
Weighted Estimating Equations for Additive Hazards Models 1

Supplementary Information for
“Weighted Estimating Equations for Additive Hazards Models

with Missing Covariates”
by Lihong Qi, Xu Zhang, Yanqing Sun, Lu Wang, and Yichuan Zhao

Appendix S1. Derivation of asymptotic results

We first present two lemmas to assist the proofs of all the theorems. The key idea of the
proofs is to approximate each of the corresponding weighted estimating functions by a sum of
independent and identically distributed random variables to establish its asymptotic normality
using the central limit theorem.

Lemma 1 Suppose sup
t∈[0,τ ]

|hn(t)− h(t)| → 0, sup
t∈[0,τ ]

|gn(t)− g(t)| → 0, where

(a) h is continuous on [0, τ ]

(b) gn(·) and g(·) are left continuous on [0, τ ] with total variations bounded by a constant B̄,

independent of n and t.

Then

sup
t∈[0,τ ]

|
∫ t

0

hn(u) dgn(u)−
∫ t

0

h(u)dg(u)| → 0, sup
t∈[0,τ ]

|
∫ t

0

hn(u) dgn(u)−
∫ t

0

hn(u)dg(u)| → 0,

sup
t∈[0,τ ]

|
∫ t

0

gn(u) dhn(u)−
∫ t

0

g(u)dh(u)| → 0, sup
t∈[0,τ ]

|
∫ t

0

gn(u) dhn(u)−
∫ t

0

g(u)dhn(u)| → 0.

Lemma 2 Under the regularity conditions listed in the Appendix of the main manuscript, we

have

(1) M̄dn(t) = n−1/2
∑n
i=1 Viπ

−2
i (π̂i − πi)Mi(t) converges to a zero-mean Gaussian process

WdM with continuous sample paths.

(2) sup
t∈[0,τ ]

||M̄Edn(t)||→0 in probability as n→∞, where

M̄Edn(t) = n−
1
2

n∑
i=1

(
1− Vi

πi

)∫ t

0

[Ê{dMi(s) |Wi} − E{dMi(s) |Wi}].

(3) M̄En(t) converges to a zero-mean Gaussian process with continuous sample paths, where

M̄En(t) = n−1/2
∑n
i=1 Vi(π̂i − πi)π

−2
i E{Mi(t) |Wi}.

(4) sup
t∈[0,τ ]

||M̄Eqn(t)||→0 in probability as n→∞, where

M̄Eqn(t) = n−
1
2

n∑
i=1

(
1− Vi

πi

)∫ t

0

[Ê{ZidMi(s) |Wi} − E{ZidMi(s) |Wi}].
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The proof of Lemma 1 is similar proof to Lemma A.3 of Bilias et al. (1997). The proof of
Lemma 2 follows immediately from Lemma 1 to Lemma 4 in Wang and Wang (2001).

1 Proofs of Theorems 1 and 3

We only give the proof of Theorem 1. Theorem 3 can be proven in the same manner. There are
four steps. The result in the first step, i.e., Eq. (1) is a direct application of Corollary III.2., a
corollary to Theorem III.1, given in the Appendix (p. 1118) of Anderson and Gill (1982).

Step A1. Using Corollary III.2 given in the Appendix (p. 1118) of Anderson and Gill (1982),
we have

sup
t∈[0,τ ]

||S(k)
sw (π, t)− s(k)(t)||→0 (1)

almost surely for k = 0, 1.

Step A2. We establish the asymptotic normality of n−1/2Usw(β, π). Write Usw(β, π) =
B1 +B2, where

B1 =

n∑
i=1

Vi
πi

∫ τ

0

{Zi − e(t)} dMi(t),

B2 = −
n∑
i=1

Vi
πi

∫ τ

0

{Z̄sw(π, t)− e(t)} dMi(t).

