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Abstract This paper studies multivariate wavelet regression estimators with errors-
in-variables under strong mixing data. We firstly prove the strong consistency for
non-oscillating and Fourier-oscillating noises. Then, a convergence rate is provided
for non-oscillating noises, when an estimated function has some smoothness. Finally,
the consistency and convergence rate are discussed for a practical wavelet estimator.
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1 Introduction

The current paper considers the following errors-in-variables regression problem. Let
data (W;,Y;) € R? x [T, T]1(j=1,2,...,nand T > 0) be from the model

Yi=m(X;)+e;, Wj=X;+94j. (1)

The errors ¢ and §; are independent of each other and independent of X ;. The func-
tions fx (unknown)and fs (known) denote the densities of X ; and  ;, respectively. The
regression errors ¢ satisfy E¢; = O and E 8? < 00. The goal is to estimate the regres-
sion function m by some estimator 7, (depénding on(W;,Yp),j=1,2,...,n).
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This above model has many applications in the field of medical statistics (Carroll
et al. 2006, 2007) and econometrics (Schennach 2004). For a special case §; = 0,
the Nadaraya—Watson estimator works well. By deconvolution technique, Fan and
Truong (1993) extend the Nadaraya—Watson estimation to the regression model with
errors-in-variables.

Chesneau (2010) studies firstly that model by wavelet method. As a generalization
of Meister’s theorem (Meister 2009), the strong consistency of a wavelet estimator
is obtained, when fo " has some zeros (Guo and Liu 2017). Here and after, 7 - x :=

Z?:l tix;fort = (t,...,tg), x = (x1,...,X4) € R4, and
@) = f f(x)e'*dx 2)
Rd

denotes the Fourier transform of f € L' (Rd). A standard method extends that defi-
nition to L2(R9) functions. Recently, Chichignoud et al. (2017) show a convergence
rate for an adaptive wavelet regression estimator over anisotropic Holder classes.

All above work assumes the independence of the given data (W;,Y;) (j =
1, 2,..., n). Regression estimation with strong mixing data has received a lot of
attentions, such as Masry (1993), Shen and Xie (2013), Chaubey et al. (2013) and
Chesneau et al. (2015). It should be pointed out that Chesneau (2014) provides more
general theorems on wavelet thresholding method under strong mixing data, which
mainly concern the mean integrated square error of an estimator. Motivated by those
work, we consider the strong consistency and convergence rate of wavelet regression
estimators under strong mixing data for model (1).

For a strictly stationary process {Z;, j € Z}, its kth (k > 1) strong mixing
coefficient is defined by

azk) = sup |[P(ANB) — P(A)P(B)|,
(A,B)eF,;> OxFh +o°

where F, 0 and .7-'§’+°° are the o -algebras generated by Z; for/ < O and ! > k&,
respectively. A process {Z;, j € Z} is said to be strong mixing, if limy—, 100 @z (k) =
0. Clearly, independent and identically distributed (i.i.d.) data are strong mixing.

Throughout this paper, the observed data {(W;, Y;), j = 1,2, ..., n} are assumed
to be geometrically strong mixing, which means with some positive constants
wo and g,

aw,y)(k) < poexp(—uik)

foreach k > 1.

Example 1 Let X; = ZjeZ aje;—j with
27% k>0,

iid. 2 _
{e:, t € 7} N(O,a)andak_{o’ P
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Regression estimation under strong mixing data 555

Then, it can be proved by Theorem 2 and Corollary 1 of Doukhan (1994, p. 58) that
{X;, t € Z} is a geometrically strong mixing sequence.

j.id.
Example 2 Let {e(t),t € Z} "~ N,(0, T) (r-dimensional normal distribution) and
{Y (1), t € Z} satisfy the auto-regression moving average equation

P q
D OBMY(E i)=Y Akt —k)

i=0 k=0

with [ x r and [ x [ matrices A(k), B(i), respectively, as well as B(0) being the
identity matrix. If the absolute values of the zeros of the determinant detP(z) :=
det Z{’ZO B(i)z' (z € C) arestrictly greater than 1, then {Y (¢), t € Z} is geometrically
strong mixing (Mokkadem 1988).

To give an example of model (1), we introduce a simple but important lemma,
which is also used in our later discussions.

Lemma 1 Let {Z;,i € 7} be a strong mixing sequence valued in R¢ and f : R4 —
R™ be Borel measurable. Then, {f(Z;),i € Z} is strong mixing and o y(z)(k) <
oz (k).

Proof Clearly, the strict stationarity of { f (Z;), i € Z} follows from the same property
of {Z;,i € Z}. Then for k € Z and n € N (the positive integer set),

FE = 0(f(Z0). . [ (Zin)
= |(f(Zk)~--’ f(Zisa) " (B): Be B(M"“))},

where B(R™"*+D) stands for the Borel o-algebra on R”"+D  Because the Borel

measurability of f implies that of g(zk, Zk+1, -.-» Zk+n) = (f(2k), f(@k+1)s .-
f(zk4n)), g7 (B) € BRI (for B € BR™"+D)) and

A =@ .z B B e BRMD))
= {(Zk, o Zie) e \(B)) : B e B(Rm(nJrl))]
C {(Zk, ooy Zian) N(B) 1B € B(Rd(’”‘l))}
CO(Zks ooor Zipn) = Fy* .
Hence, af(z)(k) = az(k) and {f(Z;), i € Z} is strong mixing. 0

Example 3 Forafixed T > 0and z = (21, 22,..., 2d) € R4, define f: R4 — R4
by

f@) = 2dga-14_7.1(@) = (@1, .-+, 2a-1, 2al[-1,11(20))5

@ Springer



556 H. Guo, Y. Liu

where Ij_7 7](-) denotes the indicator function on [—7, T]. Then, f is a Borel mea-
surable mapping. Choose a strong mixing sequence {Z;, i € Z} valued in R? (say
Z; = X; or Y (i)) in Example 1 or Example 2. According to Lemma 1, { f (Z;),i € Z}
is strong mixing as well.

