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Abstract This paper studies multivariate wavelet regression estimators with errors-
in-variables under strong mixing data. We firstly prove the strong consistency for
non-oscillating and Fourier-oscillating noises. Then, a convergence rate is provided
for non-oscillating noises, when an estimated function has some smoothness. Finally,
the consistency and convergence rate are discussed for a practical wavelet estimator.

Keywords Regression estimation · Errors-in-variables · Strong mixing · Practical
estimator · Wavelets

1 Introduction

The current paper considers the following errors-in-variables regression problem. Let
data (Wj ,Y j ) ∈ R

d × [−T, T ] ( j = 1, 2, . . . , n and T > 0) be from the model

Y j = m(X j ) + ε j , Wj = X j + δ j . (1)

The errors ε j and δ j are independent of each other and independent of X j . The func-
tions fX (unknown) and fδ (known) denote the densities of X j and δ j , respectively. The
regression errors ε j satisfy Eε j = 0 and Eε2j < ∞. The goal is to estimate the regres-
sion function m by some estimator m̂n (depending on (Wj ,Y j ), j = 1, 2, . . . , n).
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This above model has many applications in the field of medical statistics (Carroll
et al. 2006, 2007) and econometrics (Schennach 2004). For a special case δ j = 0,
the Nadaraya–Watson estimator works well. By deconvolution technique, Fan and
Truong (1993) extend the Nadaraya–Watson estimation to the regression model with
errors-in-variables.

Chesneau (2010) studies firstly that model by wavelet method. As a generalization
of Meister’s theorem (Meister 2009), the strong consistency of a wavelet estimator
is obtained, when f f t

δ has some zeros (Guo and Liu 2017). Here and after, t · x :=
∑d

i=1 ti xi for t = (t1, . . . , td), x = (x1, . . . , xd) ∈ R
d , and

f f t (t) :=
∫

Rd
f (x)eit ·xdx (2)

denotes the Fourier transform of f ∈ L1(Rd). A standard method extends that defi-
nition to L2(Rd) functions. Recently, Chichignoud et al. (2017) show a convergence
rate for an adaptive wavelet regression estimator over anisotropic Hölder classes.

All above work assumes the independence of the given data (Wj ,Y j ) ( j =
1, 2, . . . , n). Regression estimation with strong mixing data has received a lot of
attentions, such as Masry (1993), Shen and Xie (2013), Chaubey et al. (2013) and
Chesneau et al. (2015). It should be pointed out that Chesneau (2014) provides more
general theorems on wavelet thresholding method under strong mixing data, which
mainly concern the mean integrated square error of an estimator. Motivated by those
work, we consider the strong consistency and convergence rate of wavelet regression
estimators under strong mixing data for model (1).

For a strictly stationary process {Z j , j ∈ Z}, its kth (k ≥ 1) strong mixing
coefficient is defined by

αZ (k) = sup
(A,B)∈F−∞, 0

Z ×F k, +∞
Z

|P(A ∩ B) − P(A)P(B)|,

where F−∞, 0
Z and Fk,+∞

Z are the σ -algebras generated by Zl for l ≤ 0 and l ≥ k,
respectively. A process {Z j , j ∈ Z} is said to be strong mixing, if limk→+∞ αZ (k) =
0. Clearly, independent and identically distributed (i.i.d.) data are strong mixing.

Throughout this paper, the observed data {(Wj ,Y j ), j = 1, 2, . . . , n} are assumed
to be geometrically strong mixing, which means with some positive constants
μ0 and μ1,

α(W,Y )(k) ≤ μ0 exp(−μ1k)

for each k ≥ 1.

Example 1 Let Xt = ∑
j∈Z a jεt− j with

{εt , t ∈ Z} i.i.d.∼ N (0, σ 2) and ak =
{
2−k, k ≥ 0,
0, k < 0.
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Regression estimation under strong mixing data 555

Then, it can be proved by Theorem 2 and Corollary 1 of Doukhan (1994, p. 58) that
{Xt , t ∈ Z} is a geometrically strong mixing sequence.

Example 2 Let {ε(t), t ∈ Z} i.i.d.∼ Nr (0, �) (r -dimensional normal distribution) and
{Y (t), t ∈ Z} satisfy the auto-regression moving average equation

p∑

i=0

B(i)Y (t − i) =
q∑

k=0

A(k)ε(t − k)

with l × r and l × l matrices A(k), B(i), respectively, as well as B(0) being the
identity matrix. If the absolute values of the zeros of the determinant detP(z) :=
det

∑p
i=0 B(i)zi (z ∈ C) are strictly greater than 1, then {Y (t), t ∈ Z} is geometrically

strong mixing (Mokkadem 1988).

To give an example of model (1), we introduce a simple but important lemma,
which is also used in our later discussions.

Lemma 1 Let {Zi , i ∈ Z} be a strong mixing sequence valued in R
d and f : Rd →

R
m be Borel measurable. Then, { f (Zi ), i ∈ Z} is strong mixing and α f (Z)(k) ≤

αZ (k).

Proof Clearly, the strict stationarity of { f (Zi ), i ∈ Z} follows from the same property
of {Zi , i ∈ Z}. Then for k ∈ Z and n ∈ N

+ (the positive integer set),

Fk,k+n
f (Z) = σ( f (Zk), . . . , f (Zk+n))

=
{
( f (Zk), . . . , f (Zk+n))

−1 (B) : B ∈ B(Rm(n+1))
}

,

where B(Rm(n+1)) stands for the Borel σ -algebra on R
m(n+1). Because the Borel

measurability of f implies that of g(zk, zk+1, . . . , zk+n) := ( f (zk), f (zk+1), . . . ,

f (zk+n)), g−1(B) ∈ B(Rd(n+1)) (for B ∈ B(Rm(n+1))) and

Fk,k+n
f (Z) =

{
(g(Zk, . . . , Zk+n))

−1(B) : B ∈ B(Rm(n+1))
}

=
{
(Zk, . . . , Zk+n)

−1(g−1(B)) : B ∈ B(Rm(n+1))
}

⊂
{
(Zk, . . . , Zk+n)

−1(B) : B ∈ B(Rd(n+1))
}

⊂ σ(Zk, . . . , Zk+n) = Fk,k+n
Z .

Hence, α f (Z)(k) ≤ αZ (k) and { f (Zi ), i ∈ Z} is strong mixing. 
�
Example 3 For a fixed T > 0 and z = (z1, z2, . . . , zd) ∈ R

d , define f : Rd → R
d

by

f (z) = z IRd−1×[−T,T ](z) := (z1, . . . , zd−1, zd I[−T,T ](zd)),
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where I[−T,T ](·) denotes the indicator function on [−T, T ]. Then, f is a Borel mea-
surable mapping. Choose a strong mixing sequence {Zi , i ∈ Z} valued in R

d (say
Zi = Xi or Y (i)) in Example 1 or Example 2. According to Lemma 1, { f (Zi ), i ∈ Z}
is strong mixing as well.

This paper is organized as follows: In Sect. 2, we prove the strong consistency
of our wavelet estimators for both non-oscillating and Fourier-oscillating noises. Sec-
tion 3 provides a convergence rate of a wavelet regression estimator for non-oscillating
noises, when the estimated function belongs to some Hölder class. The same problem
is considered for a practical wavelet estimator in the last section.

2 Strong consistency

This section studies the strong consistency of wavelet regression estimators under
strong mixing data. We begin with two lemmas. The first one generalizes a conclusion
of Theorem 3.2 in Meister (2009).

Lemma 2 (Guo and Liu 2017) Let f ∈ C(Rd) (the continuous function set on R
d)

and f (t) �= 0 for each t ∈ R
d . Then, there exists a positive sequence hn → 0 such

that
hdn · min

t∈[−1/hn , 1/hn ]d
| f (t)| ≥ n− 1

4

holds for sufficiently large n.

