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Abstract Let k be a positive integer. Some exact distributions of the waiting time
random variables for k consecutive repetitions of a pattern are derived in a sequence
of independent identically distributed trials. It is proved that the number of equations
of conditional probability generating functions for deriving the distribution can be
reduced to less than or equal to the length of the basic pattern to be repeated con-
secutively. By using the result, various properties of the distributions of usual runs
are extended to those of consecutive repetitions of a pattern. These results include
some properties of the geometric distribution of order k and those of the waiting time
distributions of the (k1, k2)-events. Further, the probability generating function of the
number of non-overlapping occurrences of k consecutive repetitions of a pattern can
be written in an explicit form with k as a parameter. Some recurrence relations, which
are useful for evaluating the probability mass functions, are also given.

Keywords Geometric distribution of order k · Repetition of a pattern · Waiting time
for a pattern · Conditional probability generating function · (k1, k2)-Event

1 Introduction

The geometric distribution of order k is the distribution of the number of trials until
a run of “1” of length k is observed for the first time in independent {0, 1}-valued
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308 S. Aki

random variables X1, X2, . . ., where P(Xi = 1) = p = 1 − q for every positive
integer i . The distribution was studied by de Moivre in the eighteenth century (see
Todhunter 1865) and introduced rigorously by Feller (1968). Since about 1980s, it
has been applied to various fields such as reliability of consecutive systems, start-up
demonstration tests, sampling inspection plans. (see for example, Balakrishnan and
Koutras 2002; Johnson et al. 2005). In discrete distribution theory, the study has been
extended from runs to general patterns mainly by the contributions of Fu and Koutras
(1994) and Fu (1996). Thus, the exact distributions of waiting times for any patterns
with finite length can be evaluated in principle. It is well known that the probability
generating function (p.g.f.) of the geometric distribution of order k is represented

explicitly with k as (pt)k(1−pt)
1−t+pkqtk+1 . Distributions of waiting times for a pattern of finite

length can be obtained by the forward and backward principle introduced by Fu (1996).
However, p.g.f.’s of waiting time distributions with explicit expressions are scarcely
known except for a few distributions such as the geometric distribution of order k
just above or waiting time distribution for the (k1, k2)-events (Huang and Tsai 1991;
Dafnis et al. 2010; Stefanov and Manca 2013).

Many probability generating functions in the problems are rational functions. From
the explicit forms of the probability generating functions, we can obtain the probability
functions by using various methods such as recurrence relations of rational generating
functions (Stanley1997), and the partial fraction expansion (Shmueli andCohen2000).
Both methods need an explicit form of the generating function. The motivation of
the study is to provide explicit forms of the probability generating functions of the
distributions related to discrete patterns with arbitrary length. Above all, the method of
the partial fraction expansion is effective for long-tailed distributions. In the last section
of Huang and Tsai (1991), the authors introduced a (k1, k2; k3)-events which are
exactly k3 consecutive (k1, k2)-events. They studied the double generating function of
the number of occurrences of (k1, k2; k3)-events in n independent trials. Extending the
idea, we study the distributions of the waiting time for k-times consecutive repetitions
of a pattern.

In this paper, we extend the concept of a run of length k to that of a pattern which
is k-times consecutive repetitions of another pattern. By the extension, we can obtain
many exampleswith explicit expressions of the p.g.f.with parameter k. For example, as

we will show in Sect. 2, the distribution of the waiting time for the pattern

2k
︷ ︸︸ ︷

1010 . . . 10,
which is k-times consecutive repetitions of the pattern “10”, has the explicit and simple
p.g.f. as

(pqt2)k(1 − pqt2)

1 − t + (pqt2)k(t − pqt2)
.

A pattern P is called the run of a pattern α with k repetitions and denoted by [α]k if

it is k-times consecutive repetitions of the pattern α. The above pattern

2k
︷ ︸︸ ︷

1010 . . . 10 is
written as [10]k . When P = [α]k , the pattern α is called a basic pattern of P . If two or
more representations are possible for a pattern such as “10101010”= [10]4 = [1010]2,
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Waiting time for generalized run 309

we define the basic pattern to be the one which has the shortest length. The usual 1-run
of length k is denoted by [1]k . The (k1, k2; k3)-event defined byHuang and Tsai (1991)
is written as [[0]k1 [1]k2 ]k3 with our symbol.

When we want to obtain the p.g.f. of a pattern P by solving a system of equations
of the conditional p.g.f.’s, we can reduce the number of equations to be solved to less
than or equal to the length of the pattern P using the forward and backward principle.
In Sect. 2, if the pattern P is a run of a basic pattern α, we show that the number
of equations to be solved can be reduced to less than or equal to the length of the
basic pattern α. By using the result, we give all the p.g.f.’s of runs of a basic {0, 1}-
pattern of length less than 4 with k repetitions in an explicit form with parameter k in
Table 1. From the result, we can see that the forms of the p.g.f.’s are very simple. In
particular, the p.g.f. of the waiting time for [110]k can be obtained from the p.g.f. of
the geometric distribution of order k only by substituting pt by p2qt3. By generalizing
this property, we represent the p.g.f. of the waiting time for the pattern [[1]m[0]n]k
in a closed form for any positive integers m and n. Further, we write the p.g.f. of
the waiting time for [[1]m1[0]n[1]m2 ]k in an explicit form for any positive integers
m1, n,m2 and k. In Sect. 3, the distributions of non-overlapping number of runs of a
pattern in X1, X2, . . . , Xx are studied for any positive integer x . Recurrence relations
of the p.g.f.’s, which are useful for evaluating the probability mass functions, are
given. An explicit form of the p.g.f. of the distribution is also obtained. In Sect. 4, we
consider the problems in independent multi-state trials. Theorem 4 provides a very
simple result of the waiting time for runs of a basic pattern, when the basic pattern
satisfies a condition. Theorem 5 extends the result on runs studied by Aki and Hirano
(1995) to that of runs of a basic pattern. All the proofs of the results are given in Sect. 5.

