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Abstract
We present a detection problem where several spatially distributed sensors observe
Poisson signals emitted from a single radioactive source of unknown position. The
measurements at each sensor are modeled by independent inhomogeneous Poisson
processes. A method based on Bayesian change-point estimation is proposed to iden-
tify the location of the source’s coordinates. The asymptotic behavior of the Bayesian
estimator is studied. In particular, the consistency and the asymptotic efficiency of the
estimator are analyzed. The limit distribution and the convergence of the moments
are also described. The similar statistical model could be used in GPS localization
problems.

Keywords Inhomogeneous Poisson process · Change-point problem · Bayesian
estimator · Likelihood ratio process · Radioactive source · Sensors · GPS localization

1 Introduction

In this work, we study the properties of Bayesian estimators for the localization of a
radioactive source emitting a signal that propagates over an area monitored by a set of
sensors. This mathematical model could be used for the description of a radioactive
emission, an explosion, a seismic activity or the detection of weak optical signals.
Sensors are electronic devices that can measure changes in the environment around
them; for instance, there are light sensors, proximity sensors, pressure sensors, heat
sensors, radiation sensors, etc. The model under study could describe such data if the
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sequence of observed random events is of Poisson nature. Data obtained from a single
sensor are often not fully reliable and incomplete due to single device’s technical
limitations. Using data from several sensors has advantages over data collected from a
single sensor. If several identical sensors are employed, the observation process can be
improved by combining individual information to generate a more complete picture
of the environment monitoring. We refer the interested reader to Magee and Aggarwal
(1985) or Chao et al. (1987) for the advantages of using multiple sensors. It has been
shown that the probability of measurement error decreases with the size of the sensor
network.However, it isworthmentioning the complexity of themonitoring systemwill
increase with the number of sensors. Source tracking and localization are a problem
of considerable importance that has attracted the scientific interest. Many examples of
applications for such problems can be found in environmental monitoring, industrial
sensing, infrastructure security, military tracking and diverse areas of security and
defense, see, for instance, Zhao and Guibas (2004) and Chong and Kumar (2003). The
present work focuses on the detection of explosion sources. Due to the recent events,
security issues have become more and more concerning and the problem of detecting
radioactive sources, more specifically the detection of illicit radioactive substances,
stored or in transit, has received great deal of attention by the engineering community.

The detection of hidden nuclear material by means of sensors is an active area of
research as part of defensive strategies. One can consult the work of Baidoo-Williams
et al. (2015), Liu andNehorai (2004) and Rao et al. (2008) for details and references on
this topic. Nuclear radiations are a probabilistic physical process consisting of discrete
emissions of particles that can be recorded by radiation sensors. Those emissions have
been mathematically modeled with help of Poisson point processes which provide
natural models describing their properties, see, for instance, Evans (1963) or Knoll
(2010). Apart from radiation measurements, typical examples on the use of Poisson
point processes include modeling streams of photo-electrons produced by light on
photosensitive surfaces Mandel (1958), laser radar detection and ranging of objects
Karr (1991), earthquake aftershocks Ogata (1994), electrical response of nerves to
stimulus Snyder and Miller (1991) and others; for application to tracking and sensing,
we refer to the book of Streit (2010). Special cases of the source localization problem
have been studied in the past; for instance, Howse et al. (2011) described least squares
estimation algorithms to estimate the location of a possibly moving source by a fixed
number of sensors. For multiple sources, maximum likelihood estimation (MLE) was
considered byMorelande et al. (2007). An iterative procedure for calculatingMLEs of
a single nuclear source from radiationmeasurements aswell as correspondingCramer–
Rao bounds for localization accuracy was given by Baidoo-Williams et al. (2015).
Concerning Bayesian statistics Liu and Nehorai (2004) presented a technique to locate
a source according to Bayesian update methods. The results of Pahlajani et al. (2013)
are also noteworthy: their paper studies the presence of a source using Likelihood
ratio calculation and a Neyman–Pearson test. In what follows, we suppose that there
is a single source generating a signal. Our goal is to describe the asymptotic behavior
of the Bayesian estimator (BE) of its coordinates through the method developed by
Ibragimov and Khasminskii (1981) for the study of such estimators. We show that
the rate of convergence of the estimator is n and that the limit distribution is not
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Poisson source localization on the plane: change-point case 677

Fig. 1 Model of observations

Gaussian. A lower bound on the mean square risk is proposed, and the BE is proved
to be asymptotically efficient.

Note that the same mathematical model can be used in the problem of GPS local-
ization on the plane Luo (2013). Indeed, in this case the signals are emitted by k fixed
emitters and an object receiving these signals has to define its own position. Here once
more we have k signals with unknown moments of arriving, and using the estimators
of these moments, the object can construct the estimator of its position.

2 Statement of the problem

We are interested in locating the source of an event with the help of several spatially
distributed independent sensors monitoring an area over a fixed time interval. For
example, if we have a radioactive source, then each sensor records ambient measure-
ments, for instance, radiations due to natural isotopes in the environment. When the
event occurs, then the sensors record the sum of ambient measurements and the mea-
surements related to the event. The two signals are independently, and we consider
that each sensor records a single inhomogeneous Poisson process whose intensity is
the sum of the intensities due to both ambient and background event measurements.

Popular network topologies for source localization problems that were considered
in other studies are grids of sensors Liu and Nehorai (2004) and triangular arrays Chin
et al. (2010). In order to identify the source location, we use a configuration of sensors
forming a triangle.

In our case, we have sequences of measurements from three sensors and collected
within the same timewindow. Themeasurements from each sensor are sent to a central
processing unit (fusion center) that combines the data and estimates the coordinates
of the source (Fig. 1).

The source is located at an unknown position D0 with coordinates ϑ0 = (x0, y0)
inside a convex set Θ ⊂ R2. Three sensors are placed in the field at known positions
at points D1, D2, D3 with the coordinates ϑ j = (x j , y j ), j = 1, 2, 3. Each sensor
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records on the time interval [0, T ] a signal modeled by a Poisson point process X j ={
X j (t), 0 ≤ t ≤ T

}
, j = 1, 2, 3 of intensity function λ j (ϑ0, t) , 0 ≤ t ≤ T . These

intensity functions are supposed to be of the form

λ j (ϑ0, t) = λ
(
t − τ j

) + λ0, 0 ≤ t ≤ T .