We use ‖x‖∞ to denote the L∞ norm of a measurable and essentially bounded
function x(t). For τ > 0, �τ� stands for the largest integer smaller than or equal to τ ,
while �τ� does for the smallest integer larger than or equal to τ .

Lemma 3 (Bosq and Blanke 2007) Let {Zi , i ∈ Z} be a strictly stationary and real-
valued process with E Zi = 0 and sup1≤i≤n ‖Zi‖∞ ≤ Mn (Mn > 0). Then for ε > 0
and η ∈ [1, n/2],

P

(∣
∣
∣
∣
∣

n∑

i=1

Zi

∣
∣
∣
∣
∣
> nε

)

≤ 4 exp

(

− n2ε2/η

32σ 2(η) + 4Mn
3 n2η−2ε

)

+ 16Mn

ε
αZ

(⌊
n

2η

⌋)

,

where σ 2(η) = (�τ� + 2)[Var Z1 + 2
∑�τ�+1

l=1 |Cov(Z0, Zl)|] with τ = n
2η .

Lemma 3 implies the classical Bernstein inequality, which plays a key role for
estimation with i.i.d. data. In fact, when {Zi } are i.i.d., the term containing αZ (·)
disappears. By taking η = n

2 , we find τ = 1 and σ 2(η) = 3Var Z1 := 3σ 2. Then, the
estimation of Lemma 3 reduces to

P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

Zi

∣
∣
∣
∣
∣
> ε

)

≤ 4 exp

(

− nε2

48σ 2 + 8
3Mε

)

with |Zi | ≤ M . This is the desired conclusion up to some constants (Härdle et al.
1998).
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In order to simplify the proof of Theorem 1, we recall the corresponding result of
Guo and Liu (2017) with i.i.d. data.

For a non-oscillating noise (which means f f t
δ (t) �= 0, t ∈ R

d ), choose the scaling
function ϕ(x) := ∏d

l=1 ϕ̃(xl), where ϕ̃ := ϕM stands for the one-dimensional Meyer
scaling function with

supp ϕ
f t
M ⊂

[

−4π

3
,
4π

3

]

and ϕ
f t
M ∈ C∞

(Daubechies 1992). As usual in wavelet analysis, denote ϕ j,k(x) := 2d j/2ϕ(2 j x − k)
with j ∈ Z and k ∈ Z

d . Then, the estimators for fX and p := m fX are defined by

fX,n(x) =
∑

k∈Zd

α̂ j,kϕ j,k(x) and pn(x) =
∑

k∈Zd

γ̂ j,kϕ j,k(x), (3)

respectively, with

α̂ j,k = 1

n

n∑

l=1

1

(2π)d

∫

Rd
eit ·Wl [ϕ j,k] f t (t)/ f f t

δ (t)dt, (4)

γ̂ j,k = 1

n

n∑

l=1

Yl
1

(2π)d

∫

Rd
eit ·Wl [ϕ j,k] f t (t)/ f f t

δ (t)dt. (5)

Here, the long bar stands for complex conjugate. It is easy to show E α̂ j,k = α j,k ,
E γ̂ j,k = γ j,k and

E fX,n(x) = Pj fX (x) and Epn(x) = Pj p(x), (6)

where

α j,k =
∫

Rd
fX (x)ϕ j,k(x)dx and γ j,k =

∫

Rd
p(x)ϕ j,k(x)dx .

A Fourier-oscillating noise means that there exists a constant C > 0 such that

∣
∣
∣ f

f t
δ (t1, . . . , td)

∣
∣
∣ ≥ C

d∏

s=1

∣
∣
∣
∣sin

(
π ts
λs

)∣
∣
∣
∣

vs

(1 + |ts |)−αs (7)

with λs > 0, αs ≥ 0 and vs ∈ Z
+ ∪ {0}. In that case, the authors of Guo and Liu

(2017) assume fX ∈ L2(Rd) and supp fX ⊂  := [a, b]d . They replace the Meyer’s
function ϕM in former case by the Daubechies’ D2N (for large N ) to obtain the scaling
function ϕ. Let

K j := {k = (k1, k2, . . . , kd) ∈ Z
d : supp ϕ j,ks ∩ [a, b] �= ∅, s = 1, 2, . . . , d}
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and J̃ := ( J̃1, J̃2 . . . , J̃d), where J̃s = � (b̃−ã)λs
2π � with ã := a − 2N + 1 and b̃ :=

b + 2N − 1. Then, the estimators for fX and p are defined, respectively, by

fX,n(x) :=
∑

k∈K j

α̂ j,kϕ j,k(x) and pn(x) :=
∑

k∈K j

γ̂ j,kϕ j,k(x), (8)

respectively, where

α̂ j,k := 1

n

n∑

l=1

1

(2π)d

∫

Rd
ξ̃ (t)eit ·Wl

[ϕ j,k] f t (t)
f f t
δ (t)

dt, (9)

γ̂ j,k := 1

n

n∑

l=1

Yl
1

(2π)d

∫

Rd
ξ̃ (t)eit ·Wl

[ϕ j,k] f t (t)
f f t
δ (t)

dt (10)

with

ξ̃ (t) =
⎛

⎝
J̃∑

m=0

ηme
i 2πm

λ
·t
⎞

⎠

[
d∏

s=1

(e
2π i ts
λs − 1)vs

]

. (11)

Here,
∑ J̃

m=0 := ∑ J̃1
m1=0

∑ J̃2
m2=0 · · ·∑ J̃d

md=0 and the constants ηm depend only on J̃ ,
v, d.

The main theorem in Guo and Liu (2017) states as follows:
For problem (1)with i.i.d. data (Wj ,Y j )(Y j ∈ R), if p := m fX ∈ L(Rd), E |Y1|4 <

∞ and x is a Lebesgue point of p and fX ( fX (x) �= 0), then the following assertions
hold true:

(a) When f f t
δ has no zeros onRd , m̂n(x) := pn(x)/ fX,n(x) given by (3)–(5) satisfies

limn→∞ m̂n(x)
a.s.= m(x);

(b) When (7) holds and fX , p ∈ L2(Rd) have compact support , m̂n(x) :=
pn(x)/ fX,n(x) given by (8)–(11) satisfies limn→∞ m̂n(x)

a.s.= m(x) (x ∈ )

as well.

Our Theorem 1 extends this above results from i.i.d. to geometrically strongmixing
data. Since we assume Y ∈ [−T, T ], E |Y1|4 < +∞ and p := m fX ∈ L(Rd) hold
automatically.

In the proofs of Theorem 1—3, we frequently use the following notations. For two
variables A and B, A � B denotes A ≤ CB for some positive constant C in later
discussions; A � B means B � A; we use A ∼ B to stand for both A � B and
B � A.

Theorem 1 For problem (1) with α(W,Y )(k) ≤ μ0 exp(−μ1k) (μ0, μ1 > 0), if x is a
Lebesgue point of p := m fX and fX ( fX (x) �= 0), then the following assertions hold
true:

(a) When f f t
δ has no zeros onRd , m̂n(x) := pn(x)/ fX,n(x) given by (3)–(5) satisfies

limn→∞ m̂n(x)
a.s.= m(x);
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(b) When (7) holds and fX ∈ L2(Rd) has compact support , m̂n(x) :=
pn(x)/ fX,n(x) given by (8)–(11) satisfies limn→∞ m̂n(x)

a.s.= m(x) for x ∈ .