This paper is organized as follows: In Sect. 2, we prove the strong consistency
of our wavelet estimators for both non-oscillating and Fourier-oscillating noises. Sec-
tion 3 provides a convergence rate of a wavelet regression estimator for non-oscillating
noises, when the estimated function belongs to some Holder class. The same problem
is considered for a practical wavelet estimator in the last section.

2 Strong consistency

This section studies the strong consistency of wavelet regression estimators under
strong mixing data. We begin with two lemmas. The first one generalizes a conclusion
of Theorem 3.2 in Meister (2009).

Lemma 2 (Guo and Liu 2017) Let f € C (RY)Y (the continuous function set on R?)
and f(t) # O for each t € R%. Then, there exists a positive sequence h, — 0 such
that 1

Ry omin o f@0)]=n7d
te[—1/hy, 1/hy)4

holds for sufficiently large n.

We use ||x|lc to denote the L°° norm of a measurable and essentially bounded
function x(¢). For t > 0, | 7] stands for the largest integer smaller than or equal to 7,
while [7] does for the smallest integer larger than or equal to 7.

Lemma 3 (Bosq and Blanke 2007) Let {Z;, i € Z} be a strictly stationary and real-
valued process with EZ; = 0 and sup; <; <, [ Zilloo < My (M, > 0). Then for e > 0
andn €[1, n/2],

n 2.2
16M,
P E Zi| >ne| <4dexp|— " 841/7 + notz <\\1J>,
3202(n) + = n?n=2e & 2n

i=1
where 2(n) = (L] + 2)[Var Zy +2 Y4 (Cov(Zo, Z) |1 with © = L.

Lemma 3 implies the classical Bernstein inequality, which plays a key role for
estimation with i.i.d. data. In fact, when {Z;} are i.i.d., the term containing «z(-)
disappears. By taking n = 7, we find 7 = 1 and o2(n) = 3Var Z; := 307. Then, the
estimation of Lemma 3 reduces to

1 ne?
Pl|- Zi|>¢e| <dexp| ——————
(7 57)) =40 ()

i=1
with |Z;| < M. This is the desired conclusion up to some constants (Hérdle et al.
1998).
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Regression estimation under strong mixing data 557

In order to simplify the proof of Theorem 1, we recall the corresponding result of
Guo and Liu (2017) with i.i.d. data.
For a non-oscillating noise (which means faf 40 #£ 0,1 € RY), choose the scaling

function ¢ (x) := 1—[;1:1 ¢ (x7), where ¢ := @)y stands for the one-dimensional Meyer
scaling function with

4 4
supp <p,{,; C [_?n ?n:| and ‘91{4[ e C™

(Daubechies 1992). As usual in wavelet analysis, denote ¢; x (x) := 2%/2¢(2/x — k)
with j € Z and k € Z?. Then, the estimators for fx and p := mfx are defined by

fxa@) =Y &jrpix(x) and p,(x) = Y Pjxpjr(x), 3)

kezd keZd

respectively, with

. | W . f

aj,k=;§ ) /R LT/ war, @)
. | — 1 W

V= 2 Vg /R Mg 0/ 0. 3)

=1

Here, the long bar stands for complex conjugate. It is easy to show E&;; = aj,
Eyjx =vjxand

Efxn(x) = Pjfx(x) and Ep,(x) = P;p(x), (6)
where

oip = f Fr(O@a(ode and vy = / ()@ 4 (X)dx.
R4 R4

A Fourier-oscillating noise means that there exists a constant C > 0 such that

. Tl
simn| —
As

with Ay > 0, oy > 0 and v; € ZT U {0}. In that case, the authors of Guo and Liu
(2017) assume fx € L>(R?) and supp fx C Q := [a, b]¢. They replace the Meyer’s
function ¢y, in former case by the Daubechies’ D,y (for large V) to obtain the scaling
function ¢. Let

(I + 1™ (N

d
5 @] =
s=1

Kj = {k=(ki, kz,...,kd)EZdZ supp @, Nla, bl #0,s =1,2,...,d}
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and J = (fl, fz...,fd), where J~S = {%] withd :=a —2N + 1 and b :=
b + 2N — 1. Then, the estimators for fx and p are defined, respectively, by

fxa() =Y &) and p,(x) = Y Pjxgja(x), ®)
kEICj kE’Cj

respectively, where

A l - 1 > it W, [90/ k] (t)
Fik =4 Z )l /Héd e ™ I £ ©)
Pik = Z o / Enye™ %l}f(r)(t) , (10)

with

J d .
Eoy = [ mme []‘[(ezxf—l)“x] (1)
m=0 s=1

Here, Zizo = Z =0 Zmz—() ZJ" _o and the constants 7, depend only on J,
v, d.

The main theorem in Guo and Liu (2017) states as follows:

For problem (1) withi.i.d. data (W;, Y;)(Y; € R),if p :=mfx € L(RY), EIY |* <
oo and x is a Lebesgue point of p and fx (fx(x) # 0), then the following assertions
hold true:

(a) When fafZ has no zeros on RY, 7, (x) := Pn(x)/fx.n(x) given by (3)—(5) satisfies
lim,, o 1, () = m(x);

(b) When (7) holds and fx, p € L2(R9) have compact support 2, i, (x) =
Pu(X)/fx.n(x) given by (8)~(11) satisfies lim, o0 112, (x) = m(x) (x € Q)
as well.

Our Theorem 1 extends this above results fromi.i.d. to geometrically strong mixing
data. Since we assume Y € [T, T1, E|Y1|4 < 4ooand p := mfyx € L(Rd) hold
automatically.

In the proofs of Theorem 1—3, we frequently use the following notations. For two
variables A and B, A < B denotes A < CB for some positive constant C in later
discussions; A 2 B means B < A; we use A ~ B to stand for both A < B and
B < A.

