the mean-centered data.

We summarized misclassification rates, e(1), ¢(2) and e = {e(1) + e(2)}/2, in
Table 3.

We observed that T-DBDA(x) gives adequate performances. In particular, the new
classifier gave a much better performance than the other classifiers (except SVM) for
(D-iv). This is probably because (D-iv) is close to the SSSE asymptotic domain (5). See
Table 1 or Fig. 1. The other classifiers were probably affected by the strongly spiked
eigenvalues directly. On the other hand, the new classifier is not directly affected by
such eigenvalues. See Theorems 3 and 5 for the details. This is the reason why the
new classifier gave a good performance for (D-iv). On the other hand, (D-i) is close
to the SSSE asymptotic domain (5). However, the several classifiers gave adequate
performances for (D-i). This is probably because n;s are relativity large compared to
p-

6 Proofs
6.1 Proof of Theorem 3
We note that for i,/ = 1,2; i’ #1i

(X asx X a) = {0( X a X ) F20(X; a X aA)+i( X Ap X A A /4. (27)

From the fact that tr(X; Ay Z; s Ai)) = (Z}* A Z; 4 Ay 2)/%) > 0 (i’ # i), under
(C-ii), it holds that tr(ZiA)/(n,-AZ‘) — OQasm — oo fori = 1,2. Thus we claim
that 82, , /A% = o(1) for i = 1, 2, under (C-ii). Note that for i = 1,2,

A2 a AL /0 < 1] AT S idmax (Z1,4) /1
1/2 1/2
= (I A2 i /) Cuggany/m)®), 1=1,2; and
A Z aAopi| < {EZo ar) T A2 Z0 aA 2w} V2, i #i (28)
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Table 3 Error rates of the classifiers by the LOOCV for samples from (D-i) to (D-vi)

Classifier T-DBDA(x) DBDA DLDA DQDA GQDA SVM DWD

Error rates

m1: 104 samples and 7r5: 113 samples in (D-i)

e] 0.0 0.183 0.163 0.0 0.0 0.0 0.0
e) 0.009 0.009 0.009 0.018 0.044 0.0 0.009
e 0.004 0.096 0.086 0.009 0.022 0.0 0.004
71: 40 samples and mp: 22 samples in (D-ii)

e 0.15 0.15 0.15 0.15 0.15 0.15 0.15
) 0.136 0.136 0.136 0.182 0.136 0.227 0.091
e 0.143 0.143 0.143 0.166 0.143 0.189 0.12
1 2 111 samples and mp : 57 samples in (D-iii)

e] 0.198 0.243 0.162 0.216 0.198 0.135 0.243
) 0.281 0.316 0.368 0.456 0.404 0.439 0.246
e 0.239 0.28 0.265 0.336 0.301 0.287 0.244
71 : 58 samples and 75 : 19 samples in (D-iv)

eq 0.034 0.172 0.19 0.155 0.172 0.017 0.224
) 0.0 0.158 0.211 0.421 0.158 0.0 0.0

e 0.017 0.165 0.2 0.288 0.165 0.009 0.112
1 : 36 samples and 5 : 137 samples in (D-v)

e] 0.25 0.278 0.528 0.639 0.278 0.75 0.222
) 0.197 0.292 0.219 0.109 0.299 0.058 0.365
e 0.224 0.285 0.373 0.374 0.289 0.404 0.294
1 : 84 samples and w5 : 44 samples in (D-vi)

ey 0.143 0.107 0.06 0.083 0.143 0.06 0.107
) 0.182 0.25 0.318 0.227 0.227 0.25 0.205
e 0.162 0.179 0.189 0.155 0.185 0.155 0.156

Thus by noting that A;,41) = o{tr(Z%A)l/z} under (M-i) and 8§i’A/A124 = o(1) under
(C-ii), we claim that 67 , /A% = o(1) for i = 1,2, under (M-i), (C-i) to (C-iii). From
(12) and Chebyshev’s inequality, we can conclude the results of Theorem 3. O

6.2 Proof of Corollary 1

By noting that tr(X; 4+ X1,4) < {tr(X7 Ote(Z7 )}/ 2 fori, I = 1,2, when A} = Ay,
the result is obtained straightforwardly from Theorem 3. O

