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Abstract In the spirit of Bross (Biometrics 14:18–38, 1958), this paper considers ridit
reliability functionals to develop test procedures for the equality of K(> 2) treatment
effects in nonparametric analysis of covariance (ANCOVA) model with d covariates
based on two different methods. The procedures are asymptotically distribution free
and are not based on the assumption that the distribution functions (d.f.’s) of the
response variable and the associated covariates are continuous. By means of simulation
study, the proposed methods are compared with the methods provided by Tsangari and
Akritas (J Multivar Anal 88:298–319, 2004) and Bathke and Brunner (Recent advances
and trends in nonparametric statistics, Elsevier, Amsterdam, 2003) under ANCOVA
in terms of type I error rate and power.

Keywords Asymptotic distribution · Nonparametric ANCOVA model · Ridit ·
U-statistic · Nadaraya–Watson weight · Bandwidth

1 Introduction

Many statistical studies involve analysis in which response variables correspond to
two or more treatments in the presence of one or more auxiliary variables termed as
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covariates. In some cases, the problem is to judge whether the treatment effects are
significantly different when the covariate effects are eliminated. A standard practice
to handle the problem is to assume suitable linear model and normality of the error
components. Besides, many authors (see, for example, Grigoletto and Akritas 1999;
Thas et al. 2012; Neve and Thas 2015) meet the problem under semiparametric model
in which normality assumption is relaxed by setting a covariate-influenced linear or
nonlinear model for the response variables. Further, dropping the parametric part in
the semiparametric model, tests for homogeneity of covariate-eliminated response
distributions are obtained under fully nonparametric heteroscedastic model with one
covariate (see, for example, Dette and Neumeyer 2001; Akritas and Keilegom 2001;
Munk et al. 2007). In addition, the use of ANCOVA model under fully nonparamet-
ric setup can be found in the works of Akritas et al. (2000), Tsangari and Akritas
(2004), Wang and Akritas (2006) among others. There is also an alternative approach
(Bathke and Brunner 2003) that keeps analogy between parametric and nonparametric
ANCOVA models.

Bross Irwin (1958) introduces ridit as a reliability functional for comparing ordinal-
scale responses. In this context, for two independent variables U and V , a reliability
functional can be defined by

R = P(U < V) +
1

2
P(U = V). (1)

There are several interpretations for the above functional, like Wilcoxon functional,
concordance probability, stress strength and nonparametric treatment effect. Some
authors use the concept of ridit to frame tests for comparing two or more independent
samples under nonparametric setup (see, for example, Akritas et al. 1997; Brunner
and Munzel 2000; Brunner and Puri 2001; Konietschke et al. 2012; Fischer et al.
2014; Bandyopadhyay and Chatterjee 2015; Friedrich et al. 2017). The advantages of
using such ridit analysis are that it helps to construct tests more precisely in accordance
with the structure of the null and alternative hypotheses (see, for example, Terpstra and
Magel 2003) and it need not require the existence of moments of the response variables.
In the present study, we develop tests for the covariate eliminating treatment effects
under nonparametric setup. Here, we follow two different approaches, conditional
distribution approach (Tsangari and Akritas 2004) and an alternative approach (Bathke
and Brunner 2003) based on marginal distributions to construct new test procedures
with the help of reliability functionals that generalize (1).

The content of the paper is as follows. The setup and the homogeneity hypothesis
under various ridit reliability functionals are described in Sect. 2. Section 3 contains
the proposed asymptotically distribution-free (ADF) tests and the test by Tsangari
and Akritas (2004) as competitor. Section 4 develops some alternative tests using the
nonparametric model provided in Bathke and Brunner (2003). Simulated values of
type I error rate (empirical level) and power for various test procedures, proposed and
competitor, are obtained in Sect. 5. A data study, considered in Sect. 6, illustrates the
use of the different tests. The paper concludes in Sect. 7, followed by some technical
details in “Appendix.”

123



Nonparametric ANCOVA based on ridit functional 329

2 Setup and hypothesis using conditional distribution approach

The present work is on comparison among more than two treatments, 1, 2, . . . , K(> 2),
when the subjects under consideration are not homogeneous. Let (Yk,Xk) be the
variables associated with a subject corresponding to treatment k, where Yk is the

real-valued response variable and Xk =
(
X
(1)
k , X

(2)
k , . . . , X

(d)
k

)T
is the associated

d-component covariate. Let Fkx be the conditional d.f. of Yk when Xk = x and
Gk be the marginal d.f. of Xk. Here, we do not require to assume that the d.f.’s
Fkx and Gk are continuous. That is, the procedures are valid for discrete distri-
butions also. In particular, when Fkx is continuous, we need to assume that the
derivative, F′

kx(y), of Fkx(y) exists and is continuous in a suitable domain of y.
Let {(Xkj, Ykj), j = 1, 2, . . . , nk} be the observations from nk subjects who receive
treatment k, k = 1, 2, . . . , K. We write N =

∑K
k=1 nk, the total number of subjects

receiving all the treatments. In this paper, the relative treatment effect for treatment k,
when the covariate matrix X = (X1,X2, . . . ,XK) is realized at x = (x1, x2, . . . ,xK),
is defined by a suitable functional, denoted by τk(x) = τk(θ(x)), k = 1, 2, . . . , K,
where θ(x) = (F1x1

, F2x2
, . . . , FKxK

)T . Here, τk(x) is used to provide relative com-
parison for the treatment k among the treatment groups through their conditional
distributions when the covariates are realized at x = (x1, x2, . . . ,xK). Therefore,
τk(x) is influenced by the treatments as well as by the covariate levels. This two-
way measure can be converted into one-way treatment comparison by adjusting the
covariate levels. One approach would be to integrate τk(x) with respect to all the
covariates according to a common d.f. This resultant measure can then be inter-
preted as covariate-eliminated treatment effect for treatment k relative to others
(k = 1, 2, . . . , K). That means, if G(x) denotes the overall d.f. associated with
the covariate data {Xkj, j = 1, 2, . . . , nk, k = 1, 2, . . . , K}, the covariate-eliminated
treatment effect for the treatment k, denoted by τk., can be represented by

τk. =

∫

τk(x)

K∏

l=1

dG(xl), k = 1, 2, . . . , K.

Clearly, τk. depends on the choice of G. While choosing G, it is to be kept in
mind that G should represent universal population with respect to the covariate. A
particular choice of G may be

∑K
k=1 λkGk, where λk > 0, k = 1, 2, . . . , K with

∑K
k=1 λk = 1, or simply 1

K

∑K
k=1 Gk. This will ensure that τk. (k = 1, 2, . . . , K)

are independent of the sample sizes and hence, as in Brunner et al. (2017), they
are comparable irrespective of the observed sample sizes. With this background, we
concentrate on the equality of the treatment effects after eliminating the covariate
effects. Formally, such problem can be written as {τ1. = τ2. = · · · = τK.}, which is
equivalent to the problem of testing the null hypothesis

H0 : Cτ. = 0 (2)
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against an alternative H1, where τ. = (τ1., τ2., . . . , τK.)T is the vector of covariate-
eliminated treatment effects and C is a contrast matrix of order (K − 1) × K with
rank(C) = K − 1 of the following form

C =

⎛
⎜⎜⎜⎝

1 −1 0 0 · · · 0

1 0 −1 0 · · · 0
...

1 0 0 0 · · · −1

⎞
⎟⎟⎟⎠ .

Again, if the rows of C are represented by
{
cTl , l = 1, 2, . . . , K − 1

}
, it follows that

H0 ⇔

K−1⋂
l=1

H0(l),

where H0(l) : c
T
l τ. = 0, l = 1, 2, . . . , K − 1.

It is to be noted that under the assumption mentioned above, τk. can also be con-
sidered as a functional τk(θ.), where θ. = (F1., F2., . . . , FK.)T with

Fk.(y) =

∫

Fkxk
(y)dG(xk), k = 1, 2, . . . , K. (3)

The equality of the covariate-eliminated d.f.’s implies equality of the covariate-
eliminated treatment effects, but the converse may not be true. Thus, the present
problem of testing is more general than that considered by Akritas et al. (2000) and
Tsangari and Akritas (2004). Moreover, for testing H0 against an order-restricted
alternative H1, it is possible to construct a test using suitably chosen functionals.
However, in this paper, tests are obtained for H0 against all alternatives H1 from three
sets of ridit reliability functionals that are used by Brunner and Puri (2001) (referred
to as BP), Bandyopadhyay and De (2011) (referred to as BD) and Bandyopadhyay
and Chatterjee (2015) (referred to as BC). Conditional versions of such functionals
are obtained in the following way.

2.1 BP-type functional

Here, the functional

pkk′(xk, xk′) = P(Yk > Yk′ |xk, xk′) +
1

2
P(Yk = Yk′ |xk, xk′) (4)

is used as a measure for comparing the conditional distribution of Yk given Xk = xk

with that of Yk′ given Xk′ = xk′ , k, k′ = 1, 2, . . . , K. Writing

F 0
kxk

(y) = P(Yk > y|xk) +
1

2
P(Yk = y|xk),
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(4) reduces to

pkk′(xk, xk′) =
∫

F 0
kxk

(y) dFk′xk′ (y), k, k′ = 1, 2, . . . , K

with pkk(xk, xk) = 1
2

. Hence, a covariate-eliminated measure for comparing two
distributions can be obtained as

pkk′ =
∫ ∫

pkk′(xk, xk′) dG(xk) dG(xk′)

=

∫

F 0
k .(y) dFk′ .(y),

where

F 0
k .(y) =

∫

F 0
kxk

(y)dG(xk).

Further, the functional

pk(x) =
1

K

K∑

k′=1

pkk′(xk, xk′)

can be interpreted as the relative treatment effect for treatment k when the covariate
X is realized at x = (x1, x2, . . . ,xK)

T . Hence, eliminating the effect of covariate, the
main effect due to treatment k is defined by

pk. =

∫

pk(x)

K∏

l=1

dG(xl) =
1

K

⎡
⎣

K∑

k′(�=k)=1

pkk′ +
1

2

⎤
⎦ , k = 1, 2, . . . , K, (5)

which, being dependent on an universal d.f. G, is free from sample sizes (Brunner
et al. 2017). Moreover, as discussed in (3), pk. depends on θ., k = 1, 2, . . . , K.

2.2 BD-type functional

Here, the relative treatment effect due to treatment k, when the covariate X is realized
at x, is defined by the ridit reliability functional

Rk(x) =P[Yk > max(Ym,m = 1, 2, . . . , K;m �= k)|x]

+
1

2

∑

1≤k1≤K,k1 �=k

P[Yk = Yk1

>max(Ym,m = 1, 2, . . . , K;m �= k, k1)|x]
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+
1

3

∑

1≤k1<k2≤K,

∑

k1,k2 �=k

P[Yk = Yk1
= Yk2

>max(Ym,m = 1, 2, . . . , K;m �= k, k1, k2)|x]

+ · · · + 1

K
P[Y1 = Y2 = · · · = YK|x], k = 1, 2, . . . , K,

which, by eliminating the effect of covariate, gives

Rk. =

∫

Rk(x)

K∏

l=1

dG(xl)

and is interpreted as the main effect due to treatment k, k = 1, 2, . . . , K, and is
independent of sample sizes. Moreover, after some routine steps, it is not difficult to
express Rk. as a function of θ., k = 1, 2, . . . , K.

