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Abstract In this paper, we consider an unbalanced urn model with multiple draw-
ing. At each discrete time step n, we draw m balls at random from an urn containing
white and blue balls. The replacement of the balls follows either opposite or self-
reinforcement rule. Under the opposite reinforcement rule, we use the stochastic
approximation algorithm to obtain a strong law of large numbers and a central limit
theorem forWn : the number of white balls after n draws. Under the self-reinforcement
rule, we prove that, after suitable normalization, the number of white balls Wn con-
verges almost surely to a random variable W∞ which has an absolutely continuous
distribution.
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1 Introduction

The classic urn model was introduced by Eggenberger and Polya (1923). This urn
contains balls of two different colors. A ball is drawn randomly, and it is returned
to the urn with α balls of the same color. Kuba and Mahmoud (2016a), Chen and
Kuba (2013), Chen and Wei (2005), Konzem and Mahmoud (2016), Tsukiji and
Mahmoud (2001) study a generalized urn model. This model evolves by drawing
randomly at each step n a sample of m balls (m ∈ {2, 3, . . .}). Balls are added
according to some prescribed rules depending on the colors of the drawn sample.
Chen and Wei (2005) considered the self-reinforcement urn model where each
ball in the sample is returned to the urn with a balls of the same color (a is an
integer ). In such model, the normalized number of white balls after n draws Wn

converges, almost surely, to a nondegenerate random variable W∞ with an abso-
lutely continuous distribution. In the opposite reinforcement model each ball in the
drawn sample is returned to the urn with a balls of the opposite color. Using dif-
ferent methods, such as martingales, moments and recurrences. Kuba et al. (2013)
described the asymptotic normality of the normalized number of white balls. In a
recent works, Kuba and Mahmoud (2016a, b), studied a new class of generalized urn
model, which is the affine one: the number of white balls satisfies an affine recurrence.
Using some stochastic algorithms results of Duflo (1997), Renlund (2010) obtains
some asymptotic results for an unbalanced urn with m = 1. Stochastic algorithms
methods have been also used by Pagés and Laruelle (2015) for a balanced urn when
m � 2.

The dynamics of an urn process can simply describe numerous applications. They
treated biology, computer data, physics, finance, etc. Therefore, it was the interest of
many authors Baggchi and Paul (1985), Chauvin et al. (2011), Flajolet et al. (2005)
Athreya and Ney (1972) who treated balanced urn model where a fixed number of
balls is added at each step add at each step.

In the present paper, we deal with an unbalanced urn model under both opposite-
and self-reinforcement rules. Themodel is defined as follows: initially the urn contains
W0 white balls and B0 blue balls such that T0 := W0 + B0 � m. A sample of m balls
is taken at random from the urn, and each white (resp blue) ball from the sample is
returned to the urn with a (resp b) balls with either the same or the opposite color
depending on the rule. Let Wn , Bn and Tn be, respectively, the number of white, blue
and the total number of balls in the urn after n draws. Let (Fn)n�0 be the σ−field
generated by the first n draws and denote by ξn the number of white balls in the sample
in the nth draw. We have

P(ξn = j |Fn−1) =
(Wn−1

j

)(Bn−1
m− j

)

(Tn−1
m

) , (0 � j � m). (1)

we characterize the evolution of the urn by the following stochastic recursion:

(
Wn+1
Bn+1

)
D=

(
Wn

Bn

)
+ Q

(
ξn+1

m − ξn+1

)
, (2)
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A generalized urn with multiple drawing and random addition 391

where for the self-reinforcement rule Q is given by Q :=
(
a 0
0 b

)
, and for the opposite

reinforcement rule the expression of Q is

(
0 a
b 0

)
. The total number of balls is given by

Tn+1 = Tn +
〈
Q

(
ξn+1

m − ξn+1

)
,

(
1
1

)〉
, ∀n � 0, (3)

the notation 〈, 〉 is for the canonical inner product in R
2. Section 2 is devoted to the

opposite reinforcement model. We give the moments, the strong law of large number
as well as the asymptotic normality of Wn

Tn
, which is the proportion of white balls. In

Sect. 3, we treat the self-reinforcement model as we give some properties of the limit
law of the normalized number of white balls.

2 Opposite reinforcement model

In this section, we consider a two-color urn under the opposite reinforcement rule.
We show that the proportion of white balls satisfies a stochastic algorithm (We refer
the reader to the monographs Duflo (1997) or Benveniste et al. (1990) for a thor-
ough introduction and a comprehensive overview of this discipline)) that, under some
conditions, converges almost surely to a set of stable points of a function h.

Theorem 1 (Renlund 2010) If a given sequence (Xn)n�0 satisfies

Xn+1 − Xn = γn+1( f (Xn) +Un+1), (4)

where (γn)n�1 and (Un)n�1 are two Fn-measurable sequences of random variables
and f is a continuous function from [0, 1] onto R such that f �≡ 0. Assume that,
almost surely,

c1
n

�γn � c2
n

, |Un| � Ku | f (Xn)| � K f , and E[γn+1Un+1|Fn] � Keγ
2
n ,

where the constants c1, c2, Ku, K f , and Keare positive real numbers. Then, we have
X∞ := lim

n→+∞ Xn exists almost surely and f (X∞) = 0.

