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Abstract In this paper, we simultaneously study variable selection and estimation
problems for sparse ultra-high dimensional partially linear varying coefficient mod-
els, where the number of variables in linear part can grow much faster than the sample
size while many coefficients are zeros and the dimension of nonparametric part is
fixed. We apply the B-spline basis to approximate each coefficient function. First, we
demonstrate the convergence rates as well as asymptotic normality of the linear coef-
ficients for the oracle estimator when the nonzero components are known in advance.
Then,we propose a nonconvex penalized estimator and derive its oracle property under
mild conditions. Furthermore, we address issues of numerical implementation and of
data adaptive choice of the tuning parameters. Some Monte Carlo simulations and
an application to a breast cancer data set are provided to corroborate our theoretical
findings in finite samples.

Keywords High dimensionality · Partially linear varying coefficient model ·Variable
selection · Nonconvex penalty · Oracle property
1 Introduction

Due to recent rapid development in technology for data acquisition and storage, high
dimensional data sets are especially commonplace in many scientific fields. Examples
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abound from signal processing (Lustig et al. 2008) to genomics (van’t Veer et al.
2002), collaborative filtering (Koren et al. 2009) and so on. A key feature is that
the number of unknown parameters is comparable or even exceeds the sample size.
Under the sparsity assumption of the high dimensional parameter vector, a widely used
approach is to optimize a suitably penalized loss function (or negative log-likelihood).
These regularized penalty functions include Lasso (Tibshirani 1996), SCAD (Fan and
Li 2001), MCP (Zhang 2010) and among others. Such methods have been proved to
possess high computational efficiency as well as desirable statistical properties in a
variety of settings. Readers are referred to the review article in Fan and Lv (2010) and
the monograph in Bühlmann and Van de Geer (2011) for a general survey.

To relax the linearity assumption in the classical linearmodel,many semiparametric
models, which retain the flexibility of nonparametric models while avoiding the “curse
of dimensionality,” have been proposed and studied (Bickel et al. 1998). A leading
example of semiparametric models is the partially linear varying coefficient model:

Yi = x�
i β0 + z�

i α0(ui ) + εi , i = 1, . . . , n, (1)

where xi = (xi1, . . . , xip)
� is a p-dimensional vector of covariates, β0 is a p-

dimensional vector of unknown regression parameters, zi = (zi1, . . . , zid)� is of
dimension d and α0(·) = (α01(·), . . . , α0d(·))� is a d-dimensional vector of unknown
regression functions, index variable ui ∈ [0, 1] for simplicity, and error εi is indepen-
dent of (xi , zi , ui )with mean zero and finite variance σ 2 < ∞. Throughout the paper,
we assume that {(Yi , xi , zi , ui ), 1 ≤ i ≤ n} is an independent identically distributed
random sample.

Model (1) includesmany commonly used parametric, semiparametric and nonpara-
metricmodels as its special cases. For instances, a constant vector of α0(·) corresponds
to the classical linear model; β0 = 0 leads to the varying coefficient model; when
d = 1, zi ≡ 1, model (1) reduces to the partially linear model; and when zi is a vector
of ones, β0 = 0, this model becomes the well-known additive model. Model (1) has
gained much attention in the recent literature. Fan and Huang (2005) and Ahmad et al.
(2005) proposed the profile least squares method and nonparametric series estimation
procedure, respectively. They established the asymptotic properties of the resulting
estimators and showed that their estimators are efficient under some regularity con-
ditions. You and Chen (2006a), Zhou and Liang (2009) and Feng and Xue (2014)
extended the work in Fan and Huang (2005) to the case where all or some of the
linear covariates xi are subject to error. Empirical likelihood method had been applied
to construct the confidence regions of unknown parameter of interest for model (1),
such as Huang and Zhang (2009) and You and Zhou (2006b). Li et al. (2011a) pro-
posed a profile type smoothed score function to draw the statistical inference for the
parameters of interest without using under-smoothing. Sun and Lin (2014) developed
a robust estimation procedure via local rank technique. For variable selection, exam-
ples include but are not limited to Kai et al. (2011), Li and Liang (2008), Zhao and
Xue (2009) and Zhao et al. (2014).

Obviously, the above studies merely focused on statistical procedures of the finite
dimensional case of linear part. Important progress in the high dimensional semipara-
metric models has been recently made by Xie and Huang (2009) (still assumes p < n)
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for partially linear models, Huang et al. (2010) for additive models, Wei et al. (2011)
for varying coefficient models, Wei (2012) for partially linear additive models. For
model (1), Li et al. (2012) employed the empirical likelihood method to construct con-
fidence regions of the unknown parameter. Li et al. (2011b) studied the properties of
estimation based on B-spline technology. Although Li et al. (2017) studied variables
screening problem for ultra-high dimensional setting, to the best of our knowledge, no
work in the literature has been done on simultaneous variable selection and estimation.
This might motivate us to consider the present work.

In this paper, we focus on sparse ultra-high dimensional partially linear varying
coefficient models. We also allow p → ∞ as n → ∞ and denote it by pn , but d is a
fixed and finite integer. Our primary interest is to investigate the variable selection for
linear part and estimation in ultra-high dimensional setting, i.e., pn � n. In particular,
pn can be chosen as an exponential order of the sample size n. Thus, this work fulfills
an important gap in the existing literature on semiparametric models by developing
variable selection methodology that allows ultra-high dimensional parameter vector.

We approximate the regression functions using B-spline basis, which is more
computationally convenient and accurate than other bases. We first demonstrate the
convergence rates as well as asymptotic normality of the linear coefficients for the
oracle estimator, that is, the one obtained when the nonzero components are known
in advance. Of course, it is infeasible in practice for unknown true active set. It is
worth pointing out that our asymptotic framework allows the number of parameters
grows with the sample size. This resonates with the perspective that a more complex
statistical model can be fit when more data are collected. Next, we propose a non-
convex penalized estimator for simultaneous variable selection in the linear part and
estimation when pn is of an exponential order of the sample size n and the model has a
sparse structure. With a proper choice of the regularization parameters and the penalty
function, such as the popular SCAD, we derive the oracle property of the proposed
estimator under relaxed conditions. This indicates that the penalized estimators work
as well as if the subset of true nonzero coefficients was already known. Lastly, we
address issues of practical implementation of the proposed method.