Proof Since m̂n(x) = pn(x)
fX,n(x)

and m(x) = p(x)
fX (x) , it suffices to show limn→∞ pn(x)

a.s.= p(x) and limn→∞ fX,n(x)
a.s.= fX (x). From the definitions of pn(x) and fX,n(x),

one need only prove the first limit. For ε > 0,

P(|pn(x) − p(x)| > 4ε)

≤ P(|pn(x) − Epn(x)| > 2ε) + P(|Epn(x) − p(x)| > 2ε). (12)

By the same arguments as Theorem 4 and 5 of Guo and Liu (2017), limn→∞ Epn(x)
= p(x) holds for each Lebesgue point of p in both cases (a) and (b). In fact, careful
observations find that the whole proof does not use the independence of (Wj ,Y j ).
Instead, it does use the identical distribution property, which is fortunately implied by
the strict stationarity of (Wj ,Y j ).

The independence of (Wj ,Y j ) plays a key role for the estimate of P(|pn(x) −
Epn(x)| > 2ε) in the proof of Theorem 4, 5 (Guo and Liu 2017). In fact, the authors
estimate E |pn(x) − Epn(x)|4 for an upper bound of P(|pn(x) − Epn(x)| > 2ε). In
this current case, one estimates P(|pn(x) − Epn(x)| > 2ε) directly for both cases (a)
and (b).

(a) By (3) and (5),

pn(x) := 1

n

n∑

l=1

Yl
(2π)d

∫

Rd
2−d j/2eit ·Wl

⎡

⎣
∑

k∈Zd

e−i2− j k·tϕ j,k(x)

⎤

⎦ ϕ f t (2− j t)

f f t
δ (t)

dt.

(13)

With Ul := Zl − EZl and

Zl := Yl
(2π)d

∫

Rd
2−d j/2eit ·Wl

⎡

⎣
∑

k∈Zd

e−i2− j k·tϕ j,k(x)

⎤

⎦ ϕ f t (2− j t)

f f t
δ (t)

dt,

pn(x) − Epn(x) = 1
n

∑n
l=1Ul and

P(|pn(x) − Epn(x)| > 2ε) = P

(∣
∣
∣
∣
∣

1

n

n∑

l=1

Ul

∣
∣
∣
∣
∣
> 2ε

)

. (14)

Obviously, EUl = 0. According to |Yl | ≤ T , |∑k∈Zd ϕ j,k(x)| � 2d j/2 and
supp ϕ f t ⊂ [− 4π

3 , 4π
3 ]d ,

|Zl | � 2 jd
[

min
t∈[−4π2 j /3, 4π2 j /3]d

∣
∣
∣ f

f t
δ (t)

∣
∣
∣

]−1

. (15)
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By f f t
δ (t) �= 0 and Lemma 2, there exists a positive sequence hn → 0 such that

hdn min
t∈[−1/hn , 1/hn]d

∣
∣
∣ f

f t
δ (t)

∣
∣
∣ ≥ n− 1

4 .

Since hn → 0, 3
4πhn

> 1 for large n and

j :=
⌊

log2

(
3

4πhn

)⌋

> 0. (16)

Clearly, j ≤ log2(
3

4πhn
) and 4π

3 2 j ≤ 1
hn
. Then, (15) reduces to

|Zl | �
[

hdn min
t∈[−1/hn , 1/hn ]d

| f f t
δ (t)|

]−1

� n1/4.

Hence, |Ul | � n1/4, Var Ul � n1/2 and |Cov (U0,Ul)| � n1/2.
Note that |∑k∈Zd ϕ j,k(x)| � 2d j/2, supp ϕ f t ⊂ [− 4π

3 , 4π
3 ]d and f f t

δ (t) �= 0 (t ∈
R
d). Then as a function of t ,

∑
k∈Zd e−i2− j k·tϕ j,k(x)ϕ f t (2− j t)/ f f t

δ (t) ∈ L(Rd) for
fixed x ∈ R

d , and its Fourier transform should be continuous. Furthermore,

g(w, y) := y(2π)−d
∫

Rd
2−d j/2eit ·w

⎡

⎣
∑

k∈Zd

e−i2− j k·tϕ j,k(x)

⎤

⎦ϕ f t (2− j t)/ f f t
δ (t)dt

defines a continuous function on R
d × [−T, T ], so does Re g(w, y). It follows from

Ul := g(Wl ,Yl) − Eg(Wl ,Yl) and Lemma 1 that {Re Ul , l ∈ Z} is strong mixing.
With the given assumption α(W,Y )(q) ≤ μ0e−μ1q , one chooses τ0 > 2

μ1
and denotes

η := � n
2τ0 ln n

�, τ := n
2η . Since |Re Ul | ≤ |Ul | � n1/4, |Re Ul | ≤ c1n1/4 := Mn for

some c1 > 0. Then, Lemma 3 tells that

P

(∣
∣
∣
∣
∣

1

n

n∑

l=1

Re Ul

∣
∣
∣
∣
∣
> ε

)

≤ P1,n + P2,n, (17)

where P1,n := 4 exp(− n2ε2/η
32σ 2(η)+ 4Mn

3 n2η−2ε
), P2,n := 16Mn

ε
αReU (� n

2η �) and

σ 2(η) = (�τ� + 2)

⎡

⎣Var(Re U1) + 2
�τ�+1∑

l=1

|Cov(Re U0, Re Ul)|
⎤

⎦ .

According to Lemma 1, αReU (� n
2η �) ≤ α(W,Y )(� n

2η �) ≤ μ0e
−μ1� n

2η �. Because
η := � n

2τ0 ln n
� implies n

2η ≥ τ0 ln n, αReU (� n
2η �) ≤ μ0e−μ1(τ0 ln n−1) = μ0eμ1n−μ1τ0 .

Furthermore,
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Regression estimation under strong mixing data 561

P2,n ≤ 16

ε
c1μ0e

μ1n−(μ1τ0−1/4) � n−7/4 (18)

thanks to Mn = c1n1/4 and τ0 > 2
μ1
.

Since Var(Re Ul) � n1/2 and |Cov(Re U0, Re Ul)| � n1/2, σ 2(η) = (�τ� +
2)[Var(Re U1) + 2

∑�τ�+1
l=1 |Cov(Re U0, Re Ul)|] � (�τ� + 2)(2�τ� + 3)n1/2 ≤

c0τ 2n1/2 with some constant c0 > 0. This with τ = n
2η and Mn = c1n1/4 shows

P1,n ≤ 4 exp

(

− n2ε2/η

32c0( n
2η )2n1/2 + 4

3c1n
1/4n2η−2ε

)

≤ 4 exp

(

− ε2n− 1
2

8c0 + 4
3c1ε

η

)

.

By η = � n
2τ0 ln n

� ≥ n
4τ0 ln n

for n large enough, one obtains

P1,n ≤ 4 exp

(

− ε2n− 1
2

8c0 + 4
3c1ε

· n

4τ0 ln n

)

� n−7/4. (19)

Therefore, it follows from (17)–(19) that P(| 1n
∑n

l=1 Re Ul | > ε) � n− 7
4 . Similarly,

P(| 1n
∑n

l=1 Im Ul | > ε) � n− 7
4 . Hence, (14) reduces to

P(|pn(x) − Epn(x)| > 2ε) � n− 7
4 . (20)

This with limn→+∞ Epn(x) = p(x) leads to P( |pn(x) − p(x)| > 4ε ) � n− 7
4

for n large enough. Then, the conclusion limn→∞ pn(x)
a.s.= p(x) reaches thanks to

Borel–Cantelli lemma. The proof of (a) is done.
(b) The condition fX ∈ L2(Rd) is needed for the definition of m̂n , when f f t

δ

has some zeros (see (16) in Guo and Liu 2017). Similar to case (a), one defines
Ul := Zl − EZl and

Zl := Yl
1

(2π)d

∫

Rd
2−d j/2ξ̃ (t)eit ·Wl

⎡

⎣
∑

k∈K j

e−i2− j k·tϕ j,k(x)