Definition 1 A zero θ of a differentiable function h is called a stable zero, if and only
if, all eigenvalues of Dh(θ) are negative.

Lemma 1 Let Zn = Wn
Tn

be the proportion of white balls after n draws. The sequence
(Zn)n�0 satisfies the following stochastic algorithm:

Zn+1 − Zn = γn+1

(
h(Zn) + �Mn+1

)
, (5)

where

h(x) = m(a − b)x2 − 2amx + am, �Mn+1 = Yn+1 − E(Yn+1|Fn),

with Yn+1 = am + (a − b)ξn+1Zn − aξn+1 − amZn.
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Proof Recall that

Wn+1 = Wn + a(m − ξn+1), Tn+1 = Tn + am + (b − a)ξn+1,

and we have

Zn+1 − Zn = 1

Tn+1

(
Wn + a(m − ξn+1) − Zn(Tn + am + (b − a)ξn+1)

)

= 1

Tn+1

(
am − aξn+1 − Zn(am + (b − a)ξn+1)

)

= Yn+1

Tn+1
.

Note that for either the model with or without replacement we have E(ξn+1|Fn) =
mZn , which implies that

E(Yn+1|Fn) = m(a − b)Z2
n − 2amZn + am,

and we conclude the result. 
�
Proposition 1 The proportion of white balls Zn in an unbalanced urn model under

the opposite reinforcement rule converges almost surely to x1, where x1 =
√
a√

a + √
b
.

Proof We now aim to apply Theorem 1. Recall that the process Zn satisfies (4) with
γn = 1

Tn
, f ≡ h and Un = �Mn+1. We have T0 + mnmin(a, b) � Tn � T0 +

mnmax(a, b). Then γn satisfies the following bound

c1
n

� 1

Tn
� c2

n
,

where c1 = 1
1+mmax(a,b) and c2 = 1

mmin(a,b) , ∀n � [T0]. Since the process Zn is
bounded by one we have

|h(Zn)| � 3am + m|a − b|,

and

|�Mn| � 6am + 2m|a − b|.

On the other hand

E

(
1

Tn+1
�Mn+1|Fn

)
� 1

Tn
E(�Mn+1|Fn) = 0.
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A generalized urn with multiple drawing and random addition 393

Indeed h(0) = am > 0 and h(1) = −mb < 0, according to Theorem 1 the process

Zn converges almost surely to a stable zero of h. Note that h has two zeros x1 =
√
a√

a+√
b

and x2 =
√
a√

a−√
b
with h′(x1) < 0 and h′(x2) > 0, hence x1 is the stable one. 
�

Corollary 1 The normalized total number of balls in the urn after n draws satisfies
when, nrightarrow + ∞,

Tn
n

a.s−→ √
abm. (6)

Proof Recall that the total number of balls satisfies

Tn
n

= T0
n

+ am + (b − a)

n

n∑

k=1

(
ξk − m

Wk−1

Tk−1

)
+ m(b − a)

n

n∑

k=1

Wk−1

Tk−1
. (7)

Let us denote by Gn = ∑n
k=1(ξk − mWk−1

Tk−1
), then (Gn,Fn)n�0 is a martingale with

martingale difference ∇Gn = Gn − Gn−1 = ξn − mWn−1
Tn−1

. Note that the quadratic
variation process is defined as follow

<G>n =
n∑

k=1

E(∇G2
k |Fk−1)

=
n∑

k=1

Var(ξk |Fk−1)

=
n∑

k=1

m
Wk−1

Tk−1

Bk−1

Tk−1

Tk−1 − m

Tk−1 − 1
.

Since mWn
Tn

Bn
Tn

Tn−m
Tn−1 converges almost surely to mx1(1 − x1), by Cesaro’s lemma,

<G>n
n converges almost surely to the same limit,and, we get Gn

n → 0 almost surely

when n tends to infinity. Therefore, by Eq. (7), Tn
n converges almost surely to m

√
ab.


�

In the sequel, we shall investigate the rate of convergence of Tn .

Proposition 2 The total number of balls in the urn satisfies:

Tn = √
abmn + o(n

1
2+δ) almost surely, (8)

with δ being any arbitrarily number in ]0, 1
4 [.

Proof In view of the relation (2), the variance ofWn satisfies the following recurrence:
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Var(Wn+1) = Var(Wn) + a2 Var (ξn+1) − 2amCov

(
Wn

Tn
,Wn

)

=
(
1 − 2

n

√
a

b
(1 + o(1))

)
Var(Wn) + O(1)

= αn Var(Wn) + βn,

where αn =
(
1 − 2

n

√
a
b (1 + o(1))

)
and βn = O(1). We obtain

Var(Wn) =
(
n−1∏

k=1

αk

) (

Var(W1) +
n−1∑

k=1

βk
∏k−1

j=1 α j

)

,

and there exists some positive constant C , such that
∏n−1

k=1 αk = C

n
2
√

a
b +o(1)

. Then

Var(Wn) = O(n1+δ), for any δ > 0. Furthermore we have

aBn + bWn = abmn + aB0 + bW0, (9)

subsequently,

Tn =
(
1 − b

a

)
Wn + bmn +

(
B0 + b

a
W0

)
. (10)

