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Abstract This paper concerns the study of the entire conditional distribution of a
response given predictors in a heterogeneous regression setting. A common approach
to address heterogeneous data is quantile regression, which utilizes the minimiza-
tion of the L1 norm. As an alternative to quantile regression, we consider expectile
regression, which relies on the minimization of the asymmetric L, norm and detects
heteroscedasticity effectively. We assume that only a small set of predictors is relevant
to the response and develop penalized expectile regression with SCAD and adaptive
LASSO penalties. With properly chosen tuning parameters, we show that the pro-
posed estimators display oracle properties. A numerical study using simulated and
real examples demonstrates the competitive performance of the proposed penalized
expectile regression, and its combined use with penalized quantile regression would
be helpful and recommended for practitioners.
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1 Introduction

Quantiles and expectiles, which contain information about the full distribution for
a random variable, are extensions of median and mean, respectively. Quantiles are
percentiles of the cuamulative distribution function of a random variable. For instance, if
x is the wth quantile of X, P(X < x) = «. Unlike quantiles, which is the minimal value
of the tail, expectiles incorporate information about the expectation of X, conditional
on X being in a tail of its distribution (Newey and Powell 1987).

In financial time series, expectiles emerge as an alternative to popular risk measures
such as value atrisk (VaR) and expected shortfall (ES), as they have desirable properties
(Ziegel 2014). A risk measure is an estimated amount of capital to be reserved at a
givenrisk level to prevent substantial losses. VaR at «r, the 100« th quantile of the return
distribution, can be interpreted as the minimum potential loss at the 100« % level. While
VaR is the most widely used risk measure, it does not provide information regarding
the potential magnitude of losses because VaR only depends on the tail probability.
ES is an alternative risk measure that considers the magnitude of the potential losses
in the lower tail. However, it is also known that ES can be too conservative, which
could be a major disadvantage to commercial and investment banks. In contrast to
VaR and ES, which only concern the lower tail, the expectile relies on both tails of
the distribution to measure risk. The squared loss function makes the expectile more
sensitive to extreme values and to the shape of the distribution than VaR, which can
be beneficial when measuring potential losses because one wants a risk measure to be
sensitive to extreme tail losses.

When dealing with heterogeneous data in regression, we frequently see that tar-
geting only a mean function is not sufficient to capture a complete picture of the
relationship between the response variable and predictors. In such a case, quantile
regression (Koenker and Bassett 1978) based on an asymmetric L; norm could be
a more appropriate tool as it allows one to study the quantile structure of the con-
ditional distribution. Quantile regression has been applied in various fields such as
economics, survival analysis, and microarray studies. While quantile regression has
a strong intuitive appeal, Newey and Powell (1987) point out three drawbacks: non-
differentiability, inefficiency for Gaussian-like error distributions, and difficulty of
calculation of a covariance matrix. They propose expectile regression based on an
asymmetric Ly norm as an alternative way to analyze the complete conditional dis-
tribution of the response. Expectile regression generalizes ordinary mean regression,
which is known to be efficient when typical assumptions, including homogeneity
of errors, are met. It is also closely related to quantile regression, which is robust
to outliers. Expectile regression has gained attention in several fields. Aigner et al.
(1976) construct expectiles to estimate production frontiers. Sobotka et al. (2013a)
investigate the relationship between women’s education and fertility in Botswana via
semiparametric expectile regression. Sobotka et al. (2013b) study statistical inference
of semiparametric expectile regression. Schnabel and Eilers (2009) also demonstrate
efficiency of expectiles over quantiles. Although expectile regression has found appli-
cations in various fields, to our knowledge, there has been little work with a penalized
version of expectile regression. In this work, we fill this gap by investigating expectile
regression with SCAD (Fan and Li 2001) and adaptive LASSO (Zou 2006) penalties.
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Penalized expectile regression 411

A regularization approach has been extended to quantile regression because sets
of important predictors might differ from quantile to quantile. Penalized quantile
regression is capable of investigating the complete conditional distribution of the
response variable and the sparsity pattern. Li and Zhu (2008) propose L norm quan-
tile regression, which selects variables automatically and controls the variance of the
fitted coefficients simultaneously. Wu and Liu (2009) demonstrate the oracle prop-
erties of quantile regression with SCAD and adaptive LASSO penalties when the
number of variables, p, is fixed. Wang et al. (2012) study the behavior of quantile
regression in ultra-high-dimensional data when p is much larger than n. Belloni and
Chernozhukov (2011) study theory of quantile regression with lasso penalty in an
ultra-high-dimensional setting, and Belloni et al. (2015) develop post-selection infer-
ence methods for quantile regression with lasso penalty in an ultra-high- dimensional
setting.

The main objective of this paper is to develop penalized expectile regression when
p is fixed as in Wu and Liu (2009). We assume that only a small number of predictors
influence the conditional distribution of the response variable. We note that these sets
of relevant predictors may vary for different segments of the conditional distribution.
Therefore, consideration of different expectiles would enable us to explore the entire
conditional distribution of the response variable and its sparsity pattern. The main
contribution of the proposed work is threefold: (i) computation of expectile regression
is straightforward and simple, (ii) theoretical development of expectile regression is
more manageable with L, norm and the estimation is more efficient because it uses
the entire distribution information, and (iii) expectile regression is more sensitive
to extreme values than quantile regression, which results in better detection of het-
eroscedasticity in the data when it is present. In the case of heteroscedasticity, penalized
expectile regression yields superior performance in estimation and variable selection,
as demonstrated in our simulation study. On the other hand, quantile regression is more
interpretable and robust to outliers in a homogeneous setting than expectile regression.
Therefore, we propose penalized expectile regression to complement penalized quan-
tile regression; together they provide a more complete picture of the entire conditional
distribution of a response given predictors for heterogeneous data.

Recently, Gu and Zou (2016) develop penalized expectile regression in a high-
dimensional setting when p is larger than n and propose a way of detecting
heteroscedasticity using a two-step procedure. While their theoretical work considers
a more generalized setting than ours by letting p grow to infinity, the proposed work
provides the following two additions to the regularized regression literature that is not
covered in Gu and Zou (2016): (i) we discuss pros and cons of penalized quantile and
expectile regression and conduct a thorough simulation study to compare the finite
sample performance of both approaches, and (ii) we provide asymptotic distributions
of penalized expectile regression with SCAD and adaptive LASSO penalties for both
i.i.d. and non-i.i.d. random errors.

The remainder of the paper is organized as follows: In Sect. 2, we review expectiles
and describe the relationship with quantiles. Section 3 describes the proposed penalized
expectile regression using SCAD and adaptive LASSO penalties, our tuning selection
method, and presents its theoretical properties. In Sect. 4, we compare penalized
expectile and quantile regression via simulated examples. Section 5 analyzes a real
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example and compares prediction and variable selection results with penalized quantile
regression. We provide concluding remarks and future directions in Sect. 6. Appendix
details the proofs of theorems presented in Sect. 3.