⎤

⎦ϕ f t (2− j t)/ f f t
δ (t)dt

with ξ̃ (t) given in (11). Then, EUl = 0 and

|Zl | �
∫

Rd
|ξ̃ (t)ϕ f t (2− j t)|/| f f t

δ (t)|dt, (21)

because |Yl | ≤ T and |∑k∈K j
ϕ j,k(x)| � 2d j/2. Recall that J̃ is fixed and independent

of t , the constants ηk are only dependent of J̃ , v, d. Then, (11) implies

|ξ̃ (t)

∣
∣
∣
∣
∣
�

d∏

s=1

| exp
(
2π i ts
λs

)

− 1

∣
∣
∣
∣
∣

vs

, (22)

123



562 H. Guo, Y. Liu

where the compactness of fX is needed to guarantee J̃ independent of t . This with
(21) and (7) shows that

|Zl | �
∫

Rd

d∏

s=1

(1 + |ts |)αs
∣
∣
∣ϕ

f t
N (2− j ts)

∣
∣
∣ dt

�
d∏

s=1

2 j
∫

R

(1 + |2 j ts |)αs
∣
∣
∣ϕ

f t
N (ts)

∣
∣
∣ dts � 2

∑d
s=1(1+αs ) j

holds for large N . Here, ϕ f t (t) = ∏d
s=1 ϕ

f t
N (ts) because ϕ is defined by the tensor

product of ϕN .
By choosing j with

2
∑d

s=1(1+αs ) j � n
1
4 , (23)

one gets |Zl | � n1/4 and |Ul | � n1/4. Moreover, Var Ul � n1/2 and |Cov(U0,Ul)|
� n1/2. Then, it follows from (22) and |∑k∈K j

ϕ j,k(x)| � 2d j/2 that

|2−d j/2ξ̃ (t)
[ ∑

k∈K j

e−i2− j k·tϕ j,k(x)
]
ϕ f t (2− j t)/ f f t

δ (t)|

�
[

d∏

s=1

∣
∣
∣
∣exp

(
2π i ts
λs

)

− 1

∣
∣
∣
∣

vs
]

|ϕ f t (2− j t)|/| f f t
δ (t)|.

According to (7) and exp( 2π i ts
λs

) − 1 = exp
(

π i ts
λs

)
· 2i sin π i ts

λs
, 2−d j/2ξ̃ (t)

[∑
k∈K j

e−i2− j k·tϕ j,k(x)
]
ϕ f t (2− j t)/ f f t

δ (t) ∈ L(Rd) for fixed x and j . Hence, its Fourier
transform is continuous and

g(w, y):=y(2π)−d
∫

Rd
2−d j/2ξ̃ (t)eit ·w

⎡

⎣
∑

k∈K j

e−i2− j k·tϕ j,k(x)

⎤

⎦ϕ f t (2− j t)/ f f t
δ (t)dt

defines a continuous function on R
d × [−T, T ]. The remaining proofs are the same

as those in case (a). 
�

Remark 1 From the choices of j in (16) and (23), we find that j goes to +∞, as
n → ∞.

Compared with Theorem 4, 5 in Guo and Liu (2017), the estimates of the bias term
are similar; the stochastic term P{|pn(x) − Epn(x)| > 2ε} is done by estimating an
upper bound of E |pn(x) − Epn(x)|4 in i.i.d. case, where the independence plays a
key role. However, it does not seem work in strong mixing situation. Therefore, we
use the generalized Bernstein inequality (Lemma 3).

123



Regression estimation under strong mixing data 563

3 Convergence rate

In this part, we provide a convergence rate of m̂n(x) = pn(x)
fX,n(x)

defined by (3)–(5),
when the estimated function m(x) is in some Hölder class and the noise density fδ
satisfies that

| f f t
δ (t)| �

d∏

i=1

(1 + |ti |)−αi and |∂β f f t
δ (t)| �

d∏

i=1

(1 + |ti |)−αi−βi , (24)

where α = (α1, α2, . . . , αd) (αi > 2) and β = (β1, β2, . . . , βd) (βi = 0, 1, 2) for
i = 1, 2, . . . , d.

Let f(W0,Y0,Wl ,Yl ) and f(W,Y ) stand for the density of (W0,Y0,Wl ,Yl)(l ∈ Z) and
(W,Y ), respectively, and

sup
l∈Z

sup
(w0, y0) ∈ R

d × [−T, T ]
(wl , yl ) ∈ R

d × [−T, T ]

|h(w0, y0, wl , yl)| ≤ C (25)

with constant C > 0 and

h(w0, y0, wl , yl) := f(W0,Y0,Wl ,Yl )(w0, y0, wl , yl) − f(W,Y )(w0, y0) f(W,Y )(wl , yl).

Our Theorem 2 can be considered as an extension of Theorem 3.3 in Meister (2009).
Recall that the estimator m̂n(x) is defined by the scaling function ϕ(x) =∏d
s=1 ϕ̃(xl) (see (3)–(5)), where ϕ̃ stands for the one-dimensional Meyer’s function.

Then, the kernel function K̃ (x, y) := ∑
k∈Z ϕ̃(x − k)ϕ̃(y − k) satisfies �s�-order

moment condition
∫
R
K̃ (x, y)(y − x) jdy = δ0, j , j = 0, 1, . . . , �s�. Moreover,

K (x, y) := ∏d
l=1 K̃ (xl , yl) has the same property,

∫

Rd
K (x, y)(y − x)γ dy = δ0,|γ | (|γ | = 0, 1, . . . , �s�). (26)

Since ϕ̃ is theMeyer’s scaling function, there exists a bounded and radically decreasing
L1 function � such that

|K (x, y)| ≤ C�

( |x − y|
2

)

(a.e.) and
∫

Rd
�(|u|)|u|sdu < +∞ (27)

with some positive constant C depending only on �, see Kelly et al. (1994).
The next lemma plays an important role in the proof of Theorem 2. It is a general-

ization of Lemma 6 in Fan and Koo (2002) from d = 1 to d ≥ 1.
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Lemma 4 Let (K ∗ϕ) j,k(x) = 1
(2π)d

∫
Rd eix ·t [ϕ j,k] f t (t)/ f f t

δ (t)dt and (24) hold.
Then with |α| = α1 + α2 + · · · + αd ,

|(K ∗ϕ) j,k(x)| � 2 j (|α|+d/2)
d∏

l=1

(
1 + |2 j xl − kl |

)−2
.

Proof Denote (K−
j ϕ)(x) := 1

(2π)d

∫
Rd eix ·tϕ f t (−t)/ f f t

δ (2 j t)dt. Then, (K ∗ϕ) j,k

(x) = 2 jd/2(K−
j ϕ)(2 j x − k). It is sufficient to prove

|(K−
j ϕ)(x)| � 2 j |α|

d∏

l=1

(1 + |xl |)−2. (28)

Let L := {l : 1 ≤ l ≤ d, |xl | > 1} and Lc := {1, 2, . . . , d}\L. Then by integral
by parts twice with respect to tl (l ∈ L),

(K−
j ϕ)(x) =

∏
l∈L(i xl)−2

(2π)d

∫

Rd
eit ·x∂β̃

[
ϕ f t (−t)/ f f t

δ (2 j t)
]
dt,

where β̃ = (β̃1, β̃2, . . . , β̃d)with β̃l = 2 for l ∈ L, while β̃l = 0 for l ∈ Lc. Because
|xl |−2 � (1 + |xl |)−2 for |xl | > 1,

|(K−
j ϕ)(x)| �

[
∏

l∈L
(1 + |xl |)−2

]∫

Rd
|∂β̃

[
ϕ f t (−t)/ f f t

δ (2 j t)
]
|dt. (29)

For β = (β1, β2, . . . , βd) ∈ N
d with βi ≤ 2,

∣
∣
∣∂β

[
f f t
δ (2 j t)

]∣
∣
∣ =

∣
∣
∣
∣
∣

[
∂β f f t

δ

]
(2 j t)

d∏

l=1

2 jβl

∣
∣
∣
∣
∣
�

d∏

l=1

(
1 + |2 j tl |

)−αl−βl
2 jβl

thanks to the second inequality of (24). According to the first one of (24),

∣
∣
∣
∣
∣
∂β̃ ϕ f t (−t)

f f t
δ (2 j t)

∣
∣
∣
∣
∣
�

β̃∑

β=0

{
∣
∣
∣
[
∂β̃−βϕ f t

]
(−t)

∣
∣
∣

[
d∏

l=1

(1 + |2 j tl |)αl−βl2 jβl

]}

with
∑β̃

β=0 = ∑β̃1
β1=0

∑β̃2
β2=0 · · ·∑β̃d

βd=0.