6.3 Proof of Theorem 4

We first consider the case when xo € my. Let wja = {tr(X; axX;4)/n; +
tr(X; 4« Xir a)/ni}' /% fori = 1,2; i’ # i. Then, from (27), under (C-iv), we have
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that
do1,4 = w1,4{1 +o(1)} (29)
and 212=1 tr(EiA)/nl = 0(551,14) as m — oo. From (27), we note that

gan/n)? = ol{te(E} )/} 7?1 = 0(So1,4) for I = 1,2, under (M-i) and (C-
iv). Thus from (28) it holds that fori =1, 2,

81,4 = do1,4{1 + 0o(1)} (30)

under (M-i), (C-iv) and (C-v). By combining (29) and (30), under (M-i), (C-iv) and
(C-v), we have that 61 4 = w1 a{l + 0o(1)} and

A
Wa(xo) + 7“ = (x0— 1)  A{ @24 — o 4) — F1.a — i1 )} + 0p(@1.4).
31)

Let us write that

vj=—(xo—m) Acxija — w2/ (moia), =1, .0

Un4j = (k0 — )T Ax(x2j 4 — o p)/(m2wia), j=1,...n

Note,thatz"'+"2 E(v}) = land Z’“*”z = (o= T Ad®2 A~ Mo )~ (X1 a—
iy 4)}/ w1, 4. Then, it holds that E(v]|vj,1, .y v1) =0for j =2,...,n1 +ny. We
consider applying the martingale central limit theorem given by McLeish (1974). In
a way similar to the equations (23) and (24) in Aoshima and Yata (2014), we can
evaluate that under (A-i)

;o) E@}) = O[te(Z1 44 Z1;.4)> + tr{(Z1,4+ Z1;,4)*}] and (32)
(nljnlj,)zw?E(vJZ-vjz-,)
= (X1 ax 21, DU(Z 1 ax 21 4) + O{(Z1 a5 21 420,45 21;,.4))
+ 0[{tf(El,A*21_,,A21,A*21j,A)tr(21,A*21j,,AEl,A*El_,/,A)}l/Z] (33)

for j # j/, where [; = 1for j e[l,...,ni]landl; =2for j € [n +1,...,n1 +n2].
For any 7 > 0 we note that Z"H'nz E{v?l(vjz > 1)) < Z"“L"z E(v4)/r from
Chebyshev’s inequality and Schwarz s inequality, where I (-) is the 1ndlcator function.
Also, note that tr{(Zl,A*El,A)z} < tr(Zl,A*Zl,A)2 for [ = 1, 2. Then, from (32),
under (A-i), it holds that for Lindeberg’s condition

4

ni+ny 27,3 27,3
tr(X X + tr( X )
Z E{v%l(v% =) 0|: (X146 21,4)" /1y (1,44 22,4) /n2i| o(l)
' ’ @1 A

j=1
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for any T > 0. Note that for [, !’ = 1, 2,

1/2 1/2 1/2
tr( X4+ 21 A2 14 2, 4) = tr{(Zl A*Zl Azl/A*)(ZL/A*El’,A21,/A*)}

1/2 1/2 1/2
< a2 3, Za 2V 0wV 0 4210

= o{tr(Xy As X1 A)(X 1 ax X1 4)}

under (C-v), sothat (ny;n1,) >} E(3v3) = (Z1 4 X1, DU(Z1 4 1, ) {1+0(1)
for j # j'. Hence, by using Chebyshev’s inequality, from (32) and (33), under (A-i)
and (C-v), it holds that for any 7 > 0

s E[ 050 0% — E@D}? - E03))]

J.Jj'=1

2 : —
DIUEEESE fz =0
j=1

so that Z”l tm 2 = 1+op(1). Hence, by using the martingale central limit theorem,

we obtain that Z"‘+"2 v; = N(0,1) under (A-i) and (C-v). Thus from (31) we
conclude the result When xo € m1. Whenx( € mp, we can conclude the result similarly.
The proof is completed. O