Theorem 1 For problem (1) with a(w,y)(k) < poexp(—u1k) (o, 1 > 0), if x isa
Lebesgue point of p :== mfx and fx(fx(x) # 0), then the following assertions hold
true:

(a) When fsft has no zeros on R4, 11, (x) = pu (X)/fx.n(x) given by (3)—(5) satisfies

limy,— 0 ”?ln (x) = m(x);
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Regression estimation under strong mixing data 559

(b) When (7) holds and fx € L2(RY) has compact support Q, my(x) =
Pu(x)/ fx.n(x) given by (8)—~(11) satisfies limy,_, oo 11, (x) = m(x) for x € Q.

Proof Since i, (x) = fii',f)(c;) J‘I;((ECX))’

= p(x) and lim,— o0 fx n(x) = Jfx (x). From the definitions of p,(x) and fx_,(x),
one need only prove the first limit. For ¢ > 0,

and m(x) = it suffices to show lim,,_, s p,(x)

P(|pn(x) — p(x)| > 4¢)
< P(lpp(x) — Epp,(x)| > 2¢) + P(|Ep,(x) — p(x)| > 2¢). (12)

By the same arguments as Theorem 4 and 5 of Guo and Liu (2017), lim,,—, 5o Epy,(x)
= p(x) holds for each Lebesgue point of p in both cases (a) and (b). In fact, careful
observations find that the whole proof does not use the independence of (W;, Y;).
Instead, it does use the identical distribution property, which is fortunately implied by
the strict stationarity of (W;, ¥;).

The independence of (W;, Y;) plays a key role for the estimate of P(|p,(x) —
Ep, (x)| > 2¢) in the proof of Theorem 4, 5 (Guo and Liu 2017). In fact, the authors
estimate E|p,(x) — Ep,(x)|* for an upper bound of P(|p,(x) — Ep,(x)| > 2¢).In
this current case, one estimates P (| p,(x) — Ep,(x)| > 2¢) directly for both cases (a)
and (b).

(a) By (3) and (5),

n

Ly~ X 12,0 23 PvRD)
Pn(x) := — Z ! /d 2=dj/2 4it-Wi Z o2 Jk-t(pj,k(x) pli( )dt
R

= -
n =1 (27‘[) ke7d Sft(t)
(13)
With U; .= Z; — EZ; and
Y —di/2 it _in—ik. It@2=Jr)
7 = (Zn)d /12 dj/2 it-W Z o2 jkt(ﬂj,k(x) gont,
R¢ kezd f(s (t)
Pn(x) — Epp(x) = 3 Y_; U and
1 n
P(pn(x) — Epp(x)| >26) =P (‘— ZU; > 26‘) . (14)
n =1

Obviously, EU; = 0. According to |V;| < T, | ez @jk ()| < 2%/2 and

supp ¢/ C [, 14,

1Z;| <274 [ min
te[—4mw21 /3, 4727 /314

-1
f(sft(t)u . (15)
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560 H. Guo, Y. Liu

By faf "() # 0 and Lemma 2, there exists a positive sequence h,, — 0 such that

h¢ min {0 znt
tel=1/hy, 1)k,
Since h, — 0, ﬁ > 1 for large n and

3
ji= {logz (47_[}1 )J > 0. (16)

Clearly, j < logz(ﬁ) and 4?”2/' < % Then, (15) reduces to

) -1
1Z1] < [hi min Ifaf’(t)l] Snllt,
te[—1/hy, l/h,,]d
Hence, |U;| < n'/4, Var Uy < n'/? and |Cov (Uy, Up)| < nl/?.
Note that | Yy cz0 97x (0] < 2472, supp /' €[4, 4714 and £ (1) £ 0 (1 €

R?). Then as a function of 7, Y kezd e_"z_jk%pj’k(x)(pfl (2—/'t)/f5ft (1) € L(RY) for
fixed x € R?, and its Fourier transform should be continuous. Furthermore,

g(w, y) = y(Qm)™ fR [ Rt | ST e M) | @ @I
keZd

defines a continuous function on R? x [—T, T, so does Re g(w, y). It follows from
U = g(W,Y)) — Eg(W;, Y;) and Lemma 1 that {Re U;,[ € Z} is strong mixing.
With the given assumption o w,y)(g) < poe #'4, one chooses 1o > % and denotes
N = Lozl T 7= 5. Since [Re U] < |U] S n'/4, |Re Uj| < c1n'/* .= M, for
some ¢; > 0. Then, Lemma 3 tells that

1 n
Pl|- § ReU| >¢e| < Piy+ Poy, (17)
n
=1
— n*e?/n ._ 16M,
where Py , 1= 4exp(—m), P, = 2 OlReU(LG_n_]) and

[z]+1
o?() = (Lt] +2) | Var(Re Up) +2 Y |Cov(Re Up. Re U))|
=1
According to Lemma 1, aReU(LG—nJ) < Ol(W,Y)(L;—,]J) < /Jcoeﬂ“%J. Because
0= Lty ) implies ££ > oI, e, (L4 1) < jroe #1000 = pygehin=r1o,
Furthermore,
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Regression estimation under strong mixing data 561

P, < &cluoemn—(mto—l/zl) < p1/4 (18)
n = <

thanks to M,, = c;n!/* and 79 > %
Since Var(Re U;) < n'/? and |Cov(Re Uy, Re U))| < n'/?, o%(n) = (It] +
2)[VarRe Up) +2 Y5 [CovRe Uy, Re UDI1 S (Lr] +2)2Le) + 3)n'/? <

cot2n'/? with some constant ¢y > 0. This with T = 2%’ and M,, = c;n'/* shows

2.2 2n

e2/n en 2
P < dexo | — <dexp|———F—1n]|.
Ln = P( 32c0(2"—n)2n‘/2+%61n1/4n2?728) = p( 86‘0+%018n>

Byn= L%J > %ﬁ for n large enough, one obtains

2 1

e“n 2 n
P, <4dexp|— . <n 4, (19)
" P ( 8co + %Clé‘ 41 lnn)

Therefore, it follows from (17)—(19) that P(|% Y ReU| >¢) < n_%. Similarly,
P(|% Yo ImU| > e < n=i. Hence, (14) reduces to

ENEN)

P(|pn(x) — Epp(x)| > 2¢) Sn™ 4. (20)
This with lim;,_, ;o0 Epy(x) = p(x) leads to P( |pp(x) — p(x)| > 4e) < n_%
for n large enough. Then, the conclusion lim,_ » p,(x) = p(x) reaches thanks to
Borel-Cantelli lemma. The proof of (a) is done.