Since αl − βl ≥ 0 and 1 + |2 j tl | ≤ 2 j + |2 j tl | = 2 j (1 + |tl |),
∣
∣
∣
∣
∣
∂β̃ ϕ f t (−t)

f f t
δ (2 j t)

∣
∣
∣
∣
∣
� 2 j |α|

β̃∑

β=0

∣
∣
∣
[
∂β̃−βϕ f t

]
(−t)

∣
∣
∣

d∏

l=1

(1 + |tl |)αl .
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This with (29) leads to

|(K−
j ϕ)(x)|�2 j |α|

[
∏

l∈L
(1+|xl |)−2

]∫

Rd

β̃∑

β=0

{∣∣
∣
[
∂β̃−βϕ f t

]
(−t)

∣
∣
∣

d∏

l=1

(1+|tl |)αl
}
dt.

Note that ϕ f t ∈ C∞(Rd) is compactly supported, and 1 � (1 + |xl |)−2 holds for
|xl | ≤ 1. Then, desired conclusion (28) follows. This completes the proof. 
�

A function f on R
d is said to satisfy Hölder condition of order s (s ∈ R

+\N), if
there exists a constant C > 0 such that for |β| = �s� and y, z ∈ R

d ,

∣
∣∂β f (y) − ∂β f (z)

∣
∣ ≤ C |y − z|s−|β|.

When the above inequality holds only for y, z ∈ Q(x, r) := {y = (y1, y2, . . . , yd)|
yi ∈ (xi − r, xi + r), i = 1, 2, . . . , d} with r > 0, we call f satisfying local Hölder
condition of order s at the point x . Obviously, Hölder condition of order s implies
local one of the same order at each fixed point x ∈ R

d . Then, Lemma 2.7 in Meister
(2009) can be easily generalized to high-dimensional cases. We state it without giving
proof.

Lemma 5 Let s ∈ R
+\N andF be a set consisting of local Hölder functions of order

s at x ∈ R
d . If there exist constants C ′, C ′′ > 0 such that with β ∈ N

d and |β| = �s�,

| f (y)| ≤ C ′ and |∂β f (y) − ∂β f (z)| ≤ C ′′|y − z|s−|β| (30)

for each f ∈ F and y, z ∈ Q(x, r). Then with some constant C > 0 (depending
only on C ′, C ′′, s and r), |∂γ f (y)| ≤ C holds uniformly for f ∈ F , y ∈ Q(x, r) and
|γ | = 0, 1, . . . , �s�.

We also need the following lemma in the proof of Theorem 2.

Lemma 6 (Davydov 1970) Let {Xi }i∈Z be a strong mixing process with the mixing
coefficient α(k) (k ≥ 0) and f be a Borel measurable function. If E | f (X0)|p and
E | f (X0)|q exist for p, q > 0 with 1

p + 1
q < 1, then there exists a constant C > 0

such that

|Cov( f (X0), f (Xk))| ≤ Cα(k)1−
1
p − 1

q [E | f (X0)|p]
1
p [E | f (X0)|q ]

1
q .

Before stating the main theorem of this section, we introduce a functional set Px,s

for x ∈ R
d and s ∈ R

+\N,

Px,s = {(m, fX ) : fX and m fX satisfy local Hölder condition of order s

at x; ‖ fX‖∞ + ‖m2 fX‖∞ ≤ C1; fX (x) ≥ C2} (31)

for some positive constants C1, C2 > 0.
When (m, fX ) ∈ Px,s , we find easily that
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566 H. Guo, Y. Liu

(i) m fX ∈ L(Rd);
(ii) there exists C3 > 0 such that sup(m, fX )∈Px,s

|m(x)| ≤ C3.

In fact, the conclusion (i) follows directly from |m(x)| ≤ T (due to Y ∈ [−T, T ])
and fX ∈ L(Rd); to see (ii), we realize that both fX and m fX are continuous at
x because of the local Hölder assumptions. This with fX (x) ≥ C2 > 0 shows the
continuity of m at x . On the other hand, C2|m2(x)| ≤ ‖m2 fX‖∞ ≤ C1 implies
|m(x)| ≤ (C1C

−1
2 )1/2 := C3. Hence, conclusion (ii) holds.

Theorem 2 Consider problem (1) with α(W,Y )(k) ≤ μ0 exp(−μ1k) (k ≥ 1), (24) and

(25) holding. Suppose 2 j ∼ n
1

2s+2|α|+d ( therefore j goes to +∞ as n → +∞), then
the estimator m̂n(x) := pn(x)/ fX,n(x) defined by (3)–(5) satisfies

lim
c→∞ lim

n→∞ sup
(m, fX )∈Px,s

P
[
|m̂n(x) − m(x)|2 ≥ cn− 2s

2s+2|α|+d

]
= 0

with |α| = α1 + α2 + · · · + αd .

Proof According to the proof of Theorem 3.2 in Meister (2009),

P
[

|m̂n(x) − m(x)|2 > ε
]

≤ P
[

|pn(x) − p(x)|2 � ε
]

+ P
[

| fX,n(x) − fX (x)|2 � ε
]

for ε > 0 small enough. Taking εn := n− 2s
2s+2|α|+d → 0 and using Markov inequality,

one knows that

sup
(m, fX )∈Px,s

P[ |m̂n(x) − m(x)|2 ≥ cεn]

� (cεn)
−1 sup

(m, fX )∈Px,s

{
E |pn(x) − p(x)|2 + E | fX,n(x) − fX (x)|2

}
. (32)

In order to estimate E |pn(x)−p(x)|2+E | fX,n(x)− fX (x)|2, it suffices to dealwith the
variance terms Var pn(x) and Var fX,n(x), aswell as the bias terms |Epn(x)− p(x)|2
and |E fX,n(x) − fX (x)|2.

First, one estimates Var pn(x). Similar and even simpler arguments apply to
Var fX,n(x). Denote

�(w, y) := y
1

(2π)d

∫

Rd
eit ·w

∑

k∈Zd

ϕ j,k(x)[ϕ j,k] f t (t)/ f f t
δ (t)dt.

Then, pn(x) = 1
n

∑n
l=1 �(Wl ,Yl) and Var pn(x) = 1

n2
∑n

l=1
∑n

l ′=1 Cov(�(Wl ,

Yl),�(Wl ′ ,Yl ′)) ≤ 1
n V ar(�(W1,Y1)) + 2

n2
∑n

l=2
∑l−1

l ′=1 |Cov(�(Wl ,Yl),�(Wl ′ ,
Yl ′))|. By the strict stationarity of {(Wl ,Yl)}l∈Z,
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Regression estimation under strong mixing data 567

Var pn(x) ≤ 1

n
Var �(W1,Y1) + 2

n

n∑

l=1

|Cov(�(W0,Y0),�(Wl ,Yl))|. (33)

For the first term of (33), one observes

Var �(W1,Y1) ≤ E

∣
∣
∣
∣
∣
∣
Y1(2π)−d

∫

Rd
eit ·W1

∑

k∈Zd

ϕ j,k(x)
(ϕ j,k) f t (t)

f f t
δ (t)

dt

∣
∣
∣
∣
∣
∣

2

. (34)

According to W1 = δ1 + X1 and the independence between δ1 and Y1, the right-hand
side of (34) can be rewritten as

(2π)−2d
∫

Rd
E(|Y1|2|X1 = u)E

∣
∣
∣
∣
∣
∣

∫

Rd
eit ·(δ1+u)

∑

k∈Zd

ϕ j,k(x)
(ϕ j,k) f t (t)

f f t
δ (t)

dt

∣
∣
∣
∣
∣
∣

2

fX (u)du.