6.4 Proof of Corollary 2

2 1/2
When Ay = A, we note that A max(E,C‘*Z ZZQ*) < Aitk+1) Mk +1) and
tr(X; ax X 4) = tr(X; a2, A) for i,/ = 1, 2. On the other hand, When Al = Ay,
it holds that ;LAZ' /,AuA/(n,/Sm 4) =o(l)asm — oofori =1,2; i’ # i, under

whZiapa/©Ok ) =o()asm — coand (X7 4)/u(X3 ) € (0, oo) as p — 00.
Hence, from Theorem 4 we can conclude the results. |

6.5 Proof of Proposition 2
We assume (A-i) and (M-i). Let #i(r) = (Zi1(r)s -o» Zin; )/ (i — DV? and ity =
;) ||_1u,-(r) for all i, j. Then, from (S6.1) to (S6.3) and (S6.5) in Appendix B of

Aoshima and Yata (2018), we can claim that asm — oo fori =1, 2,

~ _ —1/2
Ji /Moy = i P+ 0p(ni ) =1+ 0pn; %)

and @] ity =1+ Op(n;’') forr =1, ... k; (34)
. —1,2
uiT(s)ui(r) = Op(n / Xi(s)/ir))

and ﬁiT(r)u,-(s) = OP(nfl/z) forr <s <k;. (35)

From (34) there exists a unit random vector &,y such that & iT(r)C iy = 0 and

i(r

itiry = (1+ Op(n; Witigry + £y x Op(n; %) (36)
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forr = 1,...k;; i = 1,2. We note that 174,y = 0 and P, #;,) = @;(-) when
)A»i(,) > ( since l,{’_ Sipl,, = 0. Also, when )A»i(,) > 0, note that

. Xi = AT Poitiir X0y il ioul i

hiy = = = ~173 ,
{0 = Dign}'7? bal

so that x] hiy = 37, )»il(/sz)xo,,-(s)u?(s)ﬁi(r)/Xl.l(/rz). Here, we claim that when x( €
m, l=1,2,

2

p 1/2
E ( 5= k+1)‘z(s)x01(3)”l(s)”t(r)>

e

0 {tr(zzz,-,A> + ] Ziam } ,
i(r)

nidi(r)

2
Zs —k;+1 z(v)xot(s)uz(s) _0 tr(zlzi,A)+ﬂ[T£i,AlLl
L172 = v
l(r) i(r)

forr =1,...,k;; i =1, 2. Then, from (34) and (36), it holds that when xg € 77, [ =
1,2,

’ A 172 X u IDN TZ" 1/2
s=ki+1 M () X0, () Wi () Bi () tr(X X 4) + 1y Xiam
~1/2 =Op ’y (37)
)”i(r) niAi(r)
for r = 1,...,ki; i = 1,2, from the fact that ZS ki1 ,(/S)XO,i(s)”,-T(s)Ci(r)
1/2 1/2 . .
/kl(/r) < ||)Ll(r)/ —ki+1 )»l.(/s)xo,,-(s)u,-<s)|| “ [1€;¢ |l and Markov’s inequality. Note

that E()c0 l(s)) = htT(v)(El + ﬂlﬂlT)hi(v) when xg € 1; (I = 1, 2) for all i, s, so that
x0.i(s) = Opl{hl,(Z1 + myp] hics)}'/*]. Then, from (34) and (35), we have that
whenxygemn;, [ =1,2,

ki 1/2 T ~
2t M 0. i) Riry
2172
*itr)

1/2

i )\i(s)h,'T(s)(zl + ] Hhis)

3 (38)
= mimax{As o /Aig), Aign}

= X0,i(r) + Op

forr =1,...,k;; i =1,2.Bycombining (37) and (38), we can conclude the second
result of Proposition 2. For the first result, from Proposition 1 and the second result,
it concludes the result. O
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6.6 Proofs of Theorems 5 and 6

Assume (A-i) and (M-i). We first consider the proof of Theorem 5. Let v,y =
tr(El-z)/(nl.z)»i(,)) +;LiTZi;Li/(niki(,)) forr =1,...,k;; i =1, 2. Then, from Lemma
B.1 and (S6.27) in Appendix B of Aoshima and Yata (2018), we claim that as m — oo