Here λ0 > 0 is a known intensity of the background noise, λ (t) is the known intensity
function of the signal, and τ j = τ j (ϑ0) is the arrival time of the signal to the j-th
sensor (delay). This delay is calculated following the usual rule

τ j (ϑ0) = ||ϑ j − ϑ0||
ν

, (1)

where || · || is the Euclidean norm and ν is the known rate of propagation of the
signal in the monitored area. We suppose that λ (t) = 0 for t < 0. At time t = 0
the emission of signals begins and τ j is the arrival time of the signal to the j-th
sensor. We are concerned by estimating the position ϑ0 of the radioactive source. We
are interested in the models of observations which allow the estimation with small
errors such that Eϑ0

(
ϑ − ϑ0

)2 = o (1). As usual such situations are considered in an
asymptotic framework. The small errors can be obtained if the intensity of the signal
takes large values or a periodical Poisson process could describe the data. Another
possibility is to have many sensors. We take the model with large intensity functions
λ j (ϑ0, t) = λ j,n (ϑ0, t) which can be written as follows

λ j,n (ϑ0, t) = nλ
(
t − τ j

) + nλ0, 0 ≤ t ≤ T . (2)

Here n is a “large parameter,” and we study estimators as n → ∞. For example, such
a model could be obtained in the case of three clusters, where each cluster includes n
detectors.

The likelihood ratio function L (ϑ, Xn) is

ln L
(
ϑ, Xn) =

3∑

j=1

∫ T

τ j

ln

(

1 + λ
(
t − τ j

)

λ0

)

dX j (t) − n
3∑

j=1

∫ T

τ j

λ
(
t − τ j

)
dt .

(3)

Here τ j = τ j (ϑ) and Xn = (
X j (t) , 0 ≤ t ≤ T , j = 1, 2, 3

)
are counting processes

from three detectors. Based on this likelihood ratio formula, we define the maximum
likelihood estimator (MLE) ϑ̂n and Bayesian estimator (BE) ϑ̃n by

L
(
ϑ̂n, X

n
)

= sup
ϑ∈Θ

L
(
ϑ, Xn) , (4)

and

ϑ̃n =
∫
Θ

ϑ p (ϑ) L (ϑ, Xn) dϑ
∫
Θ
p (ϑ) L (ϑ, Xn) dϑ

, (5)

respectively.
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Here p (ϑ) , ϑ ∈ Θ is the prior density. As the limit properties of the BE do not
depend on the prior density, we could consider a non-informative prior such as the
uniform density. For any other positive continuous function p (·), the limit properties
will remain the same.

Recall that in the case of a discontinuous intensity function λ (·) the definition of
the MLE has to be modified since

ln L
(
ϑ, Xn) =

3∑

j=1

N j∑

i=1

ln

(

1 + λ
(
ti, j − τ j (ϑ)

)

λ0

)

− n
3∑

j=1

∫ T

τ j (ϑ)

λ
(
t − τ j (ϑ)

)
dt .

Here ti, j , i = 1, . . . , N j are the registration times of the events in the j-th sensor, and
N j is the total number of events in this sensor. Of course, if N j = 0, then we set

N j∑

i=1

ln

(

1 + λ
(
ti, j − τ j (ϑ)

)

λ0

)

= 0.

We write formally

max
(
L(ϑ̂n−, Xn), L(ϑ̂n+, Xn)

)
= sup

ϑ∈Θ

L(ϑ, Xn)

which we understand as follows. The function

M
(
τ1 (ϑ) , τ2 (ϑ) , τ3 (ϑ) , Xn) = L

(
ϑ, Xn)

has jumps at points τ j (ϑ) = ti, j , and its supremum is in one of the jump points. It
can be written

sup
ϑ∈Θ

L
(
ϑ, Xn) = maxM

(
τ1(ϑ̂n)±, τ2(ϑ̂n)±, τ3(ϑ̂n)±, Xn

)
.

Here M (τ1(ϑ)±, τ2(ϑ)±, τ2(ϑ)±, Xn) are left and right limits of the function
M (τ1(ϑ), τ2(ϑ), τ2(ϑ), Xn) at the points τ j (ϑ).

There are several different types of problems associated with the identification of
the location depending on the regularity of the function λ (t). In particular, the rate of
convergence of the mean square error of the estimators ϑn is

Eϑ0

(
ϑn − ϑ0

)2 = C

nγ
(1 + o (1)) ,

where the parameter γ > 0 depends on the regularity of the function λ (·).
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Fig. 2 Intensity (6) with κ = 5
8 , δ = 0, 1

Let us present three of them. All the cases are illustrated using the following model

λ (ϑ, t) = 2

∣∣∣∣
t − τ j (ϑ)

δ

∣∣∣∣

κ

1{0≤t−τ j (ϑ)<δ} + 21{t−τ j (ϑ)≥δ} + 1. (6)

Statistical problems related to different types of regularity could be obtained according
to the values of parameter κ .

• Smooth case. Suppose that the function λ (·) in (2) is sufficiently smooth, for
example, continuously differentiable, then the problem of parameter estimation is
regular.

TheMLE ϑ̂n andBE ϑ̃n (under regularity conditions) are consistent, asymptotically
normal

√
n
(
ϑ̂n − ϑ0

)
	⇒ N

(
0, I (ϑ0)

−1
)

,
√
n
(
ϑ̃n − ϑ0

) 	⇒ N
(
0, I (ϑ0)

−1
)

,

the moments converge, and both estimators are asymptotically efficient. Here I (ϑ0)

represents the Fisher information matrix. For the mean square error, the following
relation holds true:

Eϑ0

∥∥∥ϑ̂n − ϑ0

∥∥∥
2 = C

n
(1 + o (1)) ,

i.e., γ = 1.
This kind of regularity corresponds to the intensity function (6) with κ > 1

2 . An
example of such an intensity function is given in Fig. 2.

It is worth mentioning that the derivative of this function is a discontinuous func-
tion; however, it is continuous in L2 (0, T ) and the MLE has all the aforementioned
properties.
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Poisson source localization on the plane: change-point case 681

Fig. 3 Intensity (6) with κ = 0, δ = 0

We describe these properties of estimators in the problem of radioactive source
localization in the forthcoming work Chernoyarov and Kutoyants (2018).

• Change-point case. Suppose that the intensity function in (2) has the following
form

λ j,n (ϑ, t) = nλ1
(
t − τ j

)
1{t≥τ j} + nλ0, 0 ≤ t ≤ T .

Here λ1 (t) > 0, t ≥ 0 and λ0 > 0 are known.
This type of statistical problems corresponds to the intensity function (6)with κ = 0

and δ = 0 (see Fig. 3).
In this situation, the intensities of the observed Poisson processes have positive

jumps equal to nλ1 (0) at the points t = τ j = τ j (ϑ0). This is a non-regular parameter
estimation problem, where the MLE and BE have the normalization n and different
limit distributions

n
(
ϑ̂n − ϑ0

)
	⇒ ζ̂ , n

(
ϑ̃n − ϑ0

) 	⇒ ζ̃ .

Themoments of these estimators converge, but only the BE is asymptotically efficient.
The random vectors ζ̂ and ζ̃ are exponential functionals of some Poisson processes.
The mean square error decreases as follows

Eϑ0

∥∥ϑ̃n − ϑ0
∥∥2 = C

n2
(1 + o (1)) ,

i.e., γ = 2. Similar results in the case of an one-dimensional parameter ϑ could be
found in Kutoyants (1998).