2.3 BC-type functional

Similarly as above, the relative treatment effect due to treatment k, when the covariate
X is realized at x, is defined by the ridit reliability functional

R∗
k(x) =P[Yk < min(Ym,m = 1, 2, . . . , K;m �= k)|x]

+
1

2

∑

1≤k1≤K,k1 �=k

P[Yk = Yk1

<min(Ym,m = 1, 2, . . . , K;m �= k, k1)|x]

+
1

3

∑

1≤k1<k2≤K,

∑

k1,k2 �=k

P[Yk = Yk1
= Yk2

<min(Ym,m = 1, 2, . . . , K;m �= k, k1, k2)|x]

+ · · · + 1

K
P[Y1 = Y2 = · · · = YK|x], k = 1, 2, . . . , K,

which, by eliminating the effect of covariate, gives

R∗
k. =

∫

R∗
k(x)

K∏

l=1

dG(xl)

and is interpreted as the main effect due to treatment k according to the given set of
ridit reliability functional, k = 1, 2, . . . , K, and is independent of sample sizes. By the
same argument as above, R∗

k. is dependent on θ., k = 1, 2, . . . , K.
Here, it is important to compare the covariate-eliminated treatment effect for treat-

ment k with that for treatment k′ (k �= k′). For example, suppose Fk. is stochastically
larger than Fk′ . (that is, treatment k is more effective than treatment k′). Then, for
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BD (BC)-type functional, it follows from Bandyopadhyay and Chatterjee (2015) that
Rk. > Rk′ . (R∗

k. < R∗
k′ .). Further, with the same argument, it is not difficult to verify

pk. > pk′ . In particular, when F1. = F2. = · · · = FK., it follows that Rk. = R∗
k. = 1

K

and pk. = 1
2

, k = 1, 2, . . . , K.
Next, under BP-type model, the testing problem becomes

H0p : Cp. = 0 against H1p : Cp. �= 0,

whereas, under BD-type model, the problem becomes

H0R : CR. = 0 against H1R : CR. �= 0,

and finally, under BC-type model, the problem becomes

H0R∗ : CR.∗ = 0 against H1R∗ : CR.∗ �= 0,

where p. = (p1., p2., . . . , pK.)T , R. = (R1., R2., . . . , RK.)T and R.∗ =
(R∗

1., R∗
2., . . . , R∗

K.)T .
By definition, the sum of the components in each of the effect vectors becomes a

constant. In the testing procedures, such singularities are avoided by pre-multiplication
of the contrast matrix C of rank K − 1 with the effect vectors. It should be noted that
all of H0p, H0R and H0R∗ indicate the equality of the covariate-eliminated treatment
effects in different directions. These three hypotheses become identical when there
are two treatments under comparison. Also, the testing problems presented here are
generalizations of the problem considered by Akritas et al. (2000) and Tsangari and
Akritas (2004).

3 Tests using conditional distribution approach

Here, we develop tests by use of consistent estimators of p., R. and R.∗. For each such
tests, the usual χ2-test procedure and the multiple contrast test procedure (MCTP)
(Konietschke et al. 2012) are adopted.

3.1 Tests for H0p

A test for H0p is obtained by using a consistent estimator of p. in which Fkx(y) is
estimated consistently by

F̂kx(y) =

nk∑

j=1

Wkj(x, ank
)ckj(y), (6)

where ckj(y) = I(Ykj ≤ y), ank
is a bandwidth sequence of positive constants

tending to zero as nk tends to infinite and Wkj(x, ank
), j = 1, 2, . . . , nk are the
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weights determining the nature of the conditional distribution function estimator, k =
1, 2, . . . , K. In this study, we use the Nadaraya–Watson weights

Wkj(x, ank
) =

Ψ
(
x−Xkj

ank

)

∑
j′ Ψ

(
x−Xkj′

ank

) ,

where Ψ(x) = ψ(x1)ψ(x2) · · · ψ(xd) with ψ(.) as a symmetric kernel on a compact
support and

∫
uψ(u)du = 0. Here, we make the following assumption on the choice

of the bandwidth sequence an.

A1. As n → ∞, an → 0 but nan → ∞.

For one-way design with d-dimensional covariate, we have an = (const)n
− 1

(d+4)

as an optimum choice of bandwidth (Silverman 1986, Sect. 4.3) in which the constant
depends upon the distributions of the concerned random variables and the choice of the
kernel. However, in the present context, this constant is determined from simulation
study by keeping parity between empirical level and nominal level.

An estimator of pk. can be obtained by

p̂k. =
1

K

⎡
⎣

K∑

k′(�=k)=1

p̂kk′ +
1

2

⎤
⎦ , k = 1, 2, . . . , K,

where

p̂kk′ =
∫ ∫

p̂kk′(xk, xk′) dĜ(xk) dĜ(xk′)

=
1

N2

N∑

l=1

N∑

l′=1

∫

F̂ 0
kxl

(y) d̂Fk′xl′ (y)

=
1

nknk′

nk∑

j=1

nk′∑

j′=1

ekjek′j′ U(Ykj, Yk′j′),

with

U(Yk, Yk′) = 1 if Yk > Yk′

=
1

2
if Yk = Yk′

= 0 if Yk < Yk′

and

ekj =
nk

N

N∑

l=1

Wkj(Xl, ank
), j = 1, 2, . . . , nk, k = 1, 2, . . . , K. (7)
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Now, we consider some results which are used in the derivation of the proposed
tests. The proofs are given in “Appendix” and are based on the following assumptions
on different sample sizes and on random covariates. Similar type of assumptions is
also considered by Tsangari and Akritas (2004).

A2. For each N, there are nk = nK(N), k = 1, 2, . . . , K such that nk → ∞ as
N → ∞, but nk

N
→ λk ∈ (0, 1), k = 1, 2, . . . , K and

∑K
k=1 λk = 1.

A3. (i) The range, S, of Xk is same and is bounded for all k.
(ii) The density (or the probability mass function) gk corresponding to Gk sat-

isfies the condition inf {gk(x), x ∈ S} > 0.

Assumption A3 ensures the finiteness of the quantity g(x)
gk(x)

and the existence of
the conditional distributions. Furthermore, if the covariate is continuous, the following
additional assumption is made.

A4. The d.f. Gk has bounded second derivative for each k.

Result 1 Under A1–A4, p̂k. is a consistent estimator of pk., k = 1, 2, . . . , K.

Result 2 There exists a positive definite (p.d.) matrix ΣCpsuch that, under the same
assumptions as in Result 1, the asymptotic distribution of

√
NC(p̂. − p.) is (K −

1)−variate normal with mean vector 0 and dispersion matrix ΣCp, where p̂. =
(̂p1., p̂2., . . . , p̂K.)T .

The elements of ΣCp = (σij) are given in “Appendix.” Next, we make the following
tests.

χ2-test
Let Σ̂Cp be a consistent estimator of ΣCp. Then, by Result 2, the asymptotic distri-
bution of Tp = N(Cp̂.)T Σ̂−1

Cp(Cp̂.) under H0p is central χ2 with (K− 1) degrees of
freedom. Moreover, as N → ∞,

Tp

N
→ Δ2

p

in probability, where Δ2
p = (Cp.)T Σ−1

Cp(Cp.) ≥ 0. Equality holds if and only if
H0p is true. Hence, a right-tailed test based on Tp will be appropriate for testing H0p

against H1p. Thus, H0p is rejected asymptotically at level α if and only if

Tp > χ2
α,K−1, (8)

where χ2
α,K−1 is the upper α point of χ2 distribution with (K−1) degrees of freedom.

Multiple contrast test
Here, we set H0p =

⋂K−1
l=1 H0pl with H0pl : cTl p. = 0, l = 1, 2, . . . , K − 1 and

concentrate on multiple test procedure (MTP) in which H0p is rejected if and only if
at least one of the component hypotheses, {H0pl, l = 1, 2, . . . , K − 1}, is rejected. In
the present framework, H0pl is tested by using the statistic

T∗
pl =

√
NcTl p̂.√

σ̂ll

,
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where σ̂ll is the lth diagonal element of Σ̂Cp, l = 1, 2, . . . , K − 1. By Result 2, the
asymptotic distribution of T∗

pl is standard normal under H0p, l = 1, 2, . . . , K − 1.
Moreover, the statistics are dependent. The traditional approach in MTP is to control the
probability of at least one false rejection, known as family-wise error rate (FWER). The
existing methods, which control FWER, are based on the p values, adjusted suitably,
of the component tests. See, for example, the single-step procedures in Lehmann and
Romano (2005, Sect. 9.1) for the classical Bonferroni method and Simes (1986), and
the stepwise procedures in Holm (1979) and Hochberg (1988). Generally, stepwise
procedures are more powerful than single-step procedures. Moreover, these procedures
are conservative and do not require any assumption on the dependent structure of the p
values. However, in the present scenario, the component statistics are dependent. If the
true dependent structure of the component statistics could be used in the formulation
of MTP, these would provide more control over FWER and power.

Tamhane and Dunnett (1999) provide MTPs that account for the specific structure
of normally distributed component test statistics (see also Bretz et al. 2010, Chap.
2–4). With this idea, we describe a nonparametric multiple contrast test procedure
(MCTP), considered by Konietschke et al. (2012), which incorporates dependency
among the component test statistics.

As mentioned earlier, the asymptotic null distributions of component statistics are

standard normal. Next, we set T ∗
p =

{
T∗
pl; l = 1, 2, . . . , K − 1

}
and Ω = (ωij)

with ωij = σij√
σiiσjj

for i, j = 1, 2, . . . , K − 1. Then, using Result 2, it can be

observed that the asymptotic distribution of T ∗
p under H0p is (K − 1)-variate nor-

mal with mean vector 0 and dispersion matrix Ω. Thus,
{
H0p, T ∗

p

}
asymptotically

constitutes joint testing family. The simultaneous test procedure (STP), described by

the triple
{

H0p, T ∗
p, z(1−α),2,Ω̂

}
, controls FWER in the strong sense (Konietschke

et al. 2012), where Ω̂ is a consistent estimator of Ω and z(1−α),2,Ω is the two-sided
(1−α)-equicoordinate quantile of a multivariate normal distribution with mean vector
0 and dispersion matrix Ω. Therefore, asymptotically level α two-sided single-step
MCTP is given by

Reject any H0pl if |T∗
pl| > z(1−α),2,Ω̂, l = 1, 2, . . . , K − 1. (9)

Furthermore, associated with this MCTP, we also find the asymptotically 100(1−α)%
simultaneous confidence intervals (SCIs)

[
cTl p̂. − z(1−α),2,Ω̂

√
σ̂ll/N, cTl p̂. + z(1−α),2,Ω̂

√
σ̂ll/N

]
(10)

on the component parameters cTl p., l = 1, 2, . . . , K − 1. This gives an equivalent
approach for applying MCTP in which H0pl is rejected if 0 is not included in the
interval for the lth component. In addition, this procedure is more informative than
the corresponding adjusted p value approach where true dependent structure of the p
values or the component test statistics is not taken into account.
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3.2 Test for H0R

Here, as earlier, tests are developed by using the statistics

R̂k. =
1

n1n2 · · · nK

n1∑

j1=1

n2∑

j2=1

· · ·
nK∑

jK=1

e(j1, j2, . . . , jK) Vk(Y1j1
, Y2j2

, . . . , YKjK
),

k = 1, 2, . . . , K, where e(j1, j2, . . . , jK) = e1j1
e2j2

· · · eKjK
is given by (7) and

Vk(Y1, Y2, . . . , YK) = 1 if Yk > max(Ym,m = 1, 2, . . . , K;m �= k)

=
1

2
if Yk = Yk1

> max(Ym,m = 1, 2, . . . , K;m �= k, k1)

=
1

3
if Yk = Yk1

= Yk2

> max(Ym,m = 1, 2, . . . , K;m �= k, k1, k2)

...

=
1

K
if Y1 = Y2 = · · · = YK, k = 1, 2, . . . , K.

Now, similar to Results 1 and 2, we use the following results for testing H0R against
H1R. The results are based on the same assumptions as in Result 1.

Result 3 R̂k. is a consistent estimator of Rk., k = 1, 2, . . . , K.

Result 4 There exists a positive definite (p.d.) matrix ΣCR such that the asymptotic
distribution of

√
NC(R̂ . − R .) is (K − 1)-variate normal with mean vector 0 and

dispersion matrix ΣCR, where R̂ . = (̂R1., R̂2., . . . , R̂K.)T .

The elements of ΣCR = (vij) are given in “Appendix.”

3.3 Test for H0R∗

With a very similar way, as described for H0R, tests can be developed by using the
statistics

R̂∗
k. =

1

n1n2 · · · nK

n1∑

j1=1

n2∑

j2=1

· · ·
nK∑

jK=1

e(j1, j2, . . . , jK) V∗
k(Y1j1

, Y2j2
, . . . , YKjK

),

k = 1, 2, . . . , K, where e(j1, j2, . . . , jK) = e1j1
e2j2

· · · eKjK
is given by (7) and

V∗
k(Y1, Y2, . . . , YK) = 1 if Yk < min(Ym,m = 1, 2, . . . , K;m �= k)

=
1

2
if Yk = Yk1
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< min(Ym,m = 1, 2, . . . , K;m �= k, k1)

=
1

3
if Yk = Yk1

= Yk2

< min(Ym,m = 1, 2, . . . , K;m �= k, k1, k2)

...