We conclude that Var(Tn) =
(
1 − b

a

)2
Var(Wn) = O(n1+δ). Thus, by Longnecker

and Serfling (1977), there exists some positive constant A such that

E

((
max

1�k�n
(Tk − E(Tk))

)2
)

� A
n∑

k=1

kδ. (11)

For an = nδ and bn = n
1
2+δ the series

∑
n�1

an
b2n

is convergent, and by Eq. (11) we can

apply the generalized form of the strong law of large number in Fazekas and Klesov
(2001) and we get

Tn = E(Tn) + o
(
n

1
2+δ

)
almost surely. (12)

By relation (9), the expectation of Tn satisfies

E(Tn+1) = E(Tn) + abm2 n

E(Tn)
+ o

(
nδ− 1

2

)
. (13)

Let γ = m2ab and un = E(Tn)

γ n
− 1. The sequence (un)n�0 satisfies the following

recurrence:

n2γ 2(un + 1)2 = (n − 1)2γ 2(un−1 + 1)2 + 2γ (n − 1) + o(n
1
2+δ),

123



A generalized urn with multiple drawing and random addition 395

which leads to (un + 1)2 = 1

γ
+ o(nδ− 1

2 ), and the result follows. 
�

We use the result of (8) to give the asymptotic expansions of the moments of Wn .

Proposition 3 The mean and the variance of the number of white balls in the urn
after n draws satisfy

E(Wn) = m
√
abx1n + o

(
nδ+ 1

2

)
and Var(Wn)

= a2m x1(1 − x1)2

1 + x1
n + o

(
nδ+ 1

2

)
,

where δ is arbitrarily in ]0, 1
4 [.

Proof Using Eqs. (10, 12) and proposition 8, we obtain E(Wn). On the other hand,
recall that Wn satisfies the recurrence (2), then we have

Var(ξn+1) = E

(
m
Wn

Tn

(
1 − Wn

Tn

)
Tn − m

Tn − 1

)
+ m2

Var

(
Wn

Tn

)

= mx1 − mx21 + Var(Wn)

abn2
+ o

(
nδ− 1

2

)
,

and

Cov

(
Wn,

Wn

Tn

)
= 1

m
√
abn

(
1 + o

(
nδ− 1

2

))
Var(Wn).

We then obtain a recurrence for Var(Wn):

Var(Wn+1) =
(
1 − 2

√
a

b

1

n
+ o(nδ− 3

2 )
)
Var(Wn) + a2mx1(1 − x1) + o

(
nδ− 1

2

)
.

It follows that

Var(Wn) =
(

n∏

k=1

α′
k

) (

Var(W0) +
n−1∑

k=0

β ′
k∏k

j=0 α′
j

)

,

where α′
n = 1− 2

√
a
b
1
n + o(nδ− 3

2 ) and β ′
n = a2mx1(1− x1) + o(nδ− 1

2 ). There exists

a positive constant α′ such that
∏n−1

k=1 α′
k = α′ 1

n
2
√

a
b
(1 + o(nδ− 1

2 )). Hence

n−1∑

k=0

β ′
k∏k−1

j=0 α′
j

= a2mx1(1 − x1)

α′
(
1 + 2

√
a
b

) n2
√

a
b +1

(
1 + o

(
nδ− 1

2

))

= a2mx1(1 − x1)2

α′(1 + x1)
n2

√
a
b +1

(
1 + o

(
nδ− 1

2

))
. 
�
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Corollary 2 The number of white balls Wn in the urn after n draws satisfies, almost
surely:

Wn = m
√
ab x1n + o(

√
n ln(n)). (14)

Remark 1 The previous corollary allows us to give a better estimate of the mean as
well as the variance of Wn involving the rate o(

√
n ln(n)).

E(Wn) = m
√
ab x1n + o(

√
n ln(n)),

Var(Wn) = a2m x1(1 − x1)2

1 + x1
n + o(

√
n ln(n)).

2.1 Central limit theorem

Our aim in this subsection is to applyRenlund (2011) central limit theorem for stochas-
tic algorithms. The result is expressed as follows:

Theorem 2 (Renlund 2011) Let (Xn)n�0 be as in (4) with almost sure limit X∞. Let

γ̂n := −nγn
h(Xn−1)
Xn−1−X∞ . Assume that γ̂n converges almost surely to some limit γ̂ > 1

2

and E[(nγnUn)
2|Fn−1] → σ 2 > 0, then we have

√
n(Xn − X∞)

D−→ N
(
0,

σ 2

2γ̂ − 1

)
.

Theorem 3 Let Zn be the proportion of white balls in the urn submitted to the opposite
reinforcement rule after n draws. Then, the following holds:

√
n(Zn − x1)

D−→ N
(

0,

√
ab

3m(
√
a + √

b)2

)

. (15)

Proof Recall that Zn satisfies (4) and it converges almost surely to x1. In our model,
we have n

Tn

a.s→ 1
m

√
ab

and −h(Zn)
Zn−x1

a.s→ −h′(x1) = 2m
√
ab. By applying Theorem 2

with γ̂n = − n
Tn

h(Zn)
Zn−x1

, we get γ̂n → γ̂ = 2 > 1
2 . Now, we have

E

(( n

Tn
�Mn

)2|Fn−1

)

= E

(( n

Tn

)2
((a − b)Zn−1 − a)2(ξn − E(ξn|Fn−1))

2|Fn

)

= ((a − b)Zn−1 − a)2E
(( n

Tn

)2
(ξn − E(ξn|Fn−1))

2|Fn

)

n→+∞−→
√
ab

m(
√
a + √

b)2
= σ 2. 
�

Remark 2 Since the urn is not balanced, the total number of balls in the urn is random.
The stochastic algorithms give us only strong convergence results. for the proportion
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A generalized urn with multiple drawing and random addition 397

of white balls. Unfortunately, we are unable to establish a central limit theorem for
the number of white balls.