2 Expectile

The tth, T € (0, 1), expectile is defined as the value of m which minimizes
Ellt = I(Y <m)| (Y —m)?]

for a random variable Y. Jones (1994) shows that expectiles are quantiles of a distri-
bution G with an explicit relation to the original distribution F':

P(y) —yF(y)

G(y) = ,
O =3P =y FON+ O — 1)

where P(y) = [? _xf(x)dx and u = [ xf(x)dx. Table 1 (Kuan et al. 2009)
contains the corresponding quantile « to the expectile T = 0.01, 0.03, 0.05, 0.1, 0.25,
respectively, for the Uniform(-a, a), N (0, 1), (30), #(10), #(5) and ¢ (3) distributions
where ¢ (d) indicates the distribution with d degrees of freedom, illustrating the rela-
tionship above. Note that for a given expectile, the corresponding quantile depends on
the distribution.

Quantile regression and expectile regression, which generalize median regression
and mean regression, respectively, are of great interest mainly for two reasons. First,
data analysts often want to obtain a more complete relationship among the variables in
a regression setting rather than simple mean or median information. Second, a mean
regression function could be an incomplete summary for the relationship when the
assumption of a common normal distribution fails to hold, or when a heterogeneous
variation is present.

Suppose, from some unknown distribution, we draw a random sample {(x;, y;), i =
1, ..., n}, where x; and y; denote the p-dimensional predictor and the response vari-
able, respectively. Denote the vector of parametersas 8 = (B1, ..., B)". The quantile

Table 1 7 and corresponding «

for different distributions Va9 NO.D 130) 1(10) S

0.01 0.092 0.043 0.040 0.035 0.030
0.05 0.186 0.126 0.123 0.115 0.100
0.10 0.250 0.195 0.190 0.183 0.166
0.25 0.366 0.332 0.328 0.322 0.319
0.75 0.634 0.669 0.671 0.678 0.689
0.90 0.750 0.806 0.810 0.819 0.835
0.95 0.813 0.873 0.877 0.886 0.901
0.99 0.909 0.957 0.960 0.965 0.973
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regression estimators, proposed by Koenker and Bassett (1978), are defined as those
vectors which minimize the function

n

On(Bi) = ry(yi — X{B)

i=1

over B in R” for fixed values of & € (0, 1), where r,(-) is a convex loss function of
the form
re(€) = lo — I(e <0)-[e]. (D

Similarly, the estimator of expectile regression can be obtained in the form of a
vector that minimizes the following asymmetric least squares loss function:

Ru(BiT) =) pe(vi — X B),

i=1

over B in R” for fixed values of t € (0, 1), where p;(-) is a convex loss function of
the form
pe(e) =t —I(e <0)| €. )

We note that computation is no longer an issue for quantile regression due to
recent advanced optimization techniques, but it is still true that computation in the
expectile regression is more straightforward because it is based on the squared loss
function in the form of (2). Thus, the optimization problem of expectile regression
can be easily solved by many iteratively updated type algorithms, such as iteratively
reweighted least squares (IRLS). Another attractive feature of expectile regression is
that the expectile regression estimator depends on the shape of the entire distribu-
tion, while quantile regression estimator only relies on the percentiles of the estimated
tail distribution. Hence, the expectile regression estimator contains additional infor-
mation about the magnitude of the tail distribution and reflects the real value more
accurately, especially for heavy-tailed distributions mentioned in Sect. 1. In terms of
robustness, quantile regression is more resistant to outliers than expectile regression
because quantile regression utilizes the L1 norm. However, sensitivity to extreme val-
ues can be beneficial if detecting heteroscedasticity in the data is of the main interest.
We demonstrate the utility of expectile regression in detecting heteroscedasticity of
the distribution in our simulation study in Sect. 4.

3 Penalized expectile regression

With large-sized data, selecting relevant variables and obtaining an interpretable model
are important in regression analysis. To achieve these two goals for expectile regres-
sion, we apply regularization approaches using two different types of penalty functions.

We consider the same random sample in Sect. 2. Denote the true vector of parameters
as By = (Bio, - ., Bpo)". Without loss of generality, we assume the first ¢ elements
of B are nonzero and the last p — g elements are zero. That is, 8 can be written
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as By = (Blg, Bag)"s where B is a g-dimensional vector of nonzero elements and
By =0, a (p — g)-dimensional vector of zero. We decompose 8 and x; accordingly
and write 8 = (B, B3)" and x; = (x];,x},)",i = 1,...,n. We focus on penalized
linear expectile regression and assume that y depends on x in a linear fashion. Namely,
in our sample, we have the following linear model:

yl'ZXlTﬂ—i—E,':XlTlﬂl—i-Xsz,Bz-}-é,', i=1,...,n. 3)

For some predetermined t € (0, 1), the tth expectile of the random error ¢; is zero.
We consider the following objective function of the penalized expectile regression
model:

n P
Ru(B;t) = pe i —x(B)+n Y pi, (1B, )
i=1

j=1

where p.(-) is defined in (2) and p;,, (-) is a penalty function with tuning parameter
A, The estimator of the penalized expectile regression minimizes (4). Among various
penalty functions, we consider SCAD and adaptive LASSO because of their properties
of unbiasedness, sparsity, and continuity. For SCAD,

AnlBjl if1Bj] < hn;
B> = 2ahn| Byl + 37 '
pr, B =1~ 2@—1 if Ay < |Bj| < ahn; 5)
(a+ 122 .
—s if |B| > arn

for some a > 2. For adaptive LASSO,

Pr,(Bj1) = AawjlB;l,

where w; is a prespecified weight. In the classical linear regression setting, Zou (2006)

suggests to construct the adaptive weights using the least squares estimates B(ols), ie.,
w; = 1/|B;(ols)|” for some chosen y > 0. We use the expectile regression estimates
without any penalty to construct our weights in the same fashion.

3.1 Asymptotic properties

We study the theoretical properties of the expectile regression with SCAD and adaptive
LASSO penalties in a similar setting in Wu and Liu (2009). The following conditions
are needed to facilitate the theoretical proofs.

Condition 1: For any given t € (0, 1), theerrors {¢;,i = 1, 2, ..., n} are independent
and identically distributed, with tth expectile zero and a continuous, positive density
f () in a neighborhood of zero. We further assume E(e;‘) < 0.

Condition 2: The row vectors of the design matrix X, {x;,i = 1,2,...,n}, are
a deterministic sequence. We assume that there exists a positive definite matrix X
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1 n 2
. s 1 n
such that nll)rr;o - Zi:l x;X; = X. In addition, we assume - Zi:l (xlTx,) = 0O(1).

Denote the top-left g-by-g submatrix of ¥ by X;; and the right-bottom (p — g)-by-
(p — q) submatrix of X by ¥o;.

For SCAD expectile regression, we show consistency and oracle properties.

Theorem 1 (Consistency). Assume that Conditions 1 and 2 are satisfied. If 1,, — 0

~ (SCAD
as n — 00, there exists a local minimizer of R,,(B; t) in (4), ﬂ( ), such that

~ (SCAD)

1B — Boll = 0,(n"2).

Denote g, (¢;) = p;(e,- —1) |q=0= —2tvI(v >0) =21 —1)vI(v < 0), h:(¢;) =
p;/(ei — 1) |y=0o= 2tI(v = 0)+2(1 —)I(v < 0),i = 1,...,n, and agi =
Var(g- (€i)), un, = E(hr(€)).