(b) The condition fy € L?(R?) is needed for the definition of r,, when faf !
has some zeros (see (16) in Guo and Liu 2017). Similar to case (a), one defines
Uy:=Z72;,— EZ; and

7=, / 27UREW M| N T R, () | T @I/ f] (de

d
@m)? Jrd kelkC;
with é‘(t) given in (11). Then, EU; = 0 and
1Zil < /Rd Ié(t)wf’(2‘ft)|/|f5ft(t)|dt, (21)

because |Y;| < T and | Zkelcj Pik(X)] S 24i/2 Recall that J is fixed and independent
of ¢, the constants 7 are only dependent of J , v, d.Then, (11) implies

it
SHIGXP< 7;“)—1
N

s=1

Us

& (1) : (22)
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562 H. Guo, Y. Liu

where the compactness of fy is needed to guarantee J independent of ¢. This with
(21) and (7) shows that

(p]{,t Q27 7t)| dr

d
1Zi| 5f11"[<1+|rs|)“5
R s=1

d
ST12 / (1 + 275y dry < 2 (4]
R
s=1

ol (t)

holds for large N. Here, <pf’ (1) = ]_[f: 1 <p1{,t (t;) because ¢ is defined by the tensor
product of ¢y .
By choosing j with

(400 o gk (23)

one gets | Z;| < n'/* and |U;| < n'/*. Moreover, Var U; < nll/2 and |Cov(Uy, Up)|
< n'/2. Then, it follows from (22) and | Zkelcj Qi) S 24i/2 that

RUPEW] Y e Mg ) e T/ 0

kG’Cj

d g
< []‘[ ] Tt @I/ £ ).

s=1

According to (7) and exp(%) —1 =exp (%) - 2i sin %, Z_df/zé(t)[zkelcj

e’izfjk"goj,k(x)}pff(2*/'1)/f5ft(t) € L(R?) for fixed x and j. Hence, its Fourier
transform is continuous and

g(w, y):=y(@2m) ™ /R e O [ > e"”’”w,-,k(m} ol =n /] W
kE}Cj

defines a continuous function on R? x [T, T. The remaining proofs are the same
as those in case (a). O

Remark 1 From the choices of j in (16) and (23), we find that j goes to 400, as
n — 0.

Compared with Theorem 4, 5 in Guo and Liu (2017), the estimates of the bias term
are similar; the stochastic term P{|p,(x) — Ep,(x)| > 2¢} is done by estimating an
upper bound of E|p,(x) — Ep,(x)|* in i.i.d. case, where the independence plays a
key role. However, it does not seem work in strong mixing situation. Therefore, we
use the generalized Bernstein inequality (Lemma 3).
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Regression estimation under strong mixing data 563

3 Convergence rate

In this part, we provide a convergence rate of m,(x) = fX”—()(C;) defined by (3)-(5),
when the estimated function m(x) is in some Holder class and the noise density fs
satisfies that

d d
1 o2 TTa+1aD7 and 08 £ o1 STJa+1mD™ %, @4

i=1 i=1

where @ = (a1, a2, ..., aq) (@; > 2)and B = (B1, B2, ..., Ba) (Bi =0, 1, 2) for
i=1,2,...,d

Let fiwy,vo.w;.v;) and fiw,y) stand for the density of (W, Yo, W, Y;)(I € Z) and
(W, Y), respectively, and

sup sup [ (wo, yo, wy, y)| < C (25)
l€Z (wg, yp) e RY x [T, T]
(wp, yp) € R X [T, T]

with constant C > 0 and

h(wo, Yo, wi, Y1) = f(Wo,vo,w;,¥) (Wo, Yo, wi, 1) — fow,yy(wo, ¥0) fow,v)(wr, y1).

Our Theorem 2 can be considered as an extension of Theorem 3.3 in Meister (2009).

Recall that the estimator m,(x) is defined by the scaling function ¢(x) =
]_[f:1 @(x7) (see (3)—(5)), where ¢ stands for the one-dimensional Meyer’s function.
Then, the kernel function K (x, V) = D iz @(x — k)@(y — k) satisfies |s|-order
moment condition fR k(x, V(y — x)-jdy = b0, j = 0,1,..., ls]. Moreover,
K(x,y):= I—[EJZ] K (x;, y;) has the same property,

/Rd K@, y)(y —x)"dy =doy (yI=0,1,...,[s]). (26)

Since ¢ is the Meyer’s scaling function, there exists a bounded and radically decreasing
L' function ® such that

|x — yl
2

IK (x, y)| < Cq>< > (ae) and fd O(u)|ul’du < +o0 (27
R

with some positive constant C depending only on &, see Kelly et al. (1994).
The next lemma plays an important role in the proof of Theorem 2. It is a general-
ization of Lemma 6 in Fan and Koo (2002) fromd = 1tod > 1.
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564 H. Guo, Y. Liu

Lemmad Let (K*¢)x(x) = b7 fpa @lo k17 0/ £ (0)dt and (24) hold.
Then with |o| = a1 + o + -+ - + g,

d
. . -2
(K )4 ()] S 27D TT (14 1275 = hal)
=1

Proof D_enote (KJ._go)‘(x) = ﬁ Jpa €@l (=1)/ f({ "(2/t)dt. Then, (K*@) ;i
(x) = 2/d/2(Kj_<p) (27x — k). It is sufficient to prove

d
(K7 o))l S 27T+ bah ™, (28)
=1

LetL:={l: 1 <l<d, |x|>1}and L :={1, 2, ..., d}\L. Then by integral
by parts twice with respectto #; (I € £),

l_[leﬁ(ixl)_2

(K7 o)0 = L

fR el ol —n/ff o ar,

WhCI‘CB = (,31, ,52, A Bd) with Bl = 2forl € L, while ,51 = Ofor/ € L. Because
|72 S (1 + )2 for x| > 1,

