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Abstract A k-out-of-n:F systemwith both of soft and hard failures is considered such
that its components degrade through internal and external factors. A linear model is
considered for degradation path of each component. Reliability function of the system
is derived and the effect of varying the parameters are studied on reliability function
for some systems. Moreover, the effect of calibration on reliability and maximum
working time of such a system is investigated. The optimal number of calibrations is
also determined for some special cases.

Keywords Calibration · Soft failure · Hard failure · Internal degradation · External
degradation · Reliability · Sensitivity analysis · Optimization

1 Introduction

For systems with high reliability, it is difficult to assess reliability based only on
lifetime data, because failures don’t occur during short time at normal conditions.
In this case, degradation data contains more information than lifetime data about
system reliability, which records the accumulation of damage over time.Many authors
have been investigated such data. Lu and Meeker (1993) presented an application of
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degradation modeling to estimate the time to failure distribution for a broad class of
degradation models. Zhao and Xie (1994) and Zhao et al. (1995) studied the storage
reliability and discussed the failure and deterioration of items in a dormant state. Coit
et al. (2005) used degradation modeling to predict reliability and developed a method
to correlate field life with observed degradation for electronics modules. Haghighi and
Bae (2015) proposed amodeling approach for jointly analyzing linear degradation data
and failure times which are simultaneously recorded during the step-stress accelerated
degradation testing. Rodrguez-Narciso and Christen (2016) proposed a methodology
that sequentially selects the optimal observation times to measure the degradation,
using a convenient rule that maximizes the inference precision and minimizes test
costs. Xu et al. (2016) described a class of general path models to incorporate dynamic
covariates for modeling degradation paths.

So far, few studies have been done about degradation of engineering systems. Song
et al. (2012) investigated reliability function of a k-out-of-n system that its components
exposure to degradation and shock loads. The main goal of this paper is to investigate
the reliability of a k-out-of-n:F system based on degradation data. As known in the
literature of reliability, a k-out-of-n:F system consists of n components which fails if
and only if at least k of its components fail. Such systems have various applications
in engineering discipline. For more details, we refer to Lawless (2003), Asadi and
Bayramoglu (2006), Bairamov andArnold (2008) and Tavangar and Bairamov (2015).

In spite of degradation analysis, the effect of calibration is studied on performance
of a k-out-of-n:F system.Moreover, the optimal number of calibrations are determined
considering both of reliability and total cost of experiment. Calibration is one of the
primary processes used in many practical operating systems to maintain instrument
accuracy. Because it can rejuvenate systems completely or partly, a system is offered
to calibrate periodically in order to correct its accuracy. There are some differences
between calibrations and maintenances in real world. The calibrations can usually
correct some biases for the systems, but cannot reduce completely the underlying
or essential faults in the systems; in addition can be carried out easily in practice.
The maintenance may reduce the underlying faults and usually takes more time for
actions. In theory we can treat the calibration as a special case of maintenances. Kong
and Cui (2015) studied Bayesian inference of multistage reliability for degradation
systems with calibration. Cui et al. (2016) considered two degradation models and
developed degradation signals of a product with some Wiener diffusion processes
under pre-specified periodical calibrations.

The rest of the paper is organized as follows. Section 2 focuses onmodel description.
In this section, soft and hard failures as well as internal and external degradations are
introduced. In Sect. 3, the reliability function of a k-out-of-n:F system is derived.
The effect of calibration on degradation and reliability is studied in this section. A
sensitivity analysis of reliability function is done in Sect. 4 and the effect of varying
the parameters on reliability function is investigated. Maximum working time of a
system and optimal number of calibrations are obtained in Sect. 5. Finally, some
conclusions are stated in Sect. 6.
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2 Model description and preliminaries