Here we focus on the study of the BE for this model of observations.
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Fig. 4 Intensity (6) with κ = 0, 1, δ = 0, 1

•Cusp-type case. This case is in some sense intermediate between the smooth and
change-point cases. Suppose that the intensity function has the following form

λ j,n (ϑ, t) = n λ1
(
t − τ j

)
∣∣∣∣
t − τ j

δ

∣∣∣∣

κ

1{0≤t−τ j≤δ} + nλ1
(
t − τ j

)
1{t−τ j>δ} + nλ0.

The parameter κ ∈ (0, 1
2 ), the parameter δ > 0 takes small values, and the function

λ1 (t) = λ1 (0) + O (t) > 0, where λ1 (0) > 0.
An example of such a function is given in Fig. 4.
In the statistical literature, change-point models are well studied, but in some real

cases the intensity function could not have pure discontinuity since due to the physical
laws the electrical current could not have jumps and the cusp-type model fits much
better to the real data with strongly increased intensities. The intensity of the signal
increases from zero to λ (τ + δ) in the small interval [τ, τ + δ]. Note that for these
values of κ the Fisher information does not exist which leads to a singular estimation
problem. The MLE and BE for this model of observations are consistent and have
different limit distributions

n
1

2κ+1

(
ϑ̂n − ϑ0

)
	⇒ ξ̂ , n

1
2κ+1

(
ϑ̃n − ϑ0

) 	⇒ ζ̃ ,

themoments converge, and only theBE is asymptotically efficient. The randomvectors
ξ̂ and ξ̃ are exponential functionals of the fractional Brownian motions.

Eϑ0

∥∥∥ϑ̂n − ϑ0

∥∥∥
2 = C

n
2

2κ+1

(1 + o (1)) ,

i.e., γ = 2
2κ+1 and 1 < γ < 2. These cases will be studied in the forthcoming work

Dachian et al. (2018a). For the one-dimensional parameter case, see Dachian (2003).
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Poisson source localization on the plane: change-point case 683

The properties of the MLE and BE of the one-dimensional parameter in such three
types of regularity problems for the signals observed in the white Gaussian noise are
discussed in Dachian et al. (2018b).

3 Main results

There are three sensors with coordinates ϑ j = (
x j , y j

)
, j = 1, 2, 3 which measure

the particles emitted by some source at the point ϑ0 = (x0, y0). The observa-
tions are modeled by three independent inhomogeneous Poisson processes Xn =(
X j (t) , 0 ≤ t ≤ T , j = 1, 2, 3

)
with respective intensity functions

λ j,n (ϑ0, t) = nλ
(
t − τ j (ϑ)

)
1{t≥τ j (ϑ)} + nλ0, 0 ≤ t ≤ T

whereλ (t) > 0 andλ0 > 0.The arrival timesof the signals in the j-th sensor according
to (1) are τ j = τ j (ϑ0), and the position of the source ϑ0 = (x0, y0) ∈ Θ ⊂ R2 will
be estimated. We suppose that the set Θ is non-empty, open and convex subset of
(α1, α2) × (β1, β2) and such that for all ϑ ∈ Θ the corresponding τ (ϑ) ∈ (0, T ).

Note that if the model of observations with the constant intensities of the signal and
noise is considered, i.e.,

λ j,n (ϑ0, t) = nλ11{t≥τ j (ϑ)} + nλ0, 0 ≤ t ≤ T ,

where λ1 = λ (0) > 0, then the asymptotic properties of the estimators will be the
same.

Let us recall the notations: λ0 is known positive constant (intensity of the noise),
λ (·) is known smooth positive function (intensity function of the signal), λ1 = λ (0)
knownconstant,ν > 0 is known rate of propagationof the signals,ϑ j , j = 1, . . . , k are
known positions of the detectors, ϑ0 = (x0, y0) unknown two-dimensional parameter
(position of the source).

We study the asymptotic (n → ∞) behavior of the Bayesian estimator of the
unknown parameter ϑ0 = (x0, y0). It is worth noticing that in such non-regular esti-
mation problems the asymptotic results could be applied even for moderate values of
n since we have faster convergence of estimators (rate n and not

√
n as in the regular

case).
Let us introduce the quantities

τ = min
j=1,2,3

inf
ϑ∈Θ

τ j (ϑ) , τ = max
j=1,2,3

sup
ϑ∈Θ

τ j (ϑ) , T = [0, T − τ ] .

We suppose that T > τ . At this point we have to suppose some conditions providing
the identifiability of the position of the source.

Conditions I:
I1. The location of the source is different from the sensor location. Consequently, we

suppose that there exists a constant ε > 0 such that for every possible position of
the source ϑ0 ∈ Θ and j = 1, 2, 3

123



684 C. Farinetto et al.

ρ j = ||ϑ j − ϑ0|| ≥ ε.

I2. The function λ (s) , s ∈ T has two continuous derivatives
I3. The sensors are not aligned, therefore

∣∣∣∣∣∣

x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣
�= 0.

By condition I1 the case τ j = 0 is excluded. Due to condition I1, we restrain the
parameter space to

Θ =
[
(α1, α2) × (β1, β2)

]∖
⎡

⎣
3⋃

j=1

B(ϑ j , ε)

⎤

⎦ ,

where B(ϑ j , ε) = {z ∈ R
2 : ||ϑ j−z|| ≤ ε}. If the position of the source coincideswith

the position of one of the sensors, then for this sensor τ j = 0 and the properties of the
estimatorswill be different. For example, the limit likelihood ratio Z (u) can be defined
for the positive values of one component of u only. This situation corresponds to the
case, where the true value of the unknown parameter is on the border of a parametric
set [see, e.g., Kutoyants (1998), where such situation was described]. Remark that if
the condition I2 is not fulfilled and the sensors are in the same line, then the consistent
estimation of the position ϑ0 is not feasible. Of course, such conclusion depends on
the set Θ too. Suppose that the detectors are on a line on the seashore and the source
can be only be located on one side, then two detectors are sufficient for the consistent
estimation of the position of the radioactive source.

The likelihood L (ϑ, Xn) according to (3) is given by [see, for example, Kutoyants
(1998)].

ln L
(
ϑ, X (n)

)
=

3∑

j=1

∫ T

0
ln

λ j,n (ϑ, t)

nλ0
dX j (t) −

3∑

j=1

∫ T

0

(
λ j,n (ϑ, t) − nλ0

)
dt

=
3∑

j=1

∫ T

τ j

ln

(

1 + λ
(
t − τ j

)

λ0

)

dX j (t) − n
3∑

j=1

∫ T

τ j

λ
(
t − τ j

)
dt .

Recall that here τ j = τ j (ϑ).
If the intensity function of the signal is constant λ (t) ≡ λ1 > 0, then the likelihood

ratio is simplified

ln L
(
ϑ, X (n)

)
= ln

(
1 + λ1

λ0

) 3∑

j=1

[
X j (T ) − X j

(
τ j
)] − nλ1

3∑

j=1

[
T − τ j

]
.
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The Bayesian estimator ϑ̃n = (̃xn, ỹn) of the parameter ϑ0 = (x0, y0) with respect
to the quadratic loss function is defined by a conditional expectation which can be
written as follows

ϑ̃n = E
(
ϑ/X (n)

)
=
∫

Θ

ϑ p(ϑ)L
(
ϑ, X (n)

)
dϑ

(∫

Θ

p(ϑ)L
(
ϑ, X (n)

)
dϑ

)−1

.