= - 1/2 -
Xi(ry) = Xi() + OP(lﬂi(/,)) and X;) = pi¢) + Op {()»i(r)/ni)l/z} (39)

forr =1, ...,k;; i =1, 2. Note that under (C-vii)

Aoy F il 4 Ziat A
Yigy = 0 ( - ;Z)CA _— forr=1,..k;i=12. (40)
i)

Note that tr(X; 4 X;) = w(X14X24) + Oigrira)) = Oigyrirr)) and

ks . . .
RLZiaki = O] Ziakpa + L1 hiaohi) for i = 1,20 i # i
from the facts that tr(X1 4 X2 ) < {tr(Z} A)tr(£2 ON2 = O k) and

1l g Ziahi i) = O] 4 Ziakia +xz<k>u 7)) fors =1, .., kir. From (37)
and (38) we have that when xg € 7, [ =1,

)\,'2(,-) + MZ:AZi,Aﬂl,A
nidi(r)

12
X0,i(r) = X0,i¢r) + OP ( ) + Op{(ay/ni)' )

and xg ;) = OP()”z(r)) forr=1,...ki;i=1,2 41

under (C-vi) and (C-vii). Then, from (39) to (41), under (C-vi) to (C-viii), we have
that whenxg e m;, [ =1, 2,

R0.inEir) — X0.im %) = Fo.i¢) — X0.i))Xier) + X0.i) Figr) — Xir)
—op(Ap) forr=1,. k:i=1,2. (42)

On the other hand, from (S6.29) in Appendix B of Aoshima and Yata (2018) we claim
thatforr =1,...,kjands =1, ...,k

hl(r)hz(é) = h{, ko) + Op (), hl(r)(h2(é) — haw) = Op(n; %)

hz(é)(hl(r) —hipy) =Op(n; 12y
and (hyy — b)) T (o) — ha) = Op{(nina) =%}, (43)

s

Note that x,(r)hl(r) — x,(r)hl(r) = xl(r)(hl(r) — ,(r)) — (xl(,) —xl(r))h,(r) forall i, r.
Then, from (39) and (43), we have that forr = 1, ..., k;; i = 1,2; i’ #1i,
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ki
~T _ — -
hi Z(xi/(s)hif(s) — Xirnsyhires))

s=1
1/2 1/2 1/2 1/2
Z(w o (o hivisy + md ) + 002 g+ iy /) | 44)

Similar to the proof of Proposition 2 and (41), under (C-vi) and (C-vii), we can claim
thatforr = 1,..,k;; i =1,2; i’ #1,

12
)\l'z(r)/nmin + ’L,?;’Azi,A’Li/,A )

~T _ T —
Bl ( niki(r)

+ Oplihiqy/(min2)}' 1. (45)

Note that 3+ ((h] oy hir)? [ dirs) = O(1 /i) under (C-vi) for r =1, ... kis i =
1,2; i’ # i.From (40), (44) and (45) we have that forr = 1, ..., k;; i = 1,2; i’ # i,

Ky
l(r) (xz' - sz'mh '(s)) R, (xi’ - Zfi'(s)hi%s))

s=1
1/2
0 ’L,‘Y;,Azi,A”'i’,A + ’L,?:’Azi’,A”'i’,A n }\.j(l) + )\i’(l) n }“2/(1)
=0p -
1 di(r) min{A; (), Rminkir &, )} n2. n2. ki)

(46)

under (C-vi) and (C-vii). Note thathiT(r)(fi Z’j" ' im)h 1(5)) = Op{(higry /nin)'/?)
under (C-vi) and (C-vii) for r = 1, ..., k;; i = 1,2; i’ # i. Then, similar to (42),
from (41) and (46), we have that

~ ~T _ ~—= ~ — ~
Ro.imhiy [ i =Y Xowhins | = x0imhlp) | ¥ = Zinwhic

=o0p(Ay) forr=1,.. ki i=1,2;i"#i (47)

under (C-vi) to (C-viii). Also, from (S6.28) in Appendix B of Aoshima and Yata
(2018), we claim that forr =1, ..., k;; i = 1,2,

ni ~ ~
Xijr)Xij () — Xij)Xij'er) V2012 510217
; ning — 1) = 0p {WiS Wi + 3G/ + e |