In the following paragraph, wewill prove that the dependence between the variables
ξn is weak. This result will indeed be used to describe the limit law of the number of
white balls.

Lemma 2 Let qn1 < · · · < qnr < n be a sequence such that qn1 → ∞ and let Ŵn

(resp T̂n) be the number of white balls (resp the total number of balls) after n draws
conditioning on the event {ξqn1 = mn1, . . . , ξqnr = mnr }. Then

Ŵn

T̂n
=x1 + o

(
ln(n)√

n

)
, (almost surely) (16)

Definition 2 Let (
,F , P) be a probability space and G1 and G2 are sub σ -fields of
F . The strong mixing coefficient between two subalgebra G1 and G2 is given by

α(G1,G2) = sup{|Cov(u, v))|, 0 � u, v � 1 σ(u) ⊂ G1, σ (v) ⊂ G2}. (17)

A sequence of random variables (Xn)n � 0 on (
,F , P) is strongly mixing if the
sequence (α(n))n�0 defined by

α(n) = sup
k�0

{α(σ(X j , 0 � j � k), σ (X j , j � k + n))} (18)

converges to 0.

Lemma 3 The strong mixing coefficient of (ξn)n�1 satisfies α(n) = o
(
ln(n)√

n

)
.

Proof Let U and V be two functions and k ∈ N such that σ(U ) ⊂ σ(Y j ; j � k) and
σ(V ) ⊂ σ(Yl; l � k + n), thenU and V are written as a linear combination of simple
functions of σ(Y j ; j � k) and σ(Yl; l � k + n). Thus there exists (ah)1�h�r and
(bl)1�l�s such that

U =
r∑

h=1

ahχ(ξi = mi , i ∈ Ih) and V =
s∑

l=1

blχ(ξ j = m j , j ∈ Jl), (19)

where for k ∈ N, I1, . . . , Ir are subsets of {1, . . . , k}, J1, . . . , Js are finite subsets
of N\{1, . . . , n + k} and mi ∈ {0, . . . ,m}. Note that for a fixed s ∈ {1, . . . , r} (resp
a fixed l ∈ {1, . . . , s}) we have Ih = {p1, . . . , pch } (resp Jl = {q1, . . . , qcl }). Let
wh,i = P

(
ξqi = mqi |ξq j = mqj ; j ∈ Ih

⋃{1, . . . , i − 1}) and w1,i = P
(
ξqi =

mqi |ξq j = mqj ; 1 � j � i − 1
)
. We have

|Cov(U, V )| �
∑

h,l

|ahbl |P
(
ξi = mi , i ∈ Ih

)∣∣∣
cl∏

i=2

wh,i −
cl∏

l=2

w1,i

∣∣∣. (20)
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�
∑

h,l

cl∑

i=2

|aib j ||wh,i − w1,i |. (21)

The last inequality is due to the fact that |∏n
k=1 uk − ∏n

k=1 vk | �
∑n

k=1 |uk − vk |
,∀u1, . . . , un, v1, . . . , vn in the unit circle. We have

w1,i = E

((
Wqi−1

mqi

)(
Bqi−1

m − mqi

)(
Tqi−1

m

)−1

|ξq j = mqj , 1 � j � i − 1

)

=
(

m

mqi

)
E

(
(Wqi−1)mqi

(Bqi−1)m−mqi

(Tqi )m
|ξq j = mqj , 1 � j � i − 1

)
,

where (x)n = x(x − 1) . . . (x − n + 1) = xn − (n
2

)
xn−1 + Pn−2(x) and Pn−2(x)

is a polynomial in x with degree (n − 2) such that Pn−2(x) = 0 for n < 2. For

�mqi
(qi ) = (Wqi−1)mqi

(Bqi−1)m−mqi
(Tqi−1)m

, we have

�mqi
(qi ) =

(
W

mqi
qi−1 − (mqi

2

)
W

mqi −1
qi−1 + Pmqi −2(Wqi−1)

) (
B
m−mqi
qi−1 − (m−mqi

2

)
B
m−mqi −1
qi−1 + Pm−mqi −2(Bqi−1)

)

Tm
qi−1 − (m

2

)
Tm−1
qi−1 + Pm−2(Tqi−1)

a.s=
((Wqi−1

Tqi−1

)mqi
( Bqi−1

Tqi−1

)m−qi −
(mqi

2

)

Tqi−1

(Wqi−1

Tqi−1

)mqi −1( Bqi−1

Tqi−1

)m−mqi

−
(m−mqi

2

)

Tqi−1

(Wqi−1

Tqi−1

)mqi
( Bqi−1

Tqi−1

)m−mqi −1 + O
( 1

T 2
qi−1

))

×
(
1 + O

( 1

Tqi−1

))

