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Abstract Interactions and effect aliasing are among the fundamental concepts in
experimental design. In this paper, some new insights and approaches are provided
on these subjects. In the literature, the “de-aliasing” of aliased effects is deemed to be
impossible. We argue that this “impossibility” can indeed be resolved by employing a
new approach which consists of reparametrization of effects and exploitation of effect
non-orthogonality. This approach is successfully applied to three classes of designs:
regular and nonregular two-level fractional factorial designs, and three-level fractional
factorial designs. For reparametrization, the notion of conditional main effects (cme’s)
is employed for two-level regular designs, while the linear-quadratic system is used
for three-level designs. For nonregular two-level designs, reparametrization is not
needed because the partial aliasing of their effects already induces non-orthogonality.
The approach can be extended to general observational data by using a new bi-level
variable selection technique based on the cme’s. A historical recollection is given on
how these ideas were discovered.
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1 Introduction

When it is expensive or unaffordable to run a full factorial experiment, a fractional fac-
torial design is used instead. Since there is no free lunch for getting run size economy, a
price to pay for using fractional factorial design is the aliasing of effects. Effect aliasing
can be handled in different ways. Background knowledge may suggest that one effect
in the aliased set is insignificant, thus making the other aliased effect estimable in the
analysis. Alternatively, a follow-up experiment may be conducted, specifically to de-
alias the set of aliased effects. Details on these strategies can be found in design texts
like Box et al. (2005) orWu and Hamada (2009). Another problemwith effect aliasing
is the difficulty in interpreting the significance of aliased effects in data analysis.

Ever since the pioneering work of Finney (1945) on fractional factorial designs and
effect aliasing, it has been taken for granted that aliased effects can only be de-aliased
by adding more runs. The main purpose of this paper is to show that, for three classes
of factorial designs, there are strategies that can be used to de-alias aliased effects
without the need to conduct additional runs. Each of the three cases has been studied
in prior publications, but this paper is the first one to examine this class of problems
with a fresh new look and in a unified framework. It also contains some additional
results and insights. When discussing effect aliasing, it is unavoidable to bring up
the major role interactions play in the factorial setting. Because main effects are not
allowed to be aliased with other main effects (in order to keep each factor meaningful),
at least one effect in the aliased set is an interaction. A key concept in the de-aliasing
strategy in this paper is to reparametrize the interactions in a certain way to create
non-orthogonality among some effects so that effect estimability becomes possible.
The reparametrization scheme depends on the nature of designs under consideration.
It will be developed in Sects. 2 and 4.

The first class of designs being considered is the two-level fractional 2k−q designs,
which are the simplest of the three. The main concept here is to use the conditional
main effects (cme’s) to reparametrize the three-dimensional space generated by the
two main effects, say A and B, and their two-factor interaction AB. It will be shown
in Sect. 2 that aliased effects involving one or two factors can be de-aliased by running
some analysis in the space generated by the main effects and the cme’s. This strategy
is called the CME analysis. While this was originally suggested in the context of
designed experiments, the cme’s can be viewed as a new class of basis functions in
variable selection involving factors with two levels. Amore general strategy than CME
analysis is discussed in Sect. 2.2 that can handle bi-level variable selection for general
observational data. A prominent example is genetics, where each gene can be viewed
as a factor with two levels, i.e., gene present or absent.

Then we move in Sect. 3 to the next level of complexity in designs, namely, two-
level designs not of the 2k−q type. They include many commonly used orthogonal
arrays (OAs). To distinguish them from the 2k−q designs in Sect. 2, we call the former
nonregular and the latter regular. A rigorous discussion on their distinction and some
historical notes are given in Sect. 3.1. Several key concepts are considered: full ver-
sus partial aliasing, and complex aliasing. Here we do not need to reparametrize the
interactions because the “nonregular” nature of designs already endows some degrees
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of non-orthogonality among effects. Because the effects are not fully aliased, a data
analysis strategy can be used to estimate some interactions and main effects.

In Sect. 4 we consider three-level fractional 3k−q designs. These designs are con-
structed by using the same algebraic tools as the 2k−q designs. Therefore one may
assume that they are of the regular type. It is not necessarily so. Because each fac-
tor has two degrees of freedom, there are different ways to parametrize the factorial
effects. Two are considered: orthogonal components system and linear-quadratic sys-
tem. A 3k−q design endowed with the orthogonal components system is of the regular
type, while that endowed with the linear-quadratic system is of the nonregular type.
Therefore the linear-quadratic system can be viewed as a reparametrization that allows
aliased effects to become estimable. In Sect. 5 a historical recollection is given on how
I and/or coauthors discovered these ideas. Like in most scientific discoveries, they did
not come about in a straight and logical order. Section 6 contains some concluding
remarks.

2 De-aliasing aliased effects in two-level fractional factorial experiments

First we review the key concepts of conditional main effects (cme’s) and two-factor
interactions (Wu and Hamada 2009, Chapter 4). Suppose A and B are two factors
in a two-level factorial experiment. Denote the two levels by + and −. Define the
conditional main effect of A given B at the + level as:

CME(A|B+) = ȳ(A + |B+) − ȳ(A − |B+), (1)

where ȳ(A + |B+) and ȳ(A − |B+) are the averages of the response y at the level
settings A + B+ and A − B+, respectively.

Similarly we can define the conditional main effect of A given B at the − level as:

CME(A|B−) = ȳ(A + |B−) − ȳ(A − |B−), (2)

where ȳ(A + |B−) and ȳ(A − |B−) are similarly defined. It is easy to see that the
average of the two equals the main effect of A, i.e.,

1

2
{CME(A|B+) + CME(A|B−)} = ȳ(A+) − ȳ(A−) = ME(A),

where ȳ(A+) and ȳ(A−) are the averages of y at level settings A+ and A−.
We can use the difference between the two cme’s in (1) and (2) to define the two-

factor interaction between A and B, i.e.,

INT(A, B) = 1

2
{CME(A|B+) − CME(A|B−)} . (3)

By reversing the role of A and B, we have the following expression:

INT(A, B) = 1

2
{CME(B|A+) − CME(B|A−)} . (4)
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252 C. F. Jeff Wu

By rearranging its four terms, INT(A, B) can be rewritten as:

INT(A, B) = 1

2
{ȳ(A+|B+)+ ȳ(A−|B−)}−1

2
{ȳ(A+|B−)+ ȳ(A−|B+)}, (5)

which is the algebraic expression used in calculating the interaction effect. How-
ever, this expression does not convey the physical meaning of being an “interaction”.
Using an analogy to numerical mathematics, CME(A|B+) can be viewed as the finite
difference of first order of the response y between two successive levels of factor
A conditioned on B at level +. And CME(A|B−) has a similar interpretation in
terms of finite difference. From (3), the interaction INT(A, B) is the difference of
two successive finite differences, which is a second-order quantity. This way of view-
ing interaction conveys the physical meaning of being an interaction. For example,
suppose CME(A|B+) is large while CME(A|B−) is near zero. Then the interaction
INT(A, B) is large and it means that the magnitude of the “main effect” of A depends
on whether B is at level + or −, i.e., the two factors jointly affect the response values,
which corresponds to our intuition about interaction. (For a comprehensive review
of the concepts of interactions in broader contexts, read the excellent paper by Cox
(1984).) An infinitesimal version of this interpretation is via calculus. We can view the
main effect ME(A) as the first-order derivative and the interaction INT(A, B) as the
second-order derivative. The second derivative is the derivative of the two first-order
“derivatives” CME(A|B+) and CME(A|B−) evaluated at B+ and B−, respectively.

The definition of interaction given in (3) and (5) has been around for a long time,
dating back to Fisher’s original treatise in 1935. See its seventh edition [page 98
of Fisher (1971)]. The reason that we gave it the explicit name of conditional main
effects (cme’s) in Wu and Hamada (2000, 2009) is that the two cme’s CME(A|B+)

and CME(A|B−) should be viewed as two interaction components between A and B.

2.1 De-aliasing via the CME reparametrization

Before we can explain why and how cme’s can be used to de-alias aliased effects,
we need to define the concept of aliasing. We use the following simple example to
illustrate the general idea. Consider the 24−1 design given by I = ABCD. It is a half
fraction of the 24 design for the four factors A, B, C and D, i.e., it has 8 runs for
four factors. The two-factor interactions (abbreviated as 2fi’s) AB and CD are given
in Table 1. (Previously we used the long-hand notation INT(A, B) and INT(C, D).)
Notice that the column vector (or called contrast) for AB and for CD in Table 1 is
identical. Therefore neither can be estimated with the given design. The two 2fi’s AB
andCD are said to be aliased (Finney 1945), because they represent the same contrast
vector in the matrix. Notationally they are denoted as AB = CD. Because there are
not enough degrees of freedom for all the factorial effects in a fractional factorial
design, the concept of aliasing is a necessary evil in order to perform data analysis
for such experiments. Ever since the pioneering work of Finney, it had been taken for
granted that aliased effects like AB and CD cannot be de-aliased unless further runs
are taken.
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Table 1 A 24−1 design with
I = ABCD

A B C D AB = CD

− − − − + +

− − + + + +

− + − + − −
− + + − − −
+ − − + − −
+ − + − − −
+ + − − + +

+ + + + + +

The main idea in the work of Wu (2015) and Su and Wu (2017) is to use the cme’s
to reparametrize the space of factorial effects. Traditionally the factorial effects are
defined in terms of main effects, two-factor interactions and higher-order interactions.
Consider, for now, only the main effects ME(A), ME(B) and their two-factor inter-
action INT(A, B). These three effects form a subspace of dimension three, and they
are orthogonal to each other. The key to unlocking the aliasing is to reparametrize
this subspace by using the concept of cme’s. For example, the same subspace can be
defined in terms of CME(A|B+), CME(A|B−) and ME(B), the last being the main
effect of the conditioning factor B in the cme’s. From now on, we will use the short-
hand notation (A|B+), (A|B−) and B, etc. The key difference is that the three effects
in the latter representation are not mutually orthogonal. This lack of orthogonality
allows the de-aliasing of aliased effects to be done without adding further runs to the
experiment. ThereforeWu (2015) refers to this non-orthogonality as the saving grace.
Subsequently, the use of cme’s and main effects and their inter-relationships was fully
developed into an easy-to-use data analysis strategy for 2k−q designs of resolution III
and IV by Su and Wu (2017). For brevity, we may refer to this paper as SW.

To save space, let us refer to Table 1 of SW. It has 8 rows for the 8 runs and 14
columns consisting of four main effects, A, B, C , D, two 2fi’s AB and CD, and
8 cme’s involving A and B or C and D. The eight cme’s are only a subset of all
possible cme’s. Because there are many more columns than rows, clearly some of the
columns are not mutually orthogonal. As shown on page 4 of Su andWu (2017), some
non-orthogonal pairs are: (i) any pair among (A|B+), (B|A+), (C |D−), (D|C−),
(ii) any pair among (A|B+), (A|C+), (A|D−). This non-orthogonality among some
cme’s provides the opportunity for some of them to be estimable in addition to the
main effects. SW identifies five key properties concerning the cme’s, from which they
propose three rules for data analysis. They then develop a new data analysis strategy
called CME analysis based on these rules. The strategy works out well for each of the
three real experiments they considered. Note that each example uses a resolution IV
design. In the traditional wisdom, 2fi’s in resolution IV designs that are aliased with
other 2fi’s or main effects cannot be estimated. Standard practice as recommended in
design text books is to expand the experiment to either a resolution V design or, to save
run size, to use an optimal design algorithm to add enough runs to ensure estimability
of the aliased 2fi’s under consideration [see Chapter 5 of Wu and Hamada (2009)].
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The CME analysis is powerful in that it replaces the estimation of aliased 2fi’s by the
estimation of some cme’s associated with the given 2fi’s.

For illustration, consider the filtration experiment in SW, where a 24−1
I V design is run

with the defining contrast I = ABCD. The traditional analysis using a half-normal
plot reveals five significant effects: A, AD, DB, D and C . Following Rule 1 in SW,
the effects A and AD are replaced with the cme (A|D+), and the effects D and DB
are replaced with the cme (D|B−), which leaves the cme model with three significant
effects: (A|D+), (D|B−) and C . While these two models enjoy similar R2 values,
the latter has two notable advantages. First, the effects for the cme model have sizably
lower p-values than that for the traditional model. Second, the cme model has much
better engineering interpretability. For example, the selected cme (D|B−) indicates
the effectiveness of stirring rate only at a low concentration of formaldehyde, whereas
the interaction effect DB is difficult to interpret.