I(K; o) S {]_[(1 - Ile)‘z} /Rd 10 [wf"(—t)/faf’(zfz)] dr. (29)
lel
For B = (B1, Ba. ..., Ba) € N? with B; <2,

[3ﬁ féft] 271 li[ 2JBi

=1

. —a—pB .
STT(1+minr) ™ ot

=1

o7 [ 1" @in]| =

thanks to the second inequality of (24). According to the first one of (24),

45 971D
fi@in

S Zﬁ: {‘[3/§5¢ff] (—t)‘ |:li[(1 + |2jfl|)a’5121/31:|}

B=0 =1

- B _ B B B
with 3 0= 502 g0 Lpg—o- |
Since oy — By = 0and 1 + 275 <2/ 4+ |27t = 27(1 + |]),

N K il
ft@in

P i [07 0" ] =) [0+ 1ae.
) 1=1
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Regression estimation under strong mixing data 565

This with (29) leads to

B ) d
|(K;(p)(x)|52]‘a| |:1_[(]+|xl|)_2:| /[:Rd Z {H:aﬁ_ﬂwft:l (_t)‘ H(1+|tl|)al}dt
p=0 =1

lel

Note that ¢/! € C®(R?) is compactly supported, and 1 < (1 + |x;])~2 holds for
|x;] < 1. Then, desired conclusion (28) follows. This completes the proof. O

A function f on R is said to satisfy Holder condition of order s (s € RT\N), if
there exists a constant C > 0 such that for |8] = |s] and y, z € R?,

98 £ () — 8P f(2)| < Cly — 2" PL.

When the above inequality holds only for y, z € Q(x,r) :={y = (y1, ¥2,--., Ya)|
yviexi—rxi+r),i=1,2,..., d}withr > 0, we call f satisfying local Holder
condition of order s at the point x. Obviously, Holder condition of order s implies
local one of the same order at each fixed point x € R¢. Then, Lemma 2.7 in Meister
(2009) can be easily generalized to high-dimensional cases. We state it without giving
proof.

Lemma 5 Lets € RT\N and F be a set consisting of local Holder functions of order
s atx € R, Ifthere exist constants C', C" > 0 such that with 8 € N and |B| = |5,

IfD)I = C" and 18P f(y) =3P f(2)| < C"|y —z|*"1F! (30)

foreach f € Fandy, z € Q(x,r). Then with some constant C > 0 (depending
onlyon C', C", s andr), 13" f(y)| < C holds uniformly for f € F, y € Q(x, r) and
lyl=0,1, ..., Ls].

We also need the following lemma in the proof of Theorem 2.

Lemma 6 (Davydov 1970) Let {X;}icz be a strong mixing process with the mixing
coefficient a(k) (k > 0) and f be a Borel measurable function. If E|f(Xo)|? and
E|f(Xo)|? exist for p,q > 0 with % + é < 1, then there exists a constant C > 0
such that

ICou(f(Xo). F(Xi)| < Catk) P aLE|£(X0)| P17 LE| £ (Xo)|]7.

Before stating the main theorem of this section, we introduce a functional set Py ¢
forx € R? and s € RT\N,

Prs ={(m, fx): fx and mfx satisty local Holder condition of order s
atx; || fxlloo + Im* fxlleo < Ci; fx(x) = Ca) 31)

for some positive constants C1, Ca > 0.
When (m, fx) € Px s, we find easily that

@ Springer



566 H. Guo, Y. Liu

i) mfx € LR);

(i1) there exists C3 > 0 such that SUP (1, )Py s Im(x)| < Cs.

In fact, the conclusion (i) follows directly from |m(x)| < T (dueto Y € [T, T])
and fx € L(R?); to see (ii), we realize that both fy and mfy are continuous at
x because of the local Holder assumptions. This with fx(x) > C> > 0 shows the

continuity of m at x. On the other hand, Colm?*(x)| < |m?fxlloo < Ci implies
Im(x)| < (C1C271)1/2 := C3. Hence, conclusion (ii) holds.

Theorem 2 Consider problem (1) with ocw y) (k) < poexp(—u1k) (k > 1), (24) and
1

(25) holding. Suppose 2/ ~ n=¥2altd ( therefore j goes to +00 as n — ~+00), then
the estimator M, (x) = p,(x)/fx.n(x) defined by (3)—(5) satisfies

R _ 2s
lim lim sup P [|if1,, (x) — m(x)|2 >cn 2S+2\“|+d] =0
C—> 00 n— 00 (mst)GPx,s'

with |la| = a1+ oy + -+ ag.

Proof According to the proof of Theorem 3.2 in Meister (2009),

P (0 = m@)P > e] = P[1pa@) = pP 2 ¢]

+ P [ 1fxn@ = fx)P 2]

2s
for & > 0 small enough. Taking ¢, := n~ »+2el+d — () and using Markov inequality,
one knows that

sup Pl ity (x) — m(x)|> > cep]
(msf)()epx.s

Steen™ sup  |Elpu(o = poP + Elfrato = fx0P}. 32
(m, fx)€Px s

In order to estimate E| p, (x)— p(x)|>+E| fx.n (x)— fx (x)|?, it suffices to deal with the
variance terms Var p,(x)and Var fx ,(x),as well as the bias terms | Ep,, (x) — p(x) |2

and |Efy.(x) — fx (0.
First, one estimates Var p,(x). Similar and even simpler arguments apply to
Varfx ,(x). Denote

1
@2n)?