Recall that if i ∈ {1, . . . , cl}, qi > n + k, then
Wqi
Tqi

a.s= x1 + o
(
ln(n)√

n

)
.

w1,i
a.s=

(
m

mqi

)
E

(
�mqi

(qi )|ξq j = mqj , 1 � j � i − 1
)

a.s=
(

m

mqi

)
x
mqi
1 (1 − x1)

(m−mqi )
(
1 + o

( ln(qi − 1)√
qi − 1

))

+ O
( 1

qi − 1
)
)(

1 + O
( 1

qi − 1

))

a.s=
(

m

mqi

)
x
mqi
1 (1 − x1)

(m−mqi )
(
1 + o

( ln(qi − 1)√
qi − 1

))

a.s=
(

m

mqi

)
x
mqi
1 (1 − x1)

(m−mqi )
(
1 + o

( ln(n)√
n

))
.

With a similar computation, we obtain wh,i = ( m
mqi

)
x
mqi
1 (1 − x1)

(m−mqi )
(
1 +

o
(
ln(n)√

n

))
. It yields that
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A generalized urn with multiple drawing and random addition 399

∣
∣∣wh,i − w1,i

∣
∣∣ = o

(
ln(n)√

n

)
. (22)

As a conclusion, the inequality (20) becomes

Cov(U, V ) = o

(
ln(n)√

n

)
. 
�

Theorem 4 Let Wn be the number of white balls in the urn after n draws. Then Wn

satisfies
Wn − E(Wn)√

n
D−→ N

(
0,

a2mx1(1 − x1)2

1 + x1

)
. (23)

Proof Let ξ̃i = a(ξi − E(ξi )) and Sn = 1√
n

∑n
i=1 ξ̃i . Using the weak dependence

between the random variables (Xi )1�i�n , we apply the Bernstein Method to prove
the central limit theorem. This method consists in subdividing the interval [0, n] into
big and small intervals in a way that the considered sum in the big intervals, can be
described as a sum of independent random variables and the same sum, in the small
intervals, does not contributes to the asymptotic behavior. We can refer the reader to
Lin and Lu (1996) for more details about this method. Consider the sequences pn and
qn such that

pn = [n 3
4 ln2(n)] and qn =

[
n

1
4

ln(n)

]

.

Let kn = [ n
pn+qn

] and

Xn = 1√
n

kn∑

i=1

X̃i , and Un = 1√
n

kn∑

i=1

Ũi ,

with

X̃ j =
∑

i∈Bj

ξ̃i , and Ũ j =
∑

i∈B′
j

ξ̃i ,

where Bj =](pn +qn)( j −1), (pn +qn)( j −1)+ pn[∩N is a subset of pn successive
integers from {1, . . . , n} such that for l �= l ′, the distance between B and B′ is at least
qn and B ′

j is the block between Bj and Bj+1. Let Ukn be the last sum of ξ̃i between
the end of Bkn and n. Let (X

∗
i )i�0 be a sequence of independent random variables and

independent of the sequence (X̃i )i�0. Let

Yn = 1√
n

kn∑

i=1

X∗
i ,
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such that for all i � 1, X∗
i = X̃i in distribution. Let Y be a random variable and �Y (.)

be the characteristic function of Y . Let N denote the centered normal random variable
with variance σ 2 = a2mx1(1−x1)2

1+x1
. We have Sn − N = (Sn − Xn) + (Xn − N ). At first

we have by Tchebychev inequality:

∀ε > 0, P (|Sn − Xn| > ε) � Var(Sn − Xn)

ε2
. (24)

Note that E
(
|Sn − Xn|2

)
= E(|Un|2), where

E(U 2
n ) = Var

(
1√
n

kn∑

i=1

Ũi

)

= 1

n

kn∑

i=1

Var
(
Ũi

)
+ 1

n

∑

1�i< j�kn

Cov
(
Ũi , Ũ j

)
.

In view of Lemma 3 we have the following bounds:

1

n

kn+1∑

j=1

Var(Ũ j ) = 1

n

kn+1∑

j=1

Var

⎛

⎝
∑

j∈B′
i

ξ̃ j

⎞

⎠ = O

(
q2n kn
n

)
= O

(
1

ln(n)4n
1
4

)

. (25)

Similarly, we have:

|Cov(Ũi , Ũ j )| = |
∑

k∈B′
i

∑

l∈B′
j

Cov(ξ̃i , ξ̃ j )|

� q2nm
2 sup

|i− j |>pn ,α,β

|Cov(1{ξi=α}, 1{ξ j=β})| � m2q2nα(pn).

Then,

1

n

∑

1�i< j�k(n)

Cov(Ũi , Ũ j ) = o

(
n− 7

8

ln(n)2

)

,

this proves that Sn−Xn
P−→ 0when n tends to infinity. On the other hand,∀t ∈]−1, 1[

we have
|�Xn (t) − �N (t)| � |�Xn − �Yn | + |�Yn − �N (t)|. (26)

For this, we use the following lemma:

Lemma 4 We have Xn − Yn converges to 0 in distribution.