A system may consist of multiple degrading components. One can divide these degra-
dations into two categories, internal and external degradations. Internal degradation
is actually unexplained degradation, that is relevant to inherent of each component.
External degradation is obtained by environmental factors such as stress, humidity and
heat. Li et al. (2011) considered component degradations as a linear combination of
internal and external normal degradations. Here, let us consider a k-out-of-n:F system
with degradation paths X1(t), . . . , Xn(t). Also, suppose that components are degraded
subject to different internal factors and a common external factor. Let Y1(t), . . . ,Yn(t)
be independent internal degradation paths and denote degradation path of external fac-
tor by Z(t). Since external degradation of each component is dependent to its location
in the system, thus we suppose that the i th component exposures the external degra-
dation Z(t) with impact element αi , for i = 1, . . . , n. Therefore, the following model
is considered for degradation path of each component

Xi (t) = Yi (t) + αi Z(t); i = 1, . . . , n. (1)

In general, there are two classes of degradation models: stochastic models and path
models. In practice, the continuous degradation process is often modeled by a stochas-
tic model.Wiener andGamma processes are two classes of stochastic models that have
been widely used in degradation modeling. A distinct feature ofWiener process is that
its degradation measures are not necessarily monotone, which is not applicable in
many cases. As an alternative, Gamma process is often used when monotonicity is
required. For more details, see Noortwijk (2009) and Liu et al. (2013). Hence, to have
monotone degradation paths, we assume that Z(t) in model (1) obeys a Gamma pro-
cess with shape parameter a(t) and scale parameter b, denoted by Z(t) ∼ Γ (a(t), b).
Further, for i = 1, . . . , n, it is assumed that Yi (t) ∼ Γ (ai (t), bi ). Empirical studies
show that the shape parameter of Gamma process at time t can often be described by
a power law model. Hence, for positive real constants a, ai and γ , we consider shape
parameters as a(t) = atγ and ai (t) = ai tγ (i = 1, . . . , n).

In degradation analysis, it is necessary to define the level of degradation or per-
formance such that when degradation path exceeds the specified threshold, a failure
is said to have occurred. Such a failure is known as soft failure. In addition, a hard
failure is said to have occurred, when component stops working. The varying time of
soft and hard failures depends on the degradation level of both internal and external
factors. Haghighi and Nikulin (2010) described a parametric method to estimate the
survival function of general degradation model with one soft failure and several hard
failures. In our model, the soft failure occurs when the degradation path Xi (t) reaches
or exceeds a specified level of degradation, say di . So, the soft failure time of the i th
component, denoted by T 0

i , is defined as the time when the degradation path reaches
or exceeds the critical threshold di , i.e.,

T 0
i = inf{t > 0; Xi (t) ≥ di }; i = 1, . . . , n. (2)
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The survival and distribution functions of T 0
i (i = 1, . . . , n) are given by

ST 0
i
(t) = P(Xi (t) < di ) =

∫ di
αi

0
FYi (t)(di − αi z) fZ(t)(z)dz (3)

and

FT 0
i
(t) =

∫ di
αi

0
F̄Yi (t)(di − αi z) fZ(t)(z)dz + F̄Z(t)

(
di
αi

)
, (4)

respectively, where fZ(t)(·) and FZ(t)(·) stand for the probability density function
(pdf) and cumulative distribution function (cdf) of Z(t), respectively; also, F̄Z(t)(·) =
1 − FZ(t)(·).

As previously mentioned, the other types of failures are due to the hard (traumatic)
failures. Indeed, when a component stops working, a hard failure is assumed to have
occurred. Denote the hard failure time for the i th component by T 1

i and show its
hazard rate function by λi (t). Since the hard failure is influenced by both of external
and internal degradations, the hazard rate function depends on Yi (t) and Z(t). So, we
assume that given Z(t) = z and Yi (t) = yi , the conditional hazard rate of T 1

i has a
multiplicative form as in the Cox model. That is,

λi (t | Z(t) = z,Yi (t) = yi ) = λ0(t, θ)λ(αi z, yi ); i = 1, . . . , n, (5)

where λ0(·) and λ(·) are the baseline hazard and intensity functions, respectively.
From model (5), it is observed that the conditional hazard rate function depends on
both types of external and internal degradations only through the intensity function.
Similar to Nikulin and Wu (2016), we assume that the baseline hazard rate function
is of the form λ0(t, θ) = (1 + t)θ , for θ > 0. Moreover, for intensity function, we
consider a multiplicative form as follows

λ(αi z, yi ) = (αi z)
β yβi

i ; β, βi > 0, i = 1, . . . , n.