=
1

K
if Y1 = Y2 = · · · = YK, k = 1, 2, . . . , K.

Under the same assumptions as in Result 1, we consider two results similar to
Results 3 and 4.

Result 5 R̂∗
k. is a consistent estimator of R∗

k., k = 1, 2, . . . , K.

Result 6 There exists a p.d. matrix ΣCR∗ such that the asymptotic distribution of√
NC(R̂

∗
.−R∗.) is (K−1)-variate normal with mean vector 0 and dispersion matrix

ΣCR∗ , where R̂
∗
. = (̂R∗

1., R̂∗
2., . . . , R̂∗

K.)T .

The elements of ΣCR∗ = (v∗
ij) are given in “Appendix.”

The proofs of Results 3 and 5 are very similar to that of Result 1 and hence omitted.
The proofs of Results 4 and 6 are given in “Appendix.” Next, we apply the χ2-test
procedure and the MCTP for testing H0R and H0R∗ . The procedures remain same as
those described for H0p. Thus, for the χ2-test given by (8), we get the tests in which Tp

is replaced by TR = N(CR̂ .)T Σ̂−1
CR(CR̂ .) and T∗

R = N(CR̂
∗
.)T Σ̂−1

CR∗(CR̂
∗
.) for the

two problems, respectively, where Σ̂CR and Σ̂CR∗ are consistent estimators of ΣCR

and ΣCR∗ . Similarly, the tests for the MCTP are given by (9) and (10) with T∗
pl replaced

by T∗
Rl =

√
NcT

l R̂.√
v̂ll

and T∗
R∗l =

√
NcT

l R̂
∗
.√

v̂∗
ll

in which v̂ll and v̂∗
ll, l = 1, 2, . . . , K − 1

are, respectively, the diagonal elements of Σ̂CR and Σ̂CR∗ , and Ω̂ is replaced by the

consistent estimators, Λ̂ and Λ̂∗, of Λ =
((

vij√
viivjj

))
and Λ∗ =

((
v∗

ij√
v∗

ii
v∗

jj

))
,

respectively.

3.4 Competitor 1

We consider the test provided by Tsangari and Akritas (2004) for the testing H0A :
Cθ. = 0, where C and θ. are defined in Sect. 2. Moreover, H0p, H0R and H0R∗
are implied by H0A, and hence it is more restricted than ours. Under some specific
assumptions (Tsangari and Akritas 2004), it can be shown that for some positive
definite (p.d.) matrix V ,

√
NCT̂ =

√
NC

∫

Ĥdθ̂. → NK−1

(
0, CVCT

)
(11)
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in distribution when H0A is true, where

Ĥ(y) =
1

2N

K∑

k=1

nk∑

j=1

{I (Ykj ≤ y) + I (Ykj < y)} .

By (11), χ2-test procedure and MCTP can be developed for H0A in the similar way
as described for H0p, H0R and H0R∗ . The elements of V , together with its consistent
estimator V̂ , are given by Tsangari and Akritas (2004). We refer the test described
above as TA test.

4 Alternative tests

Here, we follow Bathke and Brunner (2003) to provide an alternative method by
which, as in the parametric ANCOVA model, the relative effect of a treatment can
be expressed in terms of a linear function of the relative treatment effects of the
response variables and the covariates associated with the treatment. Moreover, the
relative treatment effects are measured by ridit reliability functionals but, unlike the
previous sections, they use marginal distributions of the concerned random variables.

Thus, representing the relative effect due to treatment k by π
(0)
k and that due to the rth

component of the covariate associated with the treatment by π
(r)
k , r = 1, 2, . . . , d,

the covariate-eliminated main effect due to treatment k is defined by

πk = π
(0)
k −

d∑

r=1

βrπ
(r)
k ,

where βr is constant reflecting the dependency of the rth component of the covariate
vector to the response variable corresponding to the kth treatment through the given
functional, r = 1, 2, . . . , d and k = 1, 2, . . . , K. Then, with the contrast matrix C

defined in Sect. 2, the testing problem becomes

H0π : Cπ = 0 against H1π : Cπ �= 0,

where π = (π1, π2, . . . , πK)
T .

In particular, for BP-type functional, we obtain

π
(0)
k =

1

K

⎡
⎣1

2
+

K∑

k′=1,k′ �=k

π
(0)
kk′

⎤
⎦ with

π
(0)
kk′ = P(Yk > Yk′) +

1

2
P(Yk = Yk′),
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π
(r)
k =

1

K

⎡
⎣1

2
+

K∑

k′=1,k′ �=k

π
(r)
kk′

⎤
⎦ with

π
(r)
kk′ = P(X

(r)
k > X

(r)
k′ ) +

1

2
P(X

(r)
k = X

(r)
k′ ),

where r = 1, 2, . . . , d and k = 1, 2, . . . , K. Similarly, based on the marginal distribu-

tion of the random variables (Y1, Y2, . . . , YK)
T and (X

(r)
1 , X

(r)
K , . . . , X

(r)
K )T , we can

form different sets of
{

π
(0)
k , π

(r)
k , r = 1, 2, . . . , d, k = 1, 2, . . . , K

}
from BD-type

and BC-type functionals (Bandyopadhyay and Chatterjee 2015).
Next, write π̂ as a consistent estimator of π obtained by the same technique as in

Sect. 3 using the sample measures of the concerned marginal d.f.’s. Then, similar to
Results 4 and 6, we get the following result that provides alternative tests based on
three choices of π as mentioned above.

Result 7 There exists a p.d. matrix ΣCπ such that, under the assumption A2, the
asymptotic distribution of

√
NC(π̂ − π) is (K − 1)-variate normal with mean vector

0 and dispersion matrix ΣCπ.

The details of the dispersion matrix ΣCπ and its consistent estimator are given
in “Appendix” for three different choices of π. Now, by Result 7 together with the
associated consistent estimators, we can construct tests for H0π using both the χ2-test
procedure and the MCTP as described in Sect. 3. In this way, we get three different
tests for each procedure from three different choices of π mentioned earlier. Such tests
are referred to as Alt. BP-type test, Alt. BD-type test and Alt. BC-type test, respectively.

Competitor 2
Bathke and Brunner (2003), following some assumptions which include the homo-
geneity of the covariate distributions with respect to treatment groups, provide a test
for the equality of the treatment effects by considering the testing problem

H0B : CF0 = 0 against H1B : CF0 �= 0,

where C is the contrast matrix as defined in Sect. 2 and F0 = (F01, F02, . . . , F0K)
T

with F0k as the marginal d.f. of Yk, k = 1, 2, . . . , K.

Now, with the definitions of γ̂(r), q̂
(r)
k for r = 0, 1, . . . , d, k = 1, 2, . . . , K and

Σ̂N given in Bathke and Brunner (2003), we find

q̂∗
k = q̂

(0)
k −

d∑

r=1

γ̂(r)q̂
(r)
k , k = 1, 2, . . . , K and Σ̂∗

N = Γ̂T Σ̂NΓ̂ ,

where

Γ̂ =

(
1
− γ̂

)
⊗ IK and γ̂ =

(
γ̂(1), γ̂(2), . . . , γ̂(d)

)T
.
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Then, the statistics (Bathke and Brunner 2003)

QN = N(Cq̂∗)T (CΣ̂∗
NCT )+Cq̂∗

and

AN =
Nf̂2(q̂

∗)TMq̂∗

tr(MΣ̂∗
N)

,

where M = CT (CCT )−1C and q̂∗ =
(̂
q∗

1, q̂∗
2, . . . , q̂∗

K

)T , follow asymptotically χ2

distributions under H0B with degrees of freedom estimated respectively by

f̂1 = rank(CΣ̂∗
N) and f̂2 =

[tr(MΣ̂∗
N)]2

tr(MΣ̂∗
NMΣ̂∗

N)

We refer the tests based on the above two statistics as Bathke QN test and Bathke AN

test.

Remark 1 Note that for each of the choices of π, the hypothesis, H0π, is more general
than that provided by Bathke and Brunner (2003) and it differs from the hypotheses
defined in Sect. 2. Hence, the tests that are developed in this section are not directly
comparable with those developed in Sect. 3. Now, to compare the tests, we need to
modify those by estimating the dispersion matrices under H0B with the assumptions
considered by Bathke and Brunner (2003). The dispersion matrix estimators are given
in “Appendix.” In addition, we can construct a Combined test for H0B based on Alt.
BD-type test and Alt. BC-type test using the approach that is described in Bandy-
opadhyay and Chatterjee (2015). However, Combined test based on BD-type test and
BC-type test is not possible, since the choice of the bandwidth constant for the two
tests is not same.

Remark 2 Due to some specific assumptions on bandwidth (Tsangari and Akritas
2004), TA test cannot be applied for more than three covariates. On the other hand,
there is no restriction on the number of covariates for our tests as well as the tests
based on the alternative method.

5 Small sample approximation and simulation results

In the simulation study, we use the Gaussian kernel function

ψ(x) =
1√

2π(2Φ(10) − 1)
e−

x2

2 I(|x| ≤ 10)

on the compact support [−10, 10] for the tests developed in Sect. 3, where Φ(x) is the
standard normal d.f. Clearly, the final expressions of the asymptotic distributions of√

N(q̂.−q.),
√

N(R̂.−R.) and
√

N(R̂
∗
.−R∗.) are free fromΨ(·). Therefore, the given
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consistent estimators and the developed test procedures do not depend on particular
choice of the kernel function, provided it satisfies the conditions mentioned in Sect. 3.1.
Note that the test procedures described in Sects. 3 and 4, including competitor 1, are
valid for large sample sizes. The simulation study shows that the rates of convergence of√

NC(p̂ .−p .),
√

NC(R̂ .−R .),
√

NC(R̂
∗
.−R∗ .),

√
NC

∫
Ĥdθ̂. and

√
NC(π̂−π)

toward their asymptotic distributions are rather slow. Hence, the tests, conducted with
the help of such asymptotic distributions, are not appropriate when the sample sizes
are small. So, in that situation, we adopt Box-type approximation (Brunner et al. 1997
and Gao et al. 2008) by which the distributions of

√
NC(p̂ .−p .),

√
NC(R̂ .−R .),√

NC(R̂
∗
.−R∗ .) and

√
NC(π̂−π) are approximated by multivariate t-distributions

with νp, νR, νR∗ and νπ degrees of freedom having common expectation 0 and
dispersion matrices Σ̂Cp, Σ̂CR, Σ̂CR∗ and Σ̂Cπ, respectively. Hence, instead of the
χ2-test, F-test is performed by using the approximation

N(Cφ̂)T Σ̂−1
Cφ(Cφ̂)/(K − 1) ∼ F(K−1),νφ

under H0π with φ = p, R, R∗ and π, where Fa,b denotes the F-distribution with a and
b degrees of freedom. For the MCTP, we perform the tests in which the two-sided (1−
α)-equicoordinate quantiles of multivariate normal distribution are replaced by that
of the corresponding multivariate t-distribution with suitable degrees of freedom. The
degrees of freedom can be computed in the same way as that described by Konietschke
et al. (2012).

On the other hand, setting DM as the diagonal matrix with the diagonal elements
of M = CT [CCT ]−1C (Brunner et al. 1997), the χ2-test, provided by Tsangari and
Akritas, can be replaced by an F-test in which the distribution of the test statistic

N

tr(DMV̂)
T̂

T
MT̂

under H0A is approximated by Ff̂3,f̂4
, where f̂3 =

[tr(DMV̂)]
2

tr(MV̂MV̂)
, f̂4 =

[tr(DMV̂)]
2

tr(D2
M

V̂2ΛN)

with ΛN = diag
{
(nl − 1)−1, l = 1, 2, . . . , K

}
.