Even if the vector ϑ is not random with a given prior density we can use this
formula to calculate ϑ̃n which is no more a conditional expectation, but just some way
to construct the estimator. In this case it can be called generalized Bayesian estimator
Ibragimov and Khasminskii (1981). Therefore, we can take any positive continuous
function p (ϑ) , ϑ ∈ Θ . For example, as the set Θ is bounded, we can put p (ϑ) = 1.

Note that if the intensity of the signal is constant λ (t) ≡ λ1, then the estimator can
be calculated as follows

ϑ̃n =
∫
Θ

ϑ
∏3

j=1

(
1 + λ1

λ0

)−X j(τ j (ϑ))enλ1
∑3

j=1 τ j (ϑ)dϑ
∫
Θ

∏3
j=1

(
1 + λ1

λ0

)−X j(τ j (ϑ))enλ1
∑3

j=1 τ j (ϑ)dϑ
,

where τ j (ϑ) = ν−1
∥∥ϑ j − ϑ

∥∥.
In order to describe the properties of the Bayesian estimator, we need some addi-

tional notations. First let us introduce the unit vectors m j , for j = 1, . . . , 3

m j =
(
x j − x0

ρ j
,
y j − y0

ρ j

)
, ρ j = ∥∥ϑ j − ϑ0

∥∥ ,
∥∥m j

∥∥ = 1

and the sets

B j = {
u : 〈m j , u〉 ≥ 0

}
, B

c
j = {

u : 〈m j , u〉 < 0
}
.

Here 〈m j , u〉 denotes the Euclidean scalar product of the vectorsm j and u = (u1, u2).
The limit likelihood ratio Z (u) , u ∈ R

2 we denote as follows

ln Z (u) = �

3∑

j=1

[
Π j,+ (u)1{u∈B j} − Π j,− (u)1{

u∈Bc
j

}
]

− λ1

ν
〈m1 + m2 + m3, u〉,

where � = ln
(
1 + λ1

λ0

)
, Π j,+ (u) , u ∈ B j and Π j,− (u) , u ∈ B

c
j are independent

Poisson random fields such that

Eϑ0Π j,+ (u) = λ0

ν
〈m j , u〉, Eϑ0Π j,− (u) = −λ1 + λ0

ν
〈m j , u〉.
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Remark that such fields can be described better using 6 one-dimensional Poisson
processes as follows. Let us put

Π j,+ (u) = Π̃ j,+ (s+ (u)) , Π j,− (u) = Π̃ j,− (s− (u)) , j = 1, 2, 3.

Here

s+ (u) = λ0

ν
〈m j , u〉 ∈ [0,∞), s− (u) = −λ1 + λ0

ν
〈m j , u〉 ∈ [0,∞)

and Π̃ j,+ (s+) , s+ ∈ [0,∞), Π̃ j,− (s−) , s− ∈ [0,∞) are independent Poisson pro-
cesses on the half-line [0,∞).

For example, if u, u∗ ∈ B j and u − u∗ ⊥ m j , then Π j,+ (u) = Π j,+ (u∗).
Second, we define the random vector ζ̃ = (̃ζ1, ζ̃2) with the components

ζ̃1 =
∫

R2
u1Z(u1, u2) du1du2

(∫ ∫

R2
Z(u1, u2) du1du2

)−1

and

ζ̃2 =
∫

R2
u2Z(u1, u2) du1du2

(∫ ∫

R2
Z(u1, u2) du1du2

)−1

.

The main results of this work are the following two theorems. We first introduce
the lower bound on the risk of all estimators.

Theorem 1 Let the conditions I be fulfilled. Then for all ϑ0 ∈ Θ and a quadratic loss
function,

lim
δ→0

lim
n→∞

inf
ϑn

sup
||ϑ−ϑ0||<δ

n2Eϑ

∥∥ϑn − ϑ
∥∥2 ≥ E‖̃ζ‖2. (7)

Here the in f is taken over all possible estimatorsϑn of the parameterϑ . The inequality
(7) allows us to give the following definition of efficient estimator.

Definition 1 Let the conditions I be satisfied. The estimator ϑ∗
n is asymptotically

efficient, if for all ϑ0 ∈ Θ we have

lim
δ→0

lim
n→+∞ sup

||ϑ−ϑ0||<δ

n2Eϑ

∥∥ϑ∗
n − ϑ

∥∥2 = E‖̃ζ‖2. (8)

The second theorem describes the asymptotic behavior of the estimator ϑ̃n =
(̃xn, ỹn).

Theorem 2 Let the conditions I be fulfilled. Then the Bayesian estimator ϑ̃n is uni-
formly on compacts K ⊂ Θ consistent: for any γ > 0

sup
ϑ0∈K

Pϑ0

(‖ϑ̃n − ϑ0‖ > γ
) −→ 0,
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we have convergence in distribution

n
(
ϑ̃n − ϑ0

) 	⇒ ζ̃ ,

and convergence of moments: for any p > 0

lim
n→∞ n pEϑ0‖ϑ̃n − ϑ0‖p = Eϑ0‖ ζ̃ ‖p,

and ϑ̃n is asymptotically efficient.

The proofs of these theorems are given in the next section. They are based on the
general results of Ibragimov and Khasminskii (1981) for the problem of parameter
estimation in the case of i.i.d. observations with a discontinuous density function and
the application of their results to the study of Bayesian estimators for inhomogeneous
Poisson processes see Kutoyants (1998), Chapter 5.

Let us remind the main steps of these proofs. Introduce the normalized likelihood
ratio random field

Zn (u) = L
(
ϑ0 + u

n , Xn
)

L (ϑ0, Xn)
, u ∈ Un,

where

Un =
{
u : ϑ0 + u

n
∈ Θ

}
.

Moreover, we extend the set Un to cover the balls around the sensors

Un =
(
n (α1 − x0) , n (α2 − x0)

)
×
(
n (β1 − y0) , n (β2 − y0)

)
↗ R2,

as n → ∞, i.e., we extended the process Zn (u) on the values u belonging to the balls
ϑ0 + u

n ∈ B
(
ϑ j , ε

)
. This requires certain modifications of the general method devel-

oped in Ibragimov and Khasminskii (1981), which can be done without difficulties.
What is important is to respect the condition ϑ0 /∈ B

(
ϑ j , ε

)
.