Since external degradation Z(t) is common for all components, we have shown its
effect on intensity function by a common parameter β. But, internal degradations are
different for the components, so we use a distinct parameter βi to show the effect of
Yi on intensity function. Summing up, the conditional hazard rate function of T 1

i , for
i = 1, . . . , n, is considered to be

λi (t | Z(t) = z,Yi (t) = yi ) = (1 + t)θ (αi z)
β yβi

i ; θ, β, βi > 0. (6)

Therefore, the conditional survival function of T 1
i is

ST 1
i |{z,yi }(t) = P(T 1

i > t | Z(t) = z,Yi (t) = yi )

= exp

{
−

∫ t

0
λi (s | Z(s) = z,Yi (s) = yi )ds

}

123



Reliability analysis of a k-out-of-n:F system 541

= exp

{
−(αi z)

β yβi
i

∫ t

0
(1 + s)θds

}

= exp

{
− (αi z)β y

βi
i

θ + 1

(
(1 + t)θ+1 − 1

)} ; t > 0. (7)

Differentiating (7), the conditional probability density function (pdf) of T 1
i is obtained

as

fT 1
i |{z,yi }(t) = (αi z)

β yβi
i (1 + t)θ exp

{
− (αi z)β y

βi
i

θ + 1

(
(1 + t)θ+1 − 1

)} ; t > 0.

(8)

Now, assume that the i th component fails as soon as either soft failure or hard failure
occurs first. That is, the failure timeof the i th component is givenbyTi = min{T 0

i , T 1
i }.

In this paper, we assume that all factors which cause the dependency between com-
ponents, affect only the external degradation Z(t) and internal degradation Yi (t).
Considering the common external degradation Z(t) affects all lifetimes, T1, . . . , Tn
are dependent. Since, we do not assume any other dependence sources, when Z(t)
becomes known, there is no dependence relationship between components. On the
other words, given Z(t) = z, T1, . . . , Tn are conditionally independent. Furthermore,
according to the definition, Ti is dependent to both soft failure time T 0

i and hard failure
time T 1

i . On the other hand, T 0
i and T 1

i are exposed both external degradation Z(t)
and internal degradation Yi (t). So, T 0

i and T 1
i are dependent. Hence, similar to above

scenario, given Yi (t) = yi and Z(t) = z, T 0
i and T 1

i are conditionally independent.
Of course, there may be circumstances that more factors affect on dependency

between components. In such situations, we need to know the joint distribution of
components which may be considered in future researches. In the next section, we
first obtain reliability function of a k-out-of-n:F system and then, we study the effect
of calibration on the reliability.

3 Reliability and calibrations

Let T1, . . . , Tn be the failure times of components of a k-out-of-n:F system, such that
Ti = min{T 0

i , T 1
i }. Denote the corresponding order statistics by T1:n < · · · < Tn:n .

Then the failure time of the system is given by Tk:n . For more details about coherent
systems see Lawless (2003). To determine the reliability function of such a system,
let us first present the conditional reliability function of the i th component in the
following lemma.

Lemma 1 Suppose that T 0
i and T 1

i are the soft and hard failure times of the i th
component, respectively. Given Z(t) = z, the conditional reliability function of the
i th component at time point t is

123



542 E. Nezakati et al.

RTi |z(t) =
∫ di−αi z

0
exp

{
− (αi z)β y

βi
i

θ + 1

(
(1 + t)θ+1 − 1

) − yi
bi

}
1

bai t
γ

i Γ (ai tγ )
yai t

γ −1
i dyi ,

(9)
when di > αi z and RTi |z(t) = 0 for di < αi z.