Simulation study is performed considering both continuous and discrete cases. For
the tests that are developed in Sect. 3, including competitor 1, our first target is to find
the best choice of the bandwidth by comparing the empirical levels with the corre-
sponding nominal levels and also verifying the QQ-plots. Next, with that particular
choice of the bandwidth, the tests are compared with respect to their empirical pow-
ers. Note that all the tests, that appear in this study, correspond to different testing
problems. Therefore, we must restrict ourselves to a single testing problem to get a
meaningful comparison of the performance of the tests. Thus, for simulation purpose,
we consider the testing of equality of the covariate eliminating distribution functions
when the covariate distributions are different for different treatment groups. The same
problem is considered by Tsangari and Akritas (2004). For the given testing prob-
lem, we slightly modify the test statistics of BP-type test, BD-type test and BC-type
test by estimating the covariance matrices under H0A. The detail expressions of such
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modified test statistics are given in “Appendix” (Note 3). However, the asymptotic
distributions of the test statistics remain unchanged. On the other hand, the alternative
procedure deals with the marginal distributions of the associated random variables and
obtain tests for the equality of the covariate-eliminated treatment effects by consid-
ering a linear model of the relative treatment effects on the effects of the respective
covariates.

A challenging task for testing the equality of the treatment effects under the given
setup is to construct test that attains nominal levels even when the sample sizes are
not very large. After detailed investigation, it is observed that there exist situations
where TA test fails to attain the nominal levels even when the sample sizes are large
enough. However, BP-type, BD-type and BC-type tests reach the target quite appropri-
ately. For illustration, let us consider a simple model with single continuous covariate
as Ykj = 1 + 0.5Xkj + Ekj, j = 1, 2, . . . , nk, k = 1, 2, 3 in which Ekj are iid
(independently and identically distributed) according to N(0, 1); X1j are iid accord-
ing to |B1| with B1 ∼ N(0, 1) restricted on (−4, 4); X2j are iid according to |B2| with
B2 ∼ DE(0, 1) restricted on (−4, 4); X3j are iid according to |B3| with B3 ∼ C(0, 3)
restricted on (−4, 4), where N(μ, σ2), DE(μ, σ) and C(μ, σ) represent, respectively,
normal, double exponential and Cauchy distributions with location μ and scale σ. The
model clearly shows that the main effects due to treatments are equal for all the groups.
For our tests, we consider the form of the bandwidth as an = (const)n−0.2 because
this is the optimum form as shown by Silverman (1986, Sect. 4.3). For the competitor,
we take the bandwidth an = (const)n−0.26 because of the assumption for continuous
covariate considered by Akritas et al. (2000). Tables 1, 2, 3 and 4 present the empir-
ical levels of the tests using both large sample distributions and also small sample
approximate distributions corresponding to different choices of bandwidth constants.
Here, we consider four different sample sizes described by sample size 1 : N = 37

with (n1, n2, n3) = (11, 12, 14); sample size 2 : N = 75 with (n1, n2, n3) =
(24, 25, 26); sample size 3 : N = 120 with (n1, n2, n3) = (35, 40, 45); sample size
4 : N = 195 with (n1, n2, n3) = (60, 65, 70). The nominal level, α, is taken as 0.05,
and consider that bandwidth constant to be the appropriate one for which the empirical
levels of the tests attain the nominal level at each of the four different sample sizes. On
the other hand, performances of the tests based on alternative procedure with respect
to empirical levels are shown in Table 5 for different sample sizes. A total of 10,000
simulated samples, for each N, are generated to compute empirical levels and powers
using the software R 3.2.1, and equicoordinate quantiles of multivariate normal and t
distributions are calculated by using R-package mvtnorm (R Development Core Team
2013).

From Tables 1, 2, 3, 4 and 5, we observe 1.2 to be an appropriate bandwidth constant
for BP-type test, whereas for BD- and BC-type tests these are 1.1 and 1.55, respec-
tively. However, for sample size 1 and sample size 2, the large sample tests become
little liberal and thus we can perform the tests using the small sample distributions.
On the other hand, we find no satisfactory result from TA test toward finding an appro-
priate bandwidth even when the sample sizes are large enough. Moreover, we observe
that, in this setup, the empirical levels of BP-type, BD-type and BC-type tests increase
with the increase in the bandwidth constant. Thus, it is not difficult to find the band-
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Table 1 Empirical levels for BP-type test: χ2-test procedure along with MCTP in the bracket

Test Constant Sample size 1 Sample size 2 Sample size 3 Sample size 4

Large sample 0.0762 0.0468 0.0428 0.0378

0.75 (0.0717) (0.0469) (0.0422) (0.0371)

0.0836 0.0543 0.0482 0.0466

1.0 (0.0764) (0.0544) (0.0503) (0.0458)

0.0889 0.0641 0.0553 0.0512

1.2 (0.0841) (0.0620) (0.0563) (0.0502)

0.1037 0.0762 0.0776 0.0710

1.5 (0.0928) (0.0775) (0.0760) (0.0677)

0.1268 0.1065 0.1149 0.1225

2.0 (0.1128) (0.0972) (0.1066) (0.1165)

0.1418 0.1323 0.1540 0.1748

2.5 (0.1246) (0.1202) (0.1399) (0.1618)

Small sample 0.0499 0.0386 0.0364 0.0350

0.75 (0.0496) (0.0405) (0.0379) (0.0344)

0.0584 0.0463 0.0425 0.0425

1.0 (0.0550) (0.0447) (0.0445) (0.0429)

0.0595 0.0530 0.0494 0.0515

1.2 (0.0562) (0.0523) (0.0506) (0.0514)

0.0721 0.0653 0.0697 0.0672

1.5 (0.0672) (0.0668) (0.0688) (0.0642)

0.0925 0.0929 0.1033 0.1158

2.0 (0.0842) (0.0858) (0.0975) (0.1109)

0.1085 0.1156 0.1411 0.1672

2.5 (0.0926) (0.1043) (0.1277) (0.1557)

width constants appropriately using such tests. Furthermore, the empirical levels of
the alternative tests are found inappropriate.

Next, we compare the performance of the four tests in terms of empirical power.
For this, we consider the model: Ykj = 1 + τk + 0.5Xkj + Ekj, j = 1, 2, . . . , nk,
k = 1, 2, 3, where Ekj are iid according to N(0, 1); X1j are iid according to N(0, 1)
restricted on (−2, 2); X2j are iid according to Uniform (−2, 2); X3j are iid according
to C(1, 1) restricted on (−2, 2). Clearly, the model represents a simple linear structure
with standard normal distribution of the error components and continuous covariates.
Also, note that the covariate distributions are different in shapes, scales and even in
locations for the three groups. The primary task is to find the bandwidth constants
for which the tests, developed in Sect. 3, perform most accurately taking the same
forms of the bandwidths and the different sample sizes as mentioned earlier. From
the simulation study, we find the best choice of the bandwidth constant for each test.
The constants are 1.45, 1.45, 1.55 and 1.2 for BP-, BD- and BC-type tests and TA
tests, respectively. Table 6 shows the empirical levels of the four tests corresponding
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Table 2 Empirical levels for BD-type test: χ2-test procedure along with MCTP in the bracket

Test Constant Sample size 1 Sample size 2 Sample size 3 sample size 4

Large sample 0.0754 0.0483 0.0474 0.0379

0.75 (0.0703) (0.0493) (0.0494) (0.0408)

0.0818 0.0535 0.0511 0.0427

1.0 (0.0756) (0.0543) (0.0529) (0.0472)

0.0837 0.0608 0.0544 0.0516

1.1 (0.0779) (0.0611) (0.0518) (0.0532)

0.1041 0.0828 0.0783 0.0748

1.5 (0.0944) (0.0743) (0.0779) (0.0772)

0.1289 0.1076 0.1170 0.1344

2.0 (0.1173) (0.1043) (0.1149) (0.1307)

0.1507 0.1430 0.1768 0.1968

2.5 (0.1262) (0.1306) (0.1595) (0.1826)

Small sample 0.0497 0.0399 0.0425 0.0354

0.75 (0.0485) (0.0409) (0.0449) (0.0389)

0.0548 0.0449 0.0463 0.0398

1.0 (0.0539) (0.0473) (0.0472) (0.0448)

0.0548 0.0510 0.0472 0.0484

1.1 (0.0530) (0.0519) (0.0470) (0.0506)

0.0724 0.0692 0.0713 0.0703

1.5 (0.0684) (0.0644) (0.0712) (0.0732)

0.0926 0.0927 0.1078 0.1274

2.0 (0.0861) (0.0896) (0.1058) (0.1249)

0.1138 0.1230 0.1642 0.1873

2.5 (0.0964) (0.1137) (0.1485) (0.1763)

to the given choices of the bandwidth constants using large sample and small sample
procedures. Empirical levels of the alternative tests (Table 7) for different sample sizes
are also obtained setting τ1 = τ2 = τ3 = 0.

From Tables 6 and 7, it is observed that empirical levels of BP-, BD- and BC-type
tests, based on large sample procedures, are slightly larger than the nominal level,
α = 0.05, for sample size 1, whereas in case of TA test such levels are significantly
larger than the chosen nominal level for the sample sizes considered here. In addition,
we can use small sample approximate test procedure here with the given choice of the
bandwidth constant. Finally, we compare the empirical powers of the tests for sample
size 3 corresponding to different types of alternatives.

Clearly, for BP-, BD- and BC-type tests we can use large sample procedures and
for TA test we use small sample approximate test. Unfortunately, as before, empirical
levels of the tests correspond to the alternative procedure are significantly larger than
the chosen nominal level. Hence, these tests are not suitable for comparison. Table 8
gives the empirical powers of the four tests. For BP-, BD- and BC-type tests, we
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Table 3 Empirical levels for BC-type test: χ2-test procedure along with MCTP in the bracket

Test Constant Sample size 1 Sample size 2 Sample size 3 Sample size 4

Large sample 0.0634 0.0435 0.0350 0.0311

1.0 (0.0606) (0.0421) (0.0366) (0.0304)

0.0675 0.0536 0.0402 0.0392

1.25 (0.0632) (0.0511) (0.0422) (0.0392)

0.0750 0.0639 0.0543 0.0476

1.45 (0.0666) (0.0606) (0.0480) (0.0453)

0.0795 0.0613 0.0534 0.0497

1.55 (0.0754) (0.0571) (0.0551) (0.0501)

0.0918 0.0782 0.0640 0.0654

1.75 (0.0821) (0.0701) (0.0621) (0.0634)

0.0983 0.0882 0.0853 0.0871

2.0 (0.0891) (0.0813) (0.0767) (0.0793)

Small sample 0.0395 0.0337 0.0286 0.0290

1.0 (0.0418) (0.0348) (0.0326) (0.0277)

0.0428 0.0441 0.0344 0.0359

1.25 (0.0432) (0.0440) (0.0371) (0.0361)

0.0485 0.0537 0.0476 0.0444

1.45 (0.0473) (0.0519) (0.0435) (0.0432)

0.0526 0.0507 0.0474 0.0474

1.55 (0.0535) (0.0487) (0.0482) (0.0477)

0.0616 0.0650 0.0574 0.0606

1.75 (0.0575) (0.0588) (0.0566) (0.0594)

0.0652 0.0737 0.0761 0.0819

2.0 (0.0619) (0.0695) (0.0693) (0.0745)

provide empirical powers corresponding to the χ2-test procedure along with that of
the MCTP in the bracket. Empirical power comparison among the different tests under
the given model shows that none of the tests can be taken as the best considering all
types of alternatives at a time. Specifically, it is observed that BP-type test for the χ2-
test procedure has the highest empirical power under convex and linear alternatives,
whereas for concave alternative, BP- and BC-type tests provide almost same empirical
power and the corresponding MCTP has significantly larger empirical power than the
others. However, under umbrella alternative, TA test gives the maximum power. On
the other hand, BC-type test under U-shaped alternative produces larger empirical
power than that of its competitors.