Suppose that we have already proved the convergence of finite-dimensional distri-
butions Zn (·) 	⇒ Z (·). Below we change the variables ϑ = ϑ0 + u

n . We have

ϑ̃n =
∫

Θ

ϑ
L (ϑ, Xn)

L (ϑ0, Xn)
dϑ

(∫

Θ

L (ϑ, Xn)

L (ϑ0, Xn)
dϑ

)−1

= ϑ0 + 1

n

∫

Un

uZn (u) du

(∫

Un

Zn (u) du

)−1
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and

n
(
ϑ̃n − ϑ0

) =
∫

Un

uZn (u) du

(∫

Un

Zn (u) du

)−1

.

If we prove the convergence

(∫

Un

u1Zn (u) du,

∫

Un

u2Zn (u) du,

∫

Un

Zn (u) du

)

	⇒
(∫

R2
u1Z (u) du,

∫

R2
u2Z (u) du,

∫

R2
Z (u) du

)
,

then we obtain the limit

n
(
ϑ̃n − ϑ0

) 	⇒ ζ̃ .

To obtain the convergence of moments, we have to check the uniform integrability of
the random variables

∥∥n
(
ϑ̃n − ϑ0

)∥∥p
for any p > 0.

This work was realized in Ibragimov and Khasminskii (1981) in a sufficiently
general framework (see Theorem 1.10.2 there). In the next section we verify the
conditions of this theorem.

Suppose that we already proved Theorem 2, then the proof of Theorem 1 could be
done as follows. Let us fix some small δ > 0, then

sup
||ϑ−ϑ0||<δ

n2Eϑ‖ϑn − ϑ‖2 ≥ n2
∫

B(ϑ0,δ)

Eϑ‖ϑn − ϑ‖2q (ϑ) dϑ

≥ n2
∫

B(ϑ0,δ)

Eϑ‖ϑ̃q,n − ϑ‖2q (ϑ) dϑ,

where q (ϑ) , ϑ ∈ B (ϑ0, δ) is some positive continuous density on B (ϑ0, δ) and ϑ̃q,n

is a BE, which corresponds to this prior density. From the convergence of second
moments, we have

n2
∫

B(ϑ0,δ)

Eϑ‖ϑ̃q,n − ϑ‖2q (ϑ) dϑ −→
∫

B(ϑ0,δ)

Eϑ ‖̃ζ‖2 q (ϑ) dϑ.

The continuity of Eϑ ‖̃ζ‖2 w.r.t. ϑ allows us to write the last limit

∫

B(ϑ0,δ)

Eϑ ‖̃ζ‖2 q (ϑ) dϑ −→ Eϑ0 ‖̃ζ‖2

as δ → 0. Note that the lower bound (7) is a particular case of more general result in
Ibragimov and Khasminskii (1981).
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4 Proofs

Introduce the normalized likelihood random field

Zn(u) = exp

{ 3∑

j=1

∫ T

0
ln

λ j,n
(
ϑ0 + u

n , t
)

λ j,n (ϑ0, t)
dX j (t)

−
3∑

j=1

∫ T

0

(
λ j,n

(
ϑ0 + u

n
, t
)

− λ j,n (ϑ0, t)
)
dt

}
,

where u = (u1, u2) ∈ Un .

Lemma 1 Let the conditions I1, I2 be satisfied, then the finite-dimensional distribu-
tions of the process Zn(u), u ∈ Un converge to the finite-dimensional distributions of
the process Z(u), u ∈ R2, and this convergence is uniform with respect to ϑ0 ∈ K.

Proof The characteristic function of ln Zn(u) is calculated as follows [see Kutoyants
(1998)].

Φn(μ; u) = Eϑ0 exp [iμ ln Zn(u)]

= exp

{ 3∑

j=1

∫ T

0

[
exp

(
iμ ln

λ j,n
(
ϑ0 + u

n , t
)

λ j,n (ϑ0, t)

)
− 1

]
λ j,n (ϑ0, t) dt

− iμ
3∑

j=1

∫ T

0

(
λ j,n

(
ϑ0 + u

n
, t
)

− λ j,n (ϑ0, t)
)
dt

}
.

Introduce the sets An
k for k = 1, . . . , 8, and u = (u1, u2) ∈ Un

An
1 = {u ∈ Un, 〈u,m1〉 ≥ 0, 〈u,m2〉 ≤ 0, 〈u,m3〉 ≤ 0},

An
2 = {u ∈ Un, 〈u,m1〉 ≥ 0, 〈u,m2〉 ≥ 0, 〈u,m3〉 ≤ 0},

An
3 = {u ∈ Un, 〈u,m1〉 ≥ 0, 〈u,m2〉 ≥ 0, 〈u,m3〉 ≥ 0},

An
4 = {u ∈ Un, 〈u,m1〉 ≤ 0, 〈u,m2〉 ≥ 0, 〈u,m3〉 ≥ 0},

An
5 = {u ∈ Un, 〈u,m1〉 ≤ 0, 〈u,m2〉 ≤ 0, 〈u,m3〉 ≥ 0},

An
6 = {u ∈ Un, 〈u,m1〉 ≤ 0, 〈u,m2〉 ≤ 0, 〈u,m3〉 ≤ 0}.

An
7 = {u ∈ Un, 〈u,m1〉 ≥ 0, 〈u,m2〉 < 0, 〈u,m3〉 ≥ 0}.

An
8 = {u ∈ Un, 〈u,m1〉 < 0, 〈u,m2〉 ≥ 0, 〈u,m3〉 < 0}.

Define ϑu = ϑ0 + u
n , τ j = τ j (ϑ0), ρ j = ντ j and

τ j (ϑu) = 1

ν

√(
x j − x0 − u1

n

)2 +
(
y j − y0 − u2

n

)2
.
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It follows from condition I1 that τ j (ϑu) is differentiable w.r.t. u on Un . Using the
Taylor expansion we obtain

τ j (ϑu) = τ j − u1(x j − x0) + u2(y j − y0)

νnρ j
+ εn(u)

= τ j − 1

νn
〈u,m j 〉 + εn(u),

where nεn(u) → 0 uniformly on compacts u as n → ∞. Thus

τ j (ϑu) − τ j = − 1

νn
〈u,m j 〉 + εn(u).

Therefore, for all j = 1, 2, 3, bounded sets of u and n sufficiently large we have

{
τ j ≥ τ j (ϑu), i f 〈u,m j 〉 ≥ 0,
τ j ≤ τ j (ϑu), i f 〈u,m j 〉 ≤ 0.

We will use this fact to calculate the characteristic function Φn(μ; u) for each set An
k ,

k = 1, . . . , 8 and obtain its limit.
If u ∈ An

1, then τ1 ≥ τ1 (ϑu), τ2 ≤ τ2 (ϑu) and τ3 ≤ τ3 (ϑu). Therefore, we can
write

∫ T

0

[
exp

(
iμ ln

λ1,n
(
ϑ0 + u

n , t
)

λ1,n (ϑ0, t)

)
− 1

]
λ1,n (ϑ0, t) dt

= nλ0

∫ τ1

τ1(ϑu)

[
exp

(
iμ ln

λ (t − τ1 (ϑu)) + λ0

λ0

)
− 1

]
dt

+ n
∫ T

τ1

[
exp

(
iμ ln

λ (t − τ1 (ϑu)) + λ0

λ (t − τ1) + λ0

)
− 1

]
[λ (t − τ1) + λ0] dt .