Proof Note that given Z(t) = z and Yi (t) = yi , the random variables T 0
i and T 1

i are
assumed to be conditionally independent. Now, using the fact that Ti = min{T 0

i , T 1
i },

we have

RTi |z(t) = P(Ti > t | Z(t) = z)

=
∫ ∞

0
P(T 0

i > t | Z(t) = z,Yi (t) = yi )

×P(T 1
i > t | Z(t) = z,Yi (t) = yi ) fYi (t)(yi )dyi , (10)

where fYi (t)(·) stands for the pdf of Yi (t). From (2), the event {T 0
i > t} is equivalent

to {Xi (t) < di }. Hence, using (1), we have

P(T 0
i > t | Z(t) = z,Yi (t) = yi ) =

{
1, yi < di − αi z
0, yi > di − αi z

So, using (7), for di > αi z we get

RTi |z(t) =
∫ di−αi z

0
exp

{
− (αi z)β y

βi
i

θ + 1

(
(1 + t)θ+1 − 1

)}
fYi (t)(yi )dyi .

Also, for di < αi z, RTi |z(t) = 0. Since Yi (t) has Γ (ai tγ , bi ) distribution, the proof is
completed. ��
Theorem 1 Let Ti = min{T 0

i , T 1
i } be the failure time of the i th component (i =

1, . . . , n). Then, the reliability function of a k-out-of-n:F system at time point t , is
given by

Rk:n(t) =
k−1∑
i=0

∑
Si

∫ min{ d1
α1

,...,
dn
αn

}

0

{ i∏
�=1

(1 − RTj� |z(t))
n∏

�=i+1

RTj� |z(t)
}
fZ(t)(z) dz,

(11)
where RTj� |z(t) is as defined in (9) and summation index Si extends over all permuta-
tions ( j1, . . . , jn) of integers {1, . . . , n} such that j1 < · · · < ji and ji+1 < · · · < jn.

Proof Note that reliability of the mentioned system at time t is equivalent to the
probability of failing atmost (k−1) components up to time t . As previouslymentioned,
given the observed value of Z(t), the random variables T1, . . . , Tn are conditionally
independent but they are not identically distributed. So, from David and Nagaraja
(2003) p. 96, we get
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Fig. 1 Effect of calibration on shape parameter of external degradation

Rk:n(t) = P(Tk:n > t)

=
∫ ∞

0
P(Tk:n > t | Z(t) = z) fZ(t)(z)dz

=
∫ ∞

0

k−1∑
i=0

∑
Si

{
i∏

�=1

(1 − RTj� |z(t))
n∏

�=i+1

RTj� |z(t)
}

fZ(t)(z)dz.

From (9), it is easy to see that if d j−α j z < 0, then RTj |z(t) = 0 for j = 1, . . . , n. But if

d j−α j z > 0 for all j = 1, . . . , n, then RTj |z(t) > 0; in this case z < min{ d1
α1

, . . . , dn
αn

}.
Therefore, the result is deduced. ��

Using (11), the reliability of a k-out-of-n:F systemmay be determined at any given
time point. It is obvious that degradation of a system increases over time and causes to
decrease the system reliability. On the other hand, calibration is one way to increase
reliability. Actually, calibration is an instrument for maintaining accuracy of system.
An engineer can measure system characteristics and compare them with calibration
standards to improve system with calibration degree η, if it is needed. So, degradation
of system decreases and system works better.

In our model, the internal degradations are related to inherent of components and
therefore they are not controllable. But the external degradation can be controlled via
calibration. It is logical to perform calibration such that the expected value of external
degradation decreases after each calibration. This goal may be attained by varying
the shape parameter of Gamma process. Suppose that the inspections are done at pre-
specified times tm (m ≥ 1) and the j th step of calibration is performed at an inspection
time by calibration degree η j ∈ [0, 1], j ≥ 1, such that when η j decreases from 1
to 0, the calibration becomes more effective, i.e., degradation of the system is more
decreased. In addition, assume that the effect of calibration at time tm continues until
time point tm+1. Figure 1 shows the effect of calibration on shape parameter for times
t1 and t2. In this figure, we consider the shape parameter of external degradation as
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a quadratic form a(t) = at2. Therefore, the expected value of external degradation
is E(Z(t)) = abt2 on [0, t1]. At time t1, if a calibration is done with calibration
degree η1, then degradation may decreases on [t1, t2] such that E(Z(t)) = abη1t2.
Continuing this process, at the j th calibration we get E(Z(t)) = ab(

∏ j
i=1 ηi )t2 on

the interval [t j , t j+1]. Therefore, at the j th calibration, the external degradation Z(t)

follows a Γ (aL( j)t2, b) process, where L( j) = ∏ j
i=1 ηi .