Clearly, E(|Y1|2|X1 = u) = E[(Y1 − E(Y1|X1 = u))2|X1 = u] + [E(Y1|X1 =
u)]2; Because X1 is independent of ε1 and Eε1 = 0, m(u) = E(Y1|X1 = u) and
E(|Y1|2|X1 = u) = Eε21+m2(u). Thiswith ‖ fX‖∞+‖m2 fX‖∞ ≤ C1 and Eε2 < ∞
shows

‖E(|Y1|2|X1 = ·) fX (·)‖∞ � 1. (35)

Hence,

Var �(W1,Y1) � (2π)−d E
∫

Rd

∣
∣
∣
∣
∣
∣

∫

Rd
eit ·(δ1+u)

∑

k∈Zd

ϕ j,k(x)
(ϕ j,k) f t (t)

f f t
δ (t)

dt

∣
∣
∣
∣
∣
∣

2

du.

By the compactness of ϕ f t and the first inequality of (24),
∑

k ϕ j,k(x)(ϕ j,k) f t (t)

/ f f t
δ (t) ∈ L2(Rd) for fixed x and j . Then,

Var �(W1,Y1) �
∫

Rd

∣
∣
∣
∣
∣
∣

∑

k∈Rd

ϕ j,k(x)
(ϕ j,k) f t (t)

f f t
δ (t)

∣
∣
∣
∣
∣
∣

2

dt �
∫

Rd

∣
∣
∣
∣
∣

ϕ f t (2− j t)

f f t
δ (t)

∣
∣
∣
∣
∣

2

dt

�
∫

[
− 4π2 j

3 , 4π2 j
3

]d |ϕ f t (2− j t)|2
d∏

i=1

(1 + |ti |)2αi dt � 2 j (2|α|+d), (36)

where the Parseval identity is used in the first inequality; the second one holds because
[ϕ j,k] f t (t) = 2−d j/2ei2

− j k·tϕ f t (2− j t) and |∑k∈Zd ϕ(x − k)| � 1; for the last two
inequalities, one uses (24) and supp ϕ f t ⊂ [− 4π

3 , 4π
3 ]d .
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To estimate the second term in (33), one writes

n∑

l=1

|Cov(�(W0,Y0),�(Wl ,Yl))| := T1 + T2 (37)

with T1 = ∑2d j−1
l=1 |Cov(�(W0,Y0),�(Wl ,Yl))| and T2 = ∑n

l=2d j |Cov(�(W0,

Y0),�(Wl ,Yl))|.Here, 1 ≤ 2 jd ≤ n holds for large n because of the given assumption

2 j ∼ n
1

2s+2|α|+d . Clearly,

|Cov(�(W0,Y0),�(Wl ,Yl))|
≤
∫

Rd

∫ T

−T

∫

Rd

∫ T

−T
|h(w0, y0, wl , yl)||�(w0, y0)�(wl , yl)|dy0dw0dyldwl ,

where h(w0, y0, wl , yl) := f(W0,Y0,Wl ,Yl )(w0, y0, wl , yl) − f(W,Y )(w0, y0) f(W,Y )

(wl , yl). This with (25) leads to

|Cov(�(W0,Y0),�(Wl ,Yl))| �
[∫

Rd

∫ T

−T
|�(w, y)|dydw

]2

.

Note that �(w, y) = ∑
k∈Zd y(K ∗ϕ) j,k(w)ϕ j,k(x) and (K ∗ϕ) j,k is defined in

Lemma 4. Then,

|�(w, y)| � |y|
∑

k∈Zd

2 j (|α|+d/2)

[
d∏

l=1

(
1 + |2 jwl − kl |

)−2
]

· |ϕ j,k(x)| (38)

thanks to Lemma 4. Hence, |Cov(�(W0,Y0),�(Wl ,Yl))| can be bounded by

⎧
⎨

⎩

∑

k∈Zd

2 j (|α|+d/2)
∫

Rd

∫ T

−T
|y|

[
d∏

l=1

(1 + |2 jwl − kl |)−2

]

dydw|ϕ j,k(x)|
⎫
⎬

⎭

2

� 22 j |α|,

which implies

T1 � 2 j (2|α|+d). (39)

For an upper bound of T2, one takes p = q = 2
1−ζ

with ζ ∈ (0, 1) in Lemma 6 and
obtains that

|Cov(�(W0,Y0),�(Wl ,Yl))| � [α(W,Y )(l)]ζ [E |�(W0,Y0)|2/(1−ζ )]1−ζ

� [α(W,Y )(l)]ζ ·
[

sup
(w,y)∈Rd×[−T,T ]

|�(w, y)|
]2ζ

·
[
E |�(W0,Y0)|2

]1−ζ

.
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The arguments from (34) to (36) show E |�(W0,Y0)|2 � 2 j (2|α|+d). On the other
hand, (38) tells

sup
(w,y)∈Rd×[−T,T ]

|�(w, y)| � 2 j (|α|+d). (40)

Hence, |Cov(�(W0, Y0),�(Wl ,Yl))| � [α(W,Y )(l)]ζ2 j (2|α|+d+dζ ) and

T2 � 2 j (2|α|+d)2d jζ
n∑

l=2d j

[α(W,Y )(l)]ζ � 2 j (2|α|+d)
n∑

l=2d j

lζ [α(W,Y )(l)]ζ � 2 j (2|α|+d)

thanks to the given condition α(W,Y )(l) ≤ μ0 exp(−μ1l). Substituting this and (39)
into (37), one receives

n∑

l=1

|Cov(�(W0,Y0),�(Wl ,Yl))| � 2 j (2|α|+d).

This with (36) and (33) indicates Var pn(x) � n−12 j (2|α|+d). Similarly, Var fX,n(x)

� n−12 j (2|α|+d). According to the choice 2 j ∼ n
1

2s+2|α|+d ,

Var fX,n(x) + Var pn(x) � n−12 j (2|α|+d) � n− 2s
2s+2|α|+d := εn . (41)

It remains to estimate the bias terms |Epn(x)− p(x)|+|E fX,n(x)− fX (x)|. By (6),
E fX,n(x) = Pj fX (x) and Epn(x) = Pj p(x). On the other hand, Pj f = K j f , where
K j f (x) = ∫

Rd K j (x, y) f (y)dy with K j (x, y) := 2d j K (2 j x, 2 j y) and K (x, y) :=∑
k∈Zd ϕ(x − k)ϕ(y − k). Then, it is sufficient to estimate

|K j f (x) − f (x)|2

with f being fX or p.
Since f satisfies the local Hölder condition of order s (s ∈ R

+\N) at x , there
exist constants C, r > 0 such that |∂β f (y) − ∂β f (z)| ≤ C |y − z|s−|β| holds for
y, z ∈ Q(x, r) and |β| = �s�. Denote

Bj := |K j f (x) − f (x)|2 =
∣
∣
∣
∣

∫

Rd
K j (x, y)[ f (y) − f (x)]dy

∣
∣
∣
∣

2

� Bj1 + Bj2

with Bj1 := | ∫Q(x,r) K j (x, y)[ f (y) − f (x)]dy|2 and Bj2 := | ∫
Rd\Q(x,r) K j (x, y)

[
f (y) − f (x)