2 Waiting time for a run of a pattern

Let X1, X2, . . . be independent identically distributed {0, 1}-valued random vari-
ables, with P(Xi = 1) = p = 1 − q for i = 1, 2 . . .. First, we briefly review
how to obtain the distribution of the waiting time for a pattern. For example, we
obtain the exact distribution of the waiting time W for the pattern “1101”. We set
φ(t) = E[tW ], φ1(t) = E[tW−1|X1 = 1], φ11(t) = E[tW−2|X1 = 1, X2 = 1],
and φ110(t) = E[tW−3|X1 = 1, X2 = 1, X3 = 0]. Using the forward and backward
principle introduced by Fu (1996), these conditional p.g.f.’s satisfy the relations

⎧

⎪
⎪
⎨

⎪
⎪
⎩

φ = ptφ1 + qtφ
φ1 = ptφ11 + qtφ
φ11 = ptφ11 + qtφ110
φ110 = pt + qtφ,

(1)

where φ(t), φ1(t), φ11(t) and φ110(t) are abbreviated to φ, φ1, φ11 and φ110, respec-
tively. We use abbreviations like these when the variable is clearly given. By solving
the above equations, we obtain the p.g.f. φ ofW . Since the system of equations is given
by considering the next state from each state, it corresponds to the transition matrix
of the finite Markov chain embedding method. Here, the number of equations in the
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310 S. Aki

Table 1 p.g.f.’s of the waiting time for the generalized run of the kth repetition with basic pattern of length
less than or equal to 3

Pattern p.g.f.

[1]k (pt)k (1−pt)
1−t+pkqtk+1

[0]k (qt)k (1−qt)
1−t+qk ptk+1

[11]k (pt)2k (1−pt)
1−t+p2kqt2k+1

[00]k (qt)2k (1−qt)
1−t+q2k pt2k+1

[10]k , [01]k (pqt2)k (1−pqt2)
1−t+(pqt2)k (t−pqt2)

[111]k (pt)3k (1−pt)
1−t+p3kqt3k+1

[000]k (qt)3k (1−qt)
1−t+q3k pt3k+1

[110]k , [011]k (p2qt3)k (1−p2qt3)
1−t+(p2qt3)k (t−p2qt3)

[100]k , [001]k (q2 pt3)k (1−q2 pt3)
1−t+(q2 pt3)k (t−q2 pt3)

[101]k (p2qt3)k (1−p2qt3)
1−t+pqt2(p2qt3)k−1(1−t+pt2−p2qt3+p2q2t4)

[010]k (q2 pt3)k (1−q2 pt3)
1−t+pqt2(q2 pt3)k−1(1−t+qt2−q2 pt3+q2 p2t4)

system agrees with the length of the pattern. Therefore, it will be difficult to solve the
system of equations for long patterns. In order to reduce the number of equations, we
consider an alternative conditioning. We propose conditioning on the location of the
first failure of observing the pattern. If the first observation is “0”, we fail in observing
the pattern at the first trial. If the first observation is “1” and the second observation
is “0”, we fail in observing the pattern at the second trial for the first time. If the first
observation is “111”, we fail in observing at the third trial for the first time. And, if
the first observation is “1100”, we fail at the fourth trial for the first time. Considering
conditioning on the location of the first failure, we obtain the system of equations,

{

φ = qtφ + pqt2φ + p3t3φ11 + p2q2t4φ + p3qt4

φ11 = ptφ11 + q2t2φ + qpt2.
(2)

From the both systems of Eqs. (1) and (2), we can obtain the same φ. We note that
the system (2) has only two equations. By solving the system (2), we obtain the p.g.f,

φ = p3qt4

1−t+p2qt3−p2q2t4
. We can obtain the p.g.f. of the distribution of the waiting time

of a pattern from the both systems of equations above. However, the latter system has
smaller number of equations than the former system generally. In particular, if the
pattern is a run of a pattern, as we prove later, the number of equations of the latter
system is no more than the length of the basic pattern.

For example, we consider 1-run of length k as the pattern. The basic pattern is “1”
and 1-run of length k is written as [1]k . Since the length of the basic pattern is one, we
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can obtain the p.g.f. by solving an equation. In fact, by conditioning on the location
of the first “0”, we obtain a recurrence relation,

φ =
k−1
∑

j=0

p j−1qt jφ + pktk .

By the above conditioning, the number of equations becomes one for all k. By solving
the above equation, we obtain immediately

φ = pktk

1 −∑k
j=1 p

j−1qt j
= pktk(1 − pt)

1 − t + pkqtk+1 .

As an example for obtaining the p.g.f. of the waiting time for a run of a pattern,
we consider the pattern [10]k which is the kth repetition of the basic pattern “10”.
Let φ = φ(t) be the p.g.f. of the waiting time, and let φ1 be the conditional p.g.f. of
the waiting time given that the first “1” has just been observed. In this case, as the
basic pattern “10” is very simple, the conditional p.g.f.’s to be defined in advance are
sufficient if we study the waiting time by conditioning on the first place where we fail
in observing the pattern. Hence, we obtain the recurrence relation:

φ =
k−1
∑

j=0

(pqt2) j (qtφ + p2t2φ1) + (pqt2)k .