The paper proceeds as follows. In Sect. 2, we first present the asymptotic properties
of oracle estimators, then introduce a nonconvex penalized method for simultaneous
variable selection and estimation, and provide its oracle property. Section 3 first dis-
cusses the numerical implementation. This is followed by the simulation experiments
and a real data analysis which demonstrate the validity of the proposed procedure.
Section 4 concludes the paper with a discussion of related issues. All technical proofs
are provided in “Appendix.”

2 Methodology and asymptotic properties

For high dimensional statistical inference, it is often assumed that the true coefficient
β0 = (β01, . . . , β0pn )

� in model (1) is qn-sparse vector. That is, let A = {1 ≤ j ≤
pn : β0 j 	= 0} be the index set of nonzero coefficients, then its cardinality |A| = qn .
The set A is unknown and will be estimated. Our asymptotic framework also allows
qn → ∞ as n → ∞, which is of independent interests. Without loss of generality,
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we assume that the first qn components of β0 are nonzero and the remaining pn − qn

components are zero.Hence,we canwriteβ0 = (β�
0I , 0

�
pn−qn

)�, where 0pn−qn denotes
a (pn − qn)-vector of zeros. Let X = (x1, . . . , xn)� be the n × pn matrix of linear
covariates and write X A to denote the submatrix consisting of the first qn columns of
X corresponding to the active covariates. For technical simplicity, we assume that xi

and zi are zero mean.

2.1 Oracle estimator

We use a linear combination of B-spline basis functions to approximate the unknown
coefficient function α0l(t) for l = 1, . . . , d. First, one definition is provided to define
the class of functions that can be estimated with B-splines. Define Hr as the collec-
tion of functions h(·) on [0, 1] whose 
r�-th derivative h(
r�)(·) satisfies the Hölder
condition of order r − 
r�, where 
r� denotes the largest integer strictly smaller
than r . That is, for each h(·) ∈ Hr , there exists some positive constant c such that
|h(
r�)(u1) − h(
r�)(u2)| ≤ c|u1 − u2|r−
r�, for any 0 ≤ u1, u2 ≤ 1.

Let π(u) = (b1(u), . . . , bkn+h̄(u))� be a vector of normalized B-spline basis func-
tions of order h̄ with kn quasi-uniform internal knots on [0, 1]. Under Condition (C4)
below, for l = 1, . . . , d, α0l(t) can be approximated using a linear combination
of π(u). Readers are referred to Boor (2001) for details of the B-spline construc-
tion, and the result that there exists γ0l ∈ R

Kn , where Kn = kn + h̄, such that
supu |π(u)�γ0l −α0l(u)| = O(K −r

n ). For ease of notation and simplicity of proofs, we
use the same number of basis functions for different coefficient functions in model (1).
In practice, such restrictions are not necessary.

Now we consider oracle estimator with the oracle information that the index set A
is known in advance, i.e., the last (pn − qn) elements of β0 are all zero. Let

(β̂o
I , γ̂

o) = argmin
βI ,γ

n∑

i=1

(Yi − x�
Ai

βI − Π�
i γ )2, (2)

where x�
A1

, . . . , x�
An

denote the rowvectors of X A,Πi = (zi1π(ui )
�, . . . , zidπ(ui )

�)�

and γ = (γ �
1 , . . . , γ �

d )�. The oracle estimator for β0 is β̂o = (β̂o�
I , 0�

pn−qn
)�.

The oracle estimator for the coefficient function α0l(u) is α̂o
l (u) = π(u)�γ̂ o

l for
l = 1, . . . , d.

We next present the asymptotic properties of the oracle estimators as qn diverges.
The following technical conditions are imposed for our theoretical analysis.

(C1) The covariates xi j and zil are bounded random variables, and the eigenvalues of
E{(x�

Ai
, z�

i )�(x�
Ai

, z�
i )} are bounded away from zero and infinity.

(C2) The density function of ui is absolutely continuous and bounded away from zero
and infinite on [0, 1].

(C3) The noises ε1, . . . , εn are iid with mean zero and finite variance σ 2, and there
exist some constants c1 and c2 such that Pr(|ε1| > t) ≤ c1 exp{−c2t2} for any
t ≥ 0.
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(C4) For l = 1, . . . , d, α0l(u) ∈ Hr for some r > 1.5. Furthermore, it is assumed
that Kn 
 n1/(2r+1). We use an 
 bn to mean that an and bn have the same
order as n → ∞.

(C5) Assume that q3
n/n → 0 as n → ∞.

The theorem below summarizes the convergence rates of the oracle estimators.

Theorem 1 Assume that regularity Conditions (C1)–(C5) hold, as n → ∞, then

‖β̂o
I − β0I ‖ = OP (

√
qn/n),

d∑

l=1

‖α̂o
l (u) − α0l(u)‖2 = OP ((Kn + qn)/n).

An interesting observation is that since we allow qn to diverge with n, it affects the
convergence rates for estimating both β and α(·). If qn is fixed, the convergence rates
reduce to the classical n−1/2 rate for estimating β and n−2r/(2r+1) for estimating α(·),
the latter which is the optimal rate of convergence.

The parametric part can be shown to be asymptotically normal under slightly
stronger conditions. Given u ∈ [0, 1] and z ∈ R

d , let G denote the class of func-
tions on Rd × [0, 1] as

G =
{

g(z, u) : g(z, u) =
d∑

l=1

zlhl(u) for some functions hl(u)

such that E

(
d∑

l=1

z2l h2
l (u)

)
< ∞

}
.

For any random variable ξ with Eξ2 < ∞, let EG(ξ) denote the projection of ξ onto
G in the sense that

E[{ξ − EG(ξ)}{ξ − EG(ξ)}] = inf
g∈G

E[{ξ − g(z, u)}{ξ − g(z, u)}].

Definition of EG(ξ) trivially extends to the case when ξ is a random vector by com-
ponentwise projection. Let Γ (z, u) = (Γ1(z, u), . . . , Γqn (z, u))� = EG(xA1), then
Γ (zi , ui ) is a projection of E[xA1 |zi , ui ] onto G and its j-th component Γ j (zi , ui ) can
be written as

∑d
l=1 zilh jl(ui ). In addition to Conditions (C1)–(C5), we impose the

following conditions.