2.2 Beyond designed experiments: bi-level variable selection in observational
data

Because cme’s are highly interpretable for a wide range of applications beyond
designed experiments, a natural question is whether the CME approach in Sect. 2.1
can be expanded to observational data. Since observational studies are in greater abun-
dance than designed experiments (witness the explosion of data in the internet), such an
extension is potentially of great value. Two key distinctions are noted, however. First,
the orthogonal framework in Su and Wu (2017), which motivated the three important
cme groups of twin, sibling and family effects, is not applicable to observational data,
because orthogonality of effects rarely occurs outside of designed experiments like
2k−q designs. In a recent work,Mak andWu (2017) proposed a new framework for this
more general setting. Specifically, they identified four effect groups: siblings, cousins,
parent-child pairs and uncle-nephew pairs, which capture the correlation structure of
cme’s in the non-orthogonal setting. The second difference is in the goal of study.
While the disentangling of aliased effects is the primary goal of the CME analysis for
designed experiments, the separation of active effects from correlated groups of inert
effects is the primary interest in the Mak–Wu framework for observation studies. To
this end, they proposed a new method called cmenet, which can identify both active
cme groups and active effects within such groups. This so-called bi-level variable
selection is achieved using a penalty function with two layers: the outer layer control-
ling between-group selection, and the inner layer controlling within-group selection.

It is worth noting that the Mak–Wu framework not only expands CME analysis to
the non-orthogonal setting, but also extends important selection principles for designed
experiments to observation data. For example, the penalization approach in Mak and
Wu (2017) highlights two selection principles called cme coupling and cme reduction.
The first allows a cme, say (A|B+), to more easily enter the model when effects in
its sibling or cousin group (say, {(A|C+), (A|D+), . . . } or {(C |B+), (D|B+), . . . })
have already been selected. The second allows a main effect, say A, to more easily
enter themodel whenmany of its sibling or cousin cme’s (say, {(A|B+), (A|C+), . . . }
or {(B|A+), (C |A+), . . . }) have already been selected. These two features are quite
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intuitive, and parallel the principles of effect heredity and effect hierarchy (Wu and
Hamada 2009), which are used to guide model selection in designed experiments.

This extension also opens up new and exciting directions in genomics and social
sciences. Consider, for illustration, the gene association example in Mak and Wu
(2017), where the goal is to choose important genes affecting the wing shape of the
common fruit fly.Here, the cme (A|B+) indicates the significance of gene A onlywhen
gene B is active, so the selection of cme’s provides valuable insight on gene activation
behavior. In their paper, cmenet is compared with two popular variable selection
techniques: the Lasso (Tibshirani 1996) and SparseNet (Mazumder et al. 2011), with
the latter two performing selection on the traditional main effects and 2fi’s. The new
selection method has two advantages: it not only gives reduced prediction error, but
also provides insight on gene activation patterns. For example, while both Lasso and
SparseNet deemed V 4 (i.e., the fourth polygene) to be active,cmenet instead selected
the cme’s V 4|V 1+, V 4|V 33+, V 10|V 4+ and V 31|V 4+, thereby providing a more
nuanced conclusion that V 4 is active only in the presence of or in activating other
polygenes. This new method can therefore be used to investigate why some genes are
conditionally active, and why some play a more supportive role in activating other
genes.

3 Estimation of interactions in experiments with complex aliasing

The phenomenon of complex aliasing among factorial effects was first known for
the 12-run Plackett–Burman design. Since this design is a special case of nonregular
fractional factorial designs [see Chapter 8 of Wu and Hamada (2009)], we review
in Sect. 3.1 regular and nonregular designs and discuss their algebraic and statistical
properties.

3.1 A dichotomous classification of fractional factorial designs: regular vs.
nonregular

Regular designs like the 2k−q , 3k−q , and pk−q series, where p is a prime power,
are the most commonly used designs in practice. In a non-mathematical sense, they
are constructed as fractions of the corresponding full factorial designs by using the
so-called defining contrast subgroup. This subgroup defines which fraction of the full
factorial is chosen. To illustrate this for nontechnical readers, consider the 26−2 design
with the defining contrast subgroup I = 125 = 1346 = 23456, where I is the identity
element in the group. This is a quarter fraction of the 26 design, i.e., it has 16(= 24)
runs to accommodate 6 factors. Its tabulation is given in Table 2. Its first four columns
form the full factorial 24 design. In order to add more factors without increasing run
size, define factor 5 by using the interaction column for 12. Thus the main effect 5
is aliased with the 2fi 12. Notationally, it is written as 5 = 12 or I = 125. Similarly
define factor 6 by using the interaction column 2345. Thus the main effect 6 is aliased
with the four-factor interaction 2345, i.e., I = 23456. Each of I = 125 and I = 23456
is called a defining relation and defines a half fraction of the 24 design. With two of
them, a quarter fraction is obtained. To complete the subgroup, we need to generate
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Table 2 Design matrix for the
26−2 design

Run 1 2 3 4 5 = 12 6 = 2345

1 − − − − + −
2 − − − + + +

3 − − + − + +

4 − − + + + −
5 − + − − − −
6 − + − + − +

7 − + + − − +

8 − + + + − −
9 + − − − − +

10 + − − + − −
11 + − + − − −
12 + − + + − +

13 + + − − + +

14 + + − + + −
15 + + + − + −
16 + + + + + +

another defining relation by multiplying the two relations: 125× 23456 = 1346, thus
obtaining the third relation I = 1346. Note that only two out of the three relations
are independent because the third can be obtained from the other two. The subgroup
I = 125 = 1346 = 23456 has fifteen “cosets” within the whole group. Each coset
corresponds to a degree of freedom in the design. For example, by multiplying 5 to
the subgroup, we obtain the following coset 5 = 12 = 13456 = 2346, which says
that the four factorial effects 5, 12, 13456 and 2346 are aliased with each other. That
is, they together take up one degree of freedom. As remarked in Sect. 2, they cannot
be disentangled for estimation. All the fifteen cosets can be found in equation (5.3) of
Wu and Hamada (2009) and they account for all the fifteen degrees of freedom of the
16-run design. For brevity, we may refer to the book as WH.