Using φ = ptφ1 + qtφ, we have φ = (pqt2)k(1−pqt2)
1−t+(pqt2)k (t−pqt2)

.

Here, we note that the distribution of the waiting time for [01]k agrees with that of
the waiting time for [10]k . The distribution for [01]k can be obtained by exchanging
1 and 0. Therefore, we have the p.g.f. only by exchanging p and q in the above p.g.f.
for [10]k . It is easy to see that the p.g.f. does not change by exchanging p and q.
Alternatively, we see that the pattern [01]k is the reversed pattern of [10]k . Then the
result can also be obtained by Aki and Hirano (2002).

Remark 1 Throughout the paper we assume that the sequence is independent and
identically distributed random variables. However, the assumption is not for deriving
the p.g.f.’s but for the results to be simple. In the proofs we use only temporal homo-
geneity of the sequence. Similarly as the finite Markov chain embedding method (see
for example, Fu and Koutras 1994; Balakrishnan and Koutras 2002), the method of
conditional p.g.f.’s can be used for temporally homogeneous sequence like (tempo-
rally homogeneous)Markov chain. For example, let X1, X2, . . . beMarkov chain with
P(X1 = 1) = π1, P(X1 = 0) = π0, P(Xi+1 = 1|Xi = 1) = p1 = 1 − q1 and
P(Xi+1 = 1|Xi = 0) = p0 = 1 − q0. Then the corresponding p.g.f. of the waiting
time of [10]k can be obtained similarly as

φ(t) = π0t (1 − p0q1t2)(p0q1t2)k + π1tq1t (1 − q0t)(1 − p0q1t2)(p0q1t2)k−1

1 − (q0 + p1)t + (p1q0 − p0q1)t2 + ((q0 + p1)t − p1q0t2)(p0q1t2)k
.
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312 S. Aki

Let m be a positive integer and let k be an integer greater than one. For i =
1, 2, . . . ,m, we set ei ∈ {0, 1}. Let us study the distribution of the waiting timeW for
the pattern [e1 . . . em]k .We denote by P(ei ) the probability that ei occurs in every trial.
As we suppose that the trials are independent and identically distributed {0, 1}-valued
random variables,

P(ei ) =
{

p if ei = 1
q if ei = 0.

For every i = 1, 2, . . . ,m,we set ei = 1−ei . LetF = {∅, e1, e1e2, . . . , e1e2 . . . em−1}
be the set of sequential subpatterns of the basic pattern e1e2 . . . em . For j =
0, 1, 2, . . . , k − 1 and i = 1, 2, . . . ,m, we define the pattern

α( j, i) := [e1 . . . em] j e1e2 . . . ei−1ei .

These patterns are typical subsequences until the first failure in observing the pattern
[e1 . . . em]k . Let x = (x1, x2, . . . , xν) be a finite {0, 1}-sequence.We denote by (x)L =
(xa, xa+1, . . . , xν) the longest ending block of x in the set of sequential subpatterns
of [e1 . . . em]k . Let f be the mapping from the set of finite {0, 1}-sequences to the
sequential subpatterns of [e1 . . . em]k defined by f (x) = (x)L . For every element
α ∈ F , we set φα(t) = E[t (W−|α|)|(X1, . . . , X |α|) = α], where |α| denotes the length
of α. In particular, for α = ∅, we define φ∅(t) = φ(t) = E[tW ].

For example, let the pattern be [110]3 and the sequence x = (1, 1, 0, 1, 1, 1). Then,
the longest ending block (x)L is (1, 1) and f (x) = (1, 1).

Theorem 1 For every j = 0, 1, 2, . . . , k − 1 and for every i = 1, 2, . . . ,m, it holds
that f (α( j, i)) = f ([e1 . . . em] j e1e2 . . . ei−1ei ) ∈ F . The p.g.f. φ = φ(t) of the
waiting time for the pattern [e1 . . . em]k is the solution of the following system of
equations:

φ = P(e1)tφ f (e1) + P(e1)P(e2)t
2φ f (e1e2)

+ · · · + P(e1) . . . P(em−1)P(em)tmφ f (e1...em−1em)

+
k−1
∑

j=1

(P(e1) . . . P(em)tm) j
m−1
∑

i=1

P(e1) . . . P(ei−1)P(ei )t
iφ f (α( j,i))

+ (

P(e1) . . . P(em)tm
)k

,

and for i = 1, 2, . . . ,m − 1,

φe1...ei = P(ei+1)tφ f (α(0,i+1)) + P(ei+1)P(ei+2)t
2φ f (α(0,i+2)) + . . .

+ P(ei+1) . . . P(em−1)P(em)tm−iφ f (α(0,m))

+ P(ei+1) . . . P(em)

k−2
∑

j=1

(P(e1) . . . P(em)tm) j
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×
m−1
∑

i=1

P(e1) . . . P(ei−1)P(ei )t
iφ f (α( j,i))

+ (P(e1) . . . P(em)tm)k .

Example 1 (Waiting time for [110]k) Let k be an integer greater than one, and let φ be
the p.g.f. of thewaiting time for [110]k .Wedefineφ11(t) = E[tW−2|X1 = 1, X2 = 1].
From Theorem 1, φ and φ11 satisfy the following equations:

φ =
k−1
∑

j=0

(p2qt3) j
(

qtφ + pqt2φ + p3t3φ11

)

+ (p2qt3)k,

φ11 = ptφ11 + qt
k−2
∑

j=0

(p2qt3) j
(

qtφ + pqt2φ + p3t3φ11

)

+ qt (p2qt3)k−1.