Theorem 2 (Oracle property) Assume that Conditions 1 and 2 are satisfied. If .,, — 0

and \/nh, — coasn — 00, then with probability tending to one, the root-n consistent
~(SCAD)

~(SCAD) <ﬂ1

local minimizer - (SCAD) | in Theorem 1 satisfies
B>

~(SCAD
(a) Sparsity: B; ' 0;
A (SCAD)

(b) Asymptotic normality: /n(B, — Bio) £> N(O0, crgzr /,u%r Zfll). Here £>
denotes convergence in distribution and X1 is defined in Condition 2.

The oracle property also holds for adaptive LASSO expectile regression.

Theorem 3 (Oracle property). Assume that Conditions 1 and 2 are satisfied. If
VA, = 0and n*tY/2) 5 oo asn — oo, then the adaptive LASSO expec-

~(AL)
A (AL
tile regression estimator 8 B _ (l? E AL)> , Which minimizes (4), satisfies
2
A~ (AL
(a) Sparsity: /3; )= 0;

. . ~(AL) L _
(b) Asymptotic normality: /n(B; ~ — Biy) = N (0, %i/“ﬁ,zlll) .

Remark 1 Notice that the asymptotic covariance matrix of the penalized expectile
regression estimator requires the fourth moment of the errors while penalized quantile
estimator in Wu and Liu (2009) requires the second moment. However, the asymptotic
covariance matrix of the penalized quantile regression estimator relies on the density
function of the errors at the origin, which is usually unknown and difficult to estimate.

The following corollary extends Theorems 2 and 3 to non-i.i.d. errors under the
following assumptions:

Condition 3: Asn — oo, %maxi X;X; Var(g; (€;)) — 0.
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Condition 4: We assume that there exist positive definite matrices £8* and X"+ such
1 n . 1 n
1 — x ! ) — Y8t 1 _ T ) — hr
that lim -~ > . Xix{Var(ge(€) = ¢ and lim - Y. XiX[E( () = T
Denote the top-left g-by-g submatrix of X by fo and T by 2?1’, respectively.

Corollary 1 Fornon-i.i.d. random errors that satisfy Conditions 3 and 4, Theorems 2
and 3 hold with the limiting distribution

NO. (5D ERED .
The proofs of Theorems 1-3 and Corollary 1 are provided in Appendix.

Remark 2 Gu and Zou (2016) consider heteroscedasticity in the sense that they allow
a different model depending on a different expectile of the conditional distribution.
However, they assume i.i.d. for the regression error ¢€; in their theory, while we consider
both i.i.d. and non-i.i.d. cases in this paper. Our theory for non-i.i.d. can be applied to
error distributions whose fourth moment exists as in Condition 1.

3.2 Computational algorithms

This subsection concerns the computational aspect of the proposed penalized expectile
regression. Unlike quantile regression, which minimizes an asymmetrically weighted
sum of absolute deviations of residuals, expectile regression solves a minimization
problem of an asymmetrically weighted sum of squared residuals.

3.2.1 Adaptive LASSO penalty
In the case of the adaptive LASSO, the optimization problem becomes
n P
argmin | > pe (i = X{B) + iy Y wjlpjl - ©)
B i=1 j=1
Problem (6) can be formulated as the standard form of quadratic programming. We

take positive slack variables & = (§)i=1,..n, ¢ = (&)i=1,..n and v = (v}) j=1,....p>
and then, the equivalent problem of (6) is given as

n n p
Sx?in/6 tZS?+(1—t)Z§iZ+n)»nijvj ,
L.V,

i=1 i=1 j=1

subjectto & — & =y —x;B,i =1,...,n,and —v; < B; <v;,j=1,...,p.
To solve this, we use the Rmosek (Friberg 2014) interface to MOSEK (MOSEK
ApS 2011), which is known to provide a flexible and reliable platform for convex
programming (Koenker and Mizera 2014).
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3.2.2 SCAD penalty

For the SCAD penalty with (5), because the objective function R,(8; 7) in (4) is
not convex, we apply the concave—convex procedure (CCCP) (Yuille and Rangarajan
2003; Zou and Li 2008; Kim et al. 2008). The CCCP searches for a local minimizer
by successively minimizing the locally upper-tight convex function of the objective
function. When the objective function can be decomposed into a sum of convex and
concave functions, the locally upper-tight convex function can be obtained by locally
linearizing the concave function. We name it as local linear approximation (LLA)
algorithm (Zou and Li 2008).

For R,(B; 7) in (4), note that R,(B; 1) = R™™(B: 1) + R (B: ), where

n

R,(ZCOHV) (B; T)isaconvex function and R,(fonc) (B; t)is adifferentiable concave function
given by

n P
Rr(:conV)(ﬂ; 7) = Zpr(yi — XlTﬂ) + ni, Z 1B;1,

R (B; T) Z (npa, (1B 1) — nialB)1)-

~(1
Given an initial solution ( ), the locally upper-tight convex function of R, (f; 7)
becomes

Rr(,COHV)(ﬂ; T) + {aRIECOHC)(B(l)’ f)/aﬂ}T(ﬁ _ B(l)) + R}ECOHC)(ﬁ(l)’

A(1
Then it iteratively updates M with the minimizer of the locally upper-tight convex

function, which leads f! to converge eventually to a local minimizer, and the LLA
algorithm is summarized as follows:

A (1
— Initialize ,3( ) and 1, > 0.

— Form =1, 2, ..., update the following equation until convergence:
~(m+1) . A~ (m) A~ (m)
B = argming RY™ (B: ) +{0RS (B 1) /0By (BB +
R,(,COHC) (B (m)

Let V"™ = (j + 1BY1 < ah W = (< 2n < 1B < @k}, and VI = (j -

|B§.m) | > ai,}, where B(’”) is the solution of the mth iteration step in the LLA. The
mth problem excluding irrelevant parameters is equivalent to minimizing

n P
> e (i —xIB) + iy Y w5, (7)
i=1 j=1

(m) (m) = 1=

where the weights w j are defined as follows: w'" i =1,j € V(m),

(B = an)/(@ = Dy, j € VY, and w(™ =0, j € vg’”) Then, problem (7) has
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A (1
the same form as (6). In our numerical study, we set ﬂ( ) = 0 in the LLA algorithm,
which leads to solving the LASSO problem at the initial stage.
We choose the tuning parameter A to minimize the validation error

> oy —x{B)

i=1

for the computed estimate f} as in Gu and Zou (2016) to make a fair comparison in
our numerical study.

4 Simulation

In this section, we compare our proposed penalized expectile regression with the
penalized quantile regression (Wu and Liu 2009) and the SALES (Gu and Zou 2016),
using the SCAD and adaptive LASSO penalties. The SALES solve the optimization
problem in (4) using the cyclic coordinate descent and proximal gradient algorithms.
We consider two simulation settings.

Setting 1: We generate our data from the linear model with non-i.i.d. random errors
studied by Kocherginsky et al. (2005) and Wu and Liu (2009),

Y=14+X1+ X2+ X3+ 1+ X3)e, ()

where X, = X1 + X3 + Z, with both X| and Z generated from the standard normal
distribution and X3 generated from the uniform distribution on [0, 1]. The variables
X1, X3, Z and € are mutually independent.