/R Y ik le O /f] (1.

kezZd

V(w,y):=y

Then, p,(x) = + Y/, W(W;, ¥) and Var p,(x) = 537 Yii_, Cov(¥ (W,

YD, W(Wpr, Yi) < 2varqwi ) + 3 Y00, S 1Cou(W (W, Y)), (W,
Y;))|. By the strict stationarity of {(W;, Y;)}iez,
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1 2
Var pp(x) < ;Var W (W, Y1)+ - Z [Cov(W(Wo, Yo), W(W;, Y))|. (33)
=1

For the first term of (33), one observes

(0 1(1)
Var W(W, Y1) < E Yl(zn)—df MY vk ()“”’k) D) . 34
kezd (t)

According to W1 = §; + X and the independence between §; and Y7, the right-hand
side of (34) can be rewritten as

2

@)~ f E(NI’IX1 =wE f JOT N "y ()“””‘) Dl peau
R4 R4 ()

keZd

Clearly, E(|Y11?|X1 = u) = E[(Y) — E(V1|X1 = w)?|X| = u] + [E(Y1|X| =
u)]?; Because X is independent of ¢; and Ee; = 0, m(u) = E(Y1|X; = u) and
E(IY1*1X1 = u) = E¢2+m>(u). This with || fxllec+lm? fxloo < C1and Ee? < 00
shows

IE(Y11*1X1 =) fxOlloo S 1. 35)
Hence,
2
f
Var\y(wl,yl)g(zn)—dE/ / e N ) Mdt du.
RY |JR4 o £

By the compactness of ¢/’ and the first inequality of (24), Yk @ik () (@il (1)
/fsft(t) € L*(R?) for fixed x and j. Then,

2 P
(@j0l"(1) f1(2=ir)
Var \II(W1,Y1)§/ Z @jk(x )%+ dtS/ ¢T
o | &, o 2| )
< Ftm—jon2 N2 4 < 0JRlal+d)
N/[_M%y. o@D ]‘!(1+|n|) dr S 21 G+, (36)
3 ? 3 1=

where the Parseval identity is used in the first inequality; the second one holds because
[pj )/ (1) = 274112127 Kt I1 (27T 1) and | " cza @(x — k)| < 1; for the last two

inequalities, one uses (24) and supp ¢/! C [—47”, %”]d.
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To estimate the second term in (33), one writes
n
> 1Cov(W(Wo, Yo), W(W;, )| :=T1 + T (37)
=1
. _ 2dj 1 _ n
with 71 = ) iy |Cov(W(Wo, Yo), W(W, ¥)))| and T> = > 1ndj |[Cov(¥ (W,
Yo), W (W, Y7))|. Here, 1 < 2/4 < p holds for large n because of the given assumption

2J ~ T  Clearly,
[Cov(W (W, Yy), V(W Y1)

T T
5/ / / / [h(wo, yo, wi, yD)IIW (wo, yo) W (wy, y1)|dyodwody,dwy,
R ST JRA J-T

where h(wo, Yo, wi, Y1) = fwo,vo,w.vp) (Wo, Yo, Wi, Y1) — fow,vy(wo, Yo) fow,v)
(wy, y1). This with (25) leads to

T 2
|Cov (W (Wo, Yo), W (W;, Y| S [/d/ I‘I’(W,y)|dydw} :
Re J_T

Note that W(w, y) = D ;cza Y(K*9)jr(w)p;r(x) and (K*@); is defined in
Lemma 4. Then,

. d . -2
W (w, )| Syl Y 2/t []’[(1+|21w1—k1|) ]I(pj,k(X)I (38)

keZd =1

thanks to Lemma 4. Hence, |Cov (¥ (W), Yy), ¥V (W, ¥;))| can be bounded by

2
T d
S it [ ) []_[(1+ 2wy —k1|>—2] dydwlp; ()]} < 22k,
kezd REJ-T - Lim
which implies
T, < 2iClal+d), (39)

For an upper bound of 7>, one takes p = g = % with ¢ € (0, 1) in Lemma 6 and
obtains that

|Cov(¥(Wo, Yo), ¥ (Wi, )| < [agw.y) (DI LE|W (W, Yo)|/17011=¢

2
5[a<w,y><l>]<~[ sup |\D(w,y)|} [ Elw oo, Yo |
(w,y)eRY x[~T,T]

@ Springer



Regression estimation under strong mixing data 569

The arguments from (34) to (36) show E|W¥ (W, Y())I2 < 2J/@lel+d)  On the other
hand, (38) tells

sup W (w, y)| < 270+, (40)
(w,y)e]Rdx[—T,T]

Hence, [Cov(¥ (W, Yo), W(W;, Y1))| < [aqw,y) ()16 27 Glel+d+dD) ang

n n
< 2J Qlal+d)Hdjt Z loew.y) (1)]4“ < 2JQlal+d) Z lg[a(w Y)(l)]g < 2JQlal+d)
1=24dJ 1=24dj

thanks to the given condition aw,y)(/) < poexp(—pu1l). Substituting this and (39)
into (37), one receives

n
Y 1Cov(¥(Wo, Yo), W(Wy, Y)| < 2/C1HD.
=1

This with (36) and (33) indicates Var p,(x) < n~12/Clel+d Similarly, Var fx.,(x)

. . 1
< n~ 127 Clel+d) - According to the choice 2/ ~ p Z720TH |

. 2s
Var fx,(x)+ Var py(x) < n~ 12/ Clel+d) <n BRI =g, 41)

It remains to estimate the bias terms | Ep,, (x) — p(x)|+|Efx n(x) — fx (x)|. By (6),
Efxn(x) = Pj fx(x) and Ep,(x) = Pjp(x). Onthe other hand, P; f = K f, where
Kjf(x) = [pa Kj(x,y) f(y)dy with K;(x, y) := 24K (27x,27y) and K (x, y) :=
Y kezd ¢(x — k)p(y — k). Then, it is sufficient to estimate

1K f(x) — f(x)?

with f being fx or p.