]
dy|2. By ‖ f ‖∞ ≤ C1 and K j (x, y) = ∏d

η=1 K̃ j (xη, yη),
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Bj2 �
[∫

Rd\Q(x,r)
|K j (x, y)|dy

]2

≤
⎡

⎣
d∑

l=1

∫

Rd−1

∫

|yl−xl |>r

d∏

η=1

|K̃ j (xη, yη)|dyldy−
l

⎤

⎦

2

≤
[

d∑

l=1

∫

|yl−xl |>r
|K̃ j (xl , yl)|

∣
∣
∣
∣
yl − xl

r

∣
∣
∣
∣

s

dyl

]2

with dy−
l := dy1 · · · dyl−1dyl+1 · · · dyd . This with (27) leads to

Bj2 �
[

d∑

l=1

∫

|yl−xl |>r
2 j �̃

(
2 j−1|xl − yl |

)
|yl − xl |sdyl

]2

� 2−2 js . (42)

To find an upper bound of Bj1, one considers firstly the case s ∈ (0, 1), for which
the local Hölder condition of f implies that

Bj1 =
∣
∣
∣
∣

∫

Q(x,r)
K j (x, y)[ f (x) − f (y)]dy

∣
∣
∣
∣

2

≤
[∫

Q(x,r)
|K j (x, y)||y − x |sdy

]2
.

According to (27),

Bj1 �
[∫

Rd
2 jd�(2 j−1|y − x |)|y − x |sdy

]2
� 2−2 js . (43)

For the case s > 1, one uses Taylor theorem with x = (x1, . . . , xd) ∈ R
d , i :=

(i1, . . . , id) and xi := xi11 · · · xidd (x ∈ R
d) to get

f (y) − f (x) =
�s�∑

k=1

1

k!
∑

|i |=k

k!
i1! · · · id !∂

i f (x)(y − x)i

+ 1

�s�!
∑

|i |=�s�

�s�!
i1! · · · id !∂

i [ f (x + θ(y − x)) − f (x)](y − x)i

with θ ∈ (0, 1). Hence, Bj1 � Bj11 + Bj12, where

Bj11 =
∣
∣
∣
∣
∣
∣

�s�∑

k=1

∑

|i |=k

1

i1! · · · id !∂
i f (x)

∫

Q(x,r)
K j (x, y)(y − x)idy

∣
∣
∣
∣
∣
∣

2

and

Bj12 =
∣
∣
∣
∣
∣
∣

∑

|i |=�s�

1

i1! · · · id !
∫

Q(x,r)
K j (x, y)∂

i [ f (x + θ(y − x)) − f (x)](y − x)idy

∣
∣
∣
∣
∣
∣

2

.
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By the local Hölder condition of f and |yl − xl |il ≤ |y − x |il (l = 1, 2, . . . , d),

Bj12 �

⎡

⎣
∑

|i |=�s�

1

i1! . . . id !
∫

Q(x,r)
|K j (x, y)||y − x |sdy

⎤

⎦

2

.

The same arguments as (43) show

Bj12 � 2−2 js . (44)

Because
∫
Rd K (x, y)(y − x)γ dy = 0 (|γ | = 1, 2, . . . , �s�), ∫Q(x,r) K (x, y)(y −

x)γ dy = − ∫
Rd\Q(x,r) K (x, y)(y − x)γ dy. This with Lemma 5 concludes

Bj11 �
[ �s�∑

k=1

∑

|i |=k

∫

Rd\Q(x,r)
|K j (x, y)||y1 − x1|i1 · · · |yd − xd |iddy

]2
. (45)

According to the definitions of K j and Q(x, r),

∫

Rd\Q(x,r)
|K j (x, y)||y1 − x1|i1 · · · |yd − xd |id dy

≤
d∑

l=1

∫

Rd−1

∫

|yl−xl |>r

∣
∣
∣
∣
∣
∣

d∏

η=1

K̃ j (xη, yη)

∣
∣
∣
∣
∣
∣
|y1 − x1|i1 · · · |yd − xd |id dy1 · · · dyd

�
d∑

l=1

⎡

⎣
d∏

η=1,η �=l

∫

R

|K̃ j (xη, yη)||yη − xη|iηdyη
⎤

⎦

⎡

⎢
⎣

∫

|yl−xl |>r

|K̃ j (xl , yl)||yl − xl |il dyl

⎤

⎥
⎦ .

Note that |K̃ j (x, y)| � 2 j �̃(2 j−1|x−y|) and ∫
R

�̃(|u|)|u|r ′
du � 1with 1≤ r ′ ≤ s.

Then,

∫

R

|K̃ j (xη, yη)||xη − yη|iηdyη �
∫

R

2 j �̃(2 j−1|xη − yη|)|xη − yη|iηdyη � 1.

On the other hand, |yl −xl |il = |yl −xl |s |yl −xl |il−s ≤ |yl −xl |sr il−s for |yl −xl | > r
and il < s. Hence,

∫

|yl−xl |>r
|K̃ j (xl , yl)||yl − xl |ildyl �

∫

|yl−xl |>r
|K̃ j (xl , yl)||yl − xl |sdyl � 2− js .

Thus, (45) reduces to Bj11 � 2−2 js . This with (43) and (44) proves Bj1 � 2−2 js .
Combining it with (42), one knows Bj = |K j f (x) − f (x)|2 � Bj1 + Bj2 � 2−2 js

for f = fX or p. Moreover,
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|Epn(x) − p(x)|2 + |E fX,n(x) − fX (x)|2 � 2−2 js � n−2s/(2s+2|α|+d) = εn

(46)

thanks to the choice 2 j � n1/(2s+2|α|+d). Substituting (46) and (41) into (32), one
receives

sup
(m, fX )∈P̃x,s

P[|m̂n(x) − m(x)|2 ≥ cεn] ≤ c−1.

Finally, the desired conclusion of Theorem 2 follows. 
�
Remark 2 When d = 1, the convergence rate in Theorem 2 coincides with Theorem
3.3 of Meister (2009), where the author studies a kernel estimator with i.i.d. data. It
should be pointed out that our estimation for the bias term is similar to Meister’s,
although the technical conditions f f t

X ∈ L(Rd) and p f t ∈ L(Rd) are removed.

Remark 3 Because our Theorem 2 allows the data {(Wj ,Y j )} strong mixing, the esti-
mation for the variance terms is more difficulty than i.i.d. case, see Meister (2009). In
particular, the covariance term in (33) need to be dealt with carefully, which vanishes
for i.i.d. case. In addition, we pay a price to assume an extra conditions on f f t

δ , i.e., the

second inequality of (24). Compared with Theorem 1, Theorem 2 requires f f t
δ hav-

ing no zeros. It is interesting to consider the convergence rate for Fourier-oscillating
noises.

Remark 4 The assumption Y j ∈ [−T, T ] plays a key role for the proofs of (15), (39)
and (40). Our method can apply to a more general model

m∗(x) = E{ρ(Y )|X = x}

for Y ∈ R and ρ ∈ L1(R) ∩ L∞(R), see Chaubey and Shirazi (2015). When ρ(y) =
y I[−T, T ](y), the model reduces to ours discussed in this current paper. In fact, similar
results to Theorems 1 and 2 can be obtained for m∗(x).

In contrast to the estimation in Theorem 1(b), the estimator in Theorem 1(a) and
Theorem 2 is not practical, because the summation index k runs over Zd . The next
section studies the consistency and convergence rate for a practical wavelet estimator
under some mild conditions.

4 Practical estimation

We truncate the estimator defined by (3)–(5) to obtain a practical estimator m̂F
n (x) =

pFn (x)/ f FX,n(x), where

f FX,n(x) =
∑

k∈Kn

α̂ j,kϕ j,k(x), pFn (x) =
∑

k∈Kn

γ̂ j,kϕ j,k(x) and

Kn := {(k1, . . . , kn) : |ki | ≤ Kn, i = 1, 2, . . . , d} (47)
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with Kn specified later on. Then, we have the following conclusion.