(C6) Assume that h jl(·) ∈ Hr for j = 1, . . . , qn and l = 1, . . . , d.
(C7) Assume that Ξ is a positive definite matrix, whereΞ = E[{xA −Γ (z, u)}{xA −

Γ (z, u)}�].
As qn diverge, to investigate the asymptotic distribution of β̂o

I , we consider esti-
mating an arbitrary linear combination of the components of β0I .
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Theorem 2 Let Qn be a deterministic l ×qn matrix with l an integer does not change
with n, and Qn Q�

n → Ψ , a positive definite matrix. Under regularity Conditions
(C1)–(C7), we have

√
nQnΞ1/2(β̂o

I − β0I )
D−→ N (0, σ 2Ψ ),

where
D−→ represents the convergence in distribution.

2.2 Variable selection

In real data analysis, we do not know which of the pn covariates in xi are important.
To encourage sparse estimation, we minimize the following penalized least squares
objective function for estimating (β0, γ0),

ln(β, γ ) =
n∑

i=1

(
Yi − x�

i β − Π�
i γ

)2 + n
pn∑

j=1

pλ(|β j |), (3)

where pλ(·) is a penalty function with tuning parameter λ > 0 which controls the
complexity of the selected model and goes to zero as n → ∞. Although it is not
necessarily that the tuning parameter λ is the same for all β j in practice, we make the
above choices for simplicity. Here, we focus on the popular nonconvex SCAD penalty
given by

p′
λ(|t |) = λ

{
I (|t | ≤ λ) + (aλ − |t |)+

(a − 1)λ
I (|t | > λ)

}
, for some a > 2,

where x+ = max(x, 0), I (·) is the indicator function. Note that the SCAD penalty is
continuously differentiable on (−∞, 0) ∪ (0,∞) but singular at 0 and its derivative
vanishes outside [−aλ, aλ]. These features of SCAD penalty result in a solution
with three desirable properties: unbiasedness, sparsity and continuity. Other choices
of penalty, such as MCP, are expected to produce similar results in both theory and
practice. In comparison, Lasso is known to over-penalize large coefficients, tends to
be biased and requires strong conditions on the design matrix to achieve selection
consistency. This is usually not a concern for prediction, but can be undesirable if the
goal is to identify the underlying model.

The theorem below shows that the oracle estimator is a local minimizer of (3) using
SCAD penalty with probability tending to one, provided the following additional
Condition (C8), which is needed to identify the underlying model. (C8) (i) is how
quickly a nonzero signal can decay which is not a concern when the dimension is
fixed, and (C8) (ii) is concerning the divergence rate of pn .

(C8) (i)min1≤ j≤qn |β0 j | � λ � √
(Kn + qn)/n; (ii)max{√n log(pn∨n), nK −r

n } �
nλ.
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Theorem 3 Consider the SCAD penalty with tuning parameter λ, let Sn(λ) be the set
of local minimizers of (3), under regularity Conditions (C1)–(C8), we have

Pr((β̂o, γ̂ o) ∈ Sn(λ)) → 1, as n → ∞.

As seen in Condition (C8), if qn is fixed, then λ can be arbitrarily slow and the
fastest rate of pn can be chosen as o(exp(n/2)). Hence, we allow for the ultra-high
dimensional setting. Theorem 3 is particularly attractive from a theoretical standpoint,
because it follows that there exists a local minimizer of (3) inherit all the properties
of the oracle estimators covered by previous subsection. In particular, the proposed
variable selection procedure enjoys the oracle property, i.e., the following corollary
holds.

Corollary 1 Suppose that regularity Conditions (C1)–(C8) hold, there exists a local
minimizer (β̂, γ̂ ) of (3), with probability tending to 1 as n → ∞, satisfies that: (i)
β̂ j = 0 for qn + 1 ≤ j ≤ pn; (ii) ‖β̂I − β0I ‖ = OP (

√
qn/n) and

∑d
l=1 ‖α̂l(u) −

α0l(u)‖2 = OP ((Kn +qn)/n), where α̂l(u) = π(u)�γ̂l ; (iii) the asymptotic normality
of the estimators for β̂I holds as in Theorem 2.

3 Numerical studies

In this section, we conduct simulation experiments to evaluate the finite sample perfor-
mance of the proposed procedures and illustrate the proposed methodology on a real
data set. Firstly, we present a computational algorithm for obtaining the minimizers
of (3) and selection methods for the tuning parameters.

3.1 Implementation

Algorithm For given the tuning parameters, finding the solution that minimizes
(3) poses a number of interesting challenges because the SCAD penalty function
is nondifferentiable at the origin and nonconvex. Following the idea in Fan and
Li (2001), we apply iterative algorithm based on the local quadratic approxima-
tion (LQA) of the penalty function. More specifically, given the current estimator
θ(0) = (β(0)�, γ (0)�/

√
Kn)�, if |β(0)

j | > 0, we have

pλ(|β j |) ≈ pλ(|β(0)
j |) + 1

2

p′
λ

(
|β(0)

j |
)

|β(0)
j |

{
|β j |2 − |β(0)

j |2
}

.

Consequently, removing irrelevant terms, the penalized least squares objective func-
tion (3) can be locally approximated by

l̃n(β, γ ) = (Y − Wθ)�(Y − Wθ) + n

2
θ�Ω(θ(0))θ, (4)
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where θ = (β�, γ �/
√

Kn)
�, Y = (Y1, . . . , Yn)�, W = (W1, . . . , Wn)� with Wi =

(x�
i ,

√
KnΠ

�
i )�, and Ω(θ(0)) = diag{p′

λ(|β(0)
1 |)/|β(0)

1 |, . . . , p′
λ(|β(0)

pn |)/|β(0)
pn |,

0�
d Kn

}. The quadratic minimization problem (4) yields the solution

θ(1) = {W �W + nΩ(θ(0))}−1W �Y.

During the iterations, set β̂ j = 0 if |β̂(1)
j | < ε (ε = 10−4 in our implementation). To

choose an appropriate initial value, we use a Lasso estimator with the penalty term
λ

∑
j |β j |.