The above simple approach can be used to construct 3-level and p-level regular
designs, where p is a prime but not a prime power. A more general and rigorous
approach to the construction and their algebraic properties can be found in theoretical
design text books [e.g., Mukerjee and Wu (2006), Cheng (2014)]. The user-friendly
way of defining and constructing regular fractions as shown above was first used in the
seminal paper by Box and Hunter (1961). Before their paper, construction of regular
fractions was based on algebraic tools like Galois field, finite geometry, etc., and
was not accessible to readers without such knowledge. The Box-Hunter approach has
contributed toward the popularity of regular fractional factorial designs, especially the
two-level designs.

A major statistical property of regular fractions is that

“the generalized interaction between any two factorial effects

is another factorial effect”. (6)
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Table 3 Design matrix and lifetime data, cast fatigue experiment

Run Factor Lifetime logged

A B C D E F G 8 9 10 11

1 + + − + + + − − − + − 6.058

2 + − + + + − − − + − + 4.733

3 − + + + − − − + − + + 4.625

4 + + + − − − + − + + − 5.899

5 + + − − − + − + + − + 7.000

6 + − − − + − + + − + + 5.752

7 − − − + − + + − + + + 5.682

8 − − + − + + − + + + − 6.607

9 − + − + + − + + + − − 5.818

10 + − + + − + + + − − − 5.917

11 − + + − + + + − − − + 5.863

12 − − − − − − − − − − − 4.809

Take the 26−2 design example again. From its algebraic construction, it is easy to show
that the product of any two factorial effects involving some of the factors 1, 2, 3, 4, 5, 6
is among the factorial effects given in the subgroupor its fifteen cosets.Mathematically,
this is equivalent to saying that the absolute “correlation” between any two contrast
vectors for two factorial effects is either 0or 1.This is an easy consequenceof the design
construction. It will be shown later that this property has an important ramification on
the estimability of effects of the design. A converse question is whether this property
implies that the design must be constructed as a regular design. In order to state
this question formally, we need to define the “opposite” of regular designs, namely,
nonregular designs. (Note that the term“correlation” is amisnomer but has beenused in
the literature for convenience of reference. The correct term should be the normalized
cross product between the two contrast vectors representing the two factorial effects.)

A good example of nonregular design is the cast fatigue experiment in Chapter 8
of WH. It is reproduced below as Table 3. The experiment has 12 runs and 7 factors
based on the 12-run Hadamard matrix. In its full capacity, this matrix, which is called
the 12-run Plackett–Burman design, can accommodate up to 11 factors by using the
11 columns in Table 3. Because its run size is not a power of 2, it cannot be a regular
design. More importantly, it does not have the aliasing property of regular designs as
described in (6). For example, the interaction AB between factors (i.e., columns) A
and B in Table 3 cannot be found among the 11 columns. In fact, AB has a complicated
aliasing relationship with other main effects. It is orthogonal to its two parent main
effects A and B, but is otherwise non-orthogonal to all other main effects with absolute
correlations being 1/3. See Section 9.1 of WH for details. In general, for this design,
the correlation between a given main effect and any 2fi not involving the main effect
is either 1/3 or − 1/3. Clearly this does not follow the property given in (6).

A more rigorous formulation of the property in (6) is now in order. For simplicity,
we only consider two-level designs with n factors and N runs. Let Xd be its model
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matrix, whose (l, i) entry xli (d) is the level (taking value 1 or − 1) of the i th factor
for the lth observation. Let the i th column of Xd be xi (d). Then any factorial effect of
order k can be defined as follows. For a subset S = {i1, . . . ik} of {1, . . . n}, let xS(d)
be the entry-wise product of the k column vectors xi1(d), . . . , xik (d). It is the column
vector that corresponds to the factorial effect involving the k factors i1, . . . , ik . For
two factorial effects with the corresponding subsets denoted as S and T , it is easy
to show that their correlation is equal to [xS(d)]T xT (d)/N . For regular two-level
designs, its absolute value is either 0 or 1. See Section 15.2 of Cheng (2014). These
two effects are said to be orthogonal if the value is 0 and fully aliased if it is 1. An
interesting theoretical question is whether the converse is true. Using the theory of
indicator functions, Ye (2004) answered this in the affirmative. That is, any two-level
factorial design in which any two factorial effects have absolute correlation to be 0 or
1 (and no other value) must be a regular 2k−q design or replicates of a regular 2k−q

design.
The equivalence result by Ye (2004) is quite significant because it provides a math-

ematically rigorous definition for nonregular designs. As noted before, regular designs
can be defined in terms of how they are constructed. There is no corresponding def-
inition for nonregular designs since they can be constructed in many different ways
[see Hedayat et al. (1999)]. Using the correlation properties between factorial effects
provides a unified and rigorous way to classify and define regular and nonregular
designs. The terms “regular designs” and “regular fractions” have been used in the
design literature. See Chapter 9 of Raktoe et al. (1981). Earlier references include
Addelman (1962). The term “irregular” was used in the literature to mean fractions
of full factorials that are not of the regular type as explained in the discussions on
regular designs. Some prominent examples of irregular factions are the 3/2n repli-
cates in Addelman (1961) and the three-quarter replicates and related constructions
in Sections 8.10-8.13 of John (1971). Later Raktoe et al. (1981, page 123) defined
“irregular designs” as those that are not regular. Because the term “irregular designs”
may convey a negative connotation,Wu andHamada (2000) used the term “nonregular
designs” to indicate fractional factorial designs whose factorial effects can have abso-
lute correlations between 0 and 1. In fact the theoretical work by Ye and Cheng-Ye was
motivated by the attempt to justify this classification. This classification of designs
was used in arranging the chapters in Wu and Hamada (2009). Among the chapters
on factorials, Chapters 4–5, 7, and Sections 6.1–6.5 of Chapter 6 are of the regular
type, while Chapters 8–9 and Sections 6.6–6.7 of Chapter 6 are of the nonregular type.
Further remarks on this aspect will be given in Sect. 5 on three-level designs. The first
reference on “nonregular designs” was Sun and Wu (1993). The terms “full aliasing”
and “partial aliasing” were first used in an informal way on pages 131 and 132 of
Hamada and Wu (1992). A more rigorous description of partial aliasing in terms of
the correlation was given in Sun and Wu (1993).