Using Lemma 1 we can show that n−1/2B2 converges to 0 in probability. Let M̄n(t) = n−1/2
∑n
i=1

(Vi/πi)Mi(t). Using regularity conditions (a4) and (a6) and that M̄n(t) is the difference of two
non-decreasing processes, M̄n(t) converges weakly to a process WM (t) with continuous sample
paths on [0, τ ] by Example 2.11.16 of Van Der Vaart and Wellner (1996, pp. 215). By the
strong embedding theorem (Shorack and Wellner 1986, pp. 47-48), there exists a new probability

space where
(
M̄n, S

(1)
sw (π, t), S

(0)
sw (π, t)

)
→
(
WM , s

(1)(t), s(0)(t)
)

almost surely. For S
(1)
sw (π, t) and

S
(0)
sw (π, t) are left continuous with bounded variations on [0, τ ], applying Lemma 1 twice we have∫ τ
0
Z̄sw(π, t) dM̄n(t)→

∫ τ
0
e(t) dWM (t) almost surely. Similarly,

∫ τ
0
e(t) dM̄n(t)→

∫ τ
0
e(t) dWM (t)

almost surely. Hence n−1/2B2→0 almost surely in the new space, and the convergence is in prob-
ability back in the original probability space. So n−1/2Usw(β, π) can be approximated by the sum
of independent and identically distributed zero-mean random variables n−1/2

∑n
i=1(Vi/πi)MZ̃,i,

with variance equal to Σsw(π) = var{(V/π)MZ̃}. By the central limit theorem,

n−
1
2Usw(β, π)→N(0,Σsw(π)) in distribution. (2)

Step A3. Applying (1) and Lemma 1, we can get

− 1

n

∂

∂β
Usw(β, π)− Σ→0 in probability. (3)



Weighted Estimating Equations for Additive Hazards Models 3

Step A4. We establish the asymptotic normality of n1/2β̂sw(π). Rearranging the Taylor
expansion of n−1/2Usw(β, π) at the true parameter value β, we obtain

n
1
2 {β̂sw(π)− β} = −

{ 1

n

∂

∂β
Usw(β, π)|β=β∗

}−1
n−

1
2Usw(β, π), (4)

where β∗ is in the interval between β̂sw(π) and β. The asymptotic normality of n1/2β̂sw(π̂) follows

from (2) - (3), and using the asymptotic normality the consistency of β̂sw(π) can be derived.

2 Proof of Theorem 2

Theorem 2 presents the results for the simple weighted estimators with π̂. The key steps to prove
Theorem 2 are similar to those to derive Theorem 1 while complications are in the arguments
concerning π̂(w). The following five steps are used.

Step B1. We show that

sup
t∈[0,τ ]

||S(k)
sw (π̂, t)− s(k)(t)||→0 in probability. (5)

Using a Taylor expansion of 1/π̂ about π, we write S
(k)
sw (π̂, t) as

S(k)
sw (π, t)− 1

n

n∑
j=1

Vj(π̂j − πj)
π2
j

Yj(t)Z
⊗k
j + op(1)

Using (1), we only need show that the second term converges to 0 in probability uniformly in t.
We give the proof for k = 0 and the proof for k = 1 is similar.

Let an = n−1
∑n
j=1 Vj(π̂j−πj)π

−2
j Yj(t), and let f̂(Wj) = (nhd)−1

∑n
l=1Kh(Wj−Wl). Then

an =
1

n

n∑
j=1

∑n
i=1 Vj(Vi − πj)/π2

jKh(Wj −Wi)Yj(t)∑n
l=1Kh(Wj −Wl)

=
1

n2

n∑
i=1

n∑
j=1

Vj(Vi − πj)Kh(Wj −Wi)Yj(t)

π2
jh

df̂(Wj)
.

(6)

By Taylor’s expansion of 1/f̂(Wj) about f(Wj), (6) can be written as S1n − S2n + op(1),
where

S1n =
1

n2

n∑
i=1

n∑
j=1

Vj(Vi − πj)Kh(Wj −Wi)Yj(t)

π2
jh

df(Wj)

S2n =
1

n2

n∑
i=1

n∑
j=1

Vj(Vi − πj)Kh(Wj −Wi)Yj(t){f̂(Wj)− f(Wj)}
π2
jh

df2(Wj)

After some tedious calculations, we can show that var(S1n) = Op{h2r+(nh2d)−1} → 0, implying
S1n→0 in probability. Similarly, S2n→0 in probability, thus an→0 in probability. Since an is
monotone and bounded in t, the convergence is uniform in t.
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Step B2. Using Taylor’s expansion and through tedious calculations, we can show that

n−
1
2

n∑
i=1

Vi
πi

(π̂i − πi)MZ̃i = n−
1
2

n∑
i=1

(Vi − πi)
πi

E(MZ̃i
|Wi) + op(1). (7)