Tuning parameters selection To implement the above estimation procedures and
achieve good numerical performance, we also need to find a data-driven method to
choose some extra parameters including the spline order h̄, the number of basis Kn as
well as the regularization parameter λ. Due to the computational complexity, it is often
impractical to automatically select all three components based on the observable data.
As a commonly adopted strategy, we fix h̄ = 4 (cubic splines). Note that Kn should
not be too large since the larger the Kn is, the larger the estimation variance is, and
the more difficult it is to distinguish important variables from unimportant ones. On
the other hand, Kn should not be too small to create probing biases. Here, we choose
Kn = 
n1/5� + h̄ for computation convenience. In our simulations, we also conduct a
sensitivity analysis by setting Kn to be different values. We observe similar numerical
results if Kn varies in a reasonable range.

Fixed h̄ and Kn , finally we employ a data-driven method to choose λ, which is
critical for the performance of the estimators. Cross validation is a common approach,
but is known to often result in overfitting. In our high dimensional context, we employ
the extended Bayesian information criterion (EBIC) in Chen and Chen (2008) that was
developed for parametric models. More specifically, we can choose λ by minimizing
the following EBIC value

EBIC(λ) = log(Y − W θ̂λ)
�(Y − W θ̂λ) + q̂nλ

log n

n
+ 2νnq̂nλ

log pn

n
, (5)

where θ̂λ is the minimizer of (3) for given λ, q̂nλ is the number of nonzero values in β̂λ

and νn is a tuning parameter which is taken as 1− log(n)/(3 log p) suggested by Chen
and Chen (2008). Note that when νn = 0, the EBIC is the BIC. From our numerical
studies, we find that the above data-driven procedure works well.

3.2 Simulation studies

Throughout our simulation studies, the dimensionality of parametric component is
taken as pn = 1000, 2000 and the nonparametric component as d = 2. We take n =
100 and 200 to check the effect of sample size. As for the regression coefficient, we set
β0 = (1, 1, 1, 1, 1, 0, . . . , 0)�, α01(u) = 2 sin(2πu) and α02(u) = 6u(1 − u). Thus,
there are qn = 5 nonzero constant coefficients. In addition, the index variable ui ’s are
sampled uniformly on [0, 1]. The covariates (xi , zi )’s are independently drawn from
multivariate normal distribution Npn+d(0,Σ), where Σ is chosen from the following
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two designs: (i) Independent (Inde): Σ = I ; (ii) Autoregressive (AR(1)): Σ j j ′ =
0.5| j− j ′| for 1 ≤ j, j ′ ≤ pn + d. Then, the response Yi ’s are generated from the
following sparse models:

Yi =
5∑

j=1

xi jβ0 j + zi1α01(ui ) + zi2α02(ui ) + εi , i = 1, . . . , n,

where noise term εi ∼ N (0, σ 2) with σ = 1, 1.5, 2 for three signal-to-noise ratio
settings. The number of replications is 500 for each configuration.

We compare the SCAD penalized estimator with Lasso penalized estimator and
oracle estimator. The oraclemodel, as the gold standard, is only available in simulation
studies where the underlying model is known. The Lasso estimators are computed by
the R package glmnet with λ being selected by tenfold cross validation. The tuning
parameter a in SCAD penalty function is 3.7 as recommended in Fan and Li (2001).
As measures of their performance for model selection, we computed percentage of
occasions (out of 500) on which the true model is correctly identified (CI). We also
report the average numbers of false positive results (FP, the number of irrelevant
variables incorrectly identified as relevant) and the average numbers of false negative
results (FN, the number of relevant variables incorrectly identified as irrelevant). As
measures of estimation accuracy, we report the average generalized mean square error
(GMSE) for the parametric part, defined as

GMSE = (β̂ − β0)
�(Exi x�

i )(β̂ − β0),

and the average square root of average errors (RASE) for nonparametric part, given
by

RASE =
{

n−1
grid

ngrid∑

k=1

‖α̂(uk) − α(uk)‖2
}1/2

,

over a fine grid {uk}ngrid
k=1 consisting of ngrid = 200 points equally spaced on [0, 1].

Table 1 summarizes the simulation results. From this table, one may have the
following observations. (i) At all settings, the SCAD penalized estimator tends to pick
a smaller and more accurate model in terms of CI, FN and FP, which is comparable
with oracle. This indicates that the proposed method is promising. In contrast, though
Lasso penalized estimator is not significantly inferior in term of FN, but it tends to
include more unnecessary zero coefficients with a lager FP. Therefore, the GMSE
and RASE obtained from Lasso method are often the largest. (ii) For fixed n, the
performance of the proposed method does not deteriorate rapidly when pn increases,
while for fixed pn the performance improves substantially as the sample size increases.
In turn, these results show that the sample size n is more important than the dimension
of the covariates for high dimensional statistical inference. (iii) The signal-to-noise
ratio has certain effect for the variable selection. As expected, the proposed method
becomes worse as σ increases. For example, the CI is only 7.4% for independent case
if (n, pn, σ ) = (100, 2000, 2), the reason may be that the signal-to-noise ratio is not
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Table 1 Simulation results over 500 repetitions

σ pn n Method Inde AR(1)