Using the above scenario, the reliability function of k-out-of-n:F system after the
j th calibration at time t , denoted by R j

k:n(t) may be computed using (11). In the next
section, a sensitivity analysis performs to study the effects of varying the external and
internal parameters on reliability function.

4 Sensitivity analysis

A sensitivity analysis is done here to illustrate the effect of varying parameters on
reliability function of a four components system. For simplicity the interpretation, we
consider shape parameters of Gamma processes Z(t) and Yi (t) as a quadratic form,
such that a(t) = at2 and ai (t) = ai t2(i = 1, . . . , 4), respectively. In the first step, we
investigate the effect of internal degradation parameters (ai , bi ) of Gamma process,
Yi (t). Toward this end, we fix all other parameters; the external degradation parameters
of Gamma process Z(t) are considered to be (a, b) = (0.08, 1); the external parameter
of intensity function λ(·, ·) and parameter of baseline hazard function λ0(·, ·) for hard
failure are considered tobeβ = 2 and θ = 1, respectively.Also,weconsider the impact
elements α1 = α2 = α3 = α4 = α∗ = 0.5. Suppose that we would like to perform
five steps for calibration and in each step, the external degradation only reduces five
percent. That is, for j = 1, . . . , 4, the calibration degree is η j = 0.95. Moreover, we
assume that the thresholds for degradation of the components are d1 = d2 = d3 =
d4 = d∗ = 3 and fix β1 = β2 = β3 = β4 = β∗ = 1. Now, three cases of parameters
(ai , bi ), for i = 1, . . . , 4, are used as presented in Table 1. These parameters are chosen
such that the expected internal degradation increases for each component from case
I to case II to case III. Further, to study the effect of internal degradation parameter
β∗ on system reliability, we fix the parameters (ai , bi ) as presented for case I of Table
1. The reliabilities are computed using (11) based on parameters of Table 1 and the
results are shown in Fig. 2 for 3- and 4-out-of-4:F systems.

From Fig. 2, it is observed that

Table 1 Some choices of internal degradation parameters

(a1, b1) (a2, b2) (a3, b3) (a4, b4)

Case I (0.03, 2) (0.03, 1) (0.02, 3) (0.01, 1)

Case II (0.05, 2) (0.05, 1) (0.04, 3) (0.03, 1)

Case III (0.05, 3.5) (0.05, 2.5) (0.04, 4.5) (0.03, 2.5)
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Fig. 2 The behavior of reliability function w.r.t. varying the internal parameters. a Reliabilities for some
choices of (ai , bi ), for i = 1, . . . , 4. b Reliabilities for some choices of β∗

• The reliability functions of both systems are sensitive to varying the internal
parameters (ai , bi ). In fact, by increasing the expected internal degradations, the
reliability functions of both systems decrease, when other parameters are fixed.

• By increasing parameter β∗, the reliabilities of both systems increase.

In the sequel, we investigate the effect of external parameters (a, b), β and θ on
reliability function. For this purpose, internal degradation parameters (ai , bi ) for i =
1, . . . , 4, are considered as presented for case I of Table 1. Also, we put d∗ = 3, α∗ =
0.5 and β∗ = 1. Variations of reliabilities are shown in Fig. 3 with respect to varying
each external parameter while the others are fixed. It is seen that

• By increasing the expected values of external degradation, the reliabilities of both
systems decrease (Fig. 3a).