@ Springer



502 M. Aoshima, K. Yata

Note that under (C-vii) and (C-viii)

ki

12, 12 .12, 1)2
Z wi(/r)(wi(/r) + )‘i(/r)/”i + Wir)
r=1

_ Ai(DAiky) T+ IL,']:AZi,AILi,A N ()»,-2(1) + nilll,']:AEi,Aﬂi,A)l/z — op(An)
i Nk n?

l

(48)

for i = 1,2. By combining (42), (47) and (48), it holds that WA (x0) = Wu(xg) +
op(Aa) when xg € 7, i = 1,2 under (C-vi) to (C-viii). It concludes the results of
Theorem 5.

Similar to the proof of Theorem 5, it holds that VT/A (x0) = Wa(x0) +0p(8omin,A)
when xg € m;, i = 1,2 under (C-vi), (C-vii) and (C-ix). It concludes the results of
Theorem 6. O

Acknowledgements We would like to thank two anonymous referees for their constructive comments.

References

Ahn,J.,Marron, J. S. (2010). The maximal data piling direction for discrimination. Biometrika, 97,254-259.

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., et al. (1999). Broad patterns of gene
expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proceedings of the National Academy of Sciences of the United States of America, 96, 6745—
6750.

Aoshima, M., Yata, K. (2011). Two-stage procedures for high-dimensional data. Sequential Analysis (Edi-
tor’s special invited paper), 30, 356-399.

Aoshima, M., Yata, K. (2014). A distance-based, misclassification rate adjusted classifier for multiclass,
high-dimensional data. Annals of the Institute of Statistical Mathematics, 66, 983-1010.

Aoshima, M., Yata, K. (2015a). Geometric classifier for multiclass, high-dimensional data. Sequential
Analysis, 34, 279-294.

Aoshima, M., Yata, K. (2015b). High-dimensional quadratic classifiers in non-sparse settings. arXiv preprint.
arXiv:1503.04549.

Aoshima, M., Yata, K. (2018). Two-sample tests for high-dimension, strongly spiked eigenvalue models.
Statistica Sinica, 28, 43-62.

Bai, Z., Saranadasa, H. (1996). Effect of high dimension: By an example of a two sample problem. Statistica
Sinica, 6,311-329.

Bickel, P. J., Levina, E. (2004). Some theory for Fisher’s linear discriminant function, “naive Bayes”, and
some alternatives when there are many more variables than observations. Bernoulli, 10, 989—-1010.

Cai, T. T., Liu, W. (2011). A direct estimation approach to sparse linear discriminant analysis. Journal of
the American Statistical Association, 106, 1566-1577.

Chan, Y.-B., Hall, P. (2009). Scale adjustments for classifiers in high-dimensional, low sample size settings.
Biometrika, 96, 469-478.

Chen, S. X., Qin, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set
testing. The Annals of Statistics, 38, 808-835.

Christensen, B. C., Houseman, E. A., Marsit, C. J., Zheng, S., Wrensch, M. R., Wiemels, J. L., et al. (2009).
Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island
context. PLoS Genetics, 5, e1000602.

Dudoit, S., Fridlyand, J., Speed, T. P. (2002). Comparison of discrimination methods for the classification
of tumors using gene expression data. Journal of the American Statistical Association, 97, 77-87.

@ Springer


http://arxiv.org/abs/1503.04549

Distance-based classifier by data transformation 503

Fan, J., Fan, Y. (2008). High-dimensional classification using features annealed independence rules. The
Annals of Statistics, 36, 2605-2637.

Glaab, E., Bacardit, J., Garibaldi, J. M., Krasnogor, N. (2012). Using rule-based machine learning for
candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS
ONE, 7, 39932.

Gravier, E., Pierron, G., Vincent-Salomon, A., Gruel, N., Raynal, V., Savignoni, A., etal. (2010). A prognos-
tic DNA signature for T1T2 node-negative breast cancer patients. Genes, Chromosomes and Cancer,
49, 1125-1134.