3.2 Nonregular designs and their practical use

A collection of nonregular designs can be found in Chapter 9 of WH under the
heading of orthogonal arrays (OAs). Three of them will be highlighted here. First
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is OA(12, 211), which is the same as the 12-run matrix in Table 3. It is also called
the 12-run Plackett–Burman (1946) design because these authors were the first to
propose the use of Hadamard matrices of order 4m for running two-level experi-
ments with run size 4m and up to 4m − 1 factors. The original motivation was to
save experimental cost during WWII. See page 87 of Barker and Milivojevich (2016).
This can be seen as follows. Suppose k factors, 8 ≤ k ≤ 11, are to be studied. If
a regular 2k−q design is used, it would require 16 runs. Use of OA(12) can save
four runs. Second is OA(18, 2137), which can be used to study seven three-level fac-
tors and one two-level factor. It is economical because it can accommodate factors
with 15 (= 1 + 2 × 7) degrees of freedom for their main effects. A related one is
OA(18, 6136), which can accommodate 17 (= 5 + 2 × 6) degrees of freedom for
the main effects and is called a saturated design. Imagine that k three-level factors,
5 ≤ k ≤ 7, are to be studied. Use of a regular 3k−q design would require 27 runs
like a 3k−q design, k − q = 3 and 5 ≤ k ≤ 7. Thus there is a saving of 9 runs.
The third one is OA(36, 211312), which can study up to 11 two-level factors and up
to 12 three-level factors. In the maximum case, it is a saturated design because it can
accommodate 35 (= 11 + 2 × 12) degrees of freedom for the main effects. Clearly
the main rationale was run size economy. The second rationale as explained in Chap-
ter 9 of WH is the flexibility in the level-combinations. From reading the OAs in the
appendix of Chapter 9, different combinations of 2, 3, 4, 5 and 6 levels can be accom-
modated with run size ranging from 12 to 54. These three arrays are also called L12,
L18 and L36, a notation used by G. Taguchi (1987) and much earlier in his Japanese
books.

The designs OA(18, 2137) and OA(36, 211312) were not used in practical exper-
iments in the west until the mid 80’s, when G. Taguchi introduced them in the US
and Europe for running quality engineering experiments. I personally think Taguchi’s
main motivation was the run size economy referred to above, but I cannot pinpoint
any reference in his writings. An indirect evidence can be seen from how he got
involved in the construction of these arrays. Take, for example, OA(18, 2137). The
first construction was by Masuyama (1957), which constructed the OA(18, 37) por-
tion by using the method of difference sets. Seeing that an extra degree of freedom
can be accommodated, Taguchi (1987) (and earlier references) added the two-level
factor as its first column (see Table 8C.2 of WH). A more dramatic example is
how OA(36, 211312) was obtained. Seiden (1954) constructed the OA(36, 312) por-
tion, but her motivation was purely theoretical. Recognizing that this array uses up
only 24 (= 2 × 12) degrees of freedom for the main effects, Taguchi (1987) (and
earlier references) added three replicates of OA(12, 211) to make up the first 11
columns of OA(36, 211312) (see Table 8C.6 of WH). It should be clear from these
two examples of adding columns that his interest was to find arrays to accommo-
date as many factors as possible, thus the rationale of run size economy. Other
examples can be found in the appendix of Chapter 9 of WH. In particular, the con-
cept and construction of nearly orthogonal arrays (Wang and Wu 1992) was an
inspired attempt to adding even more factors by slightly sacrificing the orthogonality
requirement.
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3.3 Exploitation of partial aliasing for the estimation of interactions

Two factorial effects are said to be partially aliased if their absolute correlation is
between 0 and 1 and fully aliased if the value is 1. The adverb “fully” was first used
in Hamada and Wu (1992) to distinguish it from partial aliasing. These two terms
are crucial in the classification of designs into regular and nonregular as discussed in
Sect. 3.1. Since then, the terminology has been adopted in Wu and Hamada (2000)
and Wu and Hamada (2009). In this section, I will explain how partial aliasing can be
exploited for estimating interactions in nonregular designs like OA(12, 211), which
was not deemed feasible.

Returning to the cast fatigue experiment in Table 3, the analysis in the original paper
by Hunter et al. (1982) followed the prevailing practice and analyzed only the main
effects. They found factors F and D to be significant but noted some discrepancies.
First, the sign of the effect estimate of D (heat treat) was reversed. They further
suggested that the cause could be due to the interaction DE and claimed that the design
did not generate enough information to determine this. The aversion from estimating
interactions in experiments based on this and other nonregular designs was caused by
the complex aliasing property of these designs. As pointed out in Sect. 3.1 and fully
described in Section 9.1 of WH, any main effect in this design has a correlation 1/3 or
− 1/3 with any 2fi’s that do not involve the main effect. In the worst case of 11 factors,
each main effect has 45 such partial aliases. As shown on page 429 of WH, the total
number ofmodels that consist of the 11main effects and somepartially aliased 2fi’s can
be close to a million. The number of similar models for the 20-run Plackett–Burman
design is much higher, i.e., in the millions or tens of millions. Therefore Hamada and
Wu (1992) referred to this phenomenon as complex aliasing. This complexity was
viewed negatively as “hazards” (Daniel 1976). Before the 1992 paper, experiments
with complex aliasing were used mainly for the screening purpose, i.e., for estimating
main effects only.

Hamada and Wu (1992) employed the principles of effect hierarchy, sparsity and
heredity to justify their new analysis method. (See Section 4.6 of WH and some his-
torical notes inWu (2015).) Effect hierarchy and sparsity suggest that only a few main
effects and even fewer 2fi’s are relatively important. Invoking them leads to a smaller
number of effect terms in the models and a much smaller number of models in the
model search. Thus the model complexity is reduced. A simple example is given in
Section 9.3 of WH to illustrate how the model search and estimation is greatly sim-
plified. The (frequentist) data analysis strategy of Hamada and Wu (1992) used effect
heredity in the model search. It allows the search to rule out many incompatible mod-
els. Later a Bayesian version was developed by Chipman et al. (1997). Both versions
can be found in Chapter 9 of WH. This strategy as applied to the cast fatigue data
identified F and FG as significant. The R2 value is increased from 0.45 (for F only)
to 0.9. More importantly, the model consisting of F and FG and the effect estimates
provide a better explanation or resolution of the two problems discussed above. See
pages 430–431 of WH. Since the 1992 work, many practical experiments based on
the 12-, 18- and 36-run designs perform data analysis by considering interactions and
obtain successful results.
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Underlying the success of using these nonregular designs to estimate interac-
tions is the partial aliasing property of these designs. Noting that partially aliased
effects are non-orthogonal to each other, the success of the analysis strategy is due
to the exploitation of non-orthogonality. Unlike the CME analysis in Sect. 2.1 which
uses reparametrization and then exploits the non-orthogonality of the reparametrized
effects, the analysis here does not need to perform reparamterization because non-
orthogonality is inherent in the nonregular designs.