Proof

∣∣∣∣∣∣
E

(
eit Xn

)
−

kn∏

j=1

E

(

e
it

X̃ j√
n

)∣∣∣∣∣∣
�

kn∑

h=1

∣∣∣∣∣∣
E

⎛

⎝
kn∏

j=h+1

e
it

X̃ j√
n

⎞

⎠
h∏

j=1

E

(

e
it

X̃ j√
n

)
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−E

⎛

⎝
kn∏

j=h

e
it

X̃ j√
n

⎞

⎠
h−1∏

j=1

E

(

e
it

X̃ j√
n

)∣
∣∣∣∣∣

�
kn∑

h=1

∣∣
∣∣∣∣
E

⎛

⎝
kn∏

j=h

e
it

X̃ j√
n

⎞

⎠

− E

⎛

⎝
kn∏

j=h+1

e
it

X̃ j√
n

⎞

⎠E

(

e
it

X̃h√
n

)∣∣∣
∣∣∣

We conclude the proof by using this lemma:

Lemma 5 (Lin and Lu 1996) Let A ∈ Gk
1 and B ∈ G∞

n+k such that |A| � C1 and
|B| � C2 we have

|Cov(A, B)| � 4C1C2α(n). (27)

As a conclusion,

|E
(
eit Xn

)
−

kn∏

j=1

E

(

e
it

X̃ j√
n

)

| � 4knα(qn) = o

(
n− 1

8

ln(n)2

)

.

Finally, look at the limit of 1
n

∑kn
i=1 E

(
X̃2
i

)
.

1

n

kn∑

i=1

E

(
X̃2
i

)
= 1

n

kn∑

i=1

Var
(
X̃i

)

= 1

n

kn∑

i=1

Var

⎛

⎝
∑

k∈Bi
ξ̃k

⎞

⎠

= kn pn
n

1

kn

kn∑

i=1

1

pn
Var

⎛

⎝
∑

k∈Bi
ξ̃k

⎞

⎠ .

Recall that 1
nVar(

∑n
i=1 ξ̃i ) converges to a2mx1(1−x1)2

1+x1
. By Cesáro lemma we have

1
kn

∑kn
i=1

1
pn
Var(

∑
k∈Bi ξ̃k) converges to the same limit. Indeed we have kn pn

n =
[ pn
pn+qn

] = [ 1
1+ qn

pn

]
which converges to 1. As a conclusion 1

n

∑kn
i=1 E

(
X̃2
i

)
a.s−→

a2mx1(1−x1)2

1+x1

�
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3 Self-reinforcement model

In this section, we will deal with unbalanced urn model submitted to the self-
reinforcement rule. The dynamics of replacement are defined as follows:

Wn+1 = Wn + aξn+1 and Tn+1 = Tn + bm + (a − b)ξn+1. (28)

3.1 Strong law of large number

In order to obtain the almost sure convergence of the proportion of white balls in the
urn, we will relay as well on the stochastic approximation algorithm as in the previous
section.

Lemma 6 Let Zn be the proportion of white balls after n draws in the urn submitted
to the self-reinforcement rule. Then Zn satisfies the following stochastic algorithm:

Zn+1 − Zn = 1

Tn
g(Zn) + 1

Tn

(
�Mn+1

)
, (29)

where

g(x) = m(a − b)x(1 − x) and �Mn+1 = Yn+1 − E(Yn+1),

with Yn+1 = aξn+1 − Zn(bm + (a − b)ξn+1).

Proposition 4 The proportion of white balls in the urn submitted to the self-
reinforcement rule converges almost surely to 0 or 1 whenever a < b or a > b.

Proof The proportion of white balls in the urn satisfies Eq. (4), we will apply Theorem
1 with γn = 1

Tn
, f ≡ g and Un = �Mn . Since Zn is bounded by 1 we have:

|g(Zn)| � m|a − b|, |�Mn+1| = |(a − (a − b)Zn)(ξn+1 − mZn)|
� 2m(a + |a − b|),

and

E

(
1

Tn+1
�Mn+1|Fn

)
� 1

Tn
E

(
�Mn+1|Fn

)
= 0.

As a result Zn converges almost surely to the stable zeros of the function g which is
0 if a < b and 1 if a > b. 
�

Throughout the rest of this paper, we will consider the case when a < b. The other
case can be obtained analogously.

Proposition 5 The total number of balls in the urn after n draws satisfies

Tn = bmn + o(n
a
2b+ 1

2+δ) almost surely. (30)
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where δ is arbitrarily ∈]0, 1 − a
b [.

Proof Let ε > 0 and kn = [cn] where c > 1. By Chebychev’s inequality we have

∑

n�0

P

(
|Wkn − E(Wkn )| > εkn

a
2b+ 1

2+δ
)

� 1

ε2

∑

n�0

Var(Wkn )

kn1+
a
b +2δ

=
∑

n�0

o

(
1

kδ
n

)
< ∞.

By Borel-Cantelli lemma, when n tends to infinity, we have Wkn−E(Wkn )

k
a
2b + 1

2+δ

n

a.s−→ 0. Let

kn � k < kn+1, we have

Wk − E (Wk)

k
a
2b+ 1

2+δ
�

Wkn − E
(
Wkn

)

k
a
2b+ 1

2+δ
+ E

(
Wkn

) − E
(
Wkn+1

)

k
a
2b+ 1

2+δ

� −|Wkn − E
(
Wkn

) |
k

a
2b+ 1

2+δ
n

− k
a
2b+ 1

2+δ

n+1

k
a
2b+ 1

2+δ
n

E
(
Wkn+1

) − E
(
Wkn

)

k
a
2b+ 1

2+δ

n+1

� −ε − c
a
b +1+2δ

C1

(
k

a
b +o(1)
n+1 − k

a
b +o(1)
n

)

k
a
2b+ 1

2+δ

n+1

� −ε − C1c
a
b +1+2δ

cnδ+o(n)

(
1 − c− 2a

b +o(1)
)

� −ε −
(
1 − c− 2a

b +o(1)
)

ε for n too large.