CI(%) FP FN GMSE RASE CI(%) FP FN GMSE RASE

1 1000 100 Lasso 2.2 9.022 0.012 73.3 55.6 35.6 2.992 0.000 44.2 57.7

SCAD 99.0 0.002 0.014 6.7 42.1 98.8 0.002 0.010 6.4 48.5

Oracle 100 0 0 5.7 41.8 100 0 0 5.9 48.3

200 Lasso 14 4.968 0.000 32.8 31.0 61.0 1.932 0.000 21.2 32.9

SCAD 100.0 0.000 0.000 2.7 26.7 100.0 0.000 0.000 2.5 30.0

Oracle 100 0 0 2.7 26.7 100 0 0 2.5 30.0

2000 100 Lasso 1.4 10.078 0.048 91.6 59.2 32.4 3.632 0.000 49.4 58.1

SCAD 98.0 0.008 0.016 7.3 42.0 98.6 0.006 0.008 6.3 47.6

Oracle 100 0 0 6.0 41.7 100 0 0 5.8 47.5

200 Lasso 10.6 6.228 0.000 36.5 31.1 61.8 1.774 0.000 24.1 33.6

SCAD 100.0 0.000 0.000 2.8 27.0 100.0 0.000 0.000 2.7 30.2

Oracle 100 0 0 2.8 27.0 100 0 0 2.6 30.2

1.5 1000 100 Lasso 1.6 7.764 0.470 178.0 83.6 34.4 2.986 0.024 100.1 86.0

SCAD 68.0 0.266 0.314 43.4 67.1 64.6 0.186 0.280 33.4 75.4

Oracle 100 0 0 12.9 62.1 100 0 0 13.2 71.8

200 Lasso 14.6 4.948 0.000 73.8 46.3 60.2 1.898 0.000 47.7 49.1

SCAD 99.8 0.002 0.000 6.0 39.7 99.0 0.000 0.000 6.2 44.9

Oracle 100 0 0 5.9 39.7 100 0 0 5.7 44.8

2000 100 Lasso 0.6 7.232 0.976 228.5 88.6 33.4 3.634 0.032 111.4 86.8

SCAD 53.0 0.324 0.676 73.3 70.8 63.6 0.126 0.352 36.1 74.3

Oracle 100 0 0 13.5 61.9 100 0 0 13.0 70.8

200 Lasso 11.0 6.280 0.000 82.1 46.5 62.0 1.768 0.000 54.2 50.1

SCAD 99.8 0.000 0.002 6.5 40.2 98.4 0.000 0.016 6.8 45.2

Oracle 100 0 0 6.4 40.2 100 0 0 6.0 45.1

2 1000 100 Lasso 0.2 4.990 2.048 315.4 109.1 27.8 2.834 0.228 179.4 114.3

SCAD 12.4 1.606 1.488 196.0 103.6 15.6 0.952 0.926 113.9 107.6

Oracle 100 0 0 23.0 82.5 100 0 0 23.5 95.4

200 Lasso 13.4 4.960 0.018 131.6 61.6 60.6 1.902 0.000 84.7 65.4

SCAD 89.8 0.058 0.062 17.5 53.4 82.0 0.052 0.166 20.5 60.4

Oracle 100 0 0 10.6 52.8 100 0 0 10.2 59.7

2000 100 Lasso 0.2 4.170 2.866 368.9 112.5 25.8 3.518 0.284 200.9 115.7

SCAD 7.4 1.942 2.006 245.3 108.3 12.4 1.052 1.034 129.9 107.1

Oracle 100 0 0 24.0 82.2 100 0 0 23.2 94.3

200 Lasso 10.2 6.158 0.046 147.2 61.9 61.6 1.786 0.006 96.2 66.6

SCAD 86.8 0.076 0.076 20.2 54.2 77.6 0.070 0.172 22.0 60.9

Oracle 100 0 0 11.3 53.5 100 0 0 10.7 60.0

GMSE and RASE are multiplied by 100

123



Spline estimator for ultra-high dimensional 667

Fig. 1 Plots of α01(u) and its three estimators in one run for AR(1) with n = 100 and different pn and σ

large and the sample size is also not enough large to obtain a satisfactory CI. Note
that CI will rise to 86.8, if increases sample size to n = 200. (iv) It is easy to see that
the proposed method is not sensitive to the different correlations between variables as
long as the correlations are not particularly strong.

Figure 1 presents α01(u) and its three estimators based on one random sample for
AR(1) with n = 100. It is clear that all estimators are biased, but they follow the
shape of the true coefficient function α01(u) quite well. Boxplots of three nonzero
coefficients β1, β3, β5 over 500 simulations for AR(1) are displayed in Fig. 2. The
most striking result is that the SCADmethod performs substantially better than Lasso
and is comparable with oracle. Of course, the more difficult the configuration, e.g.,
the larger pn and/or σ , the worse the estimator is in terms of bias and variance. Both
figures help us get an overall picture on the quality of the proposed estimators. To
save space, the simulation results of other settings are not shown here. In sum, these
simulation results corroborate our theoretical findings.

3.3 Real data analysis

As an illustration, we apply our method to a breast cancer data collected by van’t
Veer et al. (2002). This data set includes n = 97 lymph node-negative breast cancer
patients 55 years old or younger. For each patient, expression levels for 24481 gene
probes and 7 clinical risk factors (age, tumor size, histological grade, angioinvasion,
lymphocytic infiltration, estrogen receptor and progesterone receptor status) are mea-
sured. Recently, Yu et al. (2012) proposed a receiver operating characteristic-based
approach to rank the genes via adjusting for the clinical risk factors. They removed
genes with severe missingness, leading to an effective number of p = 24188 genes.
The gene expression data are normalized such that they all have sample mean 0 and
standard deviation 1.
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Fig. 2 Boxplots shows for three nonzero coefficients estimation (top row: β1, middle row: β3, bottom row:
β5) for AR(1). Cases (n, pn , σ ) = (100, 1000, 1), (100, 2000, 1), (100, 1000, 2) and (200, 1000, 2) are
demonstrated, respectively, from the left panel to the right panel

Knight et al. (1977) found that the absence of estrogen receptor in primary breast
tumors is associated with the early recurrence. So it is important to predict the
metastatic behavior of breast cancer tumor jointly using clinical risk factors and gene
expression profiles. Here, we are interested in selecting some useful genes whose
expressions can be used to predict the values of estrogen receptor (ER). To set up
the semiparametric partially linear varying coefficient regression model, we use the
clinical risk factor age as the index variable to reveal potential nonlinear effect. The
gene expression values (GE) are included as linear covariates, while tumor size (TS)
as nonlinear covariates. The resulting model can now be expressed as

ERi = α0(agei ) + α1(agei )TSi +
24188∑

j=1

β jGEi j + εi , i = 1, . . . , 97.

It is expected that not all of the 24188genes canhave impact on the estrogen receptor.
First, we apply the penalizationmethod (3)with the SCADandLasso penalty functions
to this data set. As in the simulations, the cubic B-spline with 
971/5� = 2 internal
knots is adopted to fit the coefficient functions. The regularization parameter is selected
by EBIC for SCAD estimator and by tenfold cross validation for Lasso. As expected,
the Lasso method selects a larger model than the SCAD penalty does. Lasso identified
9 genes: 1690, 6912, 7049,10177, 10478, 15141, 15835, 19230 and 20564,
while SCAD identified 5 genes: 27, 3679, 5731, 6912 and 15835. The second
column in the upper panel ofTable 2 reports the number of nonzero elements (“O-NZ”).