Solving the equations, we obtain φ = (p2qt3)k(1−p2qt3)
1−t+(p2qt3)k (t−p2qt3)

.

Example 2 (Waiting time for [101]k) Let φ be the p.g.f. of the waiting time for the
pattern [101]k , and define the conditional p.g.f.’s φ1(t) = E[tW−1|X1 = 1] and
φ10(t) = E[tW−2|X1 = 1, X2 = 0]. From Theorem 1, we have

φ = qtφ + p2t2φ1 + pq2t3φ +
k−1
∑

j=1

(p2qt3) j
(

qtφ10 + p2t2φ1 + pq2t3φ
)

+ (p2qt3)k ,

φ1 = ptφ1 + q2t2φ + qpt2
k−2
∑

j=0

(p2qt3) j
(

qtφ10 + p2t2φ1 + pqt3φ
)

+ qpt2(p2qt3)k−1,

φ10 = qtφ + pt
k−2
∑

j=0

(p2qt3) j
(

qtφ10 + p2t2φ1 + pq2t3φ
)

+ pt (p2qt3)k−1.

Solving the system of equations, we obtain

φ = (p2qt3)k(1 − p2qt3)

1 − t + pqt2(p2qt3)k−1(1 − t + pt2 − p2qt3 + p2q2t4)
.

Since we have obtained all the p.g.f.’s of the kth repetition with basic patterns of
length less than or equal to 3, we tabulate them in Table 1.

When the basic pattern is relatively simple, we can obtain the exact distribution of
the kth consecutive repetition of the basic pattern even the length of the basic pattern
is general. For example, we have the following results.
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314 S. Aki

Theorem 2 For any positive integers m and n, the p.g.f. of the exact distribution of
the waiting time W for the pattern [[1]m[0]n]k can be written as

φ(t) = (1 − pmqntm+n)(pmqntm+n)k

1 − t + (pmqntm+n)k(t − pmqntm+n)
.

Let r be a positive integer. Generally, for the p.g.f. φ(t) of the waiting time for an
event in independent trials, the p.g.f. φr (t) of the waiting time for the non-overlapping
r th occurrence of the event satisfies that φr (t) = (φ(t))r . Therefore, we obtain the
next result.

Corollary 1 The p.g.f. of the rth non-overlapping occurrence of [[1]m[0]n]k is given
by

φr (t) =
(

(1 − pmqntm+n)(pmqntm+n)k

1 − t + (pmqntm+n)k(t − pmqntm+n)

)r

.

Remark 2 When k = 1 in Theorem 2, the p.g.f. coincides with that of the waiting
time for the first (k1, k2)-event with k1 = n and k2 = m. In fact, by setting k = 1, we
obtain the p.g.f.

φ(t) = (1 − αm,n(t))(αm,n(t))

1 − t + (αm,n(t))(t − αm,n(t))
, where αm,n(t) = pmqntm+n .

Here, noting that

1 − t + (αm,n(t))(t − αm,n(t)) = (1 − αm,n(t))(1 − t + αm,n(t)),

we can write

φ(t) = αm,n(t)

1 − t + αm,n(t)
,

(cf. Corollary 2 of Huang and Tsai 1991, Theorem 4.1 of Dafnis et al. 2010 with
r = 1, or Corollary 1 of Stefanov and Manca 2013 with m = 1). Therefore, we can
say that our distribution is an order-k version of the waiting time distribution for the
first occurrence of the (k1, k2)-event.

As another result, we shall give a general form corresponding to the waiting time
for [101]k treated in Example 2.

Theorem 3 Let k, m1, n and m2 be any positive integers and we set n1 =
min(m1,m2) and n2 = max(m1,m2). Then, the p.g.f. of the exact distribution of
the waiting time W for the pattern [[1]m1[0]n[1]m2 ]k can be written as

φ(t) = (1 − P(t))P(t)k

1 − t + qn pn2 tn+n2 P(t)k−1( f (t) − P(t)g(t))
,
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where P(t) = pm1+m2qntm1+m2+n, and

f (t) = pn1 tn1+1 − pn1−1tn1 −
n1−1
∑

�=1

pn1−�−1qtn1−� + 1

g(t) = −pn1−1qtn1 − pn1−2qtn1−1 − · · · − qt + 1.

Remark 3 Whenm1 = 1 in the above theorem, f (t) = pt2−t+1 and g(t) = −qt+1
hold. By setting m1 = 1, n = 1, and m2 = 1, we see that the result of Theorem 3
agrees with that of Example 2.

3 Number of occurrences of runs of a pattern

Let X1, X2, . . . be i.i.d. {0, 1}-valued random variables with P(Xi = 1) = p = 1−q
for i = 1, 2, . . .. For a given positive integer x , the distribution of the number of
occurrences of runs of a pattern in X1, X2, . . . , Xx is as important as that of waiting
times treated in the previous section. Various problems on the number of occurrences
of run of a pattern will be studied as various problems on usual runs have been studied
(see e.g., Balakrishnan and Koutras 2002; Johnson et al. 2005).