Theorem 3 Consider problem (1)with α(W,Y )(k) ≤ μ0 exp(−μ1k)(μ0, μ1 > 0) and
|x |2 fX (x) ∈ L2(Rd).

(a) If f f t
δ has no zeros on R

d , then

lim
n→∞ m̂F

n (x)
a.s.= m(x)

holds for each Lebesgue point x of p := m fX and fX ( fX (x) �= 0);
(b) When (24), (25) hold and 2 j ∼ n

1
2s+2|α|+d ,

lim
c→∞ lim

n→∞ sup
(m, fX )∈Px,s

P
[
|m̂F

n (x) − m(x)|2 ≥ cn− 2s
2s+2|α|+d

]
= 0

with |α| = α1 + α2 + · · · + αd .

Proof (a) As in the proof of Theorem 1(a), it is sufficient to prove limn→∞ pFn (x)
a.s.=

p(x). For ε > 0,

P
(
|pFn (x) − p(x)| > 6ε

)
≤ P(|pFn (x) − EpFn (x)| > 2ε)

+ P
(
|EpFn (x) − Pj p(x)| > 2ε

)
+ P(|Pj p(x) − p(x)| > 2ε). (48)

Similar arguments to Theorem 1(a), the first and third terms of (48) satisfy that

P(|pFn (x) − EpFn (x)| > 2ε) � n−7/4, (49)

P(|Pj p(x) − p(x)| > 2ε) = 0 (for large n) (50)

with j defined in (16).
The main work is to estimate the middle one.
By EpFn (x) = ∑

k∈Kn
γ j,kϕ j,k(x) and Pj p(x) = ∑

k∈Zd γ j,kϕ j,k(x), one knows

P
(∣
∣
∣EpFn (x) − Pj p(x)

∣
∣
∣ > 2ε

)
= P

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

k∈Zd\Kn

γ j,kϕ j,k(x)

∣
∣
∣
∣
∣
∣
> 2ε

⎞

⎠ . (51)

Define Kn,l := {(k1, . . . , kd) ∈ Z
d | |kl | ≤ Kn} for l ∈ {1, 2, . . . , d}. Then,

Z
d \ Kn ⊂ ⋃d

l=1(Z
d \ Kn,l) thanks to (47). Furthermore,

∣
∣
∣
∣
∣
∣

∑

k∈Zd\Kn

γ j,kϕ j,k(x)

∣
∣
∣
∣
∣
∣
≤

d∑

l=1

∑

k∈Zd\Kn,l

|γ j,k ||ϕ j,k(x)|. (52)
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Next, one estimates |γ j,k |. Since γ j,k := ∫
Rd ϕ j,k(x)p(x)dx , |γ j,k | ≤ ∫

Rd |ϕ j,k

(x)||p(x)|dx and

k2l |γ j,k | ≤
∫

R

k2l |ϕ̃ j,kl (xl)|
∫

Rd−1

∣
∣
∣
∣
∣
∣

∏

i �=l

ϕ̃ j,ki (xi )

∣
∣
∣
∣
∣
∣
|p(x)|dx−

l dxl

with dx−
l = dx1 · · · dxl−1dxl+1 · · · dxd . Then, it follows from k2l = |2 j xl − kl +

2 j xl |2 � |2 j xl − kl |2 + |2 j xl |2 that

k2l |γ j,k | ≤ I + I I, where

I =
∫

R

|2 j xl − kl |2|ϕ̃ j,kl (xl)|
∫

Rd−1

∣
∣
∣
∣
∣
∣

∏

i �=l

ϕ̃ j,ki (xi )

∣
∣
∣
∣
∣
∣
|p(x)|dx−

l dxl ,

I I =
∫

R

|2 j xl |2|ϕ̃ j,kl (xl)|
∫

Rd−1

∣
∣
∣
∣
∣
∣

∏

i �=l

ϕ̃ j,ki (xi )

∣
∣
∣
∣
∣
∣
|p(x)|dx−

l dxl .

Note that Yi ∈ [−T, T ] implies that |m(x)| ≤ T and p := m fX ∈ L(Rd). Then,

I � 2d j/2
[

sup
xl∈R

|x2l ϕ̃(xl)|
]

·
⎡

⎣
∏

i �=l

sup
xi∈R

|ϕ̃(xi )|
⎤

⎦ ·
∫

Rd
|p(x)|dx � 2d j/2,

where two supremums exist because ϕ̃ is the Meyer’s scaling function. On the other
hand, the given conditions |x |2 p(x) ∈ L2(Rd) and Hölder inequality tell that I I =
22 j

∫
Rd |ϕ j,k(x)||x2l ||p(x)|dx ≤ 22 j‖ϕ j,k‖2‖x2l p(x)‖2 � 22 j . This with the estimate

of I shows

k2l |γ j,k | � 2d j/2 + 22 j . (53)

Take Kn = �(2d j/2 + 2(1+d/4) j )2 j/2�. Then, (52) reduces to

∑

k∈Zd\Kn

|γ j,k ||ϕ j,k(x)| �
d∑

l=1

∑

k∈Zd\Kn,l

1

k2l
(2d j/2 + 22 j )|ϕ j,k(x)|

� d
1

K 2
n
(2d j/2 + 22 j )2d j/2 � 2− j , (54)

where
∑

k∈Zd\Kn,l
|ϕ(2 j x − k)| � 1 is used in the second inequality. As n → +∞,

j → +∞ and
∑

k∈Zd\Kn
|γ j,k ||ϕ j,k(x)| → 0 thanks to (54). This with (51) shows

P(|EpFn (x) − Pj p(x)| > 2ε) ≤ P

⎛

⎝
∑

k∈Zd\Kn

|γ j,k ||ϕ j,k(x)| > 2ε

⎞

⎠ = 0
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for large n. Combining this with (48)–(50), one obtains that for any ε > 0,∑+∞
n=1 P(|pFn (x) − p(x)| > 6ε) < +∞. Finally, the desired conclusion

lim
n→∞ pFn (x)

a.s.= pn(x)

follows from Borel–Cantelli lemma.
(b). As in the proof of Theorem 2, it suffices to estimate E |pFn (x) − p(x)|2. The

estimation of E | f FX,n(x)− fX (x)|2 is similar. Obviously, E |pFn (x)− p(x)|2 is bounded
by

E |pFn (x) − EpFn (x)|2 + |EpFn (x) − Pj p(x)|2 + |Pj p(x) − p(x)|2. (55)

According to the proof of Theorem 2,

|Pj p(x) − p(x)| � n−s/(2s+2|α|+d). (56)

Similar arguments to that theorem show

E |pFn (x) − EpFn (x)|2 � n−2s/(2s+2|α|+d). (57)

Clearly, the middle term of (55) satisfies

|EpFn (x) − Pj p(x)|2 �

⎡

⎣
∑

k∈Zd\Kn

|γ j,k ||ϕ j,k(x)|
⎤

⎦

2

.

On the other hand, the arguments of (54) with a little different choice Kn = �(2d j/2 +
2(1+d/4) j )2 js/2� ( 2 j ∼ n

1
2s+2|α|+d ) concludes

∑

k∈Zd\Kn

|γ j,k ||ϕ j,k(x)| � 2− js � n−s/(2s+2|α|+d), (58)

where 2 j ∼ n
1

2s+2|α|+d is used in the last inequality. Hence,

|EpFn (x) − Pj p(x)|2 � n−2s/(2s+2|α|+d).

This with (56)–(57) concludes E |pFn (x) − p(x)|2 � n−2s/(2s+2|α|+d). The remaining
proofs are the same as those in Theorem 2. This completes the proof of Theorem 3(b).


�
It is a good problem to study the numerical illustration of our practical estimation.

We shall investigate it in future.
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