123



546 E. Nezakati et al.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

3−
ou

t−
of

−4
:F

 S
ys

te
m

 R
el

ia
bi

lit
y

(a,b)=(0.04,1)
(a,b)=(0.08,1)
(a,b)=(0.08,2)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

4−
ou

t−
of

−4
:F

 S
ys

te
m

 R
el

ia
bi

lit
y

(a,b)=(0.04,1)
(a,b)=(0.08,1)
(a,b)=(0.08,2)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

3−
ou

t−
of

−4
:F

 S
ys

te
m

 R
el

ia
bi

lit
y

β=0.5
β=1
β=2

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

4−
ou

t−
of

−4
:F

 S
ys

te
m

 R
el

ia
bi

lit
y

β=0.5
β=1
β=2

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

3−
ou

t−
of

−4
:F

 S
ys

te
m

 R
el

ia
bi

lit
y

θ=0.5
θ=1
θ=2

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

4−
ou

t−
of

−4
:F

 S
ys

te
m

 R
el

ia
bi

lit
y

θ=0.5
θ=1
θ=2

(a)

(b)

(c)

Fig. 3 The behavior of reliability function w.r.t. varying the external parameters. a Reliabilities for some
choices of (a, b), when β = 2 and θ = 1. b Reliabilities for some choices of β, when (a, b) = (0.08, 1)
and θ = 1. c Reliabilities for some choices of θ , when (a, b) = (0.08, 1) and β = 2
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Fig. 4 The behavior of reliability function w.r.t. varying the threshold d∗

• When β increases, the reliabilities of both systems increase (Fig. 3b).
• The reliabilities of both systems are decreasing functions of θ . (Fig. 3c).

Now, to study the behavior of reliability with respect to the threshold d∗, we fix
the other parameters such that (ai , bi ), 1 ≤ i ≤ 4, are as shown in case I of Table 1,
β∗ = 1, (a, b) = (0.08, 1), β = 2, θ = 1, α∗ = 0.5. The plots of reliability functions
are shown in Fig. 4 for some choices of threshold d∗. As we expected, it is observed
that by increasing the threshold d∗, the values of reliabilities increase.

Finally, we investigate the effect of impact element α∗ on reliability function. As
before, we fix the other parameters and vary the values of α∗. The behavior of relia-
bilities with respect to α∗ are shown in Fig. 5 for 3- and 4-out-of-4:F systems. From
Fig. 5, we conclude that by increasing the impact element α∗, the reliabilities of both
systems decrease. Furthermore, from Figs. 2, 3, 4 and 5, it is seen that the reliability
of 4-out-of-4:F system is more than the reliability of 3-out-of-4:F system. It is obvi-
ous; since, by increasing k, the reliability of a k-out-of-n : F system increases, for
given n. In the next section, we investigate the effect of calibration on reliability of a
k-out-of-n:F system. Also we find maximum working time of the system and optimal
number of calibrations.

5 Optimal number of calibrations

Suppose that a k-out-of-n:F system have to function with reliability at least R∗. Some
calibrationsmay also be needed to attain this purpose.On the other hand, the calibration
is costly and so it is preferred to consider the total cost incurred for the system up to
time t after the j th calibration, denoted by c(t; j). Note that various sources such
as the number of inspections, calibrations, soft and hard failures may affect the total
cost. Denote the number of soft and hard failures up to time t after the j th calibration
by Ns(t; j) = ∑n

i=1 I (Xi (t) ≥ di ) and Nh(t; j) = ∑n
i=1 I (T

1
i ≤ t), respectively,

where I (·) stands for indicator function. Inspection times are also considered to be
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Fig. 5 The behavior of reliability function w.r.t. varying the impact element α∗

tm = 0.5m for m ≥ 1. Then the expected total cost at the time of the mth inspection
is defined as

E[c(tm; j)] = m × ci + j × cc + E[Ns(tm; j)] × cs + E[Nh(tm; j)] × ch, (12)

where m is the number of inspections up to time tm and ci , cc, cs and ch are the costs
of each inspection, calibration, soft failure and hard failure, respectively. Moreover,
using (3) and (7), the expected number of soft and hard failures are derived as

E[Ns(tm; j)] =
n∑

i=1

P(Xi (tm) ≥ di ) = n −
n∑

i=1

ST 0
i
(tm)

and

E[Nh(tm; j)] =
n∑

i=1

P(T 1
i ≤ t)

= n −
n∑

i=1

∫ ∞

0

∫ ∞

0
ST 1

i |{z,yi }(tm) fZ(tm )(z) fYi (tm )(yi )dyidz,

respectively.
Now, let us denote the maximum functioning time of the system and optimal num-

ber of calibrations by t∗ and j∗, respectively. According to the above scenario, the
following circumstances must be satisfied simultaneously to obtain these values:

1. The reliability of a k-out-of-n:F system after j calibrations is at least R∗, i.e.,
R j
k:n(tm) > R∗.

2. The expected total cost does not exceed threshold c∗, i.e., E[c(tm; j)] < c∗.
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Table 2 Values of R j
3:4(tm ) for some choices of tm and j = 0, . . . , 10

j tm

1 2 3 3.5 4 4.5 5 6 7

0 0.9996 0.9973 0.9729 0.9211 0.8137 0.6460 0.4457 0.1307 0.0194

1 0.9997 0.9975 0.9749 0.9265 0.8248 0.6634 0.4664 0.1440 0.0227

2 0.9997 0.9977 0.9767 0.9315 0.8354 0.6802 0.4869 0.1581 0.0265

3 0.9997 0.9979 0.9784 0.9361 0.8453 0.6964 0.5072 0.1730 0.0309

4 0.9997 0.9980 0.9799 0.9404 0.8546 0.7121 0.5272 0.1886 0.0358

5 0.9997 0.9982 0.9814 0.9444 0.8634 0.7270 0.5470 0.2050 0.0413

6 0.9997 0.9983 0.9827 0.9481 0.8717 0.7414 0.5663 0.2221 0.0476

7 0.9998 0.9984 0.9839 0.9515 0.8795 0.7551 0.5853 0.2399 0.0546

8 0.9998 0.9985 0.9850 0.9547 0.8868 0.7683 0.6038 0.2584 0.0625

9 0.9998 0.9986 0.9860 0.9577 0.8937 0.7808 0.6218 0.2774 0.0711

10 0.9998 0.9987 0.9869 0.9604 0.9002 0.7928 0.6393 0.2969 0.0808

Table 3 Values of R j
4:4(tm ) for some choices of tm and j = 0, . . . , 10

j tm

2.5 4 4.5 5 5.5 6 6.5 7.5 8.5

0 0.9952 0.9522 0.9017 0.8177 0.7034 0.5683 0.4307 0.2015 0.0687

1 0.9956 0.9566 0.9102 0.8316 0.7229 0.5923 0.4568 0.2244 0.0824

2 0.9959 0.9607 0.9179 0.8444 0.7412 0.6150 0.4819 0.2474 0.0970

3 0.9963 0.9642 0.9248 0.8561 0.7582 0.6364 0.5059 0.2703 0.1125

4 0.9966 0.9675 0.9311 0.8669 0.7739 0.6567 0.5289 0.2929 0.1286

5 0.9969 0.9704 0.9368 0.8767 0.7887 0.6757 0.5508 0.3151 0.1452

6 0.9971 0.9729 0.9420 0.8858 0.8024 0.6937 0.5718 0.3368 0.1621

7 0.9974 0.9753 0.9467 0.8942 0.8151 0.7107 0.5918 0.3579 0.1792

8 0.9976 0.9774 0.9510 0.9019 0.8270 0.7267 0.6109 0.3786 0.1963

9 0.9978 0.9793 0.9549 0.9089 0.8381 0.7418 0.6291 0.3986 0.2134

10 0.9979 0.9811 0.9584 0.9155 0.8484 0.7561 0.6466 0.4182 0.2303

Inwhat follows,we illustrate the procedure for 3- and 4-out-of-4:F systems. Toward
this end, we fix the parameters such that (ai , bi ), 1 ≤ i ≤ 4, are as shown in case
I of Table 1, β∗ = 1, (a, b) = (0.08, 1), β = 2, θ = 1, α∗ = 0.5. The thresholds
for the degradation of components are also assumed to be d1 = 5, d2 = 3, d3 = 4
and d4 = 2. Suppose that we would like to perform at most 10 calibrations and
the calibration degree is η j = 0.95 and so L( j) = (0.95) j , for j = 0, 1, . . . , 10.