Setting 2: We use a similar example in Wang et al. (2012) and Gu and Zou (2016):

Y =Xe+ X124+ X15+ Xoo + (1 +0.7X1)e. O]

We first generate (Z1, ..., Z,)" from the multivariate normal distribution with zero
mean and the (i, j)th element of the covariance matrix 0.5"=J!, Then, we set X; =
®(Z)and X; = Zj for j =2,3,..., p, where ® is the standard normal cumulative
distribution function. Note that X| does not have an impact on the mean but only on
the variance.

For each case, we generate independent training and validation data sets of size
n = 100 and 200, and testing data set of size n = 10, 000. The training data set is used
to obtain the penalized expectile regression estimate given a fixed expectile value T and
atuning parameter A,. Let A,, range from 0.01 to 10 with the gap, log(X;+1) —log(%;) =
0.1, and it is chosen by the validation error described in Sect. 3.2. Then, a test error
whose definition is given below is computed on the testing data set. We repeat the
whole procedure 100 times and evaluate the performance of the penalized expectile
and quantile regression. For penalized expectile regression, we consider five different
expectiles T = 0.1, 0.25,0.5,0.75, 0.9. Notice that expectiles and quantiles have
one-to-one correspondence given a specific distribution (Table 1). Therefore, it is
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fair to compare the test error of penalized tth expectile regression estimate and the
corresponding penalized «th quantile regression estimate. We apply the LLA algorithm
to both penalized expectile and quantile regressions.

For a comprehensive comparison among penalized expectile/quantile regressions
and SALES, we consider the standard normal and a heavy- tailed distribution t(10)
for € in Setting 1, and the standard normal distribution only in Setting 2. For each
distribution of €, we study two different dimensions of the predictors, p = 10 and
50, by adding independent noise variables following the standard normal distribution,
N(0, 1) to the original X, X», and X3 in Setting 1 and X1, X, X12, X15, and X29
in Setting 2. For fair comparison, we calculate the corresponding quantile for each
expectile for a given distribution. Since test errors use different loss functions, we
report the absolute errors (AE) defined as the absolute distance between the estimated
and the true parameters, i.e., Zle |;§ 7 — Bj|. In the results, ET denotes the proposed
expectile method, ES the SALES, and QT the quantile regression.

Table 2 reports the absolute errors for model (8) with € generated from the standard
normal and #(10) distribution with p = 10,50 and n = 100, 200. As expected,
all methods produce smaller errors for lower dimension and larger sample size. For
both distributions and both small and large predictors, it can be seen that there is
no single estimator that dominates the performance in terms of the absolute errors.
In comparison between ALASSO ET and SCAD ET, ALASSO ET tends to yield
smaller errors for high ¢ = 0.75,0.9 while SCAD ET for low t = 0.1, 0.25,0.5.
They both produce smaller absolute errors than the SALES methods (ALASSO ES
and SCAD ES) in many cases. We see that the performance of penalized expectile
and quantile regression is competitive. Penalized expectile regression tends to perform
better for p=10, and penalized quantile regression tends to perform better for p = 50
for both sample sizes.

Tables 3 and 4 report the variable selection results for Setting 1. Again, all methods
show better selection for lower dimension and larger sample size. It can be seen
that every method successfully selects X, with high probability (P,) for all of the
expectiles or quantiles. For X1, ALASSO ET chooses it with the highest probability
(Py) for each level of expectile or quantile across different dimensional cases (0.91—
1.00) followed by SCAD ET (0.86—1.00). Both ES and QT produce similar but slightly
lower probabilities (0.74—1.00 and 0.79—1.00, respectively) compared to ET for both
penalties. On the other hand, selecting X3 is a challenging task for the six methods in
the sense that X3 can be easily dominated by (1 + X3)e€ in (8), because X3 ~ U(0, 1)
and € ~ N (0, 1). The proportions including X3 (P3) for ET are higher than those of
ES in most cases and are similar to those of QT for both penalties. In conclusion, the
proposed penalized expectile regression (ET) tends to produce smaller absolute errors,
performs better variable selection for different distributions and dimensions across
various t values compared to the SALES (ES), and shows competitive performance
compared to the penalized quantile regression in terms of absolute errors and variable
selection.

Table 5 reports the absolute errors for model (9) with € generated from the standard
normal distribution with p = 20, 50 and n = 100, 200. Again, there is no dominant
winner in terms of the absolute errors. It can be seen that ET and ES perform similarly
and tend to yield smaller errors than QT in most cases.
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422 L. Liao et al.
Table 3 Variable selection results with n = 100 in Setting 1
n P T ALASSO SCAD
ET ES QT ET ES QT

100 10 010 P, 100000 100000 09001 09001 098001 098001

Py 1.0000.00) 1.000.00) 1.000.00) 1.000.000 1.000.00) 1.00¢0.00)

Py 025004y 0240004y 0220004y 0.3800.05) 0.0400.02) 0.37(0.05)

025 Pr 1.00@o0) 100000 099001 1.00000) 1.00000) 0.98¢.01

Py 1.000.00) 1.0000.00) 1.00000) 1.000.00) 1.000.00) 1.00¢0.00)

Py 043005y 044005y 0.3600.05) 0440005y 0.1300.03) 0.53(0.05)

050 P 100000 100000 099001 09001 100000 099001

Py 1.0000.00) 1.000.00) 1.00000) 1.000.00) 1.000.00) 1.0000.00)

Py 064005 0.6400s5) 0560005 0.6800.05) 0.290.05) 0.730.04)

075 P1 100000 100000 1000000 099001, 099001 099001

Py 10000y 100000y 100000y 1.00000) 1.000.00) 1.00¢0.00)

Py 082004y 0820049 075004y 089003 049005 0.880.03)

090 P 097002 098001 09%poy 097002 091003 093003

Py 100000y 1.000.00) 1.000.00) 1.000.00) 1.000.00) 0.990.01)

Py 082004y 083004y 079%0.04) 0940020 0520005 0.9200.03)

50 010 P 093003 093003 093003 089003 090003 085004

Py 1.0000.00) 1.000.00) 0.990.01) 1.000.00 1.000.000 1.0000.00)

Py 015004y 014003 008003 024004y 0.000.00) 0.260.04)

025 P 095002 095002 089003 091003 092003 0.88(0.03

Py 100000y 1.000.00) 1.000.00) 1.000.00) 1.000.00) 1.00(0.00)

Pz 018004y 020004y 022004y 0.33(0.05) 0.0000.00) 0-33(0.05)

050 P 095002 094002 093003 094002 092003 0.910.03)

Py 1.00¢0.00) 1.00(0.00) 1.00¢0.00)  1.000.00y  1.00(0.00) 1.00(0.00)

Py 041005y 041005 036005 052005 0.000.00 0.53(0.05)

075  Pp 095002 0950.02) 0.930.03 091003 0870.03 0-890.03)

Py 100000y 1.000.00) 1.000.00) 1.000.00) 1.000.00) 0.98¢0.01)

Py 0530050 0.5300.05) 0390.05 062005 002001 0.66(0.05)

090 P 091003 091003 085004 086003 072005 0.790.04)

Py 1.0000.00) 1.000.00) 0990010 1.00000) 1.000.00 0.98¢0.01

Py 053000s5) 054005 046005 0.6800.05) 0.000.00 0.68(0.05)