We also compare the empirical powers of the tests under discrete response model.
Here, we take single covariate and consider the response model:Ykj ∼ Bernoulli(μk)

with log
(

μk

1−μk

)
= 0.25 + τk + 0.25Xkj, j = 1, 2, . . . , nk, k = 1, 2, 3, where

Xkj are iid according to N(0, 1) or C(0, 1) restricted on (−2, 2). As earlier, we first
compute the bandwidth constants for the four tests by setting τ1 = τ2 = τ3 = 0. The
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Table 4 Empirical levels for TA test: χ2-test procedure along with MCTP in the bracket for large sample
and approximate F test for small sample

Test Constant Sample size 1 Sample size 2 Sample size 3 Sample size 4

Large sample 0.1759 0.1292 0.1174 0.1055

0.5 (0.1554) (0.1215) (0.1164) (0.1056)

0.1348 0.1017 0.0936 0.0850

0.75 (0.1210) (0.0955) (0.0924) (0.0860)

0.1252 0.0953 0.0844 0.0725

1.0 (0.1111) (0.0889) (0.0811) (0.0712)

0.1178 0.0852 0.0798 0.0704

1.2 (0.1046) (0.0788) (0.0786) (0.0684)

0.1140 0.0864 0.0848 0.0784

1.5 (0.1005) (0.0834) (0.0818) (0.0752)

0.1232 0.1064 0.1058 0.0994

2.0 (0.1088) (0.0965) (0.0930) (0.0950)

0.1431 0.1282 0.1363 0.1377

2.5 (0.1279) (0.1151) (0.1175) (0.1258)

Small sample 0.5 0.1205 0.0985 0.0989 0.0892

0.75 0.0891 0.0791 0.0761 0.0724

1.0 0.0817 0.0709 0.0703 0.0625

1.2 0.0790 0.0671 0.0669 0.0615

1.5 0.0745 0.0697 0.0694 0.0679

2.0 0.0861 0.0869 0.0894 0.0902

2.5 0.1004 0.1084 0.1177 0.1279

Table 5 Empirical levels for alternative tests: χ2-test procedure along with MCTP in the bracket

Test Sample size 1 Sample size 2 Sample size 3 Sample size 4

Large sample 0.1404 0.1119 0.1048 0.1055

Alt. BP type (0.1193) (0.0986) (0.0918) (0.0976)

0.1293 0.0980 0.0894 0.0798

Alt. BD type (0.0905) (0.0778) (0.0818) (0.0782)

0.1416 0.1012 0.0911 0.0886

Alt. BC type (0.0911) (0.0687) (0.0688) (0.0671)

Bathke QN 0.1113 0.0890 0.0895 0.0908

Small sample 0.1093 0.0958 0.0941 0.0991

Alt. BP type (0.0935) (0.0867) (0.0851) (0.0937)

0.0997 0.0838 0.0808 0.0763

Alt. BD type (0.0664) (0.0672) (0.0752) (0.0744)

0.1073 0.0906 0.0828 0.0834

Alt. BC type (0.0648) (0.0602) (0.0623) (0.0620)

Bathke AN 0.0925 0.0810 0.0822 0.0862
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Table 6 Empirical levels of the tests: χ2-test procedure along with MCTP in the bracket

Test Sample size 1 Sample size 2 Sample size 3 Sample size 4

Large sample 0.0826 0.0618 0.0532 0.0508

BP type (0.0742) (0.0585) (0.0508) (0.0501)

0.0892 0.0585 0.0503 0.0523

BD type (0.0803) (0.0575) (0.0514) (0.0520)

0.0795 0.0586 0.0534 0.0497

BC type (0.0754) (0.0584) (0.0551) (0.0501)

0.1145 0.0809 0.0687 0.0643

TA test (0.1002) (0.0727) (0.0635) (0.0622)

Small sample 0.0576 0.0539 0.0479 0.0502

BP type (0.0540) (0.0509) (0.0488) (0.0503)

0.0574 0.0499 0.0464 0.0488

BD type (0.0561) (0.0494) (0.0461) (0.0489)

0.0526 0.0507 0.0474 0.0459

BC type (0.0535) (0.0487) (0.0482) (0.0477)

TA test 0.0755 0.0583 0.0522 0.0508

Table 7 Empirical levels for alternative tests: χ2-test procedure along with MCTP in the bracket

Test Sample size 1 Sample size 2 Sample size 3 Sample size 4

Large sample 0.1174 0.0894 0.0840 0.0779

BP type (0.1008) (0.0807) (0.0779) (0.0699)

0.1175 0.0908 0.0860 0.0798

BD type (0.0805) (0.0740) (0.0757) (0.0730)

0.1451 0.0983 0.0924 0.0851

BC type (0.0919) (0.0719) (0.0642) (0.0656)

Bathke QN 0.0988 0.0816 0.0704 0.0688

Small sample 0.0863 0.0759 0.0751 0.0744

BP type (0.0774) (0.0701) (0.0700) (0.0662)

0.0869 0.0789 0.0777 0.0740

BD type (0.0574) (0.0656) (0.0687) (0.0695)

0.1107 0.0859 0.0838 0.0793

BC type (0.0652) (0.0626) (0.0579) (0.0618)

Bathke AN 0.0911 0.0728 0.0653 0.0657

constants come out as 2.0(2.0), 2.0(3.25), 2.75(2.5) and 4.5(3.0) for BP-type, BD-
type, BC-type and TA tests, respectively, when the covariates are iid N(0, 1)(C(0, 1)).
We also perform the simulation for the alternative tests. In both the situations, it is
observed that the large sample procedures have inflated empirical type I error rates
when the sample sizes are small. On the other hand, small sample procedures seem to be
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Table 8 Empirical powers of the four tests

Alternative (τ1, τ2, τ3) BP-type test BD-type test BC-type test TA test

Convex (0,0,0.5) 0.6820 (0.5766) 0.6687 (0.5987) 0.6215 (0.4836) 0.6218

Concave (0,0.5,0.5) 0.6087 (0.6599) 0.5759 (0.6127) 0.5974 (0.6546) 0.5789

Umbrella (0,0.5,0) 0.4517 (0.4208) 0.4653 (0.4314) 0.3727 (0.3413) 0.5134

U-shaped (0.5,0,0.5) 0.5471 (0.3548) 0.4876 (0.2883) 0.5689 (0.3963) 0.5539

Linear (0,0.2,0.5) 0.5694 (0.5788) 0.5455 (0.5642) 0.5171 (0.5241) 0.5079

Table 9 Empirical powers of the four tests considering normal distribution for the covariate

Alternative (τ1, τ2, τ3) BP-type test BD-type test BC-type test TA test

Under H0 (0,0,0) 0.0515 (0.0479) 0.0573 (0.0568) 0.0577 (0.0557) 0.0558

Convex (0,0,1.2) 0.5094 (0.3846) 0.5469 (0.4436) 0.4987 (0.3648) 0.4773

Concave (0,1.2,1.2) 0.4508 (0.5193) 0.4367 (0.5071) 0.4827 (0.5481) 0.5018

Umbrella (0,1.2,0) 0.5081 (0.3889) 0.5311 (0.4253) 0.4956 (0.3639) 0.4846

U-shaped (1.2,0,1.2) 0.4635 (0.3700) 0.4460 (0.3401) 0.5040 (0.4210) 0.5065

Linear (0,0.6,1.2) 0.3793 (0.4014) 0.3850 (0.4034) 0.3902 (0.4149) 0.3865

Table 10 Empirical powers of the four alternative tests considering normal distribution for the covariate

Alternative (τ1, τ2, τ3) BP-type test BD-type test BC-type test Bathke AN test

Under H0 (0,0,0) 0.0547 (0.0555) 0.0544 (0.0520) 0.0606 (0.0529) 0.0635

Convex (0,0,1.2) 0.5189 (0.4053) 0.4774 (0.3888) 0.5519 (0.4025) 0.4943

Concave (0,1.2,1.2) 0.4632 (0.5326) 0.4720 (0.5213) 0.4653 (0.5373) 0.5241

Umbrella (0,1.2,0) 0.5156 (0.4000) 0.4746 (0.3786) 0.5487 (0.3864) 0.4958

U-shaped (1.2,0,1.2) 0.4825 (0.3854) 0.4756 (0.3797) 0.4761 (0.3766) 0.5039

Linear (0,0.6,1.2) 0.3870 (0.4214) 0.3752 (0.4029) 0.4077 (0.4191) 0.3742

appropriate even for small sample sizes. Thus, considering small sample procedures,
we compute empirical powers, shown in Tables 9 and 10, for sample size 2 taking
covariate distribution as normal.

From Tables 9 and 10, it is observed that, except Alt. BC-type test for the χ2

procedure and Bathke AN test, empirical levels of all the other tests attain the nominal
level. On the other hand, it is seen that the empirical powers of BD-type test and Alt. BC-
type test for the χ2 procedure are larger than the others under Convex alternative. The
MCTP corresponding to BC-type test shows the highest power for Concave alternative.
Under Umbrella alternative, Alt.BC-type test for the χ2 procedure gives the highest
power, but the empirical level of this test is slightly higher than the chosen nominal
level. It is further observed that under linear alternative, Alt. BP-type test for the MCTP
has the maximum empirical power, whereas BC-type test for the χ2 procedure, TA test
and Bathke AN test give almost same empirical power under U-shaped alternative.
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Table 11 Empirical powers of the four tests

Alternative (τ1, τ2, τ3) BP-type test BD-type test BC-type test TA test

Under H0 (0,0,0) 0.0544 (0.0555) 0.0552 (0.0563) 0.0507 (0.0493) 0.0582

Convex (0,0,0.6) 0.5648 (0.5080) 0.4944 (0.4787) 0.4856 (0.4014) 0.5645

Concave (0,0.6,0.6) 0.5447 (0.5846) 0.4862 (0.5108) 0.4963 (0.5504) 0.5433

Umbrella (0,0.6,0) 0.3208 (0.3170) 0.3502 (0.3472) 0.2441 (0.2427) 0.3793

U-shaped (0.6,0,0.6) 0.3736 (0.2390) 0.2681 (0.1642) 0.4042 (0.2847) 0.4284

Linear (0,0.3,0.6) 0.4827 (0.5105) 0.4331 (0.4647) 0.4320 (0.4553) 0.4814

The corresponding values under Cauchy covariate are also computed, and we get, not
shown here, almost similar interpretation.

Furthermore, we consider a simple linear model with two covariates having three
groups as: Ykj = 1+τk+0.5Xkj+0.5Zkj+Ekj, j = 1, 2, . . . , nk, k = 1, 2, 3, where
Ekj are iid according to N(0, 1); X1j are iid according to N(0, 1) restricted on (−2, 2);
X2j are iid according to Uniform (−2, 2); X3j are iid according to C(0, 1) restricted on
(−2, 2); Z1j are iid according to N(0, 1) restricted on (−3, 3); Z2j are iid according to
Uniform (−3, 3); Z3j are iid according to C(1, 1) restricted on (−3, 3). Like univariate
cases, here also our basic task is to determine the bandwidth constants, C1 and C2,
for the two covariates. For our tests, we consider the optimum form of bandwidths
(Silverman 1986, Sect. 4.3) as C1n−1/6 and C2n−1/6, respectively, for the first and
second covariates. However, the form of the bandwidth remains same for competitor
1 as suggested under univariate model due to some restrictions (Tsangari and Akritas
2004). The constants are chosen by the same technique as used earlier. For BP-, BD- and
BC-type tests, the choices of (C1, C2) are respectively given by (2.5, 1.7), (2.8, 1.6)
and (2.4, 1.8). The choice becomes (2.1, 1.9) for TA test. Simulation study shows that
the empirical levels of TA test based on large sample procedure are significantly greater
than the nominal level for all the chosen sample sizes, whereas small sample procedure
of this test seems to be appropriate for sample size 2, sample size 3 and sample size 4.
On the other hand, large sample procedures for BP-, BD- and BC-type tests attain the
nominal level quite appropriately corresponding to sample size 2, sample size 3 and
sample size 4. However, corresponding to sample size 1, small sample procedures seem
to be appropriate for these tests. The tests based on alternative procedure, including
competitor 2, show very high empirical levels even under large sample size. Table 11
gives the empirical powers for the four tests considering sample size 2. For TA test,
the small sample procedure is adopted and for the other tests the empirical powers are
given for the χ2-test procedure along with MCTP in the bracket using large sample
procedure.