Making c ↘ 1 we obtain lim inf Wk−E(Wk )

k
a
2b + 1

2+δ
� 0. Similarly, for the lim sup we have

Wk − E (Wk)

k
a
2b+ 1

2+δ
�

k
a
2b+ 1

2+δ

n+1

k
a
2b+ 1

2+δ
n

|Wkn+1 − E
(
Wkn+1

) |
k

a
2b+ 1

2+δ

n+1

+ E
(
Wkn+1

) − E
(
Wkn

)

k
a
2b+ 1

2+δ
n

� c
a
b +1+2δε + C1

(
c2

a
b +o(1) − 1

) 1

c(n−1)δ+o(n)

Making c ↘ 1 we have the upper bound lim sup Wk−E(Wk )

k
a
2b + 1

2+δ
� ε. Recall that we have

the relation aBn +bWn = abmn+aB0+bW0. Thus, Tn = bmn− b
b−aWn + aB0+bW0

b
which concludes the proof. 
�
Proposition 6 The mean and the variance of the white balls in the urn after n draws
satisfies

E(Wn) = m
W0

T0
exp

⎛

⎝a

b
γ +

∞∑

j=2

(−1) j−1

j

(a
b

) j
ζ( j)

⎞

⎠ n
a
b

(
1

+ o
(
n

a
2b− 1

2+δ
))

, (31)
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and (32)

Var(Wn) =
(

C2V1 + a2C1

b
ζ
(
1 + a

b

)
− a2π2C2

1

6b2m

)

n
2a
b

(
1

+ o(n
a
2b− 1

2+δ)
)
, (33)

where C1 = mW0
T0

exp
(
a
bγ +∑∞

j=2
(−1) j−1

j

(
a
b

) j
ζ( j)

)
and C2 = exp

[
2a
b γ − π2a2

6b2m
−

∑∞
j=2

1
j

(
a2

b2m

) j ∑ j
h=0

( j
h

)
(−1)h

((
a

2bm

)h
ζ(2 j − h)

)]
.

Proof

E(Wn) = E(W1)

n−1∏

k=1

(
1 + a

bk
(1 + o(k

a
2b− 1

2+δ))
)

= E(W1) exp

(
n−1∑

k=1

ln
(
1 + a

bk

(
1 + o

(
k

a
2b− 1

2+δ
)))

)

= E(W1) exp
[a
b

(
ln(n) + γ + O

(1
n

))
+

∞∑

j=2

(−1) j−1

j

(a
b

) j(
ζ( j)

+O
(1
n

))(
1 + o(n

a
2b− 1

2+δ)
)]

= m
W0

T0
exp

⎛

⎝a

b
γ +

∞∑

j=2

(−1) j−1

j

(a
b

) j
ζ( j)

⎞

⎠ n
a
b

(
1 + o

(
n

a
2b− 1

2+δ
))

.

Let C1 = mW0
T0

exp
(
a
bγ + ∑∞

j=2
(−1) j−1

j

(
a
b

) j
ζ( j)

)
.

Var(Wn+1) = Var(Wn) + a2mE

(
Wn

Tn
− W 2

n

T 2
n

) (
1 + O

(1
n

))
+ 2aCov(Wn, ξn+1)

= Var(Wn) + a2

bn
E(Wn)

(
1 + o

(
n

a
2b− 1

2+δ
))

− a2

b2mn2
E(W 2

n )
(
1 + o

(
n

a
2b− 1

2+δ
))

+2a

bn
Var(Wn)

(
1 + o(n

a
2b− 1

2+δ)
)

=
(
1 +

(2a
bn

− a2

b2mn2

)(
1 + o

(
n

a
2b− 1

2+δ
)))

Var(Wn)

+
(a2C1

bn
n

a
b − a2C2

1

b2mn2
n

2a
b

)
(1 + o(n

a
2b− 1

2+δ))

=
(
n−1∏

k=1

wk

)(
Var(W1) +

n−1∑

k=1

θk
∏k−1

j=1 w j

)
,
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where

wn = 1 +
(2a
bn

− a2

b2mn2

)(
1 + o

(
n

a
2b− 1

2+δ
))

and θn

=
(a2C1

bn
n

a
b − a2C2

1

b2mn2
n

2a
b

)
(1 + o(n

a
2b− 1

2+δ)).