Step B3. We establish the asymptotic normality of n−1/2Usw(β, π̂). By a Taylor expansion
of π̂ about π, n−1/2Usw(β, π̂) = C1n + C2n + C3n + C4n, where

C1n = n−
1
2

n∑
i=1

Vi
πi

∫ τ

0

{Zi − e(t)}dMi(t)

C2n = −n− 1
2

n∑
i=1

Vi
π2
i

(π̂i − πi)
∫ τ

0

{Zi − e(t)}dMi(t) = −n− 1
2

n∑
i=1

Vi
π2
i

(π̂i − πi)MZ̃i

C3n = n−
1
2

n∑
i=1

Vi
πi

∫ τ

0

{e(t)− Z̄sw(π̂, t)}dMi(t)

C4n = −n− 1
2

n∑
i=1

Vi
π2
i

(π̂i − πi)
∫ τ

0

{e(t)− Z̄sw(π̂, t)}dMi(t)

Clearly, C1n is a sum of independent and identically distributed random variables and C2n can
be approximated by a sum of independent and identically distributed random variables as in
(7). We show that C3n and C4n converge to 0 in probability. It follows from Step B1 that
supt∈[0,τ ]||Z̄sw(π̂, t)−e(t)|| → 0 in probability. Applying the strong embedding theorem (Shorack
and Wellner (1986), Page 47-48) and the similar arguments as in Theorem 1 (with Z̄sw(π, t)
replaced by Z̄sw(π̂, t)), we have C3n→0 in probability. To show C4n→0 in probability, we use

C4n ≤ supt∈[0,τ ]||Z̄sw(π̂, t)− e(t)||n− 1
2

n∑
i=1

Vi
π2
i

(π̂i − πi)Mi(τ).

Hence n−1/2Usw(β, π̂) can be approximated by a sum of independent and identically distributed
random variables:

n−
1
2

n∑
i=1

Vi
πi

∫ τ

0

{Zi − e(t)}dMi(t) + n−
1
2

n∑
i=1

(Vi − πi)
πi

E(MZ̃i
|Wi).

By the central limit theorem,

n−
1
2Usw(β, π̂)→N(0,Σπ̂sw(π)) in distribution. (8)

Step B4. We show that − 1
n
∂
∂βUsw(β, π̂)− Σ→0 in probability.

− 1

n

∂

∂β
Usw(β, π̂) =

1

n

n∑
i=1

Vi
πi

∫ τ

0

{Zi − e(t)}Yi(t)ZTi dt

+
1

n

n∑
i=1

Vi
πi

∫ τ

0

{e(t)− Z̄sw(π̂, t)}Yi(t)ZTi dt
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By Step B1 and the Slutsky Theorem, supt∈[0,τ ] ‖Z̄sw(π̂, t)− e(t)‖→0 in probability, with which

we can show that 1/n
∑n
i=1 Vi/π̂i

∫ τ
0
{e(t)−Z̄sw(π̂, t)}Yi(t)ZTi dt→ 0 in probability. By the Taylor

expansion, the first term asymptotically equals the sum of the following two term:

B1 =
1

n

n∑
i=1

Vi
πi

∫ τ

0

{Zi − e(t)}Yi(t)ZTi (t)dt

B2 =
1

n

n∑
i=1

Vi
π2
i

(π̂i − πi)
∫ τ

0

{Zi − e(t)}Yi(t)ZTi dt.

And B1 → E[V/π
∫ τ
0
{Z − e(t)}Y (t)ZT dt] = Σ in probability. By similar arguments for (7), we

can show B2 converges to 0 in probability.
Step B5. The consistency of β̂sw(π̂) and asymptotic normality of n1/2β̂sw(π̂) can be estab-

lished in the same manner as for n1/2β̂sw(π) in Theorem 1.

3 Proofs of Theorem 4

Theorem 4 includes results for three FAWEs. The asymptotic distribution theory for β̂faw(π̂, E)

can be established similarly as for β̂sw(π̂) in Theorem 2. Also using similar techniques for devel-

oping the asymptotic distribution theory for β̂sw(π̂) and β̂faw(π, Ê), we can derive the asymptotic

distribution theory for β̂faw(π̂, Ê). So we only present the proofs for β̂faw(π, Ê). The key steps
of the proofs are similar to those of Theorem 1. Complications are in the arguments regarding
the conditional expectations estimated by the Nadaraya-Watson (Nadaraya 1964; Watson 1964)
estimator.