The empirical levels of all the four tests attain the nominal level. Like single covari-
ate case, under this model, none of the above tests can be considered as the best for all
the situations. From Table 11, we observe that BP-type test for the χ2 procedure and
TA test give the same empirical power which is larger than the others under Convex
alternative and under Concave and linear alternatives; BP-type test provides the high-
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Table 12 Empirical powers of the four tests for testing H0B

(τ1, τ2, τ3) BP-type test BD-type test BC-type test TA test

(0,0,0) 0.0485 (0.0487) 0.0491 (0.0471) 0.0528 (0.0512) 0.0607

(0,0,0.8) 0.4062 (0.2292) 0.4173 (0.3286) 0.3386 (0.2430) 0.4078

(0,0.8,0.8) 0.3618 (0.4131) 0.3043 (0.3562) 0.3741 (0.4273) 0.4055

(0,0.8,0) 0.3773 (0.2843) 0.4001 (0.3181) 0.3143 (0.2237) 0.4097

(0.8,0,0.8) 0.3717 (0.2798) 0.3116 (0.2146) 0.3912 (0.3082) 0.4062

(0,0.4,0.8) 0.2977 (0.3207) 0.2788 (0.2943) 0.2759 (0.2910) 0.3245

Table 13 Empirical powers of the alternative tests for testing H0B

(τ1, τ2, τ3) BP-type test BD-type test BC-type test Combined test Bathke AN test

(0,0,0) 0.0478 (0.0484) 0.0462 (0.0495) 0.0509 (0.0483) 0.0522 (0.0512) 0.0613

(0,0,0.8) 0.4193 (0.3186) 0.4273 (0.3316) 0.3474 (0.2420) 0.4269 (0.3270) 0.4194

(0,0.8,0.8) 0.3755 (0.4285) 0.3123 (0.3644) 0.3860 (0.4364) 0.3842 (0.4380) 0.4066

(0,0.8,0) 0.4029 (0.3002) 0.4114 (0.3237) 0.3345 (0.2364) 0.4145 (0.3081) 0.4118

(0.8,0,0.8) 0.3930 (0.3028) 0.3302 (0.2364) 0.4127 (0.3256) 0.4131 (0.3142) 0.4156

(0,0.4,0.8) 0.3029 (0.3227) 0.2874 (0.3026) 0.2977 (0.3173) 0.3158 (0.3363) 0.3396

est power for the MCTP. On the other hand, TA test provides the highest empirical
powers for Umbrella and U-shaped alternatives.

Finally, we perform simulation study under the assumptions given by Bathke and
Brunner (2003) and test for H0B against H1B. The model for simulation is given by:
Ykj = 1 + τk + 0.5Xkj + 0.5Zkj + Ekj, j = 1, 2, . . . , nk, k = 1, 2, 3, where Ekj

are iid according to C(0, 1); X1j, X2j and X3j are iid according to N(0, 1) restricted
on (−2, 2) and Z1j, Z2j and Z3j are iid according to DE(0, 1) restricted on (−3, 3).
Clearly, the model represents equal distribution of each covariate for all the treatment
groups. Along with the marginal distributions, we further assume that all the treatment
groups have the same joint distribution for covariates. Here, we compare the three tests
developed in Sect. 3 and the tests based on alternative procedure together with TA test,
Bathke test and Combined test (Remark 1). For Combined test, we calculate the cutoff
points through simulation by considering different types of linear and nonlinear models
with different distributions. The simulated cutoff point of Combined test for the χ2

procedure (MCTP) is given by 11.26711 (11.22373). With the help of simulation
study, it is observed that our developed tests, including Combined test, attain the
nominal level when nk ≥ 4, whereas TA test and Bathke test based on small sample
procedures attain the level when nk ≥ 35. Tables 12 and 13 give the empirical levels
and powers for all the tests for sample size 3. The performances of the tests with respect
to empirical powers are nearly similar to that of univariate case. The empirical powers
of Combined test is generally larger than the other tests. The empirical levels of TA
test and Bathke AN test are slightly larger than the chosen nominal level, whereas the
other tests attain nominal levels quite accurately.

123



352 D. Chatterjee, U. Bandyopadhyay

Table 14 Table showing the nonparametric estimates of the relative treatment effects and the standard
errors in the bracket

Treatment Conditional approach Alternative approach

BP BD BC BP BD BC

SF 0.4687 0.2008 0.2948 0.4550 0.1655 0.3168

(0.0406) (0.0630) (0.0642) (0.0408) (0.0596) (0.0726)

APF 0.3420 0.1384 0.6123 0.3409 0.1260 0.6236

(0.0432) (0.0650) (0.0703) (0.0419) (0.0525) (0.0796)

W 0.6892 0.6608 0.0930 0.6800 0.6150 0.1050

(0.0421) (0.0742) (0.0583) (0.0389) (0.0773) (0.0418)

6 Data study

Consider the fluoride data obtained by Cartwright et al. (1968) from an experiment to
reduce dental caries. The data correspond to two treatments, stannous fluoride (SF)
and acid phosphate fluoride (APF) and a placebo treatment distilled water (W). The
treatments were applied over 69 female children to observe the number of decayed,
missing or filled teeth (DMFT) before (B) and after (A) the study. The responses to
be analyzed are the differences on Y = A−B. Besides the response, the age for each
child is considered as covariate in this analysis. Firstly, we find the bandwidth constant
taking the form of the bandwidth as an = (const)n−0.2 when there is no treatment
effect. For this, we adopt resampling technique by drawing with replacement samples
from the combined data set of 69 observations and then distributing the resampled
data at random among the three groups. This strategy justifies no treatment effect.
Here, we use three different sample sizes as: N = 49, (n1, n2, n3) = (15, 16, 18);
N = 75, (n1, n2, n3) = (24, 25, 26); N = 120, (n1, n2, n3) = (35, 40, 45) to
generate data from the combined data set and observe 5.0 as the bandwidth constant
for the BP-, BD-, BC-type tests. Table 14 demonstrates nonparametric estimates of
the covariate-eliminated relative treatment effects (with the estimates of asymptotic
standard errors in the bracket) derived from the three functionals using conditional
and alternative approaches.

The estimates clearly show the same ordering in the treatment effects for the func-
tionals under both the approaches. Further, it is observed that the placebo treatment
distilled water (W) has an influential effect on the increase in DMFT count. Next, we
test for the significance of the treatment effects using the covariate (age) and with-
out using covariate. Table 15 shows the observed values of the test statistics and the
corresponding p values based on the small sample test procedures because the tests
based on large sample procedures show little liberal for the given sample sizes. We
also adopt the same technique for the alternative approach.

We observe a strong evidence for rejection of the null hypothesis of absence of
treatment effects by all the tests considered here. That is, there exists a significant
difference among the three treatments applied. Moreover, the p values of the tests
using covariate tend to be smaller compared to those without using covariate. Hence,
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Table 15 Values of the test statistics and the corresponding p values

Test Conditional approach Alternative approach Without covariate

Statistic p value Statistic p value Statistic p value

BP 11.1108 1.517 × 10−4 12.6895 6.361 × 10−5 16.6883 2.378 × 10−4

(3.1280) (6.422 × 10−3) (3.3200) (3.900 × 10−3) (2.5645) (1.957 × 10−2)

BD 9.8276 3.774 × 10−4 8.6861 8.970 × 10−4 18.1713 1.133 × 10−4

(3.7912) (1.057 × 10−3) (3.5195) (2.443 × 10−3) (3.4360) (1.159 × 10−3)

BC 10.7959 1.856 × 10−4 17.5544 2.315 × 10−6 15.7325 3.835 × 10−4

(2.6156) (2.359 × 10−2) (2.4144) (3.396 × 10−2) (2.3378) (3.620 × 10−2)

Table 16 SCI for the treatment differences

Treatment Conditional approach Alternative approach

SF-APF SF-W SF-APF SF-W

BP [−0.0402, 0.2936] [−0.3828, −0.0583] [−0.0535, 0.2818] [−0.3806, −0.0692]

BD [−0.1785, 0.3034] [−0.7402, −0.1796] [−0.1490, 0.2280] [−0.7452, −0.1538]

BC [−0.5961, −0.0390] [−0.0290, 0.4323] [−0.6358, 0.0221] [0.0148, 0.4087]

we can say that the use of covariate is worthwhile in this study. Now, we focus on
pairwise comparison based on SCI (Eq. 10) based on both the approaches using age
as covariate.

From the SCIs of the treatment differences (Table 16), it is identified that, except for
the BC-type test based on conditional distribution approach, the difference between
SF and W is significant.

7 Conclusion

This work develops nonparametric tests for equality of treatment effects in the pres-
ence of multiple covariates through ridit reliability functionals based on two different
approaches. In the first approach, we develop tests by considering a dependent structure
of the response variables and the corresponding covariates through conditional distri-
butions. The alternative approach considers the marginal distributions and ignores the
direct dependency between variables. Thus, the tests based on alternative approach
assume lesser restrictions and the use of such tests is more easier than that developed
under conditional distribution approach. But the simulation study demonstrates that
the performance of the conditional approach in terms of type I error rate is more accu-
rate than that of the marginal approach. The convergence of the proposed test statistics
using conditional distribution approach to their asymptotic distributions are more rapid
than that of the test statistics provided by Tsangari and Akritas (2004) and Bathke and
Brunner (2003). The simulation study shows that the tests are asymptotically distri-
bution free and are applicable to the situation when the response and covariate are
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not necessarily continuous. An important fact is that the choice of the bandwidth con-
stants depends on the choice of the response model. Thus, it is necessary to determine
the bandwidth constants before applying the tests based on conditional distribution
approach. Empirical power study shows that none of the tests can be taken as superior
to the others uniformly for all types of alternatives. There is no such restrictions on
the number of covariates for the tests developed under both the approaches considered
here. However, in practice, the conditional approach becomes intractable when there
is a large number of covariates. In this case, the optimum bandwidth converges to zero
in an extremely slow rate. Hence, it requires larger sample sizes than the alternative
approach. Moreover, based on the alternative approach, it is also possible to develop
tests for the significance of covariates as described by Bathke and Brunner (2003).
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Appendix

Proof of Result 1 It is enough to show that for any k, k′(�= k), p̂kk′ is a consistent
estimator of pkk′ . On this matter, we set

p̂
(1)
kk′ =

1

nknk′

nk∑

j=1

nk′∑

j′=1

g(Xkj)g(Xk′j′)

gk(Xkj)gk′(Xk′j′)
U(Ykj, Yk′j′)

and

p̂
(2)
kk′ =

1

nknk′

nk∑

j=1

nk′∑

j′=1

(
ekjek′j′ −

g(Xkj)g(Xk′j′)

gk(Xkj)gk′(Xk′j′)

)
U(Ykj, Yk′j′),

where g(.) is the density (or probability mass function) corresponding to G(.). Then,
we can rewrite p̂kk′ as

p̂kk′ = p̂
(1)
kk′ + p̂

(2)
kk′ . (12)

Now,

E
(
p̂

(1)
kk′

)
=

1

nknk′

nk∑

j=1

nk′∑

j′=1

E

[
g(Xkj)g(Xk′j′)

gk(Xkj)gk′(Xk′j′)
pkk′(Xkj,Xk′j′)

]

=

∫ ∫

pkk′(xk, xk′) dG(xk) dG(xk′)

= pkk′
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and

Var
(
p̂

(1)
kk′

)
=

1

n2
kn2

k′
Var

⎡
⎣

nk∑

j=1

nk′∑

j′=1

{
g(Xkj)g(Xk′j′)

gk(Xkj)gk′(Xk′j′)
U(Ykj, Yk′j′)

}⎤
⎦

=
1

n2
kn2

k′

⎡
⎣

nk∑

j=1

nk′∑

j′=1

Vap(j, j
′)

+

nk∑

j(�=j1)=1

nk′∑

j′=1

Cp(j, j1, j′) +
nk∑

j=1

nk′∑

j′(�=j′
1
)=1

Cp(j, j
′, j′1)

⎤
⎦ .

In the above expression, Vap(., .) and Cp(., ., .) denote, respectively, the variance and

covariance terms and these terms are bounded under A3. Therefore, Var
(
p̂

(1)
kk′

)
→ 0

under A2. Thus, we get

p̂
(1)
kk′ → pkk′ (13)

in probability. Furthermore, the assumptions A1–A4 imply that

max
j

∣∣∣∣ekj −
g(Xkj)

gk(Xkj)

∣∣∣∣ → 0

almost surely (Tsangari and Akritas 2004), and hence, we get

0 ≤
∣∣∣̂p(2)

kk′
∣∣∣ ≤ max

j, j′
∣∣ekjek′j′

−
g(Xkj)g(Xk′j′)

gk(Xkj)gk′(Xk′j′)

∣∣∣∣∣

⎧
⎨

⎩

1

nknk′

∑

j

∑

j′
U(Ykj, Yk′j′)

⎫
⎬

⎭
= op(1)Op(1).