Table 6 reports the variable selection results with n = 100 for Setting 2. We do not
report the results for n = 200 because the results are similar. All methods successfully
select the four variables in the mean (Xg, X2, X15, and X50) with high probabilities.
For X1, all methods show low probabilities (P;) because it is not part of the mean
terms. Overall, SCAD ES has the lowest probabilities (0-0.03), and ALASSO ES
performs similarly with ALASSO ET (0.05-0.26), followed by ALASSO QT (0.14-
0.33). On the other hand, SCAD QT shows the highest probabilities (0.16-0.40). In
conclusion, the proposed penalized expectile regression (ET) tends to produce similar
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Table 4 Variable selection results with n = 200 for Setting 1

n P T ALASSO SCAD
ET ES QT ET ES QT

200 10 0.10 Py 1.00(0‘00) 1.00(0'00) 1.00(0'00) 1.00(0_00) 1.00(0‘00) 1.00(0.00)

Py 1.0000.00) 1.000.00) 1.000.00) 1.000.000 1.000.00) 1.00¢0.00)

Py 0200004y 0220004y 0.1400.03) 0.290.05) 0.0800.03)  0.30(0.05)
025 P 100000y 100000y 100000y 100000y 100000y 1.00¢0.00)
Py 1.000.00) 1.0000.00) 1.00000) 1.000.00) 1.000.00) 1.00¢0.00)

Py 045005y 046(0.0s5) 035005 05L0.05) 02L.04) 0.64(0.05)

050 P 100000 100000 100000 100000y 100000 1.000.00)
Py 1.0000.00) 1.000.00) 1.00000) 1.000.00) 1.000.00) 1.0000.00)

Py 087003 087003 084004y 0.850.04) 0.6200.05) 0.92¢0.03)
075 P1 100000 100000 100000 100000y 1.00000) 1.000.00)
Py 10000y 100000y 100000y 1.00000) 1.000.00) 1.00¢0.00)

Py 0970020 097002 093003 096002 082004 09%0.01)
090 P 100000 100000 100000 100000y 099001 1.000.00)
Py 100000y 1.000.00) 1.000.00) 1.000.00) 1.000.00) 1.00(0.00)

Py 099001 099001 099001 1.00000) 0.8600.03)  1.0000.00)

50 010 P 099001 099001 099001 098001 099001 097002
Py 1.0000.00) 1.0000.00) 1.000.00) 1.000.00) 1.000.000 1.00¢0.00)

Py 0060002y 005002 006002 018004 0.000.00) 0.16¢0.04)
025 P 100000 100000 099001 100000 098001 099001
Py 100000y 1.000.00) 1.000.00) 1.000.00) 1.000.00) 1.00(0.00)

Py 022004y 0220004y 017004y 042005y 0.000.00) 0.44(0.05)
050 Py 1.00¢0.00) 1.00(0.00) 1.00¢0.00) 1.00¢0.00) 1.00¢0.00) 1.00(0.00)
Py 1.00¢0.00) 1.00(0.00) 1.00¢0.00 1.00¢0.00) 1.00¢0.00) 1.00(0.00)

Py 0630005y 0.6200.05) -51(0.05) 0.790.04y  0.0500.02)  0-80(0.04)
075 P 1.00¢00 1.000.00 1.000.000 099001 099001 1.00¢0.00)
Py 100000y 1.000.00) 1.000.00) 1.000.00) 1.000.00) 1.00(0.00)

Py 087003 087003 084004 094002 021004 0.960.02

090 P 0.990.01) 1.00(0.00) 1.00¢0.00) 1.00.00y  0.970.02 0.990.01)
P 1.00(0‘00) 1.00(0'00) 1.00(0'00) 1.00(0_00) 1.00(0_00) 1.00(0.00)

Py 0.890.03 089003 0.9300.03) 1.000.00) 0-17(0.04y  0.99(0.01)

absolute errors to those of ES and smaller errors than those of QT in this simulation
setting. In terms of variable selection, ES selects X the fewest times, followed by ET.
QT often selects X1, which might yield higher absolute errors as a result.

5 Real data analysis

The data set comes from a study that investigates different methodological problems
associated with clean air using housing market data by Harrison and Rubinfeld (1978).
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424 L. Liao et al.

Table 5 Absolute errors for Setting 2

n P T ALASSO SCAD
ET ES QT ET ES QT

100 20 010 183005 184006 2140100 184008 156005 2010.11)
025 1358005 156005 176006 149005 14l0o0s 177011

050 151004 15loos 174007 137005 138004 154007

075 L5405y 153005y 173006 130004 140004y  1.4L(0.06)

090 167006 168006 19008 144006 153005 162008

50 0.0 220009y 219000 260011 180009 172000 214013
025 191007 190006 229009 157006 152004 184011

050 180006 180006 205007 147004 154004 135004

075 185007 184006 204003 144004 155005  1.380.06)

090 201007 200007 2380100 149005 167006  1.790.09)

200 20 010  l4dqos 146004 166006 152005 130005 160006
025 124003 124003 139%004) 126004 115003 139006

050 116003 116003 128003 110003  Lllooy 115003

075  Ll4ges  Ll4003 125004 101003 115002  1.040.04)

090 118004 120004 130004 099004 127003 107004

50 0.10 1.42(0.05) 1.43(0.05) 1.53(0.05) 1.40(0.05) 1.20(0.05) 1.48(0.05)
025 127003 126003 14loos 118003 Lllooy 123008

050 122003  12lgo2 137003  Lllooz  Lllooy  1.160.03)

075 125003 125003 143005 108003 116003  1.120.05

090 131003 131003 143004 106003 121003 1080003

We apply its corrected version, which is available at http://lib.stat.cmu.edu/datasets/
boston_corrected.txt as in Wu and Liu (2009). In total, there are 506 observations
and 16 variables, among which CMEDV (corrected median value of owner-occupied
homes) is the response and the other 14 non-constant predictors include LON (longi-
tude), LAT (latitude), CRIM (crime rate by town), ZN (proportion of residential land
zoned for large lots by town), INDUS (proportion non-retail business acres per town),
CHAS (Charles River dummy: 1 if tract bounds the river; O if not), NOX (nitrogen
oxide concentration), RM (average number of rooms), AGE (proportion of owner-
occupied homes built prior to 1940), DIS (weighted distances to five employment
centers in Boston), TAX (property tax rate), PTRATIO (pupil-teacher ratio by town), B
(black population proportion), and LSTAT (proportion of lower socioeconomic status
population). As in Wu and Liu (2009), we standardize the response CMEDV and the
14 continuous predictors. In the application of the penalized expectile regression, we
consider CMEDV as the response, CHAS and all the other standardized continuous
predictors and their corresponding squares as predictors, for a total of 27 predictors.
We follow a similar procedure as in Sect. 4. First, we randomly split the data set
into training, validation, and testing data sets with size 200, 200, and 106, respectively.
Second, we select the tuning parameter A with the validation error introduced in

@ Springer


http://lib.stat.cmu.edu/datasets/boston_corrected.txt
http://lib.stat.cmu.edu/datasets/boston_corrected.txt

Penalized expectile regression 425

Table 6 Variable selection results with n = 100 for Setting 2

n P T ALASSO SCAD
ET ES QT ET ES QT

100 20 010 P 025004 026004 025004 038005 000000 040005
Ps 100000 100000 100000 100000y 1.00000) 1.000.00)