Since f satisfies the local Holder condition of order s (s € RT\N) at x, there
exist constants C,7 > 0 such that |3 f(y) — 3# f(z)| < C|y — z|*"!#! holds for
vy, z € Q(x,r) and |B| = Ls]. Denote

2
Bj = |K;jf(x)— f(x)|* = './Rd Kix, WIf(y) = fx)ldy| < Bji+ Bj

with Bj1 = | [y Ki 6 MIF ) = F1dy? and Bjo = | fga gxry Kj (X 2)
[F() = F@)]dy2. By [ flloo < C1and K (x, y) = [T0_; K, (xy. vy
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2
Bj < / |K,-<x,y>|dy]
R4\ Q(x,r)

/ / H 1R G y)ldyidyy
RI=1J |y — X1\>’
r d

2
N
> I — X
Z/ K Gt ) ‘—’ dyi
|yi—xi|>r r

Li=1

IA

IA

with dy,” :=dyi - - - dy;—1dys41 - - - dyg. This with (27) leads to

2

d
Bas Y [ e (2 k) —ndn | S27 @
1=1 [yi—xi|>r

To find an upper bound of B, one considers firstly the case s € (0, 1), for which

the local Holder condition of f implies that
2 2
Bji = ‘/ K )LF ) = FOIMy| < U K Gxoylly — xP‘dy} .
O(x,r) O(x.r)

According to (27),

2
Bj1 < [/ 2fd<1><2f"|y—x|>|y—x|"dy] <27, (43)
]Rd

For the case s > 1, one uses Taylor theorem with x = (x1,...,x4) € Rd, i =
(i1, ....ig) and x' ;= x{' - x (x € RY) to get

Ls]
fO) = fx) = Z Z T O =)
T lil= k
+ L Ls—“<9"[f(x+@<y—x>>—f(x)](y—x)"
Ls]! ileeig!

lil=Lss !
with 6 € (0, 1). Hence, B;1 < Bji1 + Bj12, where
2

[s]
Bji = ZZ T f(x)/ Kj(x,y)(y —x)'dy|  and
=1 lil=k '
2
1 . .
Bio=| Y i | K@ e 00— = fl - ady
ji=Lsy 110G
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By the local Hélder condition of f and |y, — x| < |y —x|" (I =1, 2, ..., d),
2

Bji2 S Z . :

e [ Kl -y
li|=Ls) 1-...14: Q(x,r)

The same arguments as (43) show

Bjin S27%5. (44)

Because [po K (x, y)(y =x)7dy =0 (Iyl = L. 2, ..., IsD), [pq. ) KGO =
x)Vdy = — fRd\Q(x‘r) K (x, y)(y — x)”dy. This with Lemma 5 concludes

Ls]
. . 2
Bji S [ZZ/ 1K (e, )l —x1|’1~~|yd—xd|lffdy] .45
R\ Q(x,r)

k=1 |i|=k

According to the definitions of K; and Q(x, r),

th\Q( Il =l by = xaldy
4 X,r

d
/.
=1 YR yi—x|>r

d
gZ[ [1 /|I€,,-<x,,,yn)||yn—xﬂ"ﬂdy& / 1K e yollye = " dy

n=1n#l

Iy —x1 |- lyg — xql“dy; - - dyq

d
|BESICED)
n=1

[yi—=xi|>r

Notethat |K ; (x, y)| <2/ @@/~ x—y]) and [ ®(ul)|ul”du < 1with1 <7’ <s.
Then,

/R|12j(x,7,y,,>||x,7_yn|fndy,7g/szé(sz_y,,|)|x,,_y,7|fndyng 1.

On the other hand, |y, — x| = [y, —x;1%|yr — x5 < |y — x| r = for |y, —x;| > r
and i; < s. Hence,

/ |K G, yollyr — 1 dyr S f K Gyl — xSdyy S 2795,
|yi—xi|>r

[yi—xi|>r
Thus, (45) reduces to Bj1; < 272/%. This with (43) and (44) proves Bj; < 27275,

Combining it with (42), one knows B; = |K; f(x) — f(x)|*> < Bji + Bjp $27%°
for f = fx or p. Moreover,
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|Epn(x) — p(0)* + |Efxn(x) — fx(x)? <2728 < p=28/QsH2eltd) — o
(46)

thanks to the choice 2/ ~ n!/(s+2lel+d) Sybstituting (46) and (41) into (32), one
receives

sup Pl (x) —mx)|* > cen] <L

(m, fx)€Px s

Finally, the desired conclusion of Theorem 2 follows. O

Remark 2 When d = 1, the convergence rate in Theorem 2 coincides with Theorem
3.3 of Meister (2009), where the author studies a kernel estimator with i.i.d. data. It
should be pointed out that our estimation for the bias term is similar to Meister’s,

although the technical conditions f){ e L(Rd) and pf Ie L(]Rd) are removed.

Remark 3 Because our Theorem 2 allows the data {(W;, Y;)} strong mixing, the esti-
mation for the variance terms is more difficulty than i.i.d. case, see Meister (2009). In
particular, the covariance term in (33) need to be dealt with carefully, which vanishes
fori.i.d. case. In addition, we pay a price to assume an extra conditions on f(sf 't, i.e., the
second inequality of (24). Compared with Theorem 1, Theorem 2 requires faf ’ hav-

ing no zeros. It is interesting to consider the convergence rate for Fourier-oscillating
noises.

Remark 4 The assumption Y; € [T, T] plays a key role for the proofs of (15), (39)
and (40). Our method can apply to a more general model

m*(x) = E{p(Y)|X = x}

for Y € Rand p € L'(R) N L% (R), see Chaubey and Shirazi (2015). When p(y) =
yIi—1, 71(y), the model reduces to ours discussed in this current paper. In fact, similar
results to Theorems 1 and 2 can be obtained for m*(x).

In contrast to the estimation in Theorem 1(b), the estimator in Theorem 1(a) and
Theorem 2 is not practical, because the summation index k runs over 74 . The next
section studies the consistency and convergence rate for a practical wavelet estimator
under some mild conditions.