Next, we compare different models on 100 random partitions of the data set. For
each partition, we randomly select n1 = 90 observations as a training data set to fit
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Table 2 Variable selection and prediction results of real data analysis

Method O-NZ R-NZ PEmin PE2.5 PE50 PE97.5 PEmax

Lasso 9 11.05 5.269 16.042 20.590 24.233 39.152

SCAD 5 5.76 0.428 1.930 3.081 4.754 34.500

Top 7 genes selected among 100 random partitions

Frequency (%) 100 77 60 38 21 21 20

Gene 15835 27 3679 5731 13695 10478 6912

Fig. 3 Estimation, residual analysis and EBIC curve for real data example

the model and to select the significant genes. The resulting models are used to predict
the value of the n − n1 = 7 observations in the test set. We observe that different
models are often selected for different random partitions. The third column in the
upper panel of Table 2 reports the average number of linear covariates included in
each model (denoted “R-NZ”), while the 5 column on the left in the upper panel
reports five order statistics of prediction error (PE) evaluated on the test data, defined
as 7−1 ∑7

i=1(Yi − Ŷi ). The lower panel of Table 2 summarizes the top 7 genes selected
by our method and the frequency these genes are selected in the 100 random parti-
tions. Note that gene 15835 is detected as important variable at each time among all
random partitions. Obviously, the SCAD method results in a final model with smaller
size and better prediction performances than Lasso method. In addition, we observed
that gene 15835 was also identified in Cheng et al. (2016).

We refit the data with the five selected genes by SCAD penalty. The regression
coefficients of genes 27, 3679, 5731, 6912 and 15835 are 0.242, 0.245, −0.216,
−0.219, 0.858, respectively. The estimated coefficient functions are presented in the
left panel of Fig. 3. The EBIC curve for variable selection and the residual analysis are
presented in the right panel. It is seen that the proposed partially linear varying coef-
ficient model fits the data reasonably well. Hence, from a practical point of view, we
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have demonstrated that our proposed method can be an efficient method for analyzing
partially linear varying coefficient models.

4 Conclusion

This paper has investigated spline estimator for partially linear varying coefficient
models with ultra-high dimensional linear covariates. Nonconvex penalty, e.g., SCAD,
was used to perform simultaneous estimation and variable selection. The oracle the-
ory was derived under mild conditions. We used EBIC as a criterion for automatically
choosing the tuning parameters. It worked well in our numerical studies, although we
are currently not able to provide any consistency proof for it, as has been done for
parametric or nonparametric models in the case of fixed dimension. In addition, we
developed the computation algorithm based on local quadratic approximation. Simu-
lation studies and a real data example were provided to back up the theoretical results.

Some extensions provide interesting avenues for future study. First, a challenging
problem, particularly for high dimensional data, is how to identify which covariates
are parametric or nonparametric terms. Usually, we do not have such prior knowledge
in real data analysis. Second, it would be interesting to take into account complex
data in high dimensional semiparametric models, such as missing data, measurement
error data, censored data. Another problem of practical interest is to construct pre-
diction intervals based on the observed data. Given (x∗, z∗, u∗), we can estimate Y ∗
by x∗�β̂ + z∗�α̂(u∗), where β̂ and α̂(·) are obtained from penalized regression. We
conjecture that the consistency of estimating the conditional function can be derived
under somewhatweaker conditions in the current paper. Its uncertainty assessmentwill
also be further investigated in the future. The last one is to identify conditions under
which the proposed estimator achieves consistent variable selection and estimation
even when pn � n and d � n.
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Appendix: Some lemmas and proofs of main results

In this section, we outline the key idea of the proofs. Note that c, c1, c2, . . . denote
generic positive constants. Their values may vary from expression to expression. In
addition,Λmin andΛmax denote the smallest and largest eigenvalue of amatrix, respec-
tively.
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Lemma 1 Let W o
i = (x�

Ai
,
√

KnΠ�
i )�, where the definitions for xAi and Πi are the

same as those in (2). Under regularity Conditions (C1) and (C2), we have

0 < c1 ≤ Λmin

(
1

n

n∑

i=1

W o
i W o�

i

)
≤ Λmax

(
1

n

n∑

i=1

W o
i W o�

i

)
≤ c2 < ∞.

The proof of this lemma can be easily obtained by Lemma 6.2 in Zhou et al. (1998)
and Lemma 3 in Stone (1985), so we omit the details.

Lemma 2 Let Y1, . . . , Yn be independent random variables with zero mean such that
E|Yi |m ≤ m!Mm−2vi/2, for every m ≥ 2 (and all i ), some constants M and vi = EY 2

i .
Let v = v1 + · · · + vn, for x > 0,

Pr

(∣∣∣∣∣

n∑

i=1

Yi

∣∣∣∣∣ > x

)
≤ 2 exp

{
− x2

2(v + Mx)

}
.

Lemma 3 If there exists (β, γ ) ∈ R
pn+d Kn such that (i)

∑
i (Yi−x�

i β−Π�
i γ )Πil = 0

for l = 1, . . . , d; (ii)
∑

i (Yi − x�
i β −Π�

i γ )xi j = 0 and |β j | ≥ aλ for j = 1, . . . , qn

and (iii) | ∑i (Yi − x�
i β − Π�

i γ )xi j | ≤ nλ and |β j | < λ for j = qn + 1, . . . , pn,
where a = 3.7, Πil = zilπ(ui ) ∈ R

Kn , then (β, γ ) is a local minimizer of (3).

This lemma is a direct extension of Theorem 1 in Fan and Lv (2011). Thus, we
omit the proof.