First consider Qn := ln
( ∏n−1

k=1 wk

)
:

Qn =
n−1∑

k=1

ln
(
1 +

(2a
bn

− a2

b2mn2

)(
1 + o

(
n

a
2b− 1

2+δ
)))

=
n−1∑

k=1

∞∑

j=1

(−1) j−1

j

(2a
bn

− a2

b2mn2

) j(
1 + o

(
n

a
2b− 1

2+δ
))

=
n−1∑

k=1

(2a
bn

− a2

b2mn2

)(
1 + o

(
n

a
2b− 1

2+δ
))

−
n−1∑

k=1

∞∑

j=2

1

j

j∑

h=0

(
j

h

)
(−1)h

(2a
bk

)h
(

a2

b2mk2
) j−h

(
1 + o

(
n

a
2b− 1

2+δ
))

=
(2a
b

(ln(n) + γ ) − π2a2

6b2m
+ O

(1
n

))(
1 + o

(
n

a
2b− 1

2+δ
))

−
∞∑

j=2

1

j

( a2

b2m

) j
j∑

h=0

(
j

h

)
(−1)h

( a

2bm

)h
ζ(2 j − h)

(
1

+O
( 1

n2 j−h

))(
1 + o(n

a
2b− 1

2+δ)
)
.

We obtain, for n too large
( ∏n−1

k=1 wk

)
= C2n

a
2b (1+ o(n

a
2b− 1

2+δ)) where C2 is given

by

C2 = exp
(2a
b

γ − π2a2

6b2m
−

∞∑

j=2

1

j

( a2

b2m

) j
j∑

h=0

(
j

h

)
(−1)h

(( a

2bm

)h
ζ(2 j − h)

))
.

(34)
This yields the results. For Sn we have Sn = ∑n−1

k=1
θk∏k−1

j=1 w j
:

Sn =
( n−1∑

k=1

a2C1

bC2k
a
b +1

−
n−1∑

k=1

a2C2
1

b2mC2k2

)(
1 + o(n

a
2b− 1

2+δ)
)

=
(
a2C1

bC2
ζ(1 + a

b
)

)(
1 + O

( 1

n
a
b

))
− π2a2C2

1

6bC2

(
1 + O

(1
n

))
(1 + o(n

a
2b− 1

2+δ)).


�
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Remark 3 In the casewhere a = b, the total number of balls in the urn is deterministic,
Chen and Kuba (2013) obtained the moments of high orders in a recurrence form.

3.2 Limit in distribution

Theorem 5 There exists a random variable W∞ such that the number of white balls
in the generalized urn submitted to the self-reinforcement rule satisfies, as n tends to
infinity

Wn

n
a
b

−→ W∞ almost surely. (35)

The mean and the variance of W∞ are given by

E(W∞) = m
W0

T0
exp

⎛

⎝a

b
γ +

∞∑

j=2

(−1) j−1

j

(2a
b

) j
ζ( j)

⎞

⎠ (36)

and

Var(W∞) = C2V1 + a2C1

b
ζ
(
1 + a

b

)
− a2π2C2

1

6b2m
, (37)

where V1 = mW0
T0

(
1 − W0

T0

)
T0−m
T0−1 , C1 = E(W∞), and C2 = exp

(
2a
b γ − π2a2

6b2m
−

∑∞
j=2

1
j

(
a2

b2m

) j ∑ j
h=0

( j
h

)
(−1)h

(
a

2bm

)h
ζ(2 j−h)

)
.Moreover, the distribution of W∞

is absolutely continuous.

Proof The sequence Mn = ∏n−1
k=0

(
1 + am

Tk

)−1
Wn is a martingale adapted to the

filtration (Fn)n�0. In view of Eq. (30), there exists a positive constant α such that, for
some δ ∈]0, 1 − a

b [, we have
n−1∏

k=0

(
1 + am

Tk

)−1 = eα

n
a
b
(1 + O(n

a
b +δ−1 ∨ nδ− 1

2 )), almost surely.

To prove that W∞ has an absolutely continuous distribution we will follow the proof
given by Chen and Wei (2005). Define the increasing events 
 by


 = {W � am, and B � bm}.

Since P(∪≥1
) = 1, it is sufficient to prove that W∞ has a density on 
, j =

 ∩ {W = j}.
Lemma 7 (Chen and Wei 2005) There exists a positive constant c such that for every
n �  + 1 and 0 ≤ k � m(n + 1) and am � j � amn

m∑

i=0

P(Wn+1 = j + ak|Wn = j + a(K − i)) � 1 − 1

n
+ c

n2
(38)
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Lemma 8 (Chen and Wei 2005) There exists a positive constant C depending only
on  such that for every  � 1 and n �  + 1 and am � j � amn : we have

max
0�k�m(n+1)

P(Wn+1 = j + ak|W = j) � C()

n
. (39)

Let ε > 0 and δ = ε
C()

, and set x1 < x ′
1 � x2 < x ′

2 � · · · � xr < x ′
r such that

∑r
i=1 |x ′

i − xi | � δ. Using Fatou’s lemma we have

r∑

i=1

P({xi � W∞ � x ′} ∩ 
, j ) �
r∑

i=1

lim inf P(xi � Wn

n
� x ′

i |W = j)P(
, j )

�
r∑

i=1

lim inf
(
((x ′

i − xi )n + 1)
C()

n

)

�
r∑

i=1

(x ′
i − xi )C() = ε.


�
Example 1 The case wherem = 1 corresponds to the model studied by Janson (2006)
where he proved that when a < b the number of white balls satisfies the following
convergence:

bn − Bn

n
a
b

L−→ bUV− a
b ,

where U
D= �

(
W0
a , 1

)
and V

D= �
(
B0
b , 1

)
.
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