Obviously, j = 0 is equivalent to no calibration. Using (11), values of R j
3:4(tm) and

R j
4:4(tm) are derived for some choices of tm and j = 0, . . . , 10. The results are reported

in Tables 2 and 3, respectively.
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Table 4 Values of E[c(tm ; j)] for 3- and 4-out-of-4:F systems

j tm

3-out-of-4:F system 4-out-of-4:F system

3.5 4 4.5 5 4 4.5 5 5.5 6

0 103.47 130.39 163.08 202.82 130.39 163.08 202.82 250.68 306.94

1 121.99 148.04 179.50 217.59 148.04 179.50 217.59 263.37 317.27

2 140.59 165.84 196.18 232.72 165.84 196.18 232.72 276.57 328.21

3 159.29 183.80 213.08 248.22 183.80 213.08 248.22 290.25 339.77

4 178.07 201.89 230.20 264.03 201.89 230.20 264.03 304.37 351.92

5 196.92 220.08 247.51 280.14 220.08 247.51 280.14 318.93 364.59

6 215.85 238.42 265.01 296.50 238.42 265.01 296.50 333.86 377.76

7 234.83 256.84 282.66 313.13 256.83 282.66 313.13 349.13 391.40

8 253.88 275.37 300.48 329.98 275.37 300.48 329.98 364.75 405.47

9 272.98 294.00 318.43 347.06 294.00 318.43 347.06 380.65 419.95

10 292.13 312.71 336.52 364.32 312.71 336.52 364.32 396.86 434.81

Table 5 Values of (t∗, j∗) for some choices of c∗ and R∗ for 3- and 4-out-of-4:F systems

R∗ c∗

3-out-of-4 4-out-of-4

250 300 350 260 310 360

0.95 (3.5, 7) (3.5, 10) (3.5, 10) (4, 7) (4.5, 8) (4.5, 10)

0.85 (4, 6) (4, 9) (4, 10) (5, 3) (5, 6) (5, 9)

0.7 (4.5, 5) (4.5, 7) (4.5, 10) (5.5, 0) (5.5, 4) (5.5, 7)

From Tables 2 and 3, it is seen that the reliabilities of both systems increase when
the number of calibrations increases, which is a trivial observation. However, it seems
that no calibration is needed for initial times the system working. More precisely, a
3-out-of-4:F systemworks with probability at least 0.95 without any calibrations until
time t6 = 3; such time for 3-out-of-4:F system is t8 = 4.

To obtain the optimal values t∗ and j∗, we have to determine the values of
E[c(tm; j)]. Toward this end, we choose ci = 10$, cc = 20$, cs = 100$ and
ch = 200$. The results are presented in Table 4 for some choices of tm , when
j = 0, . . . , 10. Using Tables 2, 3 and 4, the optimal values of t∗ and j∗ may be
obtained for given R∗ and c∗. Table 5 shows the results for some choices of R∗ and
c∗ for 3- and 4-out-of-4:F systems.

For interpretation the entries of Table 5, itmay be stated for instance,when threshold
of expected total cost is 250$, a 3-out-of-4:F system attains the reliability at least 0.95
by choosing t∗ = 3.5 with j∗ = 7 calibrations. In the other words, considering
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the average cost of 250 dollars, a 3-out-of-4:F system can work up to time 3.5 with
reliability at least 0.95 by 7 calibrations.

6 Conclusion

In this paper, degradation performance of a k-out-of-n:F system with both soft and
hard failures was considered. It was assumed that the components degrade through
internal and external degradations, such that external degradation is common among all
components but internal degradations are different for the components. A linear model
was considered for degradation path of each component. Reliability function of such
system was derived and a sensitivity analysis of reliability with respect to varying all
internal and external parameters was done for 3- and 4-out-of-4:F systems. It was seen
that the reliability functions were sensitive to varying the parameters. Furthermore,
the effect of calibration on degradation and reliability of system was investigated. It
was shown that the reliability of the system increases by increasing the number of
calibrations. Moreover, maximum functioning time of the system and optimal number
of calibrations were derived based on maximum reliability and expected total cost
criteria for 3- and 4-out-of-4:F systems. The results may be obtained for other values
of k and n in a k-out-of-n:F system.Moreover, theymay be extended to other coherent
systems.
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