Using once again Taylor’s expansions by the powers of u
n , we obtain the representation

∫ T

0

[
exp

(
iμ ln

λ1,n
(
ϑ0 + u

n , t
)

λ1,n (ϑ0, t)

)
− 1

]
λ1,n (ϑ0, t) dt

=
[
exp

{
iμ ln

λ1 + λ0

λ0

}
− 1

]
λ0

ν
〈u,m1〉 + o (1) .

The similar arguments give us the relations

∫ T

0

[
exp

(
iμ ln

λ2,n
(
ϑ0 + u

n , t
)

λ2,n (ϑ0, t)

)
− 1

]
λ2,n (ϑ0, t) dt

= −
[
exp

{
−iμ ln

λ1 + λ0

λ0

}
− 1

]
λ1 + λ0

ν
〈u,m2〉 + o (1)
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and
∫ T

0

[
exp

(
iμ ln

λ3,n
(
ϑ0 + u

n , t
)

λ3,n (ϑ0, t)

)
− 1

]
λ3,n (ϑ0, t) dt

= −
[
exp

{
−iμ ln

λ1 + λ0

λ0

}
− 1

]
λ1 + λ0

ν
〈u,m3〉 + o (1) .

Therefore, for u ∈ An
1 we obtain the limit

lim
n→∞ Φn(μ; u) = exp

{[
exp

(
iμ�

) − 1

]
λ0

ν
〈u,m1〉

−
[
exp

( − iμ�
) − 1

]
λ0 + λ1

ν
〈u,m2 + m3〉 − iμr(u)

}
.

If u ∈ An
2, then similar arguments allow us to verify that

lim
n→∞ Φn(μ; u) = exp

{[
exp

(
iμ�

) − 1

]
λ0

ν
〈u,m1 + m2〉

−
[
exp

( − iμ�
) − 1

]
λ0 + λ1

ν
〈u,m3〉 − iμr(u)

}
.

For u ∈ An
3 we have

lim
n→∞ Φn(μ; u) = exp

{[
exp

(
iμ�

) − 1

]
λ0

ν
〈u,m1 + m2 + m3〉 − iμr(u)

}
.

For other sets An
k , we have the corresponding limits. For all sets, these limits provide

the convergence of characteristic functions

Eϑ0 exp [iμ ln Zn (u)] −→ Eϑ0 exp [iμ ln Z (u)] .

Therefore, we have the convergence of one-dimensional distributions.
Using the same arguments, it is possible to verify the convergence of the finite-

dimensional distributions too, i.e., for any u1, . . . , uL and real μ1, . . . , μL we have

Eϑ0 exp

[

i
L∑

l=1

μl ln Zn (ul)

]

−→ Eϑ0 exp

[

i
L∑

l=1

μl ln Z (ul)

]

.

Moreover, from the presented proofs it follows that the convergence of finite-
dimensional distributions is uniform on the compacts K ⊂ Θ . In particular,

lim
n→∞ sup

ϑ0∈K

∣∣∣∣∣
Eϑ0 exp

[

i
L∑

l=1

μl ln Zn (ul)

]

− Eϑ0 exp

[

i
L∑

l=1

μl ln Z (ul)

]∣∣∣∣∣
= 0.

��
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Further, we need the following result.

Lemma 2 Let the condition I1, I2 be fulfilled, then for any R > 0 and ‖u‖ + ‖v‖ ≤
R, u, v ∈ Un we have

sup
ϑ0∈K

Eϑ0

∣∣∣∣Z
1
2
n (u) − Z

1
2
n (v)

∣∣∣∣

2

≤ C (1 + R) ‖u − v‖ ,

where C > 0.

Proof According to Lemma 1.5 in Kutoyants (1998), we have

Eϑ0

∣∣∣∣Z
1
2
n (u) − Z

1
2
n (v)

∣∣∣∣

2

≤
3∑

j=1

∫ T

0

[√
λ j,n

(
ϑ0 + u

n
, t
)

−
√

λ j,n

(
ϑ0 + v

n
, t
)]2

dt

≤ n
3∑

j=1

∫ T

0

[√
λ
(
t − τ j (ϑu)

)
1{t>τ j (ϑu))} + λ0

−
√

λ
(
t − τ j (ϑv)

)
1{t>τ j (ϑv)} + λ0

]2
dt

≤ Cn
3∑

j=1

∫ T

0

[
λ
(
t − τ j (ϑu)

)
1{t>τ j (ϑu)} − λ

(
t − τ j (ϑv)

)
1{t>τ j (ϑv)}

]2
dt .

Here we use the elementary relations

[√
a − √

b
]2 = [a − b]2

[√
a + √

b
]2 ≤ C [a − b]2 , C = 1

4M
,

where a > 0, b > 0 and M ≤ (a ∧ b).
Consider the values |u|+|v| ≤ R with some R > 0. Then using once again Taylor’s

expansions we obtain

λ
(
t − τ j (ϑu)

) − λ
(
t − τ j (ϑv)

) = 1

νn
λ′ (t − τ j

) 〈u − v,m j 〉 + εn (u, v)

and for large n

∣∣τ j (ϑu) − τ j (ϑv)
∣∣ ≤ 2

νn

∣∣〈u − v,m j 〉
∣∣ ≤ C

n
‖u − v‖ .
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These two estimates allow us to write

n
3∑

j=1

∫ T

0

[
λ
(
t − τ j (ϑu)

)
1{t>τ j (ϑu)} − λ

(
t − τ j (ϑv)

)
1{t>τ j (ϑv)}

]2
dt

≤ C ‖u − v‖ + C

n
‖u − v‖2 ≤ C (1 + R) ‖u − v‖ .

��
The last result is given in the next lemma.

Lemma 3 Let conditions I be fulfilled, then for u ∈ Un

sup
ϑ0∈K

Eϑ0 Z
1
2
n (u) ≤ e−κ||u||, (9)

where κ > 0.

Proof According to Lemma 1.5 of Kutoyants (1998), we can write

Eϑ0

[
Z

1
2
n (u)

]
= exp

⎧
⎨

⎩
−1

2

3∑

j=1

∫ T

0

[√
λ j,n

(
ϑ0 + u

n
, t
)

− √
λ j,n (ϑ0, t)

]2
dt

⎫
⎬

⎭
.