(14)

Now, combining (13) and (14), the required result follows from (12). 
�
Proof of Result 2 To find the asymptotic distribution of

√
N(q̂. − q.), we write, for

any k = 1, 2, . . . , K,

T
p
k =

√
N(̂pk. − pk.)

=

√
N

K

⎡
⎢⎢⎣

K∑

k1=1

k1 �=k

(̂pkk1
− pkk1

)

⎤
⎥⎥⎦

= T
p
K1 + T

p
K2, (15)

123



356 D. Chatterjee, U. Bandyopadhyay

where

T
p
k1 =

√
N

K

K∑

k1=1

k1 �=k

1

nknk1

nk∑

j=1

nk1∑

j1=1

{
g(Xkj)g(Xk1j1)

gk(Xkj)gk1
(Xk1j1)

(
U(Ykj, Yk1j1

)−p0
kk1

)

−
(
pkk1

− p0
kk1

) }

,

T
p
k2 =

1

nknk1

nk∑

j=1

nk1∑

j1=1

(
ekjek1j1

−
g(Xkj)g(Xk1j1)

gk(Xkj)gk1
(Xk1j1)

)(
U(Ykj, Yk1j1

) − p0
kk1

)

and p0
kk1

= E(U(Ykj, Yk1j1
)) for any (j, j1). Now, since

0 ≤ ∣∣Tp
k2

∣∣ ≤ 1

K

K∑

k1=1

k1 �=k

max
j, j1

∣∣∣∣ekjek1j1
−

g(Xkj)g(Xk1j1)

gk(Xkj)gk1
(Xk1j1)

∣∣∣∣

×
∣∣∣∣∣∣

√
N

nknk1

nk∑

j=1

nk1∑

j1=1

(
U(Ykj, Yk1j1

) − p0
kk1

)
∣∣∣∣∣∣

=op(1)Op(1),

we get

T
p
k2 → 0

in probability. Hence, the asymptotic distribution of
√

N(q̂. − q.) is same as that
of Tp =

{
T

p
k1, k = 1, 2, . . . , K

}
. Now, using Hajek’s projection theorem in mul-

tivariate setup, we get that the asymptotic distribution of Tp is same as that of
Zp =

{
Z

p
k, k = 1, 2, . . . , K

}
, with

Z
p
k =

K∑

k1=1

√
N

nk1

nk1∑

j=1

{
g(Xk1j)

gk1
(Xk1j)

Z
p
kk1

(Yk1j) − (pk. − pk)

}

,

where

Z
p
kk(Ykj) =

1

K

K∑

k1=1

k1 �=k

(
1 − F 0

k1
.(Ykj) − p0

kk1

)
and

Z
p
kk1

(Yk1j) =
1

K

(
F 0
k .(Yk1j) − p0

kk1

)

for k, k1(�= k) = 1, 2, . . . , K.
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Next, using central limit theorem, the asymptotic distribution of Zp is K-variate
normal with mean vector 0 and dispersion matrix Sp = ((s

p

kk′)), where

s
p
kk =

K∑

k1=1

1

λk1

[
VarXk1

{
g(Xk1j)

gk1
(Xk1j)

EYk1
|Xk1

Z
p
kk1

}

+EXk1

{(
g(Xk1j)

gk1
(Xk1j)

)2

VarYk1
|Xk1

Z
p
kk1

}]
,

k = 1, 2, . . . , K and for k1 �= k2 = 1, 2, . . . , K, we have

s
p
k1k2

=

K∑

k3=1

1

λk3

CovXk3

×
{

g(Xk3j)

gk3
(Xk3j)

EYk3
|Xk3

Z
p
k1k3

,
g(Xk3j)

gk3
(Xk3j)

EYk3
|Xk3

Z
p
k2k3

}

+ EXk3

{(
g(Xk3j)

gk3
(Xk3j)

)2

CovYk3
|Xk3

(
Z

p
k1k3

, Z
p
k2k3

)}

,

in which

p0
k =

1

K

⎡
⎢⎢⎣

1

2
+

K∑

k1=1

k1 �=k

p0
kk1

⎤
⎥⎥⎦ .

Therefore, the asymptotic distribution of
√

NC(q̂. − q.) is (K − 1)-variate normal
with mean vector 0 and dispersion matrix ΣCp = CSpCT . Hence, the result follows.


�
Proof of Result 4 We can prove the result with very similar approach as suggested for
Result 2. To find the asymptotic distribution of

√
N(R̂. − R.), we set

Vk = Vk(Y1j1
, Y2j2

, . . . , YKjK
)

and write

TR
k =

√
N(̂Rk. − Rk.)

=
√

N

⎡
⎣ 1

n1n2 · · · nK

n1∑

j1=1

n2∑

j2=1

· · ·
nK∑

jK=1

e(j1, j2, . . . , jK) Vk − Rk.

⎤
⎦

= TR
K1 + TR

K2, (16)
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where

TR
k1 =

√
N

n1n2 · · · nK

n1∑

j1=1

n2∑

j2=1

· · ·
nK∑

jK=1

{
K∏

l=1

g(Xljl)

gl(Xljl)
(Vk − Rk) − (Rk. − Rk)

}

,

TR
k2 =

√
N

n1n2 · · · nK

n1∑

j1=1

n2∑

j2=1

· · ·
nK∑

jK=1

(
e(j1, j2, . . . , jK) −

K∏

l=1

g(Xljl)

gl(Xljl)

)

× (Vk − Rk)

and Rk = E(Vk) for any k = 1, 2, . . . , K. Now, since

0 ≤ ∣∣Tp
k2

∣∣ ≤ max
j1···jK

∣∣∣∣∣e(j1, j2, . . . , jK) −

K∏

l=1

g(Xljl)

gl(Xljl)

∣∣∣∣∣

×
∣∣∣∣∣∣

√
N

n1n2 · · · nK

n1∑

j1=1

n2∑

j2=1

· · ·
nK∑

jK=1

(Vk − Rk)

∣∣∣∣∣∣
=op(1)Op(1),

we get

TR
k2 → 0

in probability, and hence the asymptotic distribution of
√

N(R̂. − R.) is same as
that of TR =

{
TR
k1, k = 1, 2, . . . , K

}
. Applying Hajek’s projection theorem in mul-

tivariate setup, we get that the asymptotic distribution of TR is same as that of
ZR =

{
ZR

k , k = 1, 2, . . . , K
}

with

ZR
k =

K∑

k1=1

√
N

nk1

nk1∑

j=1

{
g(Xk1j)

gk1
(Xk1j)

ZR
kk1

(Yk1j) − (Rk. − Rk)

}

,

where

ZR
kk(Ykj) =

K∏

l=1

l �=k

Fl.
−(Ykj) +

1

2

∑

1≤l1≤K

l1 �=k

fl1
.(Ykj)

K∏

l=1

l �=l1, k

Fl.
−(Ykj)

+
1

3

∑

1≤l1
l1, l2

∑

<l2≤K

�= k

fl1
.(Ykj)fl2

.(Ykj)

K∏

l=1

l �= l1, k

Fl.
−(Ykj)

+ · · · + 1

K

K∏

l=1

l �= k

fl.(Ykj) − Rk
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for k = 1, 2, . . . , K and for k1 �= k, we have

ZR
kk1

(Yk1j) = {1 − Fk. (Yk1j)}

K∏

l=1

l �=k,k1

Fl. (Yk1j) +
1

2
fk. (Yk1j)

K∏

l=1

l �=k,k1

Fl.
− (Yk1j)

+
1

3

∑

1≤k2≤K

k2 �=k,k1

fk. (Yk1j) fk2
. (Yk1j)

K∏

l=1

l �=k,k1,k2

Fl.
− (Yk1j) + · · · + 1

K

K∏

l=1

l �=k1

fl. (Yk1j)

+
∑

1≤k2≤K

k2 �=k,k1

K∏

l=1

l �=k,k1,k2

Fl. (Yk1j)E {RYk
(Yk2

) I (Yk2
> Yk1j)}

+
∑

1≤k2<k3≤K

k2,k3 �=k,k1

K∏

l=1

l �=k,k1,k2,k3

Fl. (Yk1j)E {RYk
(Yk2

, Yk3
)

× I (min (Yk2
, Yk3

) > Yk1j)} + · · ·
+ E {RYk

(Y1, Y2, . . . , Yk1−1, Yk1+1, . . . YK)

× I (min (Y1, Y2, . . . , Yk1−1, Yk1+1, . . . YK) > Yk1j)} − Rk

with I(.) representing the indicator of the corresponding set,

Fk.−(y) =

∫

P(Yk < y|x) dG(x), fk.(y) =

∫

P(Yk = y|x) dG(x)

and

RY(Ys1
, . . . , Ysr−1

) =P(Ys1
< Y, Ys2

< Y, . . . , Ysr−1
< Y)

+
1

2

∑

1≤q1≤p

P(Yq1
= Y, Ys1

< Y, Ys2
< Y, . . . , Ysr−1

< Y)

+ · · · + 1

r
P(Ys1

= Y, Ys2
= Y, . . . , Ysr−1

= Y). (17)

Thus, using central limit theorem, the asymptotic distribution of ZR is K-variate
normal with mean vector 0 and dispersion matrix SR = ((sR

kk′)), where

sR
kk =

K∑

k1=1

1

λk1

[
VarXk1

{
g(Xk1j)

gk1
(Xk1j)

EYk1
|Xk1

ZR
kk1

}

+ EXk1

{(
g(Xk1j)

gk1
(Xk1j)

)2

VarYk1
|Xk1

ZR
kk1

}]
,
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k = 1, 2, . . . , K and for k1 �= k2 = 1, 2, . . . , K, we have

sR
k1k2

=

K∑

k3=1

1

λk3

CovXk3

×
{

g(Xk3j)

gk3
(Xk3j)

EYk3
|Xk3

ZR
k1k3

,
g(Xk3j)

gk3
(Xk3j)

EYk3
|Xk3

ZR
k2k3

}

+ EXk3

{(
g(Xk3j)

gk3
(Xk3j)

)2

CovYk3
|Xk3

(
ZR

k1k3
, ZR

k2k3

)}

.

Therefore, the asymptotic distribution of
√

NC(R̂.−R.) is (K− 1)-variate normal
with mean vector 0 and dispersion matrix ΣCR = CSRCT . Hence, the result follows.


�
Note 1. The proof of Result 6 is exactly same as that of Result 4. Hence, the proof

is not given here. The elements of the dispersion matrix ΣCR∗ = CSR∗CT can be
obtained by replacing the terms Fk.(y) and Fk.−(y) by F̄k.(y) and Fk.+(y) and
finally

E {RYk
(Y1, Y2, . . . , Yk1−1, Yk1+1, . . . YK)

I (min (Y1, Y2, . . . , Yk1−1, Yk1+1, . . . YK) > Yk1j)}

by

E
{

R∗
Yk

(Y1, Y2, . . . , Yk1−1, Yk1+1, . . . YK)

I (max (Y1, Y2, . . . , Yk1−1, Yk1+1, . . . YK) < Yk1j)
}

,

where

Fk.+(y) =

∫

P(Yk > y|x) dG(x), F̄k.(y) =

∫

P(Yk ≥ y|x) dG(x)

and R∗
Y can be defined similarly as (17) corresponding to BC-type functional.

Note 2. The consistent estimators of the dispersion matrices can be provided under
the assumptions A1–A4 by replacing the quantities λk, Fk.(y), F 0

k .(y), Fk.−(y),

Fk.+(y), F̄k.(y), fk.(y) and
g(Xkj)

gk(Xkj)
by their sample versions nk

N
, F̂k.(y), F̂ 0

k .(y),

F̂k.−(y), F̂k.+(y),̂̄Fk.(y), f̂k.(y) and ekj, respectively, where F̂ 0
k .(y) = 1

nk∑nk

j=1 ekj

{
I(Ykj > y) + 1

2
I(Ykj = y)

}
and similarly the others. Note that, as we

do not assume any specific nature of the distribution, the estimators under A1–A4 are
consistent even for tie cases.