This line of research is related to some laterwork in design theory. The success of the
Hamada-Wu analysis strategy suggested that designs like OA(12, 211), OA(20, 219),
OA(18, 2137) and OA(36, 211312) possess some projective properties not studied
before. Wang and Wu (1995) coined the term “hidden projection” to describe such
properties. See also the work by Lin and Draper (1992), and Box and Tyssedal (1996).
These papers collectively have inspired the subsequent work to extend the minimum
aberration criterion from regular to nonregular designs. The minimum aberration cri-
terion has been the most commonly used and powerful tool for the optimal selections
of regular 2k−q and 3k−q designs. The entire Chapters 5–6 of WH are devoted to
the study and tabulations of minimum aberration designs. A nearly complete list of
two-level minimum aberration designs can be found in Chapter 7 of “JMP 12 Design
of Experiments Guide” (SAS Institute 2015). Encouraged by the increasing use of
nonregular designs in practice, design researchers started to look for extensions of the
minimum aberration criterion to nonregular designs. Among them, two major criteria
are the generalized minimum aberration criterion (Tang and Deng 1999; Deng and
Tang 1999; Xu andWu 2001) and theminimummoment criterion (Xu 2003). A survey
of these advances can be found in Cheng (2014).

4 3k−q designs: design classification and analysis

In this section I will use the same framework to reexamine the class of 3k−q designs.
Recall that these designs (and the more general pk−q designs for a prime power p) are
defined by their defining contrast subgroup and that their construction and algebraic
properties are based on standard tools like Galois field and finite geometry. They
should thus be treated as regular designs. While this is the standard approach to such
designs as depicted in design texts, the same designs with a new reparametrization
can be treated as nonregular, which is novel and somewhat surprising. I will address
these two aspects of the 3k−q designs in the following subsections.

4.1 Regular designs: orthogonal components system and ANOVA

To explain the regular nature of the 3k−q designs, we use the following simple example
for illustration. Consider the 34−1 design used in the seat-belt experiment in Table 6.2
of WH. It has 27 runs to study four factors A, B,C, D, each with three levels. It
is a 1/3 fraction of the full factorial 34 design. The fraction is defined by defining
column D in the table as the sum of the first three columns representing A, B,C . Let
xi , i = 1, 2, 3, 4, represent the four factors, which take values 0, 1, 2 modulus 3. Then
the relationship among the four factors (i.e., columns) is defined by x4 = x1+ x2+ x3.
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Notationally this relationship is denoted by D = ABC or equivalently its defining
contrast subgroup is given by I = ABCD2. This subgroup has 13 cosets, which can
be found in (6.9) of WH. Only one is shown here: A = BCD2 = AB2C2D, which
says that the three factorial effects in the identity equation are fully aliased. The 13
cosets account for all the 26 degrees of freedom for the 27-run 34−1 design because
each coset has two degrees of freedom. In the finite geometry setting, each coset is
a two-dimensional subspace and the 13 such subspaces are mutually orthogonal to
each other due to the nature of its algebraic construction. Furthermore, the product of
any two factorial effects in the 13 cosets can be found among the cosets. In this sense
the designs are called regular but neither is this nor the one in Sect. 3.1 for the 2k−q

designs a rigorous definition.
Using finite geometryRaktoe et al. (1981) rigorously definewhat constitutes regular

pk−q designs for any prime power p. Briefly, it should satisfy the following condition:
the collection of treatment combinations in a pk−q design should be a subspace or
coset of subspace in the finite geometry overGF(p).They call the design “irregular” if
the collection does not form a subspace or coset of subspace. Detailed discussions can
be found in Section 9.5 of the book. See also Mukerjee and Wu (2006) and especially
Chapter 9 of Cheng (2014).

Experiments based on regular 3k−q designs are typically analyzed by using the
analysis of variance (ANOVA). For the 34−1 design the ANOVA decomposition is
based on the 13 cosets, i.e., its total SS (sum of squares) is decomposed into 13
SS terms, each representing the factorial effects in one coset. These 13 terms are
uncorrelated with each other because their corresponding subspaces are orthogonal to
each other. ThereforeWu andHamada (2000, 2009) refer to this parametrization as the
orthogonal components system. For the seat-belt experiment, theANOVAtable is given
in Table 6.6 of WH. Notice that the interaction between factors A and B, denoted as
A×B, has four degrees of freedomand is decomposed into two interaction components
denoted as AB and AB2 and displayed in Table 6.6. The ANOVA approach is the most
commonly used analysis method for 3k−q designs because it corresponds to how the
degrees of freedom are allocated among the cosets.

However, the ANOVA approach has two distinct disadvantages. First, for fractional
factorial designs, some of the SS terms are (fully) aliased. For example, the interaction
component AB in Table 6.6 ofWH, which is significant, is aliased with the interaction
componentCD2. Another significant interaction component AC in Table 6.6 is aliased
with BD2. These aliased terms cannot be de-aliased. Second, while the interaction
A × B (with 4 df’s) has a ready interpretation, its interaction component AB or
AB2 (each with 2 df’s) does not usually render a meaningful interpretation. See the
discussion around Table 6.4 of WH on this point. Therefore if only one of the two
interaction components is significant in the ANOVA, e.g., AB but not AB2 in Table
6.6 of WH, it can cause problem in interpreting the analysis result.