We use the followng four steps to derive the asymptotic distribution theory for β̂faw(π, Ê).

Step C1. We show that

sup
t∈[0,τ ]

||S(k)
faw(π, Ê, t)− s(k)(t)||→0 in probability. (9)

Write

Sfaw(k)(π, Ê, t) =
1

n

n∑
j=1

Vj
πj
Yj(t)Z

⊗k
j +

1

n

n∑
j=1

(
1− Vj

πj

)
Yj(t)E(Z⊗kj |Wj)

+
1

n

n∑
j=1

(
1− Vj

πj

)
Yj(t){Ê(Z⊗kj |Wj)− E(Z⊗kj |Wj)}. (10)

Using Corollary III.2 given in the Appendix (p. 1118) of Anderson and Gill (1982), the sum of
the first two terms converges to s(k)(t) uniformly in t. With similar techniques in Step B1, we
can show that the last term in (10) converges to 0 in probability.
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Step C2. We establish the asymptotic normality of n−1/2Ûfaw(β, π). Write

Ûfaw(β, π) =

n∑
i=1

Vi
πi

∫ τ

0

{
Zi − Z̄faw(π, Ê, t)

}
dMi(t)

+

n∑
i=1

(
1− Vi

πi

)∫ τ

0

[Ê{ZidMi(t) |Wi} − Z̄faw(π, Ê, t)Ê{dMi(t) |Wi}]

= U1n − U2n + U3n + U4n − U5n,

where

U1n =

n∑
i=1

Vi
πi

∫ τ

0

{Zi − e(t)} dMi(t)

U2n =

n∑
i=1

Vi
πi

∫ τ

0

{Z̄faw(π, Ê, t)− e(t)} dMi(t)

U3n =

n∑
i=1

(
1− Vi

πi

)∫ τ

0

[E{Zi dMi(t) |Wi} − e(t)E{ dMi(t) |Wi}]

U4n =

n∑
i=1

(
1− Vi

πi

)∫ τ

0

[Ê{Zi dMi(t) |Wi} − E{Zi dMi(t) |Wi}]

U5n =

n∑
i=1

(
1− Vi

πi

)∫ τ

0

[Z̄faw(π, Ê, t)Ê{ dMi(t) |Wi} − e(t)E{ dMi(t) |Wi}].

Following similar arguments and techniques in Step B2, we can show that n−1/2U2n, n−1/2U4n

and n−1/2U5n converge to 0 in probability.
Then n−1/2Ûfaw(β, π) can be approximated by the sum of independent and identically dis-

tributed random variables:

n−
1
2

n∑
i=1

Vi
πi

{∫ τ

0

{Zi − e(t)} dMi(t) +

(
1− Vi

πi

)
E[{Zi − e(t)} dMi(t) |Wi]

}
.

By the central limit theorem,

n−
1
2 Ûfaw(β, π)→N

(
0,Σfaw(π)

)
in distribution. (11)

Step C3. We show that

− 1

n

∂

∂β
Ûfaw(β, π)− Σ→0 in probability. (12)
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Write −1/n ∂Ûfaw(β, π)/∂β = U1 + U2, where

U1 =
1

n

n∑
i=1

Vi
πi

∫ τ

0

Yi(t)Z
⊗2dt+

1

n

n∑
i=1

(
1− Vi

πi

)∫ τ

0

Ê{Yi(t)Z⊗2dt |Wi}

U2 = −
∫ τ

0

Z̄faw(π, Ê, t)

[
1

n

n∑
i=1

Vi
πi
Yi(t)Z

T dt+
1

n

n∑
i=1

(
1− Vi

πi

)
Ê{Yi(t)ZTi |Wi}dt

]

= −
∫ τ

0

Z̄faw(π, Ê, t)S
(1)
faw(π, Ê, t).

And the results can be shown by applying similar arguments used in Step B2.
Step C4. The existence and the consistency of β̂faw(π, Ê) as well as the asymptotic normality

of n1/2β̂faw(π, Ê) can be established similarly as that of n1/2β̂sw(π) in Theorem 1.
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