Note 3. To compare the tests with the test provided by Tsangari and Akritas (2004),
we modify the tests by using the estimator of the variance components under H0A.
Here, we use the combined estimator of F 0

k .(y) as
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K∑

k=1

nk

N
F̂ 0
k .(y)

for any k = 1, 2, . . . , K. Similarly, we can also estimate the other quantities.

Proof of Result 7 For BP-, BD- and BC-type functionals, it is not difficult to show that

√
N {(π̂ − π) − B} → 0 (18)

in probability, where B = (B1, B2, . . . , BK)
T with

Bk = B
(0)
k −

d∑

r=1

βrB
(r)
k and B

(r)
k =

K∑

k1=1

1

nk1

nk1∑

j=1

B
(r)
kk1

(X
(r)
k1j),

k = 1, 2, . . . , K and r = 0, 1, . . . , d. For convenience, without loss of generality, we

write X
(0)
kj = Ykj. The mathematical expression of B

(r)
kk1

depends on the choices of
the functionals. For BP-type functionals, we have,

B
(r)
kk (X

(r)
kj ) =

1

K

K∑

k1=1

k1 �=k

(
1 − F 0

(r)k1
(X

(r)
kj ) − p

(r)
kk1

)
and

B
(r)
kk1

(X
(r)
k1j) =

1

K

(
F 0
(r)k(X

(r)
k1j) − p

(r)
kk1

)
,

where F 0
(r)k

(x) = P(X
(r)
k > x) + 1

2
P(X

(r)
k > x) for k, k1(�= k) = 1, 2, . . . , K and

r = 0, 1, . . . , d.
Again, for BD-type functionals the expression will be

B
(r)
kk (X

(r)
kj ) =

K∏

l=1

l �=k

F−
(r)l

(X
(r)
kj ) +

1

2

∑

1≤l1≤K

l1 �=k

f(r)l1
(X

(r)
kj )

K∏

l=1

l �=l1, k

F−
(r)l

(X
(r)
kj )

+
1

3

∑

1≤l1
l1, l2

∑

<l2≤K

�= k

f(r)l1
(X

(r)
kj )f(r)l2

(X
(r)
kj )

K∏

l=1

l �= l1, k

F−
(r)l

(X
(r)
kj ) + · · · + 1

K

K∏

l=1

l �= k

f(r)l(X
(r)
kj ) − R

(r)
k
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for k = 1, 2, . . . , K and for k1 �= k, we have

B
(r)
kk1

(X
(r)
k1j) =

{
1 − F(r)k

(
X
(r)
k1j

)} K∏

l=1

l �=k,k1

F(r)l

(
X
(r)
k1j

)

+
1

2
f(r)k

(
X
(r)
k1j

) K∏

l=1

l �=k,k1

F−
(r)l

(
X
(r)
k1j

)

+
1

3

∑

1≤k2≤K

k2 �=k,k1

f(r)k

(
X
(r)
k1j

)
f(r)k2

(
X
(r)
k1j

)

K∏

l=1

l �=k,k1,k2

F−
(r)l

(
X
(r)
k1j

)
+ · · · + 1

K

K∏

l=1

l �=k1

f(r)l

(
X
(r)
k1j

)

+
∑

1≤k2≤K

k2 �=k,k1

K∏

l=1

l �=k,k1,k2

F(r)l

(
X
(r)
k1j

)

× E

{

R
X

(r)
k

(
X
(r)
k2

)
I
(
X
(r)
k2

> X
(r)
k1

)}

+
∑

1≤k2<k3≤K

k2,k3 �=k,k1

K∏

l=1

l �=k,k1,k2,k3

F(r)l

(
X
(r)
k1j

)
E

{

R
X

(r)
k

(
X
(r)
k2

, X
(r)
k3

)

× I
(

min
(
X
(r)
k2

, X
(r)
k3

)
> X

(r)
k1j

)}
+ · · ·

+ E

{

R
X

(r)
k

(
X
(r)
1 , X

(r)
2 , . . . , X

(r)
k1−1, X

(r)
k1+1, . . . X

(r)
K

)

× I
(

min
(
X
(r)
1 , X

(r)
2 , . . . , X

(r)
k1−1, X

(r)
k1+1, . . . X

(r)
K

)

> X
(r)
k1j

)}
− R

(r)
k ,

where F(r)k(x) = P(X
(r)
k ≥ x), F−

(r)k
(x) = P(X

(r)
k < x) and f(r)k(x) = P(X

(r)
k =

x), r = 0, 1, . . . , d. In case of BC-type functional, we get the expressions by altering
the > (or ≥) sign by < (or ≤) and “min” by “max” in the above expressions.

Therefore, from (18) we can say that
√

N(π̂−π) and
√

NB have the same asymp-
totic distribution. Using central limit theorem,

√
NB asymptotically follows K-variate

normal distribution with mean vector 0 and dispersion matrix ΣB. Thus,
√

NCB and
hence

√
NC(π̂ − π) asymptotically follow (K − 1)-variate normal distribution with

mean vector 0 and dispersion matrix ΣCπ. 
�
Note 4. Consistent estimator of the dispersion matrix ΣCπ can be provided by esti-

mating the elements with the usual sample versions. Note that ΣCπ involves unknown
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parameter β = (β1, β2, . . . , βd)
T . We estimate β consistently by minimizing the

variance of 1
N

∑K
k=1 nkBk (Bathke and Brunner 2003) and solving the set of d

equations

d∑

r1=1

βr1

⎧
⎨

⎩

K∑

k=1

n2
k

K∑

k1=1

1

nk1

Cov
(
B
(r)
kk1

, B
(r1)
kk1

)

+
∑

k

∑

�=k′
nknk′

K∑

k1=1

1

nk1

Cov
(
B
(r)
kk1

, B
(r1)
k′k1

)
⎫
⎬

⎭

=

K∑

k=1

n2
k

K∑

k1=1

1

nk1

Cov
(
B
(0)
kk1

, B
(r)
kk1

)

+
∑

k

∑

<k′
nknk′

K∑

k1=1

1

nk1

{
Cov

(
B
(0)
kk1

, B
(r)
k′k1

)
+ Cov

(
B
(r)
kk1

, B
(0)
k′k1

)}
,

r = 1, 2, . . . , d.

References

Akritas, M. G., Keilegom, I. V. (2001). Non-parametric estimation of the residual distribution. Scandinavian
Journal of Statistics, 28(3), 549–567.

Akritas, M. G., Arnold, S. F., Brunner, E. (1997). Nonparametric hypotheses and rank statistics for unbal-
anced factorial designs. Journal of the American Statistical Association, 92(437), 258–265.

Akritas, M. G., Arnold, S. F., Du, Y. (2000). Nonparametric models and methods for nonlinear analysis of
covariance. Biometrika, 87(3), 507–526.

Bandyopadhyay, U., Chatterjee, D. (2015). Nonparametric homogeneity test based on ridit reliability func-
tional. Journal of the Korean Statistical Society, 44(4), 577–591.

Bandyopadhyay, U., De, S. (2011). On multi-treatment adaptive allocation design for dichotomous response.
Communications in Statistics Theory and Methods, 40(22), 4104–4124.

Bathke, A., Brunner, E. (2003). A nonparametric alternative to analysis of covariance. In M. G. Akritas, D.
N. Politis (Eds.), Recent advances and trends in nonparametric statistics (pp. 109–120). Amsterdam:
Elsevier.

Bretz, F., Hothorn, T., Westfall, P. (2010). Multiple comparisons using R. London: Chapman and Hall.
Bross, I. D. J. (1958). How to use ridit analysis. Biometrics, 14(1), 18–38.
Brunner, E., Munzel, U. (2000). The nonparametric behrens-fisher problem: Asymptotic theory and a small-

sample approximation. Biometrical Journal, 42(1), 17–25.
Brunner, E., Puri, M. L. (2001). Nonparametric methods in factorial designs. Statistical Papers, 42(1), 1–52.
Brunner, E., Dette, H., Munk, A. (1997). Box-type approximations in nonparametric factorial designs.

Journal of the American Statistical Association, 92(440), 1494–1502.
Brunner, E., Konietschke, F., Pauly, M., Puri, M. L. (2017). Rank-based procedures in factorial designs:

Hypotheses about non-parametric treatment effects. Journal of Royal Statistical Society Series B,
79(5), 1463–1485.

Cartwright, H. V., Lindahl, R. L., Bawden, J. W. (1968). Clinical findings on the effectiveness of stannous
fluoride and acid phosphate fluoride as caries reducing agents in children. Journal of Dentistry for
Children, 35(1), 36–40.

Dette, H., Neumeyer, N. (2001). Nonparametric analysis of covariance. The Annals of Statistics, 29(5),
1361–1400.

Fischer, D., Oja, H., Schleutker, J., Sen, P. K., Wahlfors, T. (2014). Generalized Mann-Whitney type tests
for microarray experiments. Scandinavian Journal of Statistics, 41(3), 672–692.

123



364 D. Chatterjee, U. Bandyopadhyay

Friedrich, S., Konietschke, F., Pauly, M. (2017). A wild bootstrap approach for nonparametric repeated
measurements. Computational Statistics and Data Analysis, 113, 38–52.

Gao, X., Alvo, M., Chen, J., Li, G. (2008). Nonparametric multiple comparison procedures for unbalanced
one-way factorial designs. Journal of Statistical Planning and Inference, 138(8), 2574–2591.

Grigoletto, M., Akritas, M. G. (1999). Analysis of covariance with incomplete data via semiparametric
transformations. Biometrics, 55(4), 1177–1187.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4),
800–802.

Lehmann, E. L., Romano, J. P. (2005). Testing statistical hypotheses (3rd ed.). New York: Springer.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,

6(2), 65–70.
Konietschke, F., Hothorn, L. A., Brunner, E. (2012). Rank-based multiple test procedures and simultaneous

confidence intervals. Electronic Journal of Statistics, 6, 738–759.
Munk, A., Neumeyer, N., Scholz, A. (2007). Non-parametric analysis of covariance: The case of inhomo-

geneous and heteroscedastic noise. Scandinavian Journal of Statistics, 34(3), 511–534.
Neve, J. D., Thas, O. (2015). A regression framework for rank tests based on the probabilistic index model.

Journal of the American Statistical Association, 110(511), 1276–1283.
R Development Core Team. (2013). R package mvtnorm: Multivariate Normal and t Distributions. In: A.

Genz, F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, B. Bornkamp, T. Hothorn (Eds.), License:
GPL-2. Maintainer: Hothorn T. < Torsten.Hothorn@R − project.org >.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. New York: Chapman and
Hall/CRC.

Simes, R. J. (1986). An improved bonferroni procedure for multiple tests of significance. Biometrika, 73(3),
655–660.

Tamhane, A. C., Dunnett, C. W. (1999). Stepwise multiple test procedures with biometric applications.
Journal of Statistical Planning and Inference, 82(1–2), 55–68.

Terpstra, J. T., Magel, R. C. (2003). A new nonparametric test for the ordered alternative problem. Journal
of Nonparametric Statistics, 15(3), 289–301.

Thas, O., Neve, J. D., Clement, L., Ottoy, J. P. (2012). Probabilistic index models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 74(4), 623–671.

Tsangari, H., Akritas, M. G. (2004). Nonparametric ANCOVA with two and three covariates. Journal of
Multivariate Analysis, 88(2), 298–319.

Wang, L., Akritas, M. G. (2006). Testing for covariate effects in the fully nonparametric analysis of covari-
ance model. Journal of the American Statistical Association, 101(474), 722–736.

123


	Testing in nonparametric ANCOVA model based  on ridit reliability functional
	Abstract
	1 Introduction
	2 Setup and hypothesis using conditional distribution approach
	2.1 BP-type functional
	2.2 BD-type functional
	2.3 BC-type functional

	3 Tests using conditional distribution approach
	3.1 Tests for H0p
	3.2 Test for H0R
	3.3 Test for H0R*
	3.4 Competitor 1

	4 Alternative tests
	5 Small sample approximation and simulation results
	6 Data study
	7 Conclusion
	Acknowledgements
	Appendix
	References