4.2 Nonregular designs: linear-quadratic system and variable selection analysis

Because of the two difficulties associated with the regular 3k−q designs, Wu and
Hamada (2000) first proposed a new parametrization of effects, called the linear-
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quadratic system, to circumvent such problems. The basic idea is very simple. For a
factor A with three levels denoted by 0, 1, 2, denote the observations at these three
levels as y0, y1, y2. Define its linear effect as y2 − y0 and its quadratic effect as (y2 +
y0)/2− y1. Their corresponding (unnormalized) contrast vectors are denoted as Al =
(− 1, 0, 1) and Aq = (1,− 2, 1), respectively. For two factors A and B, their linear-
by-linear interaction, denoted as (AB)ll , is defined as the component-wide product of
the two vectors Al and Bl . The linear-by-quadratic, quadratic-by-linear and quadratic-
by-quadratic interactions can be similarly defined and denoted as (AB)lq , (AB)ql ,
(AB)qq . Then the four degrees of freedom for the A×B interaction can be represented
by these four terms, each represented by a contrast vector. This parametrization can be
extended to any number of quantitative factors with three levels. Detailed development
and extension to qualitative factors can be found in Section 6.6 of WH.

As in the case of the cme reparametrization for two-level designs, the linear-
quadratic (abbreviated as l-q) reparametrization creates non-orthogonality among
effects. And non-orthogonality provides the opportunity for aliased effects to be de-
aliased. For illustration, consider the 33−1 design for factors A, B,C with C = AB.
The three main effects have six degrees of freedom: Al , Aq , Bl , Bq ,Cl ,Cq , which are
mutually orthogonal. Using the l-q system, we can define 12 (= 4 × 3) interaction
effect terms among the three factors. But there are only two degrees of freedom left for
interactions. Between main effect and interaction or between two interactions, there
ought to bemany non-orthogonal pairs. For example, suppose only (AB)ll and (AB)lq
are considered for the remaining two degrees of freedom. It can be shown that each of
the two interaction effects is correlated with the main effects Cl and Cq . See (6.15) of
WH. For a general treatment of the full or partial aliasing relationships between main
effects and interaction effects in the l-q system, see Sabbaghi et al. (2014), which uses
the tool of indicator functions to tackle this problem.

We take the liberty of calling a 3k−q design equipped with the l-q system a “non-
regular” design, but this would require a broader definition of regular or irregular
design than the one given in Sect. 4.1. Recall that the definition given there is based
on the finite geometry structure. Since each effect in this geometry has two degrees of
freedom, it is not applicable to the l-q system, which consists of effects of one degree
of freedom. Our inspiration or justification comes from the approach taken by Wu
and Hamada (2000) as discussed near the end of Sect. 3.1. They define “regular” in
the case of two-level designs as equivalent to the fact that any pair of factorial effects
have absolute correlation either 0 or 1. An extension of this approach to 3k−q designs
would not be trivial. For example, one may consider extending the work of Ye (2004)
to cover 3k−q designs.

Next we discuss the implications in estimation. First, the non-orthogonality among
some effects in the l-q system provides the basis for effect estimability in the system.
Similar in spirit (but not in details) to the CME analysis in Sect. 2, a variable selection
strategy was developed in Section 6.6 of WH. Briefly, it works as follows. First, list
the candidate set of main effects and two-factor interaction effects in the l-q system.
Note that each such effect has only one degree of freedom, which is amenable to the
use of any reasonable variable selection method. In WH, only the stepwise regression
or subset selection procedure is used but more modern variable selection methods
(Hastie et al. 2009) like Lasso can also be applied. In selecting models, the effect
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heredity principle is invoked to rule out incompatible models. This was similarly
done for nonregular 2k−q designs in Sect. 3.3. When this strategy was applied to the
seat-belt data as in Section 6.6 of WH, it led to very good results. The final model
includes the following main effects: A, D (each with two degrees of freedom) and
one component Bl and Cl of factors B and C . More interestingly, it identifies the
following interaction effects: (AB)ql , (AC)ll , and (CD)l,12. Note that factor D in the
experiment is a qualitative factor. By comparison, the ANOVA analysis in Table 6.6 of
WH identifies A, B, D and the AC and AB interaction components (in the orthogonal
components system) as significant. These findings have the two shortcomings of the
ANOVA approach as described in Sect. 4.1. First AC is (fully) aliased with BD2,
and AB is aliased with CD2. These aliased effects cannot be disentangled. Second,
even if one of the aliased effects is chosen into the model, it does not render a good
interpretation for users of the model. Comparisons of the two approaches on the seat-
belt data clearly show the advantages of the l-q parametrization system.

Finally, the success of the l-q system sheds some new light on the choice of designs.
In the traditional practice as seen in design texts, use of 3k−q designs with resolution
III or IV is discouraged because some interactions or interaction components in these
designs are aliased and thus are not estimable. Instead 3k−q designs with resolution V
are recommended because their two-factor interactions are estimable. These designs
are, however, quite large and expensive. The results given above show that variable
selection based on the l-q system can be applied to designs with resolution IV or even
III, which are smaller and more economical than V designs. Therefore this traditional
wisdom is conservative and somewhat misguided. It also provides another illustration
that the resolution criterion is too coarse for classifying and ranking the capabilities
of regular fractional factorial designs.

5 A historical perspective

This paper is structured according to the nature or complexity of designs.We start with
regular 2k−q designs, move to nonregular 2k−q designs and end with 3k−q designs.
But the ideas were discovered not necessarily in the same order. In this section I will
give a historical perspective on how I and/or coauthors came up with the ideas.