Elementary calculations lead to

[√
λ j,n

(
ϑ0 + u

n
, t
)

− √
λ j,n (ϑ0, t)

]2

=
n
[
λ
(
t − τ j (ϑu)

)
1{t>ϑ j (ϑu)} − λ

(
t − τ j

)
1{t>τ j}

]2

[√
λ
(
t − τ j (ϑu)

)
1{t>τ j (ϑu)} + λ0 +

√
λ
(
t − τ j

)
1{t>τ j} + λ0

]2

≥ nc
[
λ
(
t − τ j (ϑu)

)
1{t>ϑ j (ϑu)} − λ

(
t − τ j

)
1{t>τ j}

]2

where c = 1
4λM

with the constant λM ≥ λ (t) + λ0.
Let us now consider ϑ such that ‖ϑ − ϑ0‖ ≤ δ with small δ > 0 and such that

τ j (ϑ) > τ j . Then for sufficiently small δ, we can write

∫ T

0

[
λ
(
t − τ j (ϑ)

)
1{t>τ j (ϑ)} − λ

(
t − τ j

)
1{t>τ j}

]2
dt

=
∫ τ j (ϑ)

τ j

λ
(
t − τ j

)2 dt +
∫ T

τ j (ϑ)

[
λ
(
t − τ j (ϑ)

) − λ
(
t − τ j

)]2 dt

≥ k
[
τ j (ϑ) − τ j

] − c j ‖ϑ − ϑ0‖2 ≥ k j
[
τ j (ϑ) − τ j

]
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with k = mint λ (t)2 > 0 and some positive constant c j , k j .
Using this last inequality, we obtain

3∑

j=1

∫ T

0

[√
λ j,n

(
ϑ0 + u

n
, t
)

− √
λ j,n (ϑ0, t)

]2
dt ≥ nγ

3∑

j=1

∣∣τ j (ϑ) − τ j (ϑ0)
∣∣

≥ γ

3∑

j=1

∣∣〈m j , u〉∣∣ + εn(δ) ≥ γ1

3∑

j=1

∣∣∣∣
〈
m j ,

u

‖u‖
〉∣∣∣∣ ‖u‖

≥ γ1 inf‖e‖=1

3∑

j=1

∣∣〈m j , e〉
∣∣ ||u|| ≥ κ1 ‖u‖ , (10)

where κ1 > 0.
Next we consider the case ‖ϑ − ϑ0‖ = ∥∥ u

n

∥∥ > δ. Let us denote

g (ϑ0, δ) = inf‖ϑ−ϑ0‖>δ

3∑

j=1

∫ T

0

[
λ
(
t − τ j (ϑ)

)
1{t>τ j (ϑ)} − λ

(
t − τ j

)
1{t>τ j}

]2
dt .

Remark that for any compact K ⊂ Θ

gK (δ) = inf
ϑ0∈K

g (ϑ0, δ) > 0.

Indeed, if gK (δ) = 0, then there exists ϑ1 �= ϑ0, such that

3∑

j=1

∫ T

0

[
λ
(
t − τ j (ϑ1)

)
1{t>τ j (ϑ1)} − λ

(
t − τ j (ϑ0)

)
1{t>τ j (ϑ0)}

]2
dt = 0.

Due to the indicator functions, this equality is possible iff τ j (ϑ1) = τ j (ϑ0) , j =
1, 2, 3 but from the geometrical consideration this is impossible. Therefore, gK (δ) > 0
and for ‖ϑ − ϑ0‖ ≥ δ we can write

n
3∑

j=1

∫ T

0

[
λ
(
t − τ j (ϑ)

)
1{t>τ j (ϑ)} − λ

(
t − τ j (ϑ0)

)
1{t>τ j (ϑ0)}

]2
dt

≥ ngK (δ) ≥ ngK (δ)
‖ϑ − ϑ0‖
D (Θ)

≥ κ2 ‖u‖ . (11)

Here

D (Θ) = sup
ϑ,ϑ0∈Θ

‖ϑ − ϑ0‖ , κ2 = gK (δ)

D (Θ)
.
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From the estimates (10) and (11), it follows that there exists κ > 0 such that

3∑

j=1

∫ T

0

[√
λ j,n

(
ϑ0 + u

n
, t
)

− √
λ j,n (ϑ0, t)

]2
dt ≥ 2κ ‖u‖ .

This last estimate proves (9). ��
The properties of the normalized likelihood ratio Zn (u) , u ∈ Un described in

Lemmas 1–3 allow us to cite Theorem 1.10.2 in Ibragimov and Khasminskii (1981),
and according to this theorem, the BE ϑ̃n has all the properties mentioned in Theorem
1.

5 Simulations

We illustrate the convergence of the estimators by means of numerical simulations.
Consider the problem of localization of a radioactive source at the point ϑ0 = (0, 0).
We have three sensors ϑ j ( j = 1, 2, 3), respectively, located at coordinates ϑ1 =
(8.5, 0), ϑ2 = (0, 8.5) and ϑ3 = (

8.5 cos
( 5π

4

)
, 8.5 sin

( 5π
4

))
. We choose the values

λ0 = 1, λ1 = 2 and for convenience ν = 1. Each sensor located at position ϑ j records
in the fixed time interval [0, 10] measurements that are modeled by a Poisson point
processes of intensity function

λ j (ϑ0, t) = n + 2n1{t≥τ j}.

The parameter space of the unknown coordinates of the source ϑ0 was chosen as
Θ = (−1, 1) × (−1, 1), and the prior density of ϑ0 is the uniform density in the unit
square, i.e., p (ϑ) = 1

41{(x,y)∈[−1,1]2}. The BE ϑ̃n was calculated using simulations
for n running in the range [1, 100]. Figure 5 displays the evolution of the Euclidean
distance between the BE ϑ̃n = (̃xn, ỹn) and ϑ0 with n.

As can be seen, the distance between ϑ0 and the BE after initial fluctuations quickly
decreases toward zero which illustrates the consistency of the BE.

We also made simulations for the MLE ϑ̂n of the same parameter ϑ0.
In what follows, we present the graphs of the corresponding error obtained for the

same simulation model with n running in the range [1, 100] (Fig. 6).
As can be seen, the Euclidean distance between the MLE and ϑ0 quickly decreases

toward zero after initial fluctuations:
We can see that the fluctuations of the MLE at the beginning are more important

than those of the BE.

6 Discussions

Let usmention now some problems related to the study of theMLE. Themain technical
difficulty to apply the Ibragimov and Khasminskii approach in the study of the MLE
in this change-point statement is in the checking of the tightness of the family of
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Fig. 5 Evolution of error ‖ϑ̃n − ϑ0‖

Fig. 6 Evolution of error ‖ϑ̂n − ϑ0‖

measures induced by the likelihood ratio random field Zn (u) , u ∈ Un in the space
of its realizations. Recall that this is the space of surfaces with discontinuities along
some curves.
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Here we supposed that the signal and noise are of the same magnitude n, where
n → ∞. However, in some cases the signal can be much larger than the noise, say,

λ j,n (ϑ, t) = nλ
(
t − τ j (ϑ)

)
1{t>τ j (ϑ)} + λ0, 0 ≤ t ≤ T , j = 1, 2, 3.

This case could be studied as well by means of the presented method, but the limit
Z (u) , u ∈ R2 of the normalized likelihood ratio function Zn (u) , u ∈ Un will be
different.