4 Practical estimation

We truncate the estimator defined by (3)—(5) to obtain a practical estimator n%nF (x) =
P @)/ f5 ,(x), where

fEa@) =Y @japik(x), ph@) =Y Pjxpjr(x) and
kEICn kEKn
Kni={lki,....kn): kil <Kn, i=1,2, ...,d} 47)
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with K, specified later on. Then, we have the following conclusion.

Theorem 3 Consider problem (1) with a(w,yy (k) < poexp(—p1k)(ro, n1 > 0) and
lxI? fx (x) € L*(RY).

(a) Iff(sfl has no zeros on R¢, then

lim n%,f(x) = m(x)
n—oo

holds for each Lebesgue point x of p := mfx and fx(fx(x) # 0);
. 1
(b) When (24), (25) hold and 27 ~ n2s+2lel+d |

_ _ 2s
lim Tm  sup P [|rh,f(x) —m@)P? = en 2s+zwaw+d] —0
C—>00 n—0o0 (mny)EPX,S

with |a| = o1+ oy + -+ ag.

Proof (a) As in the proof of Theorem 1(a), it is sufficient to prove lim,—, o pnF (x) =
p(x). Fore > 0,

P (1p5 @) = p)] > 6¢) < P(pk (1) = Epf ()] > 2)
‘P (|Ep,f(x) — Pip()] > 28) + P(Pjp(x) — p(x)] = 2¢).  (48)
Similar arguments to Theorem 1(a), the first and third terms of (48) satisfy that

P(pf ) — Epf o)l > 2¢) Sn 74, (49)
P(|Pjp(x) — p(x)| > 2¢) =0 (for large n) (50)

with j defined in (16).
The main work is to estimate the middle one.
By Ep,f(x) = Zkelc,, Yik@jk(x)and Pjp(x) = D jcza Vjk®j.k(x), one knows

P (‘Ep,f(x) — Pjp(x)‘ > 28) =P Z Vik@jk(x)| > 2¢|. (1))
keZI\K,
Define ICy; := {(k1, ..., kq) € 74 |k)| < Ky} forl € {1, 2,...,d}. Then,

7\ K, € UL, (Z7 \ K1) thanks to (47). Furthermore,

d
Z Vjk®jk(X) SZ Z lVjkll@jx ()l (52)

keZd\K, I=1 keZI\K,
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Next, one estimates |y; |. Since yjx = [pa @jk () p)dx, |Vjk| < [ra l@jk
(x)[Ip(x)|dx and

k7 1vjl sfkflcﬁj,k,(xz)lf ]—[cﬁj,k,.(xi) [p(x)]dx; dx;
R Rd-1 il
with dx;” = dxy -+ -dx;_1dx;41 - - - dxg. Then, it follows from k7 = [2/x; — k; +
27 x> < 127 x; — kg |> + |27 ;)% that

kP lyjxl < I+11, where

1 =/ |2jXJ—k1|2|¢j,k,(XI)|/ 1_[¢j,k,-(xi) [p(x)|dx; dxg,
R LS by

1= / 12712134, ()| / [ 1%k @] 1peoldx; dx.
R e
Note that ¥; € [T, T] implies that [m(x)| < T and p :=mfx € L(R%). Then,

152497 sup |57l |- | [ ] sup 16l | - f |p(o)ldx < 2472,
x eR i;élxiER R4

where two supremums exist because ¢ is the Meyer’s scaling function. On the other
hand, the given conditions Ix|2p(x) € L2(R?) and Holder inequality tell that /1 =
2% Jpa l9j kN7l po)ldx < 22 [l kll2llx7 p()ll2 S 2%/ This with the estimate
of I shows

K yjxl S 2472 422 (53)

Take K, = [(24//2 4 204d/9j)2/27 Then, (52) reduces to

d
1 . )
D Wislleixl S0 3o @Y+ 22)lesu)]

keZA\KC, I=1 keZd\K,y !

1 o :
/2 | ~2j\~dj/2 -
Sdom @Y+ 22700 g2, (54)

n

where Zkezd\lcnl lp(2/x — k)| < 1is used in the second inequality. As n — 00,
j — +oo and Zkezd\’Cn lvjkll@jk(x)] — O thanks to (54). This with (51) shows

PUEPL () = Pip)| >26) < P| Y Iyjullgju)] > 2¢ | =0
keZd\KC,
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for large n. Combining this with (48)—(50), one obtains that for any ¢ > O,
:;Xl’ P(|p5 (x) — p(x)| > 6¢) < +o0. Finally, the desired conclusion

lim p(0) = pa(x)

follows from Borel-Cantelli lemma.

(b). As in the proof of Theorem 2, it suffices to estimate E| p,f (x) — p(x)|2. The
estimation of E| f{ , (x)— fx (x)|? is similar. Obviously, E|p,; (x)— p(x)|* is bounded
by

E|p, (x) = Epy () +1Epy; (x) = Pip()* + |Pip(x) — p()*. (55
According to the proof of Theorem 2,
|Pip(x) = p(x)] S n~ ¥/ G2+, (56)
Similar arguments to that theorem show
E|py (x) = Ep, (0)? S n~ /@ H2ltd), (57)

Clearly, the middle term of (55) satisfies

2

[Epf () = Pip)PP S| Y 1yixllejr)l
keZA\KC,

On the other hand, the arguments of (54) with a little different choice K, = (42 4
2(14d/4)jY2)s/2] (24 ~ ¥ ) concludes

D ikllejanl S 2770 S pms/Gsleltd), (58)
keZd\K,

. 1
where 2/ ~ n2+2ltd jsused in the last inequality. Hence,
|Eprll7(x) _ Pjp(x)|2 5 n—2s/(2s+2|ot|+d).

This with (56)~(57) concludes E|pF (x) — p(x)|?> < n=23/@s+2l¢l+d The remaining
proofs are the same as those in Theorem 2. This completes the proof of Theorem 3(b).
(]

It is a good problem to study the numerical illustration of our practical estimation.
We shall investigate it in future.
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