Here, we study the distribution of the number of occurrences of [[1]m[0]n]k in
X1, X2, . . . , Xx , wherem, n, and k are positive integers.We denote by Nx the number
of non-overlapping occurrences of [[1]m[0]n]k in X1, X2, . . . , Xx . In particular, we set
N0 = 0 for notational convenience. We give the next result for the p.g.f. φx (t) of Nx

and the double generating function of Nx . A formula of the double generating function
by using the p.g.f. of the waiting time for the (k1, k2)-event is given in Theorem 2
of Huang and Tsai (1991). However, the next proposition is very simple and we can
derive the p.g.f. of Nx by using it.

Proposition 1 The double generating function Φ(t, z) =∑∞
x=0 φx (t)zx can be writ-

ten as

Φ(t, z) = 1 − (pmqnzm+n)k

1 − z + (pmqnzm+n)k(z − t − (1 − t)pmqnzm+n)
. (3)

Remark 4 We have derived the double generating function Φ(t, z) directly in Sect. 5.
However, it can be derived also from the p.g.f. of the waiting time W for the first
occurrence of [[1]m[0]n]k . In fact, by using the formula (5.9) of Balakrishnan and
Koutras (2002), we can show that

Φ(t, z) = 1

1 − z

{

1 − φ(z)
1 − t

1 − tφ(z)

}

,

where φ(t) is the p.g.f. of the waiting time for [[1]m[0]n]k given in Theorem 2.

One of the merits for finding double generating functions is to obtain an explicit
expression of the p.g.f. of the distribution of number of occurrences of a pattern in
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finitely given trials. In fact, by picking up the coefficient of zx after expanding the
double generating function (3), we give the next result for an explicit expression of
φx (t).

Proposition 2 The p.g.f. of Nx is given as

φx (t) =
∑∗ (x1 + x2 + x3 + x4)!

x1!x2!x3!x4! t x2(1 − t)x4(−1)x3(pmqn)k(x2+x3+x4)

−
∑∗∗ (y1 + y2 + y3 + y4)!

y1!y2!y3!y4! t y2(1 − t)y4(−1)y3(pmqn)k(1+y2+y3+y4),

where the summation
∑∗ extends to all nonnegative integers x1, x2, x3 and x4 satis-

fying the condition x1 + (m+n)kx2 + ((m+n)k+1)x3 + (m+n)(k+1)x4 = x, and
the summation

∑∗∗ extends to all nonnegative integers y1, y2, y3 and y4 satisfying the
condition y1 + (m + n)ky2 + ((m + n)k + 1)y3 + (m + n)(k + 1)y4 = x − (m + n)k.

4 Multi-state trials

In the case of independent {0, 1}-valued trials, we have observed that the p.g.f. of
the waiting time for [[1]m[0]n]k becomes similar to that of the geometric distribu-
tion of order k. In the case of independent multi-state trials, it is shown that similar
formulae hold even if the form of the pattern is not necessarily repetitions of the
same basic pattern. Let A = {1, 2, . . . , r} for a positive integer r > 1. Suppose
that the independent A-valued random variables {Xi } satisfy P(Xi = j) = p j for
j = 1, 2, . . . , r with p1 + p2 + · · · pr = 1. Let k, m1 and m2 be integers satisfying
k ≥ 1, m1 ≥ 1, m2 ≥ 0, respectively. Let w = (w1, w2, . . . , wm2) ∈ {A\{1}}m2 be a
finite sequence of length m2. For i = 1, 2, . . . ,m2, we set w[i] := (w1, w2, . . . , wi )

and define pw = pw1 pw2 . . . pwm2
and pw[i] = pw1 pw2 . . . pwi . Here, we examine the

distributionof thewaiting time for the pattern [[1]m1w]k in the sequence of independent
multi-state trials {Xi }. For integersm1,m2, and k, we assumem1 ≥ 1, m2 ≥ 0, k ≥ 1.
However, when m2 = 0, the pattern [[1]m1w]k becomes a 1-run of length m1k and
hence the p.g.f. is written as

(p1t)m1k(1 − p1t)

1 − t + (p1t)m1k(t − p1t)
. (4)

Therefore, we assume m2 > 0 and we set α(t) = pm1
1 pwtm1+m2 . Then, we have the

following result.

Theorem 4 For any integers m1 ≥ 1 and m2 > 0, the p.g.f. of the waiting time for
the pattern [[1]m1w]k can be written as

φ(t) = (α(t))k(1 − α(t))

1 − t + (α(t))k(t − α(t))
.
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Remark 5 Setting r = 2 in Theorem 4, and regarding “2” as “0”, we can see that
Theorem 2 is a corollary of Theorem 4.

Example 3 (Waiting time for [1123234]k) We shall derive the exact distribution of the
waiting time for [1123234]k . From Theorem 4, the p.g.f. is obtained by considering
m1 = 2 andw =“23234” in the theorem. Therefore, substituting α(t) = p21 p

2
2 p

2
3 p4t

7

in the result of Theorem 4, we can write the p.g.f. as

(α(t))k(1 − α(t))

1 − t + (α(t))k(t − α(t))
.

Noting that the p.g.f. is determined by α(t), if α(t) is common, the distributions of the
waiting times for various patterns agree with each other. For example, the waiting time
distributions for “[1122334]k” and “[1143223]k” agree.Moreover, if p1 = p2 = · · · =
pr can be assumed like dice, the distribution does not depend on m1. Since m1 ≥ 1
andm2 ≥ 1 are assumed, thoughm1 = 0 is not allowed, the waiting time distributions
for “[1222334]k”, “[1112334]k”, “[1111134]k”, and “[1111114]k” agree with each
other. However, the waiting time distribution for “[1111111]k”, whose p.g.f. has been
given in (4), does not agree with the above distributions even if p1 = p2 = · · · = pr
can be assumed.