P12 1.0000.00) 1.000.00) 1.000.00) 1.000.00) 1.000.00) 0.990.01)

P15 10000y 1.000.00) 1.000.00) 1.000.00) 1.0000.00) 1.000.00)

Py 1.0000.00) 1.000.00) 1.000.00) 1.000.00) 1.00¢.00) 1.00¢0.00)

025 P 013003 Oldposy 020004 017004 00lgon 03000
Ps  1.0000.000 1.000.00) 1.000.00) 1.000.00) 1.00¢0.00) 1.00(0.00)

Pia 10000y 1.000000) 1.00¢0.00) 1.0000.00) 1.000.00) 1.00(0.00)

P15 1.000.00 1.000.00) 1.000.00) 1.0000.000 1.000.000 1.00¢0.00

Py 1.000.00) 1.0000.00) 1.0000.000 1.0000.000 1.000.000 1.00¢0.00)

050 P 017004y 0.1800.04y 018004y 0.150.04) 0.0Lgo1) 0.26¢0.04)
Ps  1.000.00) 1.000.00) 100000 1.000.00) 1.000.00) 1.0000.00)

Pi2 100000y 1000000 1000000 1000000 100000 099001

Pis 1.0000.00) 1.000.00) 1.000.00) 1.000.00) 1.000.00) 1.0000.00)

Py 1.000.00) 1.000.00) 100000 1.000.00) 1.000.00) 1.0000.00)

075 P 022004 020004 025004 02100 003002 03200
Ps 100000 100000 100000 1000000 1.00000) 1.000.00)

Py 100000y 1.000.00) 0990.01) 100000y 1.000.00) 0.990.01)

Pi5 1.0000.00) 1.000.00) 1.000.00) 1.000.00) 1.00¢0.00) 1.0000.00)

Py 100000y 1000000 1000000 1000000 100000 1.000.00)

090 P 025004 021004 033005 03l0os) 002001 040005
Ps  1.000.00) 1.000.00) 100000 1.000.00) 1.000.00) 1.0000.00)

P2 1.0000.00) 1.000.00) 0990.01) 1.000.00) 1.000.00) 0.990.01

Pis 100000y 1.00000) 100000 100000y 1.00000) 1.00(0.00)

Py 1.0000.00) 1.000.00) 1.000.00) 1.000.00) 1.000.00) 1.0000.00)

50 010 P 013003 012003 022004 018004 000000 027004
Ps 100000y 1000000 099001 100000 099001 0.970.02)

P2 1.0000.00) 0990.01) 098001y 099001 0990.01) 0.970.02)

Pi5s 1.000.00) 1.000.00) 0990010 099001 1.000.00) 0.9800.01

Py 099001 1.00000) 0990010 1.000.00) 1.000.00) 0.950.02)

025 P 010003 006002 014003 010003 000000 0.160.04)
Ps 1.0000.00) 1.000.00) 09%0.01) 1.000.00) 1.00@0.00) 0.990.01

P2 1.0000.00) 1.000.00) 1.000.00) 1.0000.00) 1.00¢0.00) 0-990.01)

Pis 100000y 1000000 1000000 1000000 100000 099001

Py 1.0000.00) 1.000.00) 0990.01) 1.000.00) 1.000.00) 0.98¢0.01)

050 P 005002 005002 010003 006002 000000 0.160.04)
Ps  1.000.00) 1.000.00) 09%0.01) 1.000.00) 1.000.00) 1.0000.00)

Pia 100000y 1.00000) 100000 100000y 1.00000) 0.990.01)

Pis 1.0000.00) 1.000.00) 1.000.00) 1.0000.00) 1.00.00) 1.0000.00)
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Table 6 continued

n p ALASSO SCAD
ET ES QT ET ES QT

Py 1.000.00) 1.00000) 1.00000) 1.000.00) 1.0000.00) 1.00(0.00)
075 P 009003 010003 015004 009003 000000 0.1600.04)
Pg 1.00¢0.00) 1.00(0.00) 1.00¢0.00) 0.990.01) 0.990.01) 1.00(0.00)
Pra 1.00@.00) 1.0000.00y 1.000.000 1.000.00) 1.0000.00)  0.990.01)
P15 1.00@.00) 1.0000.00p) 0990.01) 100000 1.000.00) 0.990.01)
Py 10000y 100000y 099001y 100000 100000  1.0000.00)
090 P 013003 014003 020004 022004y 000000 0.2600.04)
Ps 10000y 1000000y 099001y 099001 099001 0.960.02)
P2 099001y 099001y 097002 099001 1.00000  0.960.02)
Pis 10000y 100000y 097002 100000 1.00000  0.940.02)
Py 100000y 100000 099001y 100000 1.00000 0.9700.02)

Sect. 3.2. Then, we evaluate the test error by the average expectile check loss on
the testing data. We replicate 100 times and report its average values. We still consider
the five different expectiles t = 0.1, 0.25, 0.5, 0.75 and 0.9. Although the underlying
distribution is unknown, by assuming the normal distribution, we apply the SALES
and penalized quantile regression and compare their performance. For the quantile
regression, we use the quantiles hat correspond to the five expectiles above, i.e., ¢ =
0.19,0.33,0.5,0.66 and 0.8.

Table 7 displays the test error and variable selection results for cases of p = 14
and p = 27. In the table, TE is the average expectile check loss on the testing data.
Size refers to the average number of predictors selected in the final model. For the
penalized expectile regression ET and ES, both SCAD and adaptive LASSO produce
similar test errors. Although they are not directly comparable, both penalized expectile
regression methods yield smaller test errors than penalized quantile regression across
different segments of the distribution. In terms of variable selection, for both SCAD
and adaptive LASSO penalties, ET tends to produce sparser models than ES and QT
for p = 14. When p = 27, ALASSO QT produces sparser models than the others
except at T = 0.1, and SCAD ET tends to produce larger models.

Figure 1 shows the estimated coefficients by the proposed penalized expectile
regression with both ALASSO and SCAD when p = 14. It can be seen that some
regression coefficients vary as t changes, for example CHAS, DIS, and TAX. In particu-
lar, the estimate for TAX shows an interesting pattern because the estimate is increasing
as 7 increases and is close to zero when 7 = 0.5. Hence, we can interpret that the
property tax rate is not an important variable in the mean function, but is important in
other expectiles.
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6 Discussion

In this work, we propose the penalized expectile regression using SCAD and adaptive
LASSO penalties and show their oracle theoretical properties introduced by Fan and Li
(2001), Zou (2006), and Wu and Liu (2009). Also, we compare the proposed method
with the penalized quantile regression in Wu and Liu (2009) through a simulation
study and real data analysis, and demonstrate its superior performance in terms of
estimation and variable selection when heteroscedasticity is present. However, these
advantages come at a cost: (i) although there is one-to-one match between the expec-
tiles and quantiles, the expectiles do not have strong interpretability, and (ii) when data
are homogeneous with some outliers rather than heterogeneous, penalized expectile
regression is more affected by these outliers, while penalized quantile regression is
more robust. The proposed work shows some attractive aspects of penalized expectile
regression, and we recommend combining its use with penalized quantile regression.