In the mid 80’s, Taguchi introduced to the west nonregular two-level designs like
L18 and L36 for parameter design experiments. Since then, I had become interested
in and intrigued by these designs. First these designs are economical in run size and
can accommodate a flexible combination of factor levels. A natural question to ask
was whether interactions should or can be entertained in these designs. Researchers
in the traditional camp said no by referring to the complex aliasing of the L12 design
(see the discussion in Sect. 3.3). Taguchi also said no because he did not advocate the
inclusion of interactions in his analysis. His rationale was that a good robust parameter
design experimentwould have no need to estimate interactions. Robustnesswould take
care of the effects of interactions. See Taguchi (1987) and much earlier references in
Japanese. So I was confused by the various opinions at that time. In 1986 a group of
researchers from U. of Wisconsin and AT&T Bell Labs organized a delegation headed
by George Box to visit Japan to understand its practice in quality engineering [see Box
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et al. (1988)]. Then the revelationmoment came. I recall it was a hot summer afternoon
in Nagoya when we were attending presentations made by members of the Central
Japan Quality Association. All case studies employed Taguchi’s idiosyncratic L18 or
L36. The case studies were successful in getting new insights and achieving variation
reduction. Yet their analyses did not consider interactions as they were taught so by
Taguchi. I suddenly realized that these designs must have some intrinsic theoretical
properties that relate to the estimability of interactions. After I returned to Madison,
I mentioned this thought to Mike Hamada, who was writing his thesis. At that time
I already had the notion of full and partial aliasing and was aware of the complex
aliasing of L12, the 12-run Plackett–Burman design. So we made some progress but
were stymied by the many models that came from the analysis. So we did not pursue
this further. Mike defended his thesis on another topic in 1987. Then we both moved
to U. of Waterloo to work as a team on quality engineering and design of experiments.
Sometime in 1990, we hit the subject again and Mike reminded me about the many
models he found in the analysis. Then we suddenly hit the notion of effect heredity
and their use in reducing the number of models in model search. Mike said he would
try the analysis using this new concept. When I met him the next day, I saw a big
smile in his face. The analysis results became much more clean and definitive. It was
our eureka moment. The manuscript was written in 1991 and eventually appeared as
Hamada and Wu (1992).

The discovery ofCME followed a longer andmorewinding path. Soon after I started
teaching design of experiments in the early 80’s in Madison, using the now classic
text by Box et al. (1978), I realized that two-factor interaction can be defined through
the concept of conditional main effects (cme’s) but it did not go very far. Design was
not my major research field at that time but the notion of cme’s was on the back of
my mind. In 1988 I moved to Waterloo to assume a chair professorship on quality
improvement. Design of experiments became my research focus. During my first term
there, I used data from a “car marriage station simulation experiment” at GM Canada
to test the idea of using cme’s in analyzing data from a resolution IV design. I got some
encouraging preliminary results but my idea at that time was still primitive. I guess I
did not push any further because the time was not ripe and related supporting ideas had
not yet been developed. Even if I wanted to publish such work in the 1980’s, it would
have been rejected because the concept of effect aliasing was well entrenched. Any
attempt to de-alias fully aliased effects without adding runs would have been viewed
as lunatic. So this idea had remained dormant and been shelved for about 21 years until
2010 when I was invited to give the Fisher Lecture at the Joint Statistical Meetings.
The timing was ripe because the methods for estimating interactions in nonregular
two-level designs and in three-level designs using the linear-quadratic (l-q) system
have been laid out in the two editions of our book Wu and Hamada (2000, 2009). I
also knew that the new materials on cme’s would not be rejected by JASA because it
would be part of the Fisher Lecture. This led to the paper Wu (2015), which contained
the Canadian data on car marriage station simulation experiment.

The discovery of the l-q system and its use inmaking a 3k−q design into a nonregular
design followed a more logical and natural path. After the Hamada-Wu success in
analyzing interactions in nonregular two-level designs, it was the natural next question
to ask whether interactions can be entertained in a three-level design. Because each
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three-level factor has two degrees of freedom instead of one (for the two-level case),
there is more room to maneuver. Use of linear and quadratic effects for three-level
factors has been known in ANOVA and regression analysis. However, their use in
the context of de-aliasing aliased effects in 3k−q designs was novel. When Mike
Hamada and I realized this possibility, we were already in the middle of finishing Wu
and Hamada (2000). We were busy getting these new materials into the chapter on
three-level designs. There was no time to write it up as a separate paper for journal
publication. Therefore these materials remain unknown even to researchers in design
unless they would delve deeply into the book.

To summarize my experience in this line of research, novel ideas are rarely devel-
oped in a logical order and a straight manner. Simple looking ideas may come at a
later time than more complex ones. A good example is the development of the CME
analysis for analyzing very simple 2k−q designs with resolution IV or III. Despite the
simplicity of the design, it was developed much later than its two cousins. Discovery
may depend on luck, serendipity, and the applicational environment of the time. One
can never know but must forge ahead.

6 Concluding remarks

Our approach to de-aliasing consists of two key concepts: first we reparametrize
an appropriate space of effects, which induces non-orthogonality among effects;
then we exploit this non-orthogonality to enable the estimation of effects not con-
sidered possible before. For regular 2k−q designs, we use the conditional main
effects for reparametrization; for 3k−q designs we use the linear-quadratic system
for reparametrization. In the case of nonregular two-level designs, there is no need of
reparametrization because non-orthogonality is inherent in these designs.

In Sects. 3 and 4, we employ the principles of hierarchy, sparsity, and heredity
to motivate or justify the analysis strategies. Note that these principles govern the
relationships among factorial effects, which were first summarized inWu and Hamada
(2000, 2009) for factorial designs. Some historical notes on these principles can be
found inWu (2015). However, these principles are not applicable to the CME analysis
in Sect. 2 because the conditional main effects (cme’s) do not fit into the framework
for these principles, which deal with the traditional factorial effects like main effects
and interactions of various orders. One exception to this statement is the analogy of
cme coupling and cme reduction to effect heredity and effect hierarchy as discussed
in Sect. 2.2. A challenge is to develop a design-theoretic framework for the cme’s that
plays a similar role to the minimum aberration criterion for regular pk−q designs for
prime power p. The only relevant work to my knowledge is the paper by Mukerjee
et al. (2017), which tries to develop one such theory, albeit in some limited situations.
Discussions on the minimum aberration criterion can be found in Mukerjee and Wu
(2006) and Cheng (2014).

Although our work was originally motivated by the attempt to de-alias aliased
effects in designed experiments, it has applications in broader settings. In Sect. 2.2,
we outline some ongoing work that extends the CME analysis to general observational
data with input factors at two levels. This bi-level variable selection strategy uses the
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cme’s as the basis functions in variable search. It should find broader applications than
the original CME analysis. Another example, not reported here, is the extension of the
effect heredity principle to general variable selection. It enables amore efficient search
for best models in variable selection through the use of optimization techniques. See
Yuan et al. (2009) for details. Finally, one may also argue that the collection of work as
reported here can serve as a transition from orthogonal experiments to non-orthogonal
experiments or studies such as optimal designs and observational studies. How this
will pan out is a big unknown.
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