Proof of Theorem 1 We will show that

d∑

l=1

∥∥α̂o
l (u) − α0l(u)

∥∥2 + ‖β̂o
I − β0I ‖2 = OP ((Kn + qn)/n) (6)

and
‖β̂o

I − β0I ‖2 = OP (qn/n), (7)

respectively. This will immediately imply the results stated in this theorem.
For l = 1, . . . , d, recall that γ0l is the best approximating spline coefficient for

α0l(·), such that ‖α0l(u) − π(u)�γ0l‖ = O(K −r
n ). Let W o = (W o

1 , . . . , W o
n )�,

θ0 = (β�
0I , γ

�
0 /

√
Kn)� and θ̂ = (β̂o

I , γ̂
o/

√
Kn). It follows from (2) that

∑n
i=1(Yi −

W o�
i θ̂ )W o

i = 0. Hence

n∑

i=1

W o
i W o�

i (θ̂ − θ0) =
n∑

i=1

(Yi − W o�
i θ0)W o

i = W o�(Y − W oθ0). (8)

First, the eigenvalues of
∑n

i=1 W o
i W o�

i are of order n by Lemma 1. In the following,
we will show that

∥∥∥W o�(Y − W oθ0)

∥∥∥
2 = OP

(
nKn + nqn + n2K −2r

n

)
. (9)
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Combining equations (8) and (9), and Kn 
 n1/(2r+1) in Condition (C4), we have
‖θ̂ − θ0‖2 = OP {n−1(Kn + qn)}. This implies that (6), since

d∑

l=1

‖α̂o
l (u) − α0l(u)‖2 + ‖β̂o

I − β0I ‖2

≤
d∑

l=1

{
2‖π(u)�(γ̂ o

l − γ0l)‖2 + 2‖α0l(t) − π(u)�γ0l‖2
}

+ ‖β̂o
I − β0I ‖2

= OP (K −1
n ‖γ̂ o − γ0‖2) + OP (K −2r

n ) + ‖β̂o
I − β0I ‖2 = OP (‖θ̂ − θ0‖2).

Nowwe consider (9). For any vector v ∈ R
d Kn+qn , we have |(Y −W oθ0)

�W ov|2 ≤
‖PW o(Y − W oθ0)‖2‖W ov‖2, where PW o = W o(W o�W o)−1W o� is a projection
matrix. Obviously ‖W ov‖2 = OP (n‖v‖2). On the other hand, we have

‖PW o(Y − W oθ0)‖2 ≤ 2‖PW oε‖2 + 2‖PW o(Y − W oθ0 − ε)‖2 �= Δ1 + Δ2.

The first term Δ1 is of order OP (tr(PW o)) = OP (Kn + qn) since E(ε) = 0. The
second term Δ2 is obviously

Δ2 ≤ 2
n∑

i=1

(Yi − W o�
i θ0 − εi )

2

= 2
n∑

i=1

{
d∑

l=1

zil

[
α0l(ui ) − γ �

0l π(ui )
]}2

= OP

(
n

K 2r
n

)
.

Then, (9) follows from the foregoing argument, if v = W o�(Y − W oθ0).
Let us check (7), defineςn = √

qn/n.Note that β̂o
I can also beobtainedbyminimize

lo
n(βI ) = ‖(I − PΠ)(Y − X AβI )‖2,

where PΠ = Π(Π�Π)−1Π� with Π = (Π1, . . . ,Πn)�. Our aim is to show that,
for a given ε > 0,

Pr

{
inf‖v‖=C

lo
n(β0I + ςnv) > lo

n(β0I )

}
≥ 1 − ε.

So that this implies that, with probability tending to one, there is a minimizer β̂o
I in the

ball {β0I + ςnv : ‖v‖ ≤ C} such that ‖β̂o
I − β0I ‖ = OP (ςn). By direct calculation,

we get
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lo
n(β0I + ςnv) − lo

n(β0I ) = −2(Y ∗ − X∗
Aβ0I )

�ςn X∗
Av + ‖ςn X∗

Av‖2 �= D1 + D2.

Hereafter, for any matrix M with n rows, we define M∗ = (I − PΠ)M . We can prove
that

|D1| ≤ 2ςn‖(Y ∗ − X∗
Aβ0I )

� X∗
A‖‖v‖ = OP (ςn

√
nqn)‖v‖

and
D2 = ς2

n v� X∗�
A X∗

Av = nς2
n v�Ξv + oP (1)nς2

n ‖v‖2.

It suffices to check E‖X∗�
A (Y ∗ − X∗

Aβ0I )‖2 ≤ C tr(X∗
A X∗�

A ) ≤ Cnqn and
‖X∗�

A X∗
A/n − Ξ‖ = oP (1), which follows similar lines to the proofs in Li et al.

(2011b). Therefore, by allowing C to be large enough, D1 are dominated by D2,
which is positive. This completes the proof. ��

Proof of Theorem 2 Let m0i = x�
Ai

β0I + z�
i α0(ui ), m̂0i = x�

Ai
β0I + Π�

i γ̂ o and

m̂i = x�
Ai

β̂o
I + Π�

i γ̂ o. By Theorem 1, we have |m0i − m̂0i | = OP (ζn). Since the

components hl(·) of Γ are inHr , it can be approximated by spline functions h̃l(·)with
the approximation error O(K −r

n ). Denote by Γ̃ (zi , ui ) the vector that approximates
Γ (zi , ui ) by replacing hl(·) with h̃l(·). Note that, since h̃l(·) is a spline function, the
j-th component of Γ̃ (zi , ui ) can be expressed as Π�

i v j for some v j ∈ R
d Kn . We first

show that

∥∥∥∥∥

n∑

i=1

{xAi − Γ̃ (zi , ui )}(Yi − m̂0i ) −
n∑

i=1

{xAi − Γ (zi , ui )}εi

∥∥∥∥∥ = oP (
√

n). (10)

In fact

∥∥∥∥∥

n∑

i=1

{xAi − Γ̃ (zi , ui )}(Yi − m̂0i ) −
n∑

i=1

{xAi − Γ (zi , ui )}εi

∥∥∥∥∥

≤
∥∥∥∥∥

n∑

i=1

{xAi − Γ (zi , ui )}(m0i − m̂0i )

∥∥∥∥∥

+
∥∥∥∥∥

n∑

i=1

{Γ (zi , ui ) − Γ̃ (zi , ui )}(m0i − m̂0i )

∥∥∥∥∥

+
∥∥∥∥∥

n∑

i=1

{Γ̃ (zi , ui ) − Γ (zi , ui )}εi

∥∥∥∥∥ .