An important problem in the field of penalized regression is construction of confi-
dence intervals for the model coefficients. As Javanmard and Montanari (2014) point
out, it is challenging to derive an exact sampling distribution of the parameter esti-
mators in penalized regression due to the use of the optimization procedure, which
is a main obstacle for conducting statistical inference using confidence intervals or
hypothesis testing. Javanmard and Montanari (2014) propose an efficient algorithm
for obtaining confidence intervals and p values by constructing a de-biased version of
regularized M-estimators in a high-dimensional setting. Zhang and Zhang (2014) pro-
pose a hypothesis testing procedure for high-dimensional data using a low-dimensional
projection approach. Lockhart et al. (2014) develop the covariance test statistic to
determine the significance of regression coefficients in the sequence of models visited
along the LASSO solution path. Also, resampling methods for hypothesis testing have
been studied; Chatterjee and Lahiri (2010) apply the residual bootstrap approach to the
LASSO estimator, and Minnier et al. (2011) propose a perturbation-based procedure
to approximate the distribution of a general class of penalized parameter estimates,
which leads to the estimation of the covariance matrix and confidence regions. We sug-
gest statistical inference for penalized quantile and expectile regression as our future
work.
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Appendix: Proofs of theorems
Proof of Theorem 1

Following Wu and Liu (2009), it is sufficient to show that for any given § > 0, there
exists a large constant C such that

P {” iﬁlfc Ry(By +u//n) > Rn(ﬂo)} >1-34. (10)
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N 1
It implies that there exists a local minimizer satisfying |8 — Bl = Op(n~2). Now
consider

Rn(ﬁo + ll/«/%) - Rn(ﬂo)
=3 (e = xiBy = x{u/V/n) = pe (i — x{B0))

i=1
P

+1 > (P, UBjo + i/ = pa, (1BsoD)-
j=1

Because p} (0) = A {1(0 < hn) + (@ —0)+

ml(@ > An)} > 0 for some a > 2 and
0 > 0, and p;, (0) =0,

n(pa, (1Bjo + uj//n) — pa,(1Bjol) = n(pa, (|uj//nl) — ps,(0) =0
for j=gq+1,..., p. Hence,
Ry (Bo +u/v/n) — Ry (By) (11)
> Xn; (pr i —X;Bo — X;u/v/n) — pr (yi — X,Tﬂo))

q
+1 3" (Pr UBjo + /5 = pi, (1BjoD) ).
j=1

We first consider the second term on the right-hand side of (11). For j =1, ..., ¢,
n(pa, (1Bjo + uj/~/nl) = pa,(1Bjo)

= n(p;n(lﬁjol)sgn(ﬁjo)% + w<%)2 n 0(@))

=0V max p; (1Bjoh + max p, (Ijol)).
l=j=q I=j=q

n

For large n,
: (ary = |Bjol)+
Pa, BjoD = 2 (11Bjol = 1)+ =21 1B o] > )
_ (ar, — |/31j0|)+ L Oash, — 0,
R

”" 1
Py, (Bjol) = =——= 10 < |Bjol < atn) = Oas A, — 0.

Denote the first and second derivatives of p; (¢; — t) at t = 0 as follows:

ge(€) = po(& — 1) imo= —27€i1 (6 = 0) —2(1 — T)€; I (¢; < 0),
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he(€r) = py(ei — 1) li=0= 271 (e; = 0) +2(1 — )] (¢; < 0).

Then E(g:(¢;)) = 0. Denote Var(g.(¢;)) = ogr, E(h:(¢)) = pup, > 0 and
Var(h.(¢;)) = a}i,i = 1,...,n. According to model (3.1), ¢ = y; — X[B¢,i =
1, ..., n. Now we consider the first term on the right-hand side of (11):

n

> (e i = XiBo — X[u/v/m) = pe i = XiB0))

i=1

= g (gr(Gi)XlT_: + hréei) (%)2 + 0(%))

We note that

" x'u " x'u " x'u
;gr(ﬂ)% —E<;gr(€i)%> + 0, Var <;gr(61)ﬁ

)

= OP n Ggr ’
and
" he(e) (Xu\% Y xix] 1< Y XiX] \2 )
Z 5 i :TfuT—_ ‘u+ 0, 7l (uT—_ ’u) .
i=1 a n i=1 n

By i1 XiX]

=5 v vtel)

n -
Therefore, R, (B¢ +u/+/n) — R, (By) is dominated by %uT@u, for Ju] = C,
where C is sufficiently large. In conclusion, there exists a local minimizer of R, (),

~(SCAD ~ (SCAD
B such that 1B = Boll = 0, (1= 3), if Ay — Oasn — oo, 0

Proof of Theorem 2

1

(a) Forany B; — B9 = 0,(n"2),0 < [|B,ll < Cn™2,
Ry ((B1", 0N — Ry ((B17, B2DD)

n p
=3 (oeOi = X181 = pe i = X[ 81 —X12B2)) =1 Y P, (B}
i=1 j=q+1
he(e;)
2

n 2
= Z <gt(6i)x;'r1 (B1 —B1o) + (X,Tl By — 1310)) + 0((X,T1 By — ﬂlo))2>)
i=1
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- he (e T T gryt)2
=3 (eeCen (81— B0 B+ P (B ~ B B
i=1
P
+o(1(B1 = B0 B ) <1 B i, 8D (12)
Jj=q+1

By Condition 2 and following the proof of Theorem 1,

> e (enxly (B — Bio) = 0, (J V(B = Bio)" Y L (B - ﬂma;,)
i=1 i=1

> ge@)xj((By — B1o)", BY'

i=1

=0, (J VA((By = Bio)" B Y~ n(B1 — Bro). ﬁwo;,)
i=1

= 0,(1),
hr f 2 n ; :-
;6 )<x}1(ﬂ1 - ,310)) = Mzhr VB —Bio)" Y X lnX LV/n(By = Bio) +0p(1)
i=1
= 0,(1),
he (&)

D (1 (By B BY)

= 2= By~ Bro)" BD Y "L V(81 — 1), BY" + 0p(1) = O, (1),
i=1

Now we consider the last term on the right-hand side of (12). For j =g +1,..., p,

P, (1B = 01_i)%1+ P, (0) + 61_1)1& i, @181+ o(1B;1)
= halBjl +o(B;D)-

Therefore, n >0 | i, (1B;]) = nkn( o <|ﬁj| + 0(|/3j|/)»,1))). Because

1
Bi—Bi= Op(n_%),o(|ﬂj|/kn) = o(ﬁT).Wenotethatﬁkn — 00,nA; — 00
n

asn — oo and R,((81",0"") — R,((B", B,")") is dominated by

P
—n Y pu(BjD.

J=q+1
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Consequently,
Ry ((B1",0M)") — Ru((B,", B2")") = —ocasn — oo.

This completes the proof of part(a) of the theorem. O
(b) From Theorem 1 and part(a), we know f8; is a root-n consistent local minimizer

of Ry((B,",0M"). Let 0 = /n(B; — Big)s i-e., B1 = B1o + 01/+/n. Then

n q
Ry((B",0N) =Y pe(yi = X[ B1) +n Y pa, (1Bi)

i=1 j=1

n q
=Y pc(i —X{1B1o = X\101//m) + 1Y pa,(Bjo+0;//n])

Jj=1
2 04(01).
N SCAD

Because 0 = \/_(ﬂi ) B10) is a local minimizer of 0, (01),

00n(01)

Y |01=91: 0’

00,

for j =1,...,g. Now we decompose the derivative of 0, (61) by parts:

10
pr (i = Xj B0 — X{101/v/n) = pr (&) +gr(6i)( _ 1)

Jn
he(€;) x; 012
(- ﬁ) +o(1),
0 x;, 0
Epr(yi—xmlo X;101//n) = —gc(€) f+h o (€)— . LA
’ 9]
Pr,(IBjo +60;/+/n) = pa, (1Bjol) + Pxn(|ﬂj0|)sgn(ﬂj0)ﬁ
Py (Bjol) 0, \2 /1
T (ﬁ) +ol):

Therefore, as n — oo,

a
U800/ = (B}, (BjoDsen(Bio) o=+ 7}, (oD L) = 0. (13)

"0, f
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From the proof of Theorem 1, (13) holds. Plugging them in Qang( D | 0,1=0,= 0, for
J
j=1,...,q,wehave
0=i< g (€i) +h (€) lélx’)
i=1 f /
q 5
+ > n(p, (1Bjohsen(8j0) f+p,\n(|ﬁ,o|) o,
j=1
°x! 01 " x _(h (€) — up)X; 0,
i=1 i=l
in(pA (1Bj0lsen(Bj0)—= + (|ﬁ,o|)é’)
ot n [ n n
" ox;x" (he(€)) — wp )Xi1X5 «
e Yy = ng( >X” Z o B iR g me @1.B10).
i=1 i=1 " j=1
A " xipx! h
i=1 i=1

q A~
=Y my, 01810 |-

J=1

where m,;,, (@1, B1o) is defined as a g-dimensional vector with the jth element
n(p;, (1BjoD)sgn(Bjo) 7 +p;, (1Bjo))L). According to (13) and Condition 2, as n —

T
00, Wh, Z:zzl Xllﬂ& — I’LhTEllv Z:z IM — 0 andmx (01 ﬁlo) —
0. In addition, E(g,(ei)%) =0,i=1,...,

X;1X
(th( i) ll) 2—Zl i) —>U§r211,

n

n E”gt(ez)x’l ”4

Xi1 Xi1
,;E (ngf(ei)ﬁ||21(||gf(e,->ﬁ|| > s)) < o

n T . 2
= gizE(g?(ei)) > (—X”nx”) -0,

i=1

i=1

for any £ > 0. Applying Lindeberg—Feller CLT, we have

n

Xi1 L 2
Y gile)== = wi~ N0, 07 Zi1).
i=1 v
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A L
By Slutsky’s theorem, 6 — (,u,hr > ]) wi. Then, we can conclude,

~(SCAD)

Vn(B,

This completes the proof. O

L _
—Bio) = NO. o /ui =iH.

Proof of Theorem 3

We first prove the asymptotic normality in part (b). Let & = /n(B — B;). Then, we
have

Vn(a) £ Rn(ﬂ() +0/\/;) - Rn(ﬂo)
e ;0 T\€i ;0
-3 (e - )+ (- 50)

p
+nk, ij(lﬂjo +6;/+/nl = 1Bjol)

=1

T n N -
—Zgr(éz ( ) Mh’aT;X;leTo+%oTz<(hr(€l) nﬂhr)XZXlT>0

i=1

()

+0p(1)+nAnZw,j(|ﬁjo+9,j/~/ﬁl — 1BjoD). (14)

j=1

From the proof of Theorem 2,

e Xi L 2
ng(e»ﬁ = w~ N0, %),
i=1

n ~T
Mh, XiX; = &E,

21’—1 n 2

1 (he (&) — MKh, )Xl
3 Z

Now we consider the last term of (14). For 1 < j <g¢,
P _
wj = |Bjol ™, v/n(IBjo + 0j/v/nl — 1Bjol) — 6; sgn(Bjo).

By Slutsky’s theorem, nA,, Z?:] w;i(IBjo+0;/v/nl—1Bjol) %, Obecause hy — 0
asn — oo.Forg+1<j<p,Bjo=0and

VB0 +60;//nl —1Bjol) = 161, Vnrgw; = 2n Y T2 (/B
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where 5 ;j is the jth element of B defined in (3.5) and /7, ,3 i = Op(1). Therefore

P o it #0,

p
i 2w B0+ 05/l = B ) Z) % T

j=1
Applying Slutsky’s theorem again, we have V,,(9) LY V(0) for every 0. Here,

Hh . .

—10,"Z110, +w0 if0; =0,g+1<j<p,

vy =12 r=ud 101 j q J=<p
00 otherwise.

where wi = (w1, wy, ..., wy)" ~ N(0, a;zn) and 0, = (61,65, ...,6,)". We note
that V, (@) is convex and the unique minimum of V() is

(= (un, Z1) "W)™, 00"

With the epi-convergence results of Geyer (1994) and Knight and Fu (2000), we have

i@ =By =01 5 — ki) Wi~ N, 62/l x50
and
x/_(ﬁ(AL) — Bay) = 6> L0
where 92 = (éqH, éﬁz, ceey ép)T, which proves the asymptotic normality property.

Next, we show the sparsity property. For any 8, — 9 = Op(n’%), 0 < |IByll <
C n_%, following the proof of Theorem 2, we have

Ry ((,31T,0T)T) — R ((B1", B2D)D)
2
= Z <3T(61)le(ﬂ1 B1o) + et )( X1 (B — ﬂlo)) +0((X1T1(ﬁ1 - .310))2))

i=1

he (e 2
—Z(gxe,)x (B) — B0 B+ T (1B~ Bro)". D))
+o,,(<x}1(<ﬂ1—ﬂlof,ﬂ;f)z))—nxn > wisD. (15)
Jj=q+1

The first two terms are bounded in the same way as the proof of Theorem 2:

Zgr(ei)xgl(ﬂl —Bi0) =0, | |[Vn(B - ﬂlo)TZ %ﬁ(ﬂ] — Bio)og,

i=1 i=1
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> ge(e)x](By — B1o)". B

i=1

=0, | | V(B = B0 B Y. T~ Bro)" B2 | = 0, (D),
i=1

h(€i)
2

(Xle By — 310))2

= M;t Vn(B, — ﬂm)TZ %ﬁ(ﬂl —B1o) +o,(1) = 0,(1),

i=1

e (€i)
2
Mht T T . X’-X; T TNT
SEV(By = B10)", B Y —/n((Br = B10)", B2 +0,p(1) = 0, (1),

i=1

(Xf((ﬂl - B’ ﬂ;)T)2

For the third term on the right-hand side of (15),

P P
nin Yy wilBil =nYT0n Y (V) IB)] — oo

J=q+1 Jj=q+1
because /nB; = 0,(1) and nV+V/2),, — oco. Therefore,

Ry((B1",0M)") — Ru((B", B,")") — —o0 asn — o0.

~ (AL
This implies 85 = 0. o
Proof of Corollary 1

From the proof of Theorem 2, it can be shown that
2 Xi1 L
Y gele)—= = wi~ N, =f)),
i=1 v

A —1
and 60 £> (Eill> wi. O
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