As mentioned in Introduction, there are several other statements related to the
problem of radioactive source localization depending on the regularity of the signals.
The cases of smooth signals and cusp-type signals are considered in the works Cher-
noyarov and Kutoyants (2018) and Dachian et al. (2018a), respectively. In particular,
in Chernoyarov and Kutoyants (2018) the estimation of the parameter ϑ0 by k ≥ 3
sensors was made in two steps. First, we estimate the moments of the arrival times of
the signals, say, τ 1,n, . . . , τ k,n ; then given these estimators, the localization ϑn of the
source is found by solving the system of equations

τ 21,nν
2 = ∥∥ϑ1 − ϑn

∥∥2 , . . . , τ 2k,nν
2 = ∥∥ϑk − ϑn

∥∥2 .

It is shown that the estimator ϑn is consistent and asymptotically normal. It will be
interesting to study the similar estimator in the change-point case.

Another question concerns the robustness of the estimators (MLE and BE) with
respect to the knowledge of the model. Suppose that the signal λ (t) , t ≥ 0 is not
exactly known and we use just a constant value λ1 > 0. We can see what are the limits
of theMLE and BE in such situations. It is known that in this case both estimators con-
verge to the value ϑ̂ which minimizes the corresponding Kullback–Leibler distance.
The one-dimensional case was studied in Dabye et al. (2003), where it was shown that
for a wide range of values of λ1 the BE is consistent even for the wrong model. We
could suppose that the model considered in the present work has a similar property.
Then the consistent estimation is possible in the case of misspecification as well.

Of course, a similar problem could be studied for the models of signals in white
Gaussian noise. Indeed, suppose that we have the same positions of the source and the
detectors (see Fig. 1), but the signals are Gaussian

dX j,t = S
(
t − τ j (ϑ)

)
1{t≥τ j (ϑ)}dt + εdWj,t , X0 = 0, 0 ≤ t ≤ T .

Here j = 1, 2, 3 andWj,t , 0 ≤ t ≤ T , j = 1, 2, 3 are independent Wiener processes.
Then we can describe the properties of the MLE and BE of the coordinates of the
source in the asymptotics of small noise (ε → 0) in the cases of different regularity
of the signals [see, e.g., Dachian et al. (2018b)].

Acknowledgements We would like to thank the both Rewieres for many useful comments.

123



698 C. Farinetto et al.

References

Baidoo-Williams, H. E., Mudumbai, R., Bai, E., Dasgupta, S. (2015). Some theoretical limits on nuclear
source localization and tracking. In Proceedings of the information theory and applications workshop
(ITA) (pp. 270–274).

Chao, J. J., Drakopoulos, E., Lee, C. C. (1987). Evidential reasoning approach to distributed multiple-
hypothesis detection. In Proceedings of the conference on decision and control (pp. 1826–1831).

Chernoyarov, O. V., Kutoyants, Yu. A. (2018). Poisson source localization on the plane. Smooth case.
arXiv:1806.06382 (submitted).

Chin, J., Rao, N. S. V., Yau, D. K. Y., Shankar, M., Yang, J., Hou, J. C., et al. (2010). Identification of
low-level point radioactive sources using a sensor network. ACM Transactions on Sensor Networks,
7(3), 21.

Chong, C. Y., Kumar, S. P. (2003). Sensor networks: Evolution, opportunities, and challenges. Proceedings
of the IEEE, 91(8), 1247–1256.

Dabye, A. S., Farinetto, C., Kutoyants, Yu. A. (2003). On Bayesian estimators in misspecified change-point
problem for a Poisson process. Statistics and Probabability Letters, 61(1), 17–30.

Dachian, S. (2003). Estimation of cusp location by Poisson observations. Statatistical Inference for Stochas-
tic Processes, 6(1), 1–14.

Dachian, S., Chernoyarov, O. V., Kutoyants, Yu. A. (2018a). Poisson source localization on the plane. Cusp
case. arXiv:1806.06400 (submitted)

Dachian, S., Kordzakhia, N., Kutoyants, Yu. A., Novikov, A. (2018b). Estimation of cusp location of
stochastic processes: A survey. Statatistical Inference for Stochastic Processes, 21(2), 345–362.

Evans, R. D. (1963). The atomic nucleus. New York: McGraw-Hill.
Howse, J.W., Ticknor, L. O., Muske, K. R. (2011). Least squares estimation techniques for position tracking

of radioactive sources. Automatica, 37, 1727–1737.
Ibragimov, I. A., Khasminskii, R. Z. (1981). Statistical estimation. Asymptotic theory. New York: Springer.
Karr, A. F. (1991). Point processes and their statistical inference. New York: Marcel Dekker.
Knoll, G. F. (2010). Radiation detection and measurement. New York: Wiley.
Kutoyants, Yu. A. (1998). Statistical inference for spatial Poisson processes. New York: Springer.
Liu, Z., Nehorai, A. (2004). Detection of particle sources with directional detector arrays. In Sensor array

and multichannel signal processing workshop proceedings (pp. 196–200).
Luo, X. (2013). GPS stochastic modelling. New York: Springer.
Magee,M. J.,Aggarwal, J.K. (1985).Usingmultisensory images to derive the structure of three-dimensional

objects: A review. Computer Vision, Graphics and Image Processing, 32(2), 145–157.
Mandel, L. (1958). Fluctuation of photon beams and their correlations. Proceedings of the Physical Society

(London), 72, 1037–1048.
Morelande,M.R., Ristic, B., Gunatilaka,A. (2007). Detection and parameter estimation ofmultiple radioac-

tive sources. In Proceedings of the 10th international conference on information fusion (pp. 1–7).
Ogata, Y. (1994). Seismological applications of statistical methods for point-process modeling. In H. Boz-

dogan (Ed.), Proceedings of the First U.S./Japan conference on the Frontiers of statistical modeling:
An informational approach (pp. 137–163).

Pahlajani, C. D., Poulakakis, I., Tanner, H. G. (2013). Decision making in sensor networks observing
Poisson processes. In Proceedings of the 21st Mediterranean conference on control and automation
(pp. 1230–1235).

Rao,N. S.V., Shankar,M., Chin, J. C., Yau,D.K.Y., Srivathsan, S., Iyengar, S. S., et al. (2008). Identification
of low-level point radioactive sources using a sensor network. In Proceedings of the 7th international
conference on information processing in sensor networks (pp. 493–504).

Snyder, D. R., Miller, M. I. (1991). Random point processes in time and space. New York: Springer.
Streit, R. L. (2010). Poisson point processes: Imaging, tracking, and sensing. Boston: Springer.
Zhao, F., Guibas, L. (2004).Wireless sensor network: An information processing approach. San Francisco:

Morgan Kauffman.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1806.06382
http://arxiv.org/abs/1806.06400

	Poisson source localization on the plane: change-point case
	Abstract
	1 Introduction
	2 Statement of the problem
	3 Main results
	4 Proofs
	5 Simulations
	6 Discussions
	Acknowledgements
	References