From the definition of Γ (zi , ui ), the first term above is OP (n
√

qn/nζn), the sec-
ond term is OP (n

√
qn K −r

n ζn) and the last term is OP (
√

nqn K −r
n ) = oP (

√
n) since

‖Γ (zi , ui ) − Γ̃ (zi , ui )‖ = OP (
√

qn K −r
n ). Thus, (10) is shown.
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In the other hand, Eq. (2) implies
∑n

i=1(xAi − Γ̃ (zi , ui ))(Yi − m̂i ) = 0. By (10),
we get

1√
n

n∑

i=1

{xAi − Γ (zi , ui )}εi = 1√
n

n∑

i=1

{xAi − Γ̃ (zi , ui )}

(Yi − m̂i + m̂i − m̂0i ) + oP (1)

= 1√
n

n∑

i=1

{xAi − Γ̃ (zi , ui )}x�
Ai

(β̂o
I − β0I ) + oP (1)

= 1√
n
M(β̂o

I − β0I ) + oP (1),

whereM = ∑n
i=1{xAi −Γ̃ (zi , ui )}{xAi −Γ̃ (zi , ui )}�. It is easy to show thatM/n →

Ξ by the lawof large numbers. Then,we can replaceM/n byΞ which does not disturb
the asymptotic distribution from Slutsky’s theorem. Based on above arguments, we
only need to show that

n−1/2QnΞ
−1/2

n∑

i=1

{xAi − Γ (zi , ui )}εi
D−→ N (0, σ 2Ψ ).

Let Uni = n−1/2QnΞ−1/2{xAi − Γ (zi , ui )}εi . Note that E(Uni ) = 0 and∑n
i=1 E(UniU�

ni ) = σ 2Qn Q�
n → σ 2Ψ . To establish the asymptotic normality, it

suffices to check the Lindeberg-Feller condition. For any ε > 0, we have

n∑

i=1

E[‖Uni‖2 I {‖Uni‖ > ε}] ≤ n[E‖Uni‖4]1/2[Pr(‖Uni‖ > ε)]1/2.

Using Chebyshev’s inequality, we have

Pr(‖Uni‖ > ε) ≤ n−1ε−2E‖QnΞ−1/2{xAi − Γ (zi , ui )}εi‖2
≤ Cn−1ε−2E‖{xAi − Γ (zi , ui )}εi‖2
= O(qnn−1).

Also, we can show that

E‖Uni‖4 ≤ n−2Λmin(Qn Q�
n )Λmax(Ξ)E‖{xAi − Γ (zi , ui )}εi‖4 = O(q2

n n−2).

Hence,

n∑

i=1

E[‖Uni‖2 I {‖Uni‖ > ε}] = O
(

nqnn−1q1/2
n n−1/2

)
= o(1).
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Noting that Uni satisfies the conditions of the Lindeberg-Feller central limit theorem,
then we complete the proof. ��

Proof of Theorem 3 Let (β̂, γ̂ ) = (β̂o, γ̂ o), we will show that (β̂, γ̂ ) satisfies equa-
tions (i)–(iii) of Lemma 3. This will immediately imply this theorem.

For j = 1, . . . , qn , note that |β̂ j | = |β̂ j −β0 j +β0 j | ≥ min1≤ j≤qn |β0 j |−|β̂ j −β0 j |,
then |β̂ j | ≥ aλ is implied by

min
1≤ j≤qn

|β0 j | � λ and |β̂ j − β0 j | � λ,

and both equations above are implied by Condition (C8) as well as Theorem 1. Since
(β̂o

I , γ̂
o) is the solution of the optimization problem (2), we have

∑

i

(
Yi − x�

Ai
β̂o

I − Π�
i γ̂ o

)
Πil = 0,

∑

i

(
Yi − x�

Ai
β̂o

I − Π�
i γ̂ o

)
xi j = 0.

It follows that (i) and (ii) trivially hold since x�
i β̂ + Π�

i γ̂ = x�
Ai

β̂o
I + Π�

i γ̂ o.

Now it remains to show (iii). For j = qn + 1, . . . , pn , |β̂ j | < λ is trivial since
β̂ j = 0. Furthermore,

n∑

i=1

(Yi − x�
Ai

β̂o
I − Π�

i γ̂ o)xi j =
n∑

i=1

(Yi − W �
i θ0)xi j − X�

j PW (Y − Wθ0)

= X�
j (I − PW )(ε + R), (11)

where R = (R1, . . . , Rn)� with Ri = z�
i α(ui ) − Π�

i γ0. It is easy to see that all the
eigenvalues of thematrix I−PW are boundby1 (in fact each eigenvalue is either 0 or 1),
and thus ‖(I −PW )X j‖ = c

√
n for some c, followingCondition (C1).Write the vector

(I−PW )X j asb j = (b j1, . . . , b jn)�, thenmaxi |b ji | ≤ c
√

n and X�
j (I−PW )ε can be

written as
∑

i b jiεi . By Condition (C3), we have E|εi |m ≤ m!
2 S2T m−2, m = 2, 3, . . .,

for some constants S and T . Then, we have

E|εi b ji |m ≤ m!
2

(b ji S)2(b ji T )m−2 ≤ m!
2

(b ji S)2(c
√

nT )m−2

and ∑

i

E|εi b ji |2 ≤
∑

i

(b ji S)2 ≤ S2
∑

i

b2j i ≤ S2c2n.

By Lemma 2 and a simple union bound, for ε > 0, we have
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Pr

(
max

qn+1≤ j≤pn

∣∣∣X�
( j)(I − PW )ε

∣∣∣ > ε

)
= Pr

(
max

j

∣∣∣∣∣

n∑

i=1

b jiεi

∣∣∣∣∣ > ε

)

≤ 2pn exp

{
− ε2

2nc2S2 + 2
√

ncT ε

}
.

Taking ε = c1
√

n log(pn ∨ n) for some c1 > 0 large enough, the above probability
tends to zero, thus we have

max
qn+1≤ j≤pn

|X�
j (I − PW )ε| = OP (

√
n log(pn ∨ n)). (12)

On the other hand

|X�
j (I − PW )R| ≤ ‖b j‖‖R‖ = OP (

√
n
√

nK −r
n ). (13)

Combining equations (11)–(13) with Condition (C8), we prove (iii) in Lemma 3. This
completes the proof. ��
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