Hall, P., Marron, J. S., Neeman, A. (2005). Geometric representation of high dimension, low sample size
data. Journal of the Royal Statistical Society, Series B, 67, 427-444.

Hall, P., Pittelkow, Y., Ghosh, M. (2008). Theoretical measures of relative performance of classifiers for
high dimensional data with small sample sizes. Journal of the Royal Statistical Society, Series B, 70,
159-173.

Jeffery, 1. B., Higgins, D. G., Culhane, A. C. (2006). Comparison and evaluation of methods for generating
differentially expressed gene lists from microarray data. BMC Bioinformatics, 7, 359.

Li, Q., Shao, J. (2015). Sparse quadratic discriminant analysis for high dimensional data. Statistica Sinica,
25,457-473.

Marron, J. S., Todd, M. J., Ahn, J. (2007). Distance-weighted discrimination. Journal of the American
Statistical Association, 102, 1267-1271.

McLeish, D. L. (1974). Dependent central limit theorems and invariance principles. The Annals of Proba-
bility, 2, 620-628.

Naderi, A., Teschendorff, A. E., Barbosa-Morais, N. L., Pinder, S. E., Green, A. R., Powe, D. G, et al.
(2007). A gene-expression signature to predict survival in breast cancer across independent data sets.
Oncogene, 26, 1507-1516.

Nakayama, Y., Yata, K., Aoshima, M. (2017). Support vector machine and its bias correction in high-
dimension, low-sample-size settings. Journal of Statistical Planning and Inference, 191, 88—100.

Ramey J. A. (2016). Datamicroarray: collection of data sets for classification. https://github.com/ramhiser/
datamicroarray.

Shao, J., Wang, Y., Deng, X., Wang, S. (2011). Sparse linear discriminant analysis by thresholding for high
dimensional data. The Annals of Statistics, 39, 1241-1265.

Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P, Kutok, J. L., Aguiar, R. C., et al. (2002). Diffuse large
B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning.
Nature Medicine, 8, 68-74.

Tian, E., Zhan, F.,, Walker, R., Rasmussen, E., Ma, Y., Barlogie, B., et al. (2003). The role of the Wnt-
signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. The New
England Journal of Medicine, 349, 2483-2494.

Watanabe, H., Hyodo, M., Seo, T., Pavlenko, T. (2015). Asymptotic properties of the misclassification rates
for Euclidean distance discriminant rule in high-dimensional data. Journal of Multivariate Analysis,
140, 234-244.

Yata, K., Aoshima, M. (2010). Effective PCA for high-dimension, low-sample-size data with singular value
decomposition of cross data matrix. Journal of Multivariate Analysis, 101, 2060-2077.

Yata, K., Aoshima, M. (2012). Effective PCA for high-dimension, low-sample-size data with noise reduction
via geometric representations. Journal of Multivariate Analysis, 105, 193-215.

Yata, K., Aoshima, M. (2013). PCA consistency for the power spiked model in high-dimensional settings.
Journal of Multivariate Analysis, 122, 334-354.

Yata, K., Aoshima, M. (2015). Principal component analysis based clustering for high-dimension, low-
sample-size data. arXiv preprint. arXiv:1503.04525.

@ Springer


https://github.com/ramhiser/datamicroarray
https://github.com/ramhiser/datamicroarray
http://arxiv.org/abs/1503.04525

	Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models
	Abstract
	1 Introduction
	2 Distance-based classifier for high-dimensional data
	3 Distance-based classifier using eigenstructures
	3.1 Data transformation
	3.2 Consistency of the classifier (11)
	3.3 Asymptotic normality of the classifier (11)

	4 Distance-based classifier by estimating eigenstructures
	4.1 Estimation of hi(r)s, x0,i(r)s and xij(r)s
	4.2 Distance-based classifier by the NR methodology
	4.3 Estimation of kis

	5 Performances of the new classifier for the SSE model
	5.1 Simulation
	5.2 Example

	6 Proofs
	6.1 Proof of Theorem 3
	6.2 Proof of Corollary 1
	6.3 Proof of Theorem 4
	6.4 Proof of Corollary 2
	6.5 Proof of Proposition 2
	6.6 Proofs of Theorems 5 and 6

	Acknowledgements
	References