We give here a method for evaluation of the probability function of the distribution
given in Theorems 2 and 4. We denote by W the waiting time for the theorems. Its
p.g.f is given by

φ(t) = (α(t))k(1 − α(t))

1 − t + (α(t))k(t − α(t))
,

where α(t) can be written as at� by using a constant a > 0 and the length � of the basic
pattern. For example, if α(t) = αm,n(t) = pmqntm+n in Remark 2, we set a = pmqn

and � = m + n. If α(t) = p21 p
2
2 p

2
3 p4t

7 in Example 3, we can set a = p21 p
2
2 p

2
3 p4 and

� = 7. Let Pn = P(W = n), n = 0, 1, 2, . . . be the probability function of W .

Proposition 3 The probability function {Pn} of W above satisfies for 0 ≤ n ≤ 2�k,

Pn =
⎧

⎨

⎩

0 if 0 ≤ n < �k
ak if �k ≤ n < �(k + 1)
ak − ak+1 if �(k + 1) ≤ n ≤ 2�k.

For n > 2�k, the recurrence relations hold

Pn = Pn−1 − ak Pn−�k−1 + ak+1Pn−�(k+1).

Remark 6 Setting � = 1 and a = p, we obtain the recurrence relations of the
probability function of the geometric distribution of order k [cf. the formula (2.5)
in Balakrishnan and Koutras 2002].
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Fig. 1 Probability functions of the waiting time for [[1]2[0]1]3 with p = 0.4, p = 0.5, and p = 0.6

Themethod for evaluation of the probability function given above is quite effective.
Figure 1 illustrates the probability functions P ′

ns of the distributions of the waiting
time for [[1]2[0]1]3 with p = 0.4, p = 0.5 and p = 0.6 for n = 9, 10, . . . , 10,000.

Next, we investigate the distribution of the number of consecutive repetitions of
[[1]m1w] until the first occurrence of [[1]m1w]k , where w = (w1, w2, . . . , wm2) ∈
(A\{1})m2 . In the case of usual runs, the corresponding problem was studied by Aki
and Hirano (1995). Let k and � be positive integers with 1 ≤ � ≤ k − 1. Then,
until the first occurrence of [[1]m1w]k, [[1]m1w]� occurs necessarily. We introduce
an overlapping counting scheme for [[1]m1w]�. As the basic pattern of [[1]m1w]�
is [[1]m1w], we regard the basic pattern as one unit. In the overlapping counting
scheme, when [[1]m1w] occurs just after an occurrence of [[1]m1w]�, it is defined that
another [[1]m1w]� has occurred, that is, the ending part [[1]m1w]�−1 of the [[1]m1w]�
is overlapping. For example, in the overlapping counting scheme, there are (k−�+1)
[[1]m1w]�’s in one [[1]m1w]k .

Let W be the waiting time for [[1]m1w]k and for � = 1, 2, . . . , k − 1 let M�

be the overlapping number of [[1]m1w]� until W . We define the joint p.g.f. of
(M1, M2, . . . , Mk−1,W ) by

φ(s, t) = φ(s1, s2, . . . , sk−1, t) = E
[

sM1
1 sM2

2 . . . sMk−1
k−1 tW

]

.

Then we have the next theorem.
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Theorem 5 For integers m1 ≥ 1 and m2 ≥ 0, the joint p.g.f. φ(s, t) of
(M1, M2, . . . , Mk−1,W ) is written by

φ(s, t) = (pm1
1 pw)ksk1s

k−1
2 . . . s2k−1t

k(m1+m2)

1−∑k−1
j=0(p

m1
1 pw) j s j1 s

( j−1)∨0
2 . . . s( j−(k−2))∨0

k−1 t j (m1+m2)(t−(p1t)m1 pwtm2)
,

where a ∨ b means max(a, b).

Considering the marginal distributions, we obtain the next result.

Corollary 2 Under the assumption of Theorem 5, the marginal distribution of M� is
the geometric distribution of order (k−�)with parameter π = pm1

1 pw whose support
is shifted so as to begin with k − � + 1.

5 Proofs

5.1 Proof of Theorem 1

Proof From properties of the conditional expectation, it is obvious to see that the
equations in Theorem 1 hold. Hence, it suffices to show

f (α( j, i)) = f ([e1 . . . em] j e1e2 . . . ei−1ei ) ∈ F

for every j = 0, 1, 2, . . . , k − 1 and i = 1, 2, . . . ,m. When we fail in observing the
pattern, we show that a coincidence between the ending subsequence with length more
than m and a sequential subpattern of [e1 . . . em]k leads a contradiction. Assume that
for some j ≥ 1 and 1 ≤ i ≤ m, there exist 1 ≤ j0 ≤ j and i0 
= i such that

f
(

[e1 . . . em] j e1 . . . ei
)

= [e1 . . . em] j0e1 . . . ei0

holds. If i0 < i , then “ei−i0+1 . . . eme1 . . . ei” agrees with “e1 . . . eme1 . . . ei0”, since
they are the ending blocks of the same sequence. In particular, ei = ei0 holds, since they
are the ending elements. Further, by comparing the i0th elements, we see that ei = ei0 .
Then, ei = ei holds. This is a contradiction. If i0 > i , then ‘ei0−i+1 . . . eme1 . . . ei0”
agrees with “e1 . . . eme1 . . . ei”. Similarly in the above case, ei = ei0 = ei holds,
which leads a contradiction. ��

5.2 Proof of Theorem 2

Proof Let φ be the p.g.f. of W and define the conditional p.g.f.’s φ1(t) =
E[t (W−1)|X1 = 1] and φm(t) = E[t (W−m)|X1 = 1, . . . , Xm = 1]. By using Theorem
1, we have

φ =
k−1
∑

j=0

(pmqntm+n) j

(

m
∑

�=1

p�−1qt�φ + (pt)m+1φm + pmqtm+1
n−1
∑

�=1

q�−1 pt�φ1

)

+ (pmqntm+n)k . (5)
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Let us find a relation amongφ, φ1 andφm . Suppose thatwe have observed the first trial.
Then, we see that φ = ptφ1+qtφ and hence we have φ1 = 1−qt

pt φ. Similarly, suppose

we have observed the mth trial. Then we have φ =∑m
�=1 p

�−1qt�φ + pmtmφm . and

hence we observe φm = 1−t+pmqtm+1

(pt)m(1−pt) φ. Rewriting the summations in the right-hand

side of (5) and using these relations, we obtain

φ = (t − pmqntm+n)
1 − (pmqntm+n)k

1 − pmqntm+n
φ + (pmqntm+n)k .

��

5.3 Proof of Theorem 3

Proof Generally, the exact distribution of the waiting time for a pattern agrees with
that of the waiting time for the reversed pattern (see Corollary 1 of Aki and Hirano
2002). Therefore, since the reversed pattern of [[1]m1 [0]n[1]m2 ]k is [[1]m2 [0]n[1]m1]k ,
the distributions agree with each other. Thus, it suffices to find the p.g.f. of the waiting
time for [[1]n1[0]n[1]n2 ]k and hence, without loss of generality, we assume that 0 <

m1 ≤ m2, n1 = m1 and n2 = m2.

We define φ1 = φ1(t) = E[tW−1|X1 = 1],

φm1 = φm1(t) = E
[

tW−m1 |X1 = 1, . . . , Xm1 = 1
]

,

φ10 = φ10(t) = E
[

tW−m1−1|X1 = 1, . . . , Xm1 = 1, Xm1+1 = 0
]

.

Then from Theorem 1, we obtain the following equation:

φ =
m1
∑

�=1

p�−1qt�φ + pm1+1tm1+1φm1 + pm1qtm1+1
n−1
∑

�=1

q�−1 pt�φ1

+ pm1qntm1+n
m1
∑

�=1

p�−1qt�φ + pm1qntm1+n
m2
∑

�=m1+1

p�−1qt�φ10

+
k−1
∑

j=1

(

pm1qn pm2 tm1+n+m2
) j

×
{

m1
∑

�=1

p�−1qt�φ10 + pm1+1tm1+1φm1 + pm1qtm1+1
n−1
∑

�=1

q�−1 pt�φ1

+ pm1qntm1+n
m1
∑

�=1

p�−1qt�φ + pm1qntm1+n
m2
∑

�=m1+1

p�−1qt�φ10

⎫

⎬

⎭

+ (pm1qn pm2 tm1+n+m2)k . (6)
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Noting thatφ = ptφ1+qtφ, we haveφ1 = 1
pt (1−qt)φ. Similarly, from the equations

φ =
m1
∑

�=1

p�−1qt�φ + pm1 tm1φm1, and φm1 = ptφm1 + qtφ10,

we have

φm1 = 1

pm1 tm1

(

1−t+ pm1qtm1+1

1 − pt

)

φ, and φ10= 1

pm1qtm1+1 (1−t+ pm1qtm1+1)φ.

Substituting these equations in theEq. (6) and solving it, we obtain after some algebraic
manipulations

φ(t) = (1 − pt)(1 − P(t))P(t)k

(1 − t)(1 − pt) + qn pm2 tn+m2 P(t)k−1A(t)
,

where A(t) = 1− t + pm1 tm1(−1+ 2t − pt2 − pm2qntm2+n(1− t + pm1qtm1+1)).
Here, we show that A(t) is divisible by (1 − pt). We set

F(t) = −pm1+1tm1+2 + 2pm1 tm1+1 − pm1 tm1 − t + 1,

G(t) = pm1qtm1+1 − t + 1.

Then, we see that A(t) = F(t)−P(t)G(t). Since it is easy to see that F( 1p ) = 0, F(t)

is divisible by (t − 1
p ). In fact, we have F(t) = (1 − pt) f (t). Similarly, we see that

G(t) = (1 − pt)g(t). Consequently, we obtain

φ(t) = (1 − P(t))P(t)k

1 − t + qn pn2 tn+n2 P(t)k−1( f (t) − P(t)g(t))
.

This completes the proof. ��

5.4 Proof of Proposition 1

Proof For every nonnegative integer x , we define

φx (t) := E[t Nx ],
φ(1)
x (t) := E[t Nx+1 |X1 = 1], and

φ(m)
x (t) := E[t Nx+m |X1 = 1, X2 = 1, . . . , Xm = 1].

Noting that the sequence X1, X2, . . . is temporally homogeneous, by conditioning on
the location where the outcome does not match the pattern [[1]m[0]n]k for the first
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time, we observe after some algebraic manipulations for x ≥ (m + n)k,

φx (t) =
k−1
∑

j=0

(pmqn) j
{

φx−(m+n) j−1(t) − pmqnφx−(m+n) j−m−n(t)
}

+ (pmqn)k tφx−(m+n)k(t). (7)

Since φx (t) = 1 for x < (m + n)k, we can effectively compute the p.g.f. of Nx by the
recurrence relation (7).

When a positive integer x is given, the formula (7) suffices to evaluate the probability
function of Nx . However, if an explicit formula for the p.g.f. of Nx is necessary
for every positive integer x , it is convenient to find the double generating function
Φ(t, z) := ∑∞

x=0 φx (t)zx . By using the formula (7), we derive the function Φ(t, z).
Multiplyingboth sides of (7) by zk , and adding themfor x = (m+n)k, (m+n)k+1, . . .,
we obtain

Φ(t, z) −
(m+n)k−1
∑

x=0

zx =
k−1
∑

j=0

(pmqn) j

⎧

⎨

⎩

z(m+n) j+1

⎛

⎝Φ(t, z) −
(m+n)(k− j)−2

∑

x=0

zx

⎞

⎠

⎫

⎬

⎭

−
k−2
∑

j=0

(pmqn) j z(m+n)( j+1)

⎛

⎝Φ(t, z) −
(m+n)(k− j−1)−1

∑

x=0

zn

⎞

⎠

− (pmqn)k z(m+n)kΦ(t, z) + (pmqnz(m+n))k tΦ(t, z).

Then, we obtain the desired result by simplifying the above formula. ��

5.5 Proof of Theorem 4

Proof We define the conditional p.g.f. for m1

φm1(t) := E
[

tW−m1 |X1 = 1, X2 = 1, . . . , Xm1 = 1
]

.

Note that the sequence {Xn} is temporally homogeneous. Thus, if m ≥ m1, for any
integer ν, E[tW−ν |Xν−m = 1, Xν−m+1 = 1, . . . , Xν = 1] = φm1(t) holds. With this
in mind, conditioning on the first location where we fail in observing the sequential
subpattern of the pattern, we obtain

φ(t) =
k−1
∑

j=0

(α(t)) j
{

m1
∑

�=1

p�−1
1 (1 − p1)t

�φ(t) + (p1t)
m1+1φm1(t)

+ (p1t)
m1(1 − p1 − pw1)tφ(t)
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+ (p1t)
m1

m2−1
∑

�=1

pw[�]t�
(

p1tφ1(t) + (1 − p1 − pw�+1)tφ(t)
)

}

+ (α(t))k .

(8)

Let us examine relations between φ1(t) and φ(t), and between φm1(t) and φ(t). It is
easy to see that

φ1(t) = 1 − (1 − p1)t

p1t
φ(t). (9)

and

φm1(t) = 1 − t + (p1t)m1(1 − p1)t

(p1t)m1(1 − p1t)
φ(t). (10)

Substituting (9) and (10) in (8), we obtain

φ(t) =
k−1
∑

j=0

(α(t)) j

⎧

⎨

⎩

m1
∑

�=1

p�−1
1 (1 − p1)t

�φ(t) + (p1t)(1 − t + (p1t)
m1(1 − p1)t)

1 − p1t
φ(t)

+ (1 − p1t)(p1t)
m1(1 − p1 − pw1 )t

1 − p1t
φ(t)

+ (p1t)
m1

m2−1
∑

�=1

pw[�]t�
(

(1− (1 − p1)t)φ(t) + (1− p1− pw�+1 )tφ(t)
)

⎫

⎬

⎭

+ (α(t))k .

Noting that

(p1t)(1 − t + (p1t)m1(1 − p1)t)

1 − p1t
+ (1 − p1t)(p1t)m1(1 − p1 − pw1)t

1 − p1t
= t − (p1t)

m1 pw1 t,

we have φ(t) = (α(t))k(1−α(t))
1−t+(α(t))k(t−α(t))

. This completes the proof. ��

5.6 Proof of Proposition 3

Proof Since α(t) = at�, from the equation

(at�)k(1 − at�)

1 − t + (at�)k(t − at�)
=
∑

ν

Pν t
ν,

we have

akt�k − ak+1t�(k+1) =
∑

n

(

Pn − Pn−1 + ak Pn−�k−1 + ak+1Pn−�(k+1)

)

tn .
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By comparing the coefficients of tn in both sides of the above equation, we obtain the
recurrence relations. ��

5.7 Proof of Theorem 5

Proof Conditioning on the location of the first failure of observing the pattern, we
have

φ(s, t) =
k−1
∑

j=0

(pm1
1 pw) j s j1 s

( j−1)∨0
2 . . . s( j−(k−2))∨0

k−1 t j (m1+m2)

×
{

m1
∑

�=1

p�−1
1 (1 − p1)t

�φ(s, t)

+ (p1t)
m1+1φm1(s, t) + (p1t)

m1(1 − p1 − pw1)tφ(s, t)

+ (p1t)
m1

m2−1
∑

�=1

pw[�]t�(p1tφ1(s, t) + (1 − p1 − pw�+1)tφ(s, t))

}

+ (pm1
1 pw)ksk1s

k−1
2 . . . s2k−1t

k(m1+m2).

Further algebraic manipulations on the above equation yield

φ(s, t) =
k−1
∑

j=0

(pm1
1 pw) j s j1 s

( j−1)∨0
2 . . . s( j−(k−2))∨0

k−1 t j (m1+m2)(t−(p1t)
m1pwt

m2)φ(s, t)

+ (pm1
1 pw)ksk1s

k−1
2 . . . s2k−1t

k(m1+m2).

Solving the equation with respect to φ(s, t), we have the